WO2013071508A1 - Smart sealed valve-regulated lead-acid storage battery device - Google Patents

Smart sealed valve-regulated lead-acid storage battery device Download PDF

Info

Publication number
WO2013071508A1
WO2013071508A1 PCT/CN2011/082381 CN2011082381W WO2013071508A1 WO 2013071508 A1 WO2013071508 A1 WO 2013071508A1 CN 2011082381 W CN2011082381 W CN 2011082381W WO 2013071508 A1 WO2013071508 A1 WO 2013071508A1
Authority
WO
WIPO (PCT)
Prior art keywords
vrla
signal
sine wave
terminal
pin
Prior art date
Application number
PCT/CN2011/082381
Other languages
French (fr)
Chinese (zh)
Inventor
宋杰
Original Assignee
Song Jeff
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Song Jeff filed Critical Song Jeff
Priority to PCT/CN2011/082381 priority Critical patent/WO2013071508A1/en
Publication of WO2013071508A1 publication Critical patent/WO2013071508A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed is a smart sealed valve-regulated lead-acid (VRLA) storage battery device, at least comprising: a storage battery multi-parameter sensor and a sealed VRLA storage battery. The storage battery multi-parameter sensor comprises a temperature sensor, a pressure sensor, a current sensor, and an internal resistance detector. The internal resistance detector applies a sine wave constant current signal with a predetermined frequency to the anode and the cathode of the sealed VRLA storage battery, and detects voltage response signals at the two ends of the sealed VRLA storage battery. Based on the amplitude value of the constant current excitation signal with the predetermined frequency and the amplitude value of the corresponding voltage response signal, the internal resistance of the sealed VRLA can be calculated according to the Ohm's law. The magnitude of the sine wave constant current signal may be automatically adjusted according to the internal impedance of the VRLA. The smart sealed VRLA storage battery device further comprises an expert system for determining the health status of the VRLA, an automatic repair function module for repairing the VRLA, and an RFID module for monitoring the whole life cycle of the VRLA.

Description

说 明 书  Description
智能密封阀控铅酸蓄电池装置 技术领域  Intelligent sealed valve controlled lead-acid battery device
本发明涉及电池领域, 特别是涉及具有全生命周期管理功能的智能密封阀 控铅酸蓄电池装置。 背景技术  The present invention relates to the field of batteries, and more particularly to a smart sealed valve-regulated lead-acid battery device having a full lifecycle management function. Background technique
随着我国经济的快速发展, 近年来对密封阀控铅酸蓄电池(VRLA )的需求 迅速增长。 据官方统计, 2010年, 中国铅酸蓄电池总产量约 14400万千伏安时, 总销售额超过 1000亿元。 近五年来, 中国铅酸蓄电池产量和出口额均保持 20%以 上的增长速度。 铅酸蓄电池技术成熟、 成本低廉, 在汽车启动、 电动助力车、 后备电源、 风电光伏发电储能等领域仍是主流技术。 据估计, 占全球产量近半 的中国铅酸蓄电池未来 5年年均复合增长仍在 10%以上, 2015年全国产销量量将 达 24000万千伏安时。  With the rapid development of China's economy, the demand for sealed valve-regulated lead-acid batteries (VRLA) has increased rapidly in recent years. According to official statistics, in 2010, the total output of lead-acid batteries in China was about 144 million kVA, and the total sales exceeded 100 billion yuan. In the past five years, China's lead-acid battery production and exports have maintained a growth rate of more than 20%. The lead-acid battery technology is mature and low-cost, and it is still the mainstream technology in the fields of automobile start-up, electric moped, backup power, wind power photovoltaic energy storage and so on. It is estimated that China's lead-acid batteries, which account for nearly half of global production, will still have an average annual compound growth of more than 10% in the next five years. In 2015, the national production and sales volume will reach 240 million kVA.
未来, 铅酸蓄电池的重点发展方向为闹控式密封、 胶体、 卷绕式、 双极性、 超级电池、 铅碳电池等新型铅酸蓄电池, 其安全性、 比功率、 比能量及使用寿 命会大大提高。  In the future, the key development direction of lead-acid batteries is the new lead-acid batteries such as the air-controlled sealing, colloid, coiled, bipolar, super battery, lead carbon battery, etc., its safety, specific power, specific energy and service life will be Greatly improve.
在发电、 供电、 通信等领域经常采用串联的 VRLA作为备用电源。 当交流供 电电源发生故障时, 备用电源必须立即提供不间断的电源供应, 以保障整个系 统的正常运行。 因此, 判断铅酸蓄电池供电能力的好坏对上述领域的可靠性和 安全性来说十分重要。  Serial VRLA is often used as a backup power source in the fields of power generation, power supply, and communication. When the AC power supply fails, the backup power supply must provide an uninterrupted power supply immediately to ensure the normal operation of the entire system. Therefore, judging the power supply capability of lead-acid batteries is very important for the reliability and safety of the above fields.
在 VRLA的大量使用中, 发现 VRLA出现了很多以前未遇到的新问题, 例 如电池壳变形、 电解液渗漏、 电极腐蚀、 容量不足、 电池端电压不均匀等, 电 池内部接线柱、 同极的连接片以及电极接头的腐蚀而断裂的现象也比开口式电 池更常发生, 这些故障都导致容量损失。 但是, VRLA电池端电压与放电能力无 相关性, 导致使用者不易掌握 VRLA电池的有效使用时间和失效问题。  In the large-scale use of VRLA, it has been found that VRLA has many new problems that have not been encountered before, such as battery shell deformation, electrolyte leakage, electrode corrosion, insufficient capacity, battery terminal voltage unevenness, etc., battery internal terminal, same pole The phenomenon that the connecting piece and the electrode joint are corroded and broken is also more frequent than that of the open type battery, and these failures cause loss of capacity. However, there is no correlation between the VRLA battery terminal voltage and the discharge capability, which makes it difficult for the user to grasp the effective use time and failure of the VRLA battery.
VRLA维护部门以往只重视备用电源的设备部分的维护和管理,而忽视电池 组的重大作用, 殊不知断电的危险很大程度上就潜伏在电池组。 整组电池充电 的特性是, 由于电池组中有一个或几个落后电池, 电池组在充电状态下, 落后 电池容量小于正常电池因而将先于正常电池完成充电, 达到饱和状态, 导致整 组电池转为浮充状态, 使得正常电池无法充电到饱和状态。 反之亦然, 放电过 程中, 电池组也将以落后电池的容量为标准进行放电。 经过多次浮充 --放电 均 充--放电- -浮充的恶性循环, 因落后电池的影响, 正常状态的电池容量不断下降, 导致电池组后备使用时间缩短。 另一种情况是,当蓄电池组中存在落后电池时, 正常的充放电已不可避免地造成对落后电池的 "过充" 和 "过放"。 这种 "过充" 或 "过放" 进一步加剧落后电池的损伤以至 "猝死", 造成整组电池容量的突然 消失, 后备电源系统崩溃。 In the past, the VRLA maintenance department only paid attention to the maintenance and management of the equipment part of the backup power supply, and ignored the important role of the battery pack. However, the danger of power failure was largely lurking in the battery pack. Full battery charging The characteristic is that, because there is one or several backward batteries in the battery pack, when the battery pack is in the charging state, the battery capacity is lower than the normal battery, so the battery will be charged before the normal battery, and the whole battery is turned into a floating charge. The status makes the normal battery unable to charge to saturation. Vice versa, during the discharge process, the battery pack will also discharge with the capacity of the backward battery. After several times of floating charging--discharging-discharging--floating charging, due to the influence of backward batteries, the battery capacity in the normal state is continuously decreasing, resulting in shortened backup time of the battery pack. Another situation is that when there is a backward battery in the battery pack, normal charging and discharging has inevitably caused "overcharge" and "over-discharge" to the backward battery. This "overcharge" or "over-discharge" further aggravated the damage of the backward battery and even "sudden death", causing the sudden disappearance of the entire battery capacity and the backup power system to collapse.
由于 VRLA是全密封的, 无法用直观的方法对其内部材料进行检测。 而通过 检测 VRLA的阻抗就可以较好地判断其供电能力。 IEEE 1888-1996明确 VRLA的 容量与其内阻具有相关性, 通过对 VRLA内阻的监测, 可有效甄别失效的蓄电池 单体。 一般认为, VRLA的内阻大于内阻基准值的 20%-25%时, 可判定其为落后 电池,需要重点监测;如果大于 50%时,其供电能力已不可靠,随时可能 "猝死", 需进行替换。 因 VRLA的内阻极小, 如常用的 100 - 4000安时的 VRLA的内阻范 围大约在 1.3 - 0.05毫欧姆左右, 并且备用电源的 VRLA平时始终处于浮充状态 下。 浮充时, 充电机整流电路提供的充电电流给 VRLA两端叠加了很大的干扰信 号。 为确保备用电源的可靠性, 必须在 VRLA浮充电的强干扰环境下进行在线内 阻测量, 所以就给检测带来了很大难度。  Since the VRLA is fully sealed, it is not possible to visually inspect its internal materials. By detecting the impedance of the VRLA, the power supply capability can be better judged. IEEE 1888-1996 clarifies that the capacity of VRLA is related to its internal resistance. By monitoring the internal resistance of VRLA, it can effectively identify failed battery cells. It is generally believed that when the internal resistance of VRLA is greater than 20%-25% of the internal resistance reference value, it can be judged to be a backward battery and needs to be monitored. If it is greater than 50%, its power supply capability is unreliable and may be "suddenly dead" at any time. Need to be replaced. Because the internal resistance of the VRLA is extremely small, the internal resistance of the VRLA of the commonly used 100-4000 ampere is about 1.3 - 0.05 milliohms, and the VRLA of the standby power supply is always in the floating state. When floating, the charging current provided by the rectifier circuit of the charger adds a large interference signal to both ends of the VRLA. In order to ensure the reliability of the backup power supply, the online internal resistance measurement must be performed under the strong interference environment of VRLA floating charging, which brings great difficulty to the detection.
内阻分析是电化学研究中的常用方法, 是电池性能研究和产品设计的必要 手段。  Internal resistance analysis is a common method in electrochemical research and a necessary means for battery performance research and product design.
一般情况下, 电池在充电或放电时, 其内阻 R由以下 3部分组成的:  Under normal circumstances, when the battery is charging or discharging, its internal resistance R is composed of the following three parts:
R= o+Rc+ e  R= o+Rc+ e
式中的 Ro为欧姆内阻; Rc为浓差内阻; Re为活化内阻。  In the formula, Ro is an ohmic internal resistance; Rc is a concentration internal resistance; Re is an activation internal resistance.
欧姆内阻 Ro包括电池内部的电极、 隔膜、 电解液、 连接条和极柱等全部零 部件的电阻。 虽然在电池整个寿命期间它会因板栅腐蚀和电极变形而改变, 但 是在每次检测电池内阻过程中可以认为是不变的。  Ohmic internal resistance Ro includes the resistance of all components such as the electrode inside the battery, diaphragm, electrolyte, connecting strip and pole. Although it changes due to grid corrosion and electrode deformation throughout the life of the battery, it can be considered constant during each detection of the internal resistance of the battery.
浓差极化内阻 Rc是由反应离子浓度变化引起的, 只要有电化学反应在进行, 反应离子的浓度就总是在变化着的, 因而它的数值是处于变化状态, 测量方法 不同或测量持续时间不同, 其测得的结果也会不同。 The concentration polarization internal resistance Rc is caused by a change in the concentration of the reactive ions, as long as an electrochemical reaction is occurring, The concentration of the reactive ions is always changing, so its value is in a state of change, the measurement method is different or the measurement duration is different, and the measured results are also different.
活化极化内阻 Re是由电化学反应体系的性质决定的。 电池体系和结构确定 了, 其活化极化内阻也就定了。 只有在电池寿命后期或放电后期电极结构和状 态发生了变化而引起反应电流密度改变时才有改变, 但其数值仍然很小。  The activation polarization internal resistance Re is determined by the nature of the electrochemical reaction system. The battery system and structure are determined, and the activation polarization internal resistance is also determined. It changes only when the electrode structure and state change later in the battery life or when the reaction current density changes, but the value is still small.
长期以来, 国内外对 VRLA的检测基本采用的是 "容量放电法"。 实践证明, "容量放电法" 检测虽然可靠性、 准确度较高, 但这种方法的致命缺点是电池 要离线测试, 费时多, 一般一、 二年才能测一次。  For a long time, the detection of VRLA at home and abroad has basically adopted the "capacity discharge method". Practice has proved that although the "capacity discharge method" detection has higher reliability and accuracy, the fatal disadvantage of this method is that the battery should be tested offline, which takes a lot of time, and can only be measured once in one or two years.
近年来, 随着科学技术的不断进步和发展, 国际国内相继推出了各种类型 的 VRLA的内阻检测仪器, 其检测方法一般是 "直流放电法" 和 "交流法"。  In recent years, with the continuous advancement and development of science and technology, various types of VRLA internal resistance detecting instruments have been introduced in the world, and the detection methods are generally "DC discharge method" and "AC method".
1、 直流放电法  1, DC discharge method
这是最早实现 VRLA内阻检测的方法, 检测时, 对电池以 70A左右的大电流 I, 放电 T秒, 检测 秒放电后期较稳定的电池端电压 VI和放电结束后, 电池端电 压 V2 , 经计算 R等于 (V2-V1 ) 除以 I得电池电阻。 但 T秒长短, 对 VI和 V2都有 较复杂的影响, 因此影响了检测精度和系统的抗干扰能力。 检测误差可能达到 5%, 且难以检测 2000AH以上的电池, 而且此方法无法用标准电阻来校准仪器的 检测精度。  This is the earliest method to realize VRLA internal resistance detection. When detecting, the battery has a large current I of about 70A, discharges for T seconds, and detects a stable battery terminal voltage VI and a battery terminal voltage V2 after the second discharge. Calculate R equals (V2-V1) divided by I to obtain the battery resistance. However, the length of T seconds has a complicated effect on VI and V2, thus affecting the detection accuracy and the anti-interference ability of the system. The detection error may reach 5%, and it is difficult to detect batteries above 2000AH, and this method cannot use standard resistance to calibrate the detection accuracy of the instrument.
2、 交流法  2. Communication method
此方法向被测电池注入一个 1 - 2A的交流激励电流,然后检测电池两端的交 流电压, 再计算出电池电阻, 此方法激励电流小, 可以用标准电阻来校准仪器 但是此方法需要在激励电流回路中串联大容量电解电容器, 大容量电解电 容器本身不够稳定, 从而使激励电流也不够稳定。  This method injects a 1 - 2A AC excitation current into the battery under test, then detects the AC voltage across the battery, and then calculates the battery resistance. This method has a small excitation current. The standard resistance can be used to calibrate the instrument. However, this method requires excitation current. The large-capacity electrolytic capacitors are connected in series in the circuit, and the large-capacity electrolytic capacitor itself is not stable enough, so that the excitation current is not stable enough.
另一方面, 在现有技术中, 蓄电池在使用过程中, 在正极和负极板附近聚 集的硫酸铅结晶会导致 VRLA内阻发生变化并超出标准要求。现有技术中并不能 够针对这种情形自动对 VRLA进行自动修复以使其内阻值符合要求。  On the other hand, in the prior art, during the use of the battery, the crystallization of lead sulfate accumulated in the vicinity of the positive and negative plates causes the internal resistance of the VRLA to change and exceeds the standard requirements. In the prior art, the VRLA is not automatically repaired for this situation to make its internal resistance value meet the requirements.
因此, 存在一种对能够准确、 可靠地对 VRLA内阻进行检测的智能 VRLA装 置的需要, 所述智能 VRLA装置还能够进一步根据需要进行自动修复。 发明内容 Therefore, there is a need for an intelligent VRLA device that can accurately and reliably detect VRLA internal resistance, which can further perform automatic repair as needed. Summary of the invention
针对现有技术的缺陷, 本发明提出了一种具有全生命周期管理功能的智能 密封阀控铅酸蓄电池装置。  In view of the deficiencies of the prior art, the present invention proposes an intelligent sealed valve-regulated lead-acid battery device having a full life cycle management function.
根据本发明, 提供了一种智能密封阀控铅酸蓄电池装置, 至少包括蓄电池 多参数传感器和密封阀控铅酸蓄电池 VRLA , 蓄电池多参数传感器包括检测 VRLA的温度的温度传感器、 检测 VRLA的电压的电压传感器、 检测 VRLA电流 的电流传感器和内阻检测器, 其特征在于: 内阻检测器将预定频率的正弦波恒 定电流信号施加于密封阀控铅酸蓄电池正负极上, 检测密封阀控铅酸蓄电池两 端的电压响应信号, 基于预定频率的恒定电流激励信号的幅值以及相应的电压 响应信号的幅值, 利用欧姆定律可以计算得出密封阀控铅酸的内阻, 其中, 正 弦波恒定电流信号大小可根据 VRLA的内部阻抗大小自动调节。 可选地, 本发明 也可以基于预定频率的恒定电流激励信号以及相应的电压响应信号的相位差值 来确定密封闽控铅酸的内阻。  According to the present invention, there is provided a smart sealed valve-regulated lead-acid battery device, comprising at least a battery multi-parameter sensor and a sealed valve-regulated lead-acid battery VRLA, the battery multi-parameter sensor comprising a temperature sensor for detecting the temperature of the VRLA, and detecting the voltage of the VRLA The voltage sensor, the current sensor for detecting the VRLA current, and the internal resistance detector are characterized in that: the internal resistance detector applies a sine wave constant current signal of a predetermined frequency to the positive and negative terminals of the sealed valve-regulated lead-acid battery, and detects the sealed valve controlled lead The voltage response signal at both ends of the acid battery, based on the amplitude of the constant current excitation signal of the predetermined frequency and the amplitude of the corresponding voltage response signal, the internal resistance of the sealed valve controlled lead acid can be calculated by Ohm's law, wherein the sine wave is constant The current signal size is automatically adjusted based on the internal impedance of the VRLA. Alternatively, the present invention may also determine the internal resistance of the sealed germanium lead acid based on the constant current excitation signal of the predetermined frequency and the phase difference value of the corresponding voltage response signal.
其中, 所述内阻检测器包括: 第一单片机 301, 用于产生预定频率的正弦波 脉宽调制信号 SPWM; 正弦波恒定电流信号发生电路, 基于所述 SPWM, 输出正 弦波恒定电流信号并施加于 VRLA的正负极上; 电压检测电路, 用于检测响应于 正弦波恒定电流信号所述 VRLA输出的电压响应信号; 其中, 单片机 301分别经 第一 A/D转换器和第二 A/D转换器接收正弦波恒定电流信号的幅度值和电压响 应信号的幅值, 并基于正弦波恒定电流信号的幅度值和电压响应信号的幅值, 计算出 VRLA的内阻值。  The internal resistance detector includes: a first single chip microcomputer 301, configured to generate a sine wave pulse width modulation signal SPWM of a predetermined frequency; a sine wave constant current signal generating circuit, based on the SPWM, outputting a sine wave constant current signal and applying On the positive and negative electrodes of the VRLA; a voltage detecting circuit, configured to detect a voltage response signal of the VRLA output in response to the sine wave constant current signal; wherein, the single chip microcomputer 301 passes through the first A/D converter and the second A/D respectively The converter receives the amplitude value of the sine wave constant current signal and the amplitude of the voltage response signal, and calculates the internal resistance value of the VRLA based on the amplitude value of the sine wave constant current signal and the magnitude of the voltage response signal.
其中, 所述预定频率是可调的, 其范围为 10Hz到 1000Hz。  Wherein the predetermined frequency is adjustable, and the range is from 10 Hz to 1000 Hz.
其中, 所述正弦波恒定电流信号发生电路包括: 第一数字低通滤波器 302, 接收单片机 301输出的 SPWM信号, 并产生正弦波电压信号; 正弦波信号电流恒 流源 303 , 接收所述正弦波电压信号, 并产生所述正弦波恒定电流信号; 所述电 压检测电路包括: 正弦波信号电压检测器 306, 用于检测 VRLA两端的电压响应 信号; 仪表线性放大器 307, 对所检测的电压响应信号进行多级电压线性放大; 第一低通滤波器 308, 对仪表线性放大器输出的信号进行滤波, 以滤除高频噪声 信号; 动态数字带通滤波器 309, 对第一低通滤波器输出的信号进行滤波, 以滤 除其带宽之外的噪声信号; 相敏检波器 310, 用于从动态数字带通滤波器的输出 中提取期望的信号; 第二低通滤波器 311 , 对相敏检波器输出的信号进行直流电 压电位提取, 并且滤除掉高频噪声信号, 输出所述电压响应信号。 The sinusoidal constant current signal generating circuit includes: a first digital low pass filter 302, receiving an SPWM signal output by the single chip microcomputer 301, and generating a sine wave voltage signal; a sine wave signal current constant current source 303, receiving the sine a voltage signal, and generating the sine wave constant current signal; the voltage detecting circuit comprising: a sine wave signal voltage detector 306 for detecting a voltage response signal across the VRLA; an instrument linear amplifier 307, responsive to the detected voltage The signal is multi-level voltage linearly amplified; a first low-pass filter 308 filters the signal output from the instrument linear amplifier to filter out the high-frequency noise signal; a dynamic digital band-pass filter 309, the first low-pass filter output Signal is filtered to filter a noise signal other than its bandwidth; a phase sensitive detector 310 for extracting a desired signal from an output of the dynamic digital band pass filter; a second low pass filter 311 for directing a signal output by the phase sensitive detector The piezoelectric bit is extracted, and the high frequency noise signal is filtered out, and the voltage response signal is output.
其中, 所述正弦波恒定电流信号发生电路中, 第一数字低通滤波器 302由第 一 74HC4053来实现, 正弦波信号电流恒流源 303由电路 TLC2274A、 MOS管 Q1 以及电阻 R11-R14组成, 所述正弦波恒定电流信号发生电路还包括稳压电路, 所 述稳压电路包括稳压管 D5和电阻 R10; 所述稳压管的负极连接到第一 74HC4053 的端子 1Y1, 并且通过电阻 R10连接到 +5V电源, 稳压管 D5的正极连接到 VRLA 的负极; 第一 74HC4053的端子 S1接收 SPWM信号, 端子 VCC接到 +5V电源, 端 子 GND和 E共同连接到地, 端子 1Y0连接到 BAT_PVSS, 端子 VEE接到 -4V电源, 端子 1Z直接连接到电路 TLC2274A的输入端 IN+,并且经电阻 R11接到 VRLA的负 极; 电路 TLC2274A的输入端 IN-与 MOS管 Q1的源极相连接, 输出端 OUT通过电 阻 R12与 MOS管 Q1的栅极相连接; MOS管 Q1的漏极经电阻 R13连接到 VRLA的正 极, 源极经电阻 R14连接到 VRLA的负极。  In the sine wave constant current signal generating circuit, the first digital low pass filter 302 is implemented by a first 74HC4053, and the sine wave signal current constant current source 303 is composed of a circuit TLC2274A, a MOS transistor Q1, and a resistor R11-R14. The sine wave constant current signal generating circuit further includes a voltage stabilizing circuit, and the voltage stabilizing circuit includes a voltage stabilizing tube D5 and a resistor R10; a cathode of the voltage stabilizing tube is connected to a terminal 1Y1 of the first 74HC4053, and is connected through a resistor R10. To the +5V power supply, the positive terminal of the Zener diode D5 is connected to the negative terminal of the VRLA; the terminal S1 of the first 74HC4053 receives the SPWM signal, the terminal VCC is connected to the +5V power supply, the terminals GND and E are connected to the ground, and the terminal 1Y0 is connected to the BAT_PVSS. The terminal VEE is connected to the -4V power supply, the terminal 1Z is directly connected to the input terminal IN+ of the circuit TLC2274A, and is connected to the negative terminal of the VRLA via the resistor R11; the input terminal IN- of the circuit TLC2274A is connected to the source of the MOS transistor Q1, and the output terminal OUT Connected to the gate of MOS transistor Q1 through resistor R12; the drain of MOS transistor Q1 is connected to the positive terminal of VRLA via resistor R13, and the source is connected to VR via resistor R14 The negative electrode of LA.
其中, 正弦波信号电压检测器由电阻 R1和 R2构成, 电阻 R1的一端连接到 Wherein, the sine wave signal voltage detector is composed of resistors R1 and R2, and one end of the resistor R1 is connected to
VRLA的正极 BAT— SVDD, 另一端和电阻 R2的一端共同接地, 电阻 R2的另一端 连接到 VRLA的负极 BAT— SVSS; 仪表线性放大器由电路 AD623A来实现, 电路 AD623A的端子 8经电阻 R3连接到端子 1 ,端子 3连接到 VRLA的正极 BAT_SVDD, 端子 2连接到 VRLA的负极 BAT_SVSS, 端子 4连接到 -4V, 端子 7连接到 +5V, 端 子 5接地, 电路 AD623A的输出端子 6连接到第一数字低通滤波器; 第一数字低通 滤波器釆用电路 MAX294, 电路 AD623A的输出端子 6连接到 MXA294的端子 IN, MAX294的 GND管脚接地, V+管脚接 +5V电源, CLK管脚接时钟, V2管脚接 -4V 电源, OUT管脚连接到动态数字带通滤波器的输入端; 动态数字带通滤波器的 输出端连接到相敏检波器 310; 相敏检波器 310由第二 74HC4053和 TLC2274A来 实现, 第二 74HC4053的 1Z管脚与 MAX294的 OUT管脚相连接, VCC管脚接 +5V 电源, VEE管脚接 -4V电源, E/与 GND管脚接地, S1管脚连接来自单片机输出的 参考信号 REF— SIGN, 1Y0管脚通过电阻 114与11^:2274 的 IN-管脚相连接, 1Y1 管脚连接到 TLC2274A的 IN+管脚并且通过 R5接地; TLC2274A的 OUT管脚连接 到第二数字低通滤波器; 第二数字低通滤波器由 MAX293实现, TLC2274A的 OUT管脚所输出的信号作为输出信号输入到 MAX293的 IN管脚, 并通过电阻 R6 与 IN-管脚连接; MAX293的 V+管脚与 +5V电源连接, V2管脚与 -4V电源连接, CLK管脚经电阻 R7接收单片机发出的时钟信号, GND管脚通过电阻 R8与 +5 V电 源相连接, 并通过 R9与 -4V电源相连接, OUT管脚输出的信号送到单片机。 The positive terminal of the VRLA is BAT-SVDD, the other end is connected to one end of the resistor R2, and the other end of the resistor R2 is connected to the negative terminal BAT_SVSS of the VRLA. The linear amplifier of the instrument is realized by the circuit AD623A, and the terminal 8 of the circuit AD623A is connected to the terminal through the resistor R3. Terminal 1, terminal 3 is connected to the positive BAT_SVDD of VRLA, terminal 2 is connected to the negative terminal BAT_SVSS of VRLA, terminal 4 is connected to -4V, terminal 7 is connected to +5V, terminal 5 is grounded, and output terminal 6 of circuit AD623A is connected to the first digit Low-pass filter; first digital low-pass filter circuit MAX294, circuit AD623A output terminal 6 is connected to terminal IN of MXA294, MAX294 GND pin is grounded, V+ pin is connected to +5V power supply, CLK pin is connected to clock The V2 pin is connected to the -4V power supply, and the OUT pin is connected to the input of the dynamic digital band pass filter; the output of the dynamic digital band pass filter is connected to the phase sensitive detector 310; the phase sensitive detector 310 is connected to the second 74HC4053 And TLC2274A to achieve, the second 74HC4053 1Z pin is connected to the MAX294 OUT pin, VCC pin is connected to +5V power supply, VEE pin is connected to -4V power supply, E/ is connected to GND pin, S1 pin connection is from The output of the single chip microcomputer Signal REF- SIGN, 1Y0 pin 114 and through a resistor 11 ^: IN- pin 2274 is connected, 1Y1 TLC2274A pin is connected to the IN + pin and ground through R5; OUT pin of the connector TLC2274A To the second digital low-pass filter; the second digital low-pass filter is implemented by the MAX293. The signal output from the OUT pin of the TLC2274A is input as an output signal to the IN pin of the MAX293, and is connected to the IN- pin through the resistor R6. The MAX293's V+ pin is connected to the +5V power supply, the V2 pin is connected to the -4V power supply, and the CLK pin receives the clock signal from the microcontroller via the resistor R7. The GND pin is connected to the +5 V power supply through the resistor R8 and passes through R9 is connected to the -4V power supply, and the signal output from the OUT pin is sent to the microcontroller.
所述的智能密封阀控铅酸蓄电池装置进一步包括: 专家系统, 基于蓄电池 多参数传感器提供的温度、 电压、 电流和内阻判断 VRLA的健康状况。  The intelligent sealed valve-regulated lead-acid battery device further includes: an expert system that determines the health status of the VRLA based on the temperature, voltage, current, and internal resistance provided by the battery multi-parameter sensor.
所述的智能密封阀控铅酸蓄电池装置进一步包括自动修复功能模块, 用于 在专家系统判断 VRLA的健康状况需要启动自动修复功能模块时,将与硫酸铅结 晶颗粒的谐振频率相同的多个频率的正弦波半波恒定电流信号施加到 VRLA两 端以产生共振来修复 VRLA。  The intelligent sealed valve-regulated lead-acid battery device further includes an automatic repair function module, which is configured to use a plurality of frequencies having the same resonant frequency as the lead sulfate crystal particles when the expert system determines that the health condition of the VRLA needs to start the automatic repair function module. A sinusoidal half-wave constant current signal is applied across the VRLA to create resonance to repair the VRLA.
其中, 所述自动修复功能模块包括: 第二单片机 701, 产生频率与不同大小 的硫酸铅结晶颗粒的谐振频率相同的正弦波脉宽调制信号; 第二数字低通滤波 器 702, 对所述正弦波脉宽调制信号进行处理以产生正弦波信号; 反相器及功率 放大器 703 , 对所述正弦波信号的负半波进行反相, 并对反相后的正弦波半波信 号进行功率放大; 和正弦波半波信号电流恒流源 704, 基于所述反相器及功率放 大器的输出信号, 产生不同频率的恒定的正弦波半波电流信号并将其加载到 VRLA两端。  The automatic repair function module includes: a second single chip microcomputer 701, generating a sine wave pulse width modulation signal having the same resonant frequency as that of different sizes of lead sulfate crystal particles; a second digital low pass filter 702, for the sine The pulse width modulation signal is processed to generate a sine wave signal; the inverter and the power amplifier 703 are inverting the negative half wave of the sine wave signal, and performing power amplification on the inverted sine wave half wave signal; And a sinusoidal half-wave signal current constant current source 704, based on the output signals of the inverter and the power amplifier, generating a constant sine wave half-wave current signal of different frequencies and loading it to both ends of the VRLA.
所述的智能密封闽控铅酸蓄电池装置进一步包括设置在内阻检测器和 VRLA之间的第一开关和设置在自动修复模块和 VRLA之间的第二开关, 第一开 关和第二开关组成的互锁电路, 以确保内阻检测器和自动修复模块之一工作时 另一个与 VRLA断开。  The smart sealed 闽 control lead-acid battery device further includes a first switch disposed between the internal resistance detector and the VRLA and a second switch disposed between the automatic repair module and the VRLA, the first switch and the second switch being composed The interlock circuit ensures that one of the internal resistance detector and the automatic repair module operates while the other is disconnected from the VRLA.
所述的智能密封阀控铅酸蓄电池装置进一步包括: RFID模块, 用于记录 VRLA基本出厂信息和 VRLA状态信息, 以对 VRLA全生命周期进行管理。  The intelligent sealed valve-regulated lead-acid battery device further includes: an RFID module for recording VRLA basic factory information and VRLA status information to manage the VRLA life cycle.
其中, 所述蓄电池多参数传感器、 自动修复功能模块、 RFID功能模块中的 每一个可以安装在 VRLA上可容纳的位置。  Wherein, each of the battery multi-parameter sensor, the automatic repair function module, and the RFID function module can be installed at a position accommodating on the VRLA.
其中, 所述蓄电池多参数传感器、 自动修复功能模块、 RFID功能模块中的 每一个可以通过导线连接到 VRLA的正负极柱上来由 VRLA供电, 或者由外部电 源供电。 Wherein, each of the battery multi-parameter sensor, the automatic repair function module, and the RFID function module can be connected to the positive and negative poles of the VRLA by wires to be powered by the VRLA, or by external electricity. Source power supply.
其中, 所述动态数字带通滤波器 309采用 8阶滤波芯片对正弦波电流信号的 电压响应信号进行滤波。  The dynamic digital band pass filter 309 filters the voltage response signal of the sine wave current signal by using an 8th order filter chip.
本发明把一个蓄电池多参数传感器、 具有自动修复功能模块、 RFID 功能模 块安装到 VRLA里面, 是一个实现智能检测、 修复、 参数读写的装置, 形成一个 具有全生命周期管理功能的智能 VRLA 。  The invention installs a battery multi-parameter sensor, an automatic repair function module and an RFID function module into the VRLA, and is a device for realizing intelligent detection, repair, parameter reading and writing, and forming an intelligent VRLA with full life cycle management function.
蓄电池多参数传感器可以安装在 VRLA表面上任何可以容纳蓄电池多参数 传感器的位置。在 VRLA参数传感器中, 同时通过温度传感器获得 VRLA的温度, 获得 VRLA的两端电压和电流, 再通过四线测量装置, 获得 VRLA的内阻。 然后 通过数据接口把测量所得的数据上传到计算机或者中央数据处理中心。 蓄电池 多参数传感器也可以接收来自计算机或者中央数据处理中心的指令。  The battery multi-parameter sensor can be mounted on any surface of the VRLA that can accommodate the battery multi-parameter sensor. In the VRLA parameter sensor, the temperature of the VRLA is obtained by the temperature sensor at the same time, the voltage and current of the VRLA are obtained, and the internal resistance of the VRLA is obtained by the four-wire measuring device. The measured data is then uploaded to a computer or central data processing center via a data interface. The battery multi-parameter sensor can also receive commands from a computer or central data processing center.
本发明中, 可以把蓄电池多参数传感器获得 VRLA的温度、 电压、 电流和内 阻等参数输入到内置的专家系统进行分析和判断, 给出 VRLA的健康状态, 决定 是否起动自动修复功能模块。 与此同时, 将参数写入到 RFID芯片进行数据保存。 附图说明  In the present invention, the parameters of the VRLA temperature, voltage, current and internal resistance of the battery multi-parameter sensor can be input to the built-in expert system for analysis and judgment, and the health status of the VRLA is given, and whether the automatic repair function module is started is determined. At the same time, parameters are written to the RFID chip for data storage. DRAWINGS
图 1是根据本发明的至少安装有蓄电池多参数传感器的智能 VRLA装置的示 意图。  BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of an intelligent VRLA device having at least a battery multi-parameter sensor mounted in accordance with the present invention.
图 2是根据本发明 VRLA、 蓄电池多参数传感器、 自动修复功能模块、 RFID 功能模块以及专家系统之间信号流关系的示意图。  2 is a schematic diagram of signal flow relationships between VRLA, battery multi-parameter sensor, automatic repair function module, RFID function module, and expert system in accordance with the present invention.
图 3示出了根据本发明的利用单片机产生的 SPWM信号激励的密封阀控铅 酸 VRLA内阻四线检测器的电路原理图。  3 is a circuit diagram showing a sealed valve-regulated lead acid VRLA internal resistance four-wire detector excited by an SPWM signal generated by a single chip microcomputer according to the present invention.
图 4示出了根据本发明优选实施例的用于产生正弦波恒定电流信号的电路 图。  Figure 4 shows a circuit diagram for generating a sinusoidal constant current signal in accordance with a preferred embodiment of the present invention.
图 5是示出了根据本发明优选实施例的用于检测响应于正弦波恒定电流信 号的正弦波电压信号的电压检测电路。  Figure 5 is a diagram showing a voltage detection circuit for detecting a sinusoidal voltage signal responsive to a sinusoidal constant current signal in accordance with a preferred embodiment of the present invention.
图 6示出了利用 RFID对 VRLA全生命周期进行管理的平台示意图。  Figure 6 shows a schematic diagram of a platform for managing the entire lifecycle of VRLA using RFID.
图 7示出了根据本发明的用于 VRLA的自动修复功能模块的电路原理框图。 具体实施方式 Figure 7 shows a circuit block diagram of an automatic repair function module for VRLA in accordance with the present invention. detailed description
下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描述。 以 下实施例用于说明本发明, 而不是用于限制本发明。  The specific embodiments of the present invention are further described in detail below with reference to the drawings and embodiments. The following examples are intended to illustrate the invention and are not intended to limit the invention.
智能密封闽控铅酸蓄电池装置至少包括蓄电池多参数传感器以及 VRLA。密 封阀控铅酸蓄电池装置可以包括专家系统。 专家系统可以存储在存储器, 也可 以根据需要设置在蓄电池多参数传感器中。 专家系统用于根据蓄电池多参数传 感器提供的参数分析判断 VRLA的性能是否低于规定要求。智能密封阀控铅酸蓄 电池装置可以进一步包括自动修复功能模块和 /或 R ID功能模块。 蓄电池多参数 传感器、 自动修复功能模块、 RFID功能模块以及专家系统可以安装在 VRLA的 任何能够容纳它们的位置上, 如图 1所示。  The intelligent sealed lead-acid battery device includes at least a battery multi-parameter sensor and a VRLA. The sealed valve regulated lead acid battery device can include an expert system. The expert system can be stored in the memory or can be placed in the battery multi-parameter sensor as needed. The expert system is used to determine whether the performance of the VRLA is lower than the specified requirements based on the parameter analysis provided by the battery multi-parameter sensor. The intelligent sealed valve-regulated lead-acid battery device may further include an automatic repair function module and/or an R ID function module. The battery multi-parameter sensor, auto-repair function module, RFID function module, and expert system can be installed in any position of the VRLA that can accommodate them, as shown in Figure 1.
根据本发明, 在 VRLA上, 可以根据实际需要安装一个功能模块, 也可以安 装多个功能模块。 即, 单独安装蓄电池多参数传感器或自动修复功能模块、 或 者 RFID功能模块, 或者组合安装蓄电池多参数传感器和自动修复功能模块, 或 者蓄电池多参数传感器和 RFID功能模块等。  According to the present invention, on the VRLA, one functional module can be installed according to actual needs, or multiple functional modules can be installed. That is, the battery multi-parameter sensor or the auto-repair function module, or the RFID function module, or the battery multi-parameter sensor and the auto-repair function module, or the battery multi-parameter sensor and the RFID function module are separately installed.
蓄电池多参数传感器、 自动修复功能模块、 RFID功能模块的供电有两种方 式。 第一种方式中, 通过导线将蓄电池多参数传感器、 自动修复功能模块、 RFID 功能模块分别连接到密封阀控铅酸电池 VRLA的正负极柱上, 由 VRLA进行供 电。 第二种方式中, 将蓄电池多参数传感器、 自动修复功能模块、 RFID功能模 块连接到在 VRLA外部的外部电源 (未示出)。 根据本发明, 蓄电池多参数传感 器包括有检测 VRLA的温度的温度传感器、 检测 VRLA的电流的电流传感器、 检 测 VRLA的电压的电压传感器和检测 VRLA的内阻的内阻检测器, 能够获得 VRLA的温度、 电压、 电流和内阻等参数。 本发明中, 温度传感器、 电流传感器 和电压传感器采用现有技术中的传感器。  There are two ways to supply power to the battery multi-parameter sensor, automatic repair function module, and RFID function module. In the first method, the battery multi-parameter sensor, the automatic repair function module, and the RFID function module are respectively connected to the positive and negative columns of the sealed valve-regulated lead-acid battery VRLA through a wire, and are supplied by the VRLA. In the second mode, the battery multi-parameter sensor, the auto-repair function module, and the RFID function module are connected to an external power source (not shown) external to the VRLA. According to the present invention, the battery multi-parameter sensor includes a temperature sensor that detects the temperature of the VRLA, a current sensor that detects the current of the VRLA, a voltage sensor that detects the voltage of the VRLA, and an internal resistance detector that detects the internal resistance of the VRLA, and can obtain the temperature of the VRLA. , voltage, current and internal resistance and other parameters. In the present invention, the temperature sensor, the current sensor, and the voltage sensor employ sensors of the prior art.
VRLA 201 , 蓄电池多参数传感器 202、 自动修复功能模块 204、 RFID功能模 块 205以及专家系统 203之间信号流关系如图 2 所示。 图 2中, 蓄电池多参数传感 器 202连接到 VRLA 201上, 定期地获得 VRLA的各种参数。 基于获得的 VRLA的 各种参数, 由设置在 VRLA上的专家系统 203进行分析判断, 获得 VRLA的健康 状况。 在 VRLA装置包括有自动修复功能模块 204的情况下, 专家系统还可以根 据 VRLA的健康状况, 决定是否起动自动修复功能模块 204。 专家系统根据蓄电 池多参数传感器所获得的参数, 将所获得的内阻值、 电压、 温度分别与蓄电池 的内阻标称值、 电压标称值和温度标称值进行比较, 当内阻值、 电压值和温度 值与相应的标称值相比分别超过预定阈值时,专家系统判断 VRLA健康状况较差 并决定启动自动修复功能模块。 可选地, 专家系统也可以仅根据内阻、 电压和 温度中的一个参数来判断 VRLA是否良好,例如当所测得的内阻值高于内阻标称 值 20%-25%时,或者电压低于标称电压值 20%时,或者温度高于标称温度 20%时, 决定启动自动修复功能模块。 同时, 蓄电池多参数传感器所获得的 VRLA的各种 参数输入到 RFID功能模块之中, 以便 RFID读卡器获得所述各种参数数据。 The signal flow relationship between the VRLA 201, the battery multi-parameter sensor 202, the automatic repair function module 204, the RFID function module 205, and the expert system 203 is as shown in FIG. In Figure 2, battery multi-parameter sensor 202 is coupled to VRLA 201 to periodically obtain various parameters of the VRLA. Based on the various parameters of the obtained VRLA, the expert system 203 set on the VRLA performs analysis and judgment to obtain the health status of the VRLA. In the case where the VRLA device includes the automatic repair function module 204, the expert system can also root According to the health status of the VRLA, it is decided whether to activate the automatic repair function module 204. The expert system compares the obtained internal resistance value, voltage, and temperature with the battery internal resistance nominal value, voltage nominal value, and temperature nominal value according to the parameters obtained by the battery multi-parameter sensor. When the voltage value and the temperature value respectively exceed the predetermined threshold value, the expert system judges that the VRLA is in poor health and decides to start the automatic repair function module. Optionally, the expert system can also judge whether the VRLA is good according to only one of the internal resistance, the voltage and the temperature, for example, when the measured internal resistance value is higher than the internal resistance nominal value by 20%-25%, or When the voltage is lower than 20% of the nominal voltage value, or when the temperature is 20% higher than the nominal temperature, it is decided to start the automatic repair function module. At the same time, various parameters of the VRLA obtained by the battery multi-parameter sensor are input into the RFID function module, so that the RFID card reader obtains the various parameter data.
如图 3所示, 示出了根据本发明的利用单片机产生的 SPWM信号激励的 As shown in FIG. 3, the SPWM signal generated by the single chip microcomputer is excited according to the present invention.
VRLA内阻检测器的电路原理图。 VRLA内阻检测器采用四线制内阻测量方法来 测量 VRLA的内阻。 VRLA内阻检测器包括单片机 301和正弦波恒定电流信号发 生电路和电压检测电路。 恒定电流信号发生电路包括第一数字低通滤波器 302和 正弦波信号电流恒流源 303。 单片机通过编程产生所需的正弦波脉宽调制信号 SPWM, 输入到第一数字低通滤波器 302。 SPWM信号是一个电压信号。 第一数 字低通滤波器 302输出正弦波电压信号到正弦波信号电流恒流源 303。 正弦波信 号电流恒流源 303包括一个压控恒流源电路, 通过正弦波电压信号的控制压控恒 流源, 正弦波信号电流恒流源 303输出一个恒定电流,并经两根导线经 VRLA 304 的正负极进入到 VRLA 304。 VRLA 304与正弦波信号电流恒流源 303构成一个回 路。 根据本发明, 注入到回路中的恒定电流信号是一个正弦波信号, 其作为激 励信号, 激励信号的电流大小可根据被测内阻大小进行调节。 此外, 正弦波激 励信号的频率可以进行调节, 频率变化范围为从 10Hz到 1000Hz。 第一 A/D变换 器 305对恒流源 303的输出进行 A/D变换, 并将恒流源 303的输出的恒定电流的幅 值输入到单片机 301。 Circuit diagram of the VRLA internal resistance detector. The VRLA internal resistance detector uses a four-wire internal resistance measurement method to measure the internal resistance of the VRLA. The VRLA internal resistance detector includes a single chip microcomputer 301 and a sine wave constant current signal generating circuit and a voltage detecting circuit. The constant current signal generating circuit includes a first digital low pass filter 302 and a sinusoidal signal current constant current source 303. The microcontroller generates a desired sinusoidal pulse width modulation signal SPWM, which is input to the first digital low pass filter 302. The SPWM signal is a voltage signal. The first digital low pass filter 302 outputs a sinusoidal voltage signal to a sinusoidal signal current constant current source 303. The sinusoidal signal current constant current source 303 includes a voltage controlled constant current source circuit, and the sinusoidal signal current constant current source 303 outputs a constant current through a sinusoidal voltage signal controlled constant current source 303, and passes through two wires via VRLA. The positive and negative poles of 304 enter VRLA 304. The VRLA 304 and the sinusoidal signal current constant current source 303 form a loop. According to the present invention, the constant current signal injected into the loop is a sinusoidal signal which acts as an excitation signal, and the magnitude of the current of the excitation signal can be adjusted according to the magnitude of the measured internal resistance. In addition, the frequency of the sine wave excitation signal can be adjusted from 10 Hz to 1000 Hz. The first A/D converter 305 A/D converts the output of the constant current source 303, and inputs the magnitude of the constant current of the output of the constant current source 303 to the microcontroller 301.
VRLA内阻检测器的电压检测电路包括经过另外的两根导线连接到 VRLA The voltage detection circuit of the VRLA internal resistance detector includes two additional wires connected to the VRLA.
304的正负极两端的正弦波信号电压检测器 306, 仪表线性放大器 307, 第一低通 滤波器 308, 动态数字带通滤波器 309, 相敏检波器 310和第二低通滤波器 311。 正弦波信号电压检测器 306用于检测 VRLA两端的电压, 其输出端连接到仪表线 性放大器 307。 仪表线性放大器 307对输入的电压信号进行多级电压线性放大, 以产生合适电平的、 包含噪声的电压信号。 作为替换, 也可以对正弦波电流信 号激励信号的电压响应信号进行对数放大, 获得合适电平、 包含噪声的电压正 弦波信号。 第一低通滤波器 308对放大器 307输出的信号进行滤波, 滤除高频噪 声信号。 动态数字带通滤波器 309的输入端连接到第一低通滤波器 308的输出端, 用于对合适电平的电压信号进行滤波, 滤除掉合适电平的电压信号中的噪声。 动态数字带通滤波器 309的输出端连接到相敏检波器 310的输入端。 作为一个例 子, 动态数字带通滤波器 309可以釆用 8阶滤波芯片对正弦波电流信号的电压响 应信号进行滤波。 相敏检波器 310提取期望的信号, 然后将提取的信号输入到第 二低通滤波器 311。 第二低通滤波器 311对输入的信号进行直流电压电位提取, 并且滤除掉高频噪声信号, 然后输出正弦波电压信号。 该正弦波电压信号输入 到第二 A/D转换器 312。 第二 A/D转换器 312提取正弦波电压信号的幅度和相位并 送到单片机 301中。 本发明的优选实施例中, 第一低通滤波器 308并不是必须的, 第一低通滤波器 308的功能与作用也可以由动态数字带通滤波器和第二低通滤 波器来完成。 A sine wave signal voltage detector 306 at both ends of the positive and negative terminals of 304, an instrument linear amplifier 307, a first low pass filter 308, a dynamic digital band pass filter 309, a phase sensitive detector 310 and a second low pass filter 311. The sine wave signal voltage detector 306 is used to detect the voltage across the VRLA, and its output is connected to the instrument line. Amplifier 307. The meter linear amplifier 307 performs multi-level voltage linear amplification on the input voltage signal to generate a suitable level of noise-containing voltage signal. Alternatively, the voltage response signal of the sine wave current signal excitation signal may be logarithmically amplified to obtain a voltage sine wave signal of a suitable level and containing noise. The first low pass filter 308 filters the signal output from the amplifier 307 to filter out the high frequency noise signal. An input of the dynamic digital bandpass filter 309 is coupled to the output of the first low pass filter 308 for filtering a voltage signal of a suitable level to filter out noise in a voltage signal of a suitable level. The output of the dynamic digital bandpass filter 309 is coupled to the input of phase sensitive detector 310. As an example, the dynamic digital bandpass filter 309 can filter the voltage response signal of the sinusoidal current signal using an 8th order filter chip. The phase sensitive detector 310 extracts the desired signal and then inputs the extracted signal to the second low pass filter 311. The second low pass filter 311 performs DC voltage potential extraction on the input signal, and filters out the high frequency noise signal, and then outputs a sine wave voltage signal. The sine wave voltage signal is input to the second A/D converter 312. The second A/D converter 312 extracts the amplitude and phase of the sine wave voltage signal and sends it to the microcontroller 301. In a preferred embodiment of the invention, the first low pass filter 308 is not required, and the function and function of the first low pass filter 308 can also be accomplished by a dynamic digital band pass filter and a second low pass filter.
在单片机 301里, 使用现有技术中的简单的线性平均方法对提取到的电位进 行平滑处理, 以便获得 SPWM激励信号的响应信号的一个电压平均值。 进一步, 单片机 301根据所获得的电压平均值以及第一 A/D变换器 305输出的恒定电流的 幅值, 应用欧姆定律计算出 VRLA内阻。 可以把该电阻值经过液晶进行显示, 也 可以通过网络上传到服务器进行保存。  In the single chip microcomputer 301, the extracted potential is smoothed using a simple linear averaging method in the prior art to obtain a voltage average value of the response signal of the SPWM excitation signal. Further, the single chip microcomputer 301 calculates the VRLA internal resistance by using Ohm's law based on the obtained voltage average value and the magnitude of the constant current output from the first A/D converter 305. The resistance value can be displayed through the liquid crystal or uploaded to the server via the network for storage.
在本发明中, 动态数字带通滤波器 309的频带是固定的, 但其中心频率可以 在单片机 301输出的控制信号 (未示出) 的控制下进行调整。 根据单片机输出的 正弦波脉宽调制信号, 动态数字带通滤波器的中心频率是随着输入正弦波信号 的频率的改变而变化, 因而克服了传统测量技术只使用单一频率来进行测量的 缺陷。  In the present invention, the frequency band of the dynamic digital band pass filter 309 is fixed, but its center frequency can be adjusted under the control of a control signal (not shown) output from the single chip microcomputer 301. According to the sine wave pulse width modulation signal output by the single chip microcomputer, the center frequency of the dynamic digital band pass filter changes with the frequency of the input sine wave signal, thus overcoming the defect that the conventional measurement technique uses only a single frequency for measurement.
根据本发明, 单片机输出的不同频率的 SPWM信号经过恒定电流信号发生 电路后, 可以产生不同频率的恒定电流激励信号并施加给 VRLA。 根据不同频率 的恒定电流激励信号, 获得不同频率的电压响应信号的幅频特性和相频特性。 根据不同频率的恒定电流激励信号的幅值以及不同频率的电压响应信号的幅值According to the present invention, the SPWM signals of different frequencies output by the single-chip microcomputer pass through the constant current signal generating circuit, and can generate constant current excitation signals of different frequencies and are applied to the VRLA. The amplitude-frequency characteristics and the phase-frequency characteristics of the voltage response signals of different frequencies are obtained according to the constant current excitation signals of different frequencies. The amplitude of the constant current excitation signal according to different frequencies and the amplitude of the voltage response signal of different frequencies
(幅频特性), 利用欧姆定律可以计算得出密封闽控铅酸 VRLA的内阻。 可选地, 根据不同频率的恒定电流激励信号, 获得不同频率的电压响应信号的相频特性。 根据不同频率的恒定电流激励信号及不同频率的电压响应信号的相位差值 (相 频特性), 确定密封阀控铅酸 VRLA的内阻。 本发明中, 在对 VRLA内阻检测时, 由于使用单片机中的软件来生成 SPWM调制信号, 从而能够获得 10Hz到 1 OOOHz 范围内任意频点的连续正弦波恒定电流信号。 与现有技术相比, 由于采用单片 机并利用软件技术,本发明降低了产生 1 OHz到 1000Hz范围内正弦波信号的成本, 同时也降低了测量 VRLA内阻的整个测量电路的功耗和成本。 (Amplitude-frequency characteristics), the internal resistance of the sealed bismuth-lead VRLA can be calculated by Ohm's law. Optionally, phase-frequency characteristics of voltage response signals of different frequencies are obtained according to constant current excitation signals of different frequencies. The internal resistance of the sealed valve-regulated lead acid VRLA is determined according to the constant current excitation signal of different frequencies and the phase difference (phase frequency characteristic) of the voltage response signals of different frequencies. In the present invention, when the VRLA internal resistance is detected, the SPWM modulation signal is generated by using software in the single chip microcomputer, so that a continuous sine wave constant current signal of any frequency point in the range of 10 Hz to 1 OOO Hz can be obtained. Compared with the prior art, the present invention reduces the cost of generating a sinusoidal signal in the range of 1 OHz to 1000 Hz due to the use of a single chip machine and utilizes software technology, and also reduces the power consumption and cost of the entire measuring circuit for measuring the internal resistance of VRLA.
图 4示出了根据本发明优选实施例的用于产生正弦波恒定电流信号的电路 图。 如图 4所示, 单片机 301输出 SPWM信号到第一数字低通滤波器 302, SPWM 信号的频率范围为从 10Hz到 1000Hz。优选地, 第一数字低通滤波器 302由集成电 路 74HC4053及其外围电路组成, 正弦波信号电流恒流源 303由电路 TLC2274A, MOS管 Q1以及电阻 R11-R14组成。 第一数字低通滤波器 302不限于由第一 74HC4053来实现, 其可以由其他能够实现第一 74HC4053等效功能的电路来实 现; 正弦波信号电流恒流源 303亦不限于由电路 TLC2274A, MOS管 Q1以及电阻 R11-R14组成, 也可以由与 TLC2274A, MOS管 Q1以及电阻 R11-R14组成的电路 等效的电路来构成。 为了产生恒定电流, 通过稳压电路向数字低通滤波器 302提 供信号。 具体地, 稳压电路可以包括稳压管 D5和电阻 R10。 优选地, 稳压管采用 LM4050, 稳压管 LM4050的负极连接到 74HC4053的端子 1Y1 , 并且通过电阻 R10 连接到 +5 V电源,稳压管 LM4050的正极连接到 VRLA的负极。集成电路 74HC4053 的端子 S1接收 SPWM信号,端子 VCC接到 +5V电源,端子 GND和 E共同连接到地, 端子 1Y0连接到 BAT— PVSS , 端子 VEE接到 -4V电源, 端子 1Z直接连接到电路 TLC2274A的输入端 IN+, 并且经电阻 R11接到 VRLA的负极。 正弦波信号电流恒 流源 303中, TLC2274A的输入端 IN-与 MOS管 Q1的源极相连接, 输出端 OUT通 过电阻 R12与 MOS管 Q1的栅极相连接。 MOS管 Q1的漏极经电阻 R13连接到 VRLA 的正极, 源极经电阻 R14连接到 VRLA的负极。  Figure 4 shows a circuit diagram for generating a sinusoidal constant current signal in accordance with a preferred embodiment of the present invention. As shown in FIG. 4, the single chip microcomputer 301 outputs the SPWM signal to the first digital low pass filter 302, and the frequency range of the SPWM signal is from 10 Hz to 1000 Hz. Preferably, the first digital low pass filter 302 is composed of an integrated circuit 74HC4053 and its peripheral circuits, and the sinusoidal signal current constant current source 303 is composed of a circuit TLC2274A, a MOS transistor Q1 and a resistor R11-R14. The first digital low pass filter 302 is not limited to be implemented by the first 74HC4053, and may be implemented by other circuits capable of implementing the equivalent function of the first 74HC4053; the sine wave signal current constant current source 303 is also not limited to the circuit TLC2274A, MOS The tube Q1 and the resistors R11-R14 may be composed of a circuit equivalent to a circuit composed of the TLC2274A, the MOS transistor Q1, and the resistors R11-R14. In order to generate a constant current, a signal is supplied to the digital low pass filter 302 through a voltage stabilizing circuit. Specifically, the voltage stabilizing circuit may include a Zener diode D5 and a resistor R10. Preferably, the Zener diode is LM4050, the cathode of the LM4050 is connected to the terminal 1Y1 of the 74HC4053, and is connected to the +5 V power supply through the resistor R10. The anode of the Zener LM4050 is connected to the negative pole of the VRLA. Terminal S1 of integrated circuit 74HC4053 receives SPWM signal, terminal VCC is connected to +5V power supply, terminals GND and E are connected to ground, terminal 1Y0 is connected to BAT-PVSS, terminal VEE is connected to -4V power supply, terminal 1Z is directly connected to circuit TLC2274A The input terminal IN+ is connected to the negative terminal of VRLA via resistor R11. In the sinusoidal signal current constant current source 303, the input terminal IN- of the TLC2274A is connected to the source of the MOS transistor Q1, and the output terminal OUT is connected to the gate of the MOS transistor Q1 via the resistor R12. The drain of MOS transistor Q1 is connected to the positive terminal of VRLA via resistor R13, and the source is connected to the negative terminal of VRLA via resistor R14.
图 5示出了根据本发明优选实施例的用于检测响应于正弦波恒定电流信号 的正弦波电压信号的电压检测电路。 如图 5所示, 电阻 R1的一端连接到 VRLA的 正极 BAT_SVDD, 电阻 R1的另一端和电阻 2的一端共同接地, 电阻 R2的另一端 连接到 VRLA的负极 BAT— SVSS。电阻 R1和 R2的电路构成了正弦波信号电压检测 器 306。 优选地, 仪表线性放大器 307由电路 AD623A来实现。 电路 AD623A的端 子 8经电阻 R3连接到端子 1 , 端子 3连接到 VRLA的正极 BAT— SVDD, 端子 2连接 到 VRLA的负极 BAT— SVSS, 端子 4连接到 -4V, 端子 7连接到 +5V, 端子 5接地。 电路 AD623A的输出端子 6连接到第一数字低通滤波器 308, 以滤除掉高频噪声信 号。 第一数字低通滤波器 308釆用现有技术中的低通滤波电路。 在本发明中, 第 一数字低通滤波器 308釆用 MAX294或者其等效电路。 电路 AD623A的输出端子 6 连接到 MXA294的端子 IN。 MAX294的 GND管脚接地, V+管脚接 +5V电源, CLK 管脚接时钟, V2管脚接 -4V电源, OUT管脚作为处理信号的输出。 第一数字低通 滤波器 308的输出端连接到动态数字带通滤波器的输入端。 动态数字带通滤波器 滤除带通频率之外的信号, 然后输出到相敏检波器 310。 相敏检波器 310由第二 74HC4053 (或者等效电路) 和 TLC2274A (或者等效电路) 来实现。 具体地, 第二 74HC4053的 1 Z管脚与 MAX294的 OUT管脚相连接, VCC管脚接 +5 V电源, VEE管脚接 -4V电源, E/与 GND管脚接地, S1管脚连接来自单片机输出的参考信 号 REF_SIGN, 1Y0管脚通过电阻 1 4与11^2274八的 IN-管脚相连接, 1Y1管脚连 接到 TLC2274A的 IN+管脚并且通过 R5接地。 TLC2274A的 OUT管脚所输出的信 号作为输出信号输入到第二数字低通滤波器。 优选地, 第二数字低通滤波器由 MAX293或其等效电路实现。 在优选实施例中, TLC2274A的 OUT管脚所输出的 信号作为输出信号输入到 MAX293的 IN管脚, 并通过电阻 R6与 IN-管脚连接。 MAX293的 V+管脚与 +5V电源连接, V2管脚与 -4V电源连接, CLK管脚经电阻 R7 接收单片机发出的时钟信号, GND管脚通过电阻 R8与 +5V电源相连接, 并通过 R9与 -4V电源相连接, OUT管脚输出的信号送到单片机。 Figure 5 illustrates a method for detecting a constant current signal in response to a sine wave in accordance with a preferred embodiment of the present invention. A voltage detecting circuit for a sinusoidal voltage signal. As shown in FIG. 5, one end of the resistor R1 is connected to the positive terminal BAT_SVDD of the VRLA, the other end of the resistor R1 and one end of the resistor 2 are commonly grounded, and the other end of the resistor R2 is connected to the negative terminal BAT_SVSS of the VRLA. The circuits of resistors R1 and R2 form a sinusoidal signal voltage detector 306. Preferably, meter linear amplifier 307 is implemented by circuit AD623A. Terminal 8 of circuit AD623A is connected to terminal 1 via resistor R3, terminal 3 is connected to positive terminal BAT_SVDD of VRLA, terminal 2 is connected to negative terminal BAT_SVSS of VRLA, terminal 4 is connected to -4V, terminal 7 is connected to +5V, terminal 5 grounded. The output terminal 6 of the circuit AD623A is connected to the first digital low pass filter 308 to filter out the high frequency noise signal. The first digital low pass filter 308 employs a low pass filter circuit of the prior art. In the present invention, the first digital low pass filter 308 uses the MAX294 or its equivalent circuit. The output terminal 6 of the circuit AD623A is connected to the terminal IN of the MXA294. The GND pin of the MAX294 is grounded, the V+ pin is connected to the +5V supply, the CLK pin is connected to the clock, the V2 pin is connected to the -4V supply, and the OUT pin is used as the output of the processing signal. The output of the first digital low pass filter 308 is coupled to the input of the dynamic digital band pass filter. The dynamic digital bandpass filter filters out signals outside the bandpass frequency and outputs to the phase sensitive detector 310. The phase sensitive detector 310 is implemented by a second 74HC4053 (or equivalent circuit) and a TLC2274A (or equivalent circuit). Specifically, the 1 Z pin of the second 74HC4053 is connected to the OUT pin of the MAX294, the VCC pin is connected to the +5 V power supply, the VEE pin is connected to the -4 V power supply, the E/GND pin is grounded, and the S1 pin connection is from The reference signal REF_SIGN, 1Y0 pin output from the MCU is connected to the IN- pin of the 11^22748 through the resistor 14. The 1Y1 pin is connected to the IN+ pin of the TLC2274A and grounded through R5. The signal output from the OUT pin of the TLC2274A is input as an output signal to the second digital low-pass filter. Preferably, the second digital low pass filter is implemented by the MAX 293 or its equivalent. In a preferred embodiment, the signal output from the OUT pin of the TLC2274A is input as an output signal to the IN pin of the MAX293 and to the IN- pin via resistor R6. The V+ pin of the MAX293 is connected to the +5V power supply, the V2 pin is connected to the -4V power supply, and the CLK pin receives the clock signal from the microcontroller via the resistor R7. The GND pin is connected to the +5V power supply through the resistor R8, and is connected to the R5 through the R9. The -4V power supply is connected, and the signal output from the OUT pin is sent to the microcontroller.
本发明的优选实施例中, 由于恒定电流信号发生电路和电压检测电路均带 有低通滤波器, 并且电压检测电路还有带通滤波器, 因此 VRLA内阻检测器即使 在 VRLA浮充电的强干扰环境下, 也可以对 VRLA进行在线内阻测量。  In a preferred embodiment of the present invention, since the constant current signal generating circuit and the voltage detecting circuit both have a low pass filter, and the voltage detecting circuit has a band pass filter, the VRLA internal resistance detector is strong even in VRLA floating charging. In the interference environment, online internal resistance measurement can also be performed on VRLA.
可选地,根据本发明的智能 VRLA装置可以进一步包括存储在存储器中的专 家系统。 将蓄电池多参数传感器获得 VRLA的温度、 电压、 电流和内阻等参数输 入到专家系统按照预定的技术指标进行分析和判断, 给出 VRLA的健康状态。 专 家系统可以是现有技术中的专家系统,对 VRLA进行分析和判断的准则和技术指 标可以是 VRLA行业标准, 也可以是一个国家关于 VRLA制定的标准。 Optionally, the smart VRLA device according to the present invention may further comprise a special store stored in the memory Home system. The parameters of the VRLA temperature, voltage, current and internal resistance obtained by the battery multi-parameter sensor are input to the expert system for analysis and judgment according to predetermined technical indicators, and the health status of the VRLA is given. The expert system can be an expert system in the prior art, and the criteria and technical indicators for analyzing and judging the VRLA can be VRLA industry standards, or can be a national standard for VRLA.
可选地, 智能 VRLA装置还可以进一步包括 RFID模块。 可以将通过蓄电池 多参数传感器获得的温度、 电压、 电流和内阻参数写入到 RFID芯片进行数据保 存。 RFID功能模块使得每一个 VRLA装置都拥有了唯一的电子身份证。  Optionally, the smart VRLA device may further comprise an RFID module. The temperature, voltage, current and internal resistance parameters obtained by the battery multi-parameter sensor can be written to the RFID chip for data storage. The RFID function module allows each VRLA device to have a unique electronic ID card.
由于智能 VRLA装置包括 RFID模块, 可以对 VRLA从生产、 销售、 流通、 使 用、 维护、 报废、 回收等各个环节的全生命周期进行管理。 具体地, 在 VRLA出 厂的时候, 在每个 VRLA里的 RPID芯片都固化有包括电池生产厂家的编号、 VRLA的生产曰期、 规格、 型号、 批次和各项性能指标(包括内阻值) 等 VRLA 基本出厂信息。 在出厂后, 利用 RFID记录 VRLA状态信息以对 VRLA进行有效跟 踪、 监督和管理, 使得 VRLA在全生命周期中得以控制。 VRLA状态信息是指 VRLA出厂后在各个环节的最后的状态信息, 包括: 时间、 地点、 环节 (销售、 流通、 使用、 维护、 报废、 回收)、 各项性能指标 (包括内阻)、 处置方法等信 息  Since the intelligent VRLA device includes an RFID module, the entire life cycle of the VRLA can be managed from production, sales, distribution, use, maintenance, scrapping, and recycling. Specifically, when the VRLA is shipped, the RPID chip in each VRLA is cured with the number of the battery manufacturer, the production cycle, specifications, models, batches, and various performance indicators (including internal resistance values) of the VRLA. Wait for VRLA basic factory information. After shipment, VRLA status information is recorded using RFID to effectively track, monitor, and manage VRLAs, allowing VRLA to be controlled throughout its lifecycle. VRLA status information refers to the final status information of each part of VRLA after leaving the factory, including: time, location, link (sales, circulation, use, maintenance, scrap, recycling), various performance indicators (including internal resistance), disposal methods Information
特别地, 利用 RFID对 VRLA报废回收过程的监督与控制的实现, 可以解决 VRLA在报废以后引起的二次污染问题。  In particular, the use of RFID to monitor and control the VRLA end-of-life recycling process can solve the secondary pollution problem caused by VRLA after being scrapped.
参见图 6, 示出了利用 RFID对 VRLA全生命周期进行管理的平台示意图。 如 图所示, 数据采集器通过 RFID接收关于 VRLA出厂时以及出厂后的各种信息, 这些信息包括 VRLA的基本信息, VRLA的检测参数例如温度、 电流、 电压和电 阻, VRLA的使用数据, VRLA的报废信息等。 数据采集器连接到互联网。 数据 采集器通过互联网上传数据, 以对 VRLA的各种信息进行云存储。 管理平台通过 互联网络, 利用管理策略、 数据维护策略、 分析策略、 告警策略和计费策略等 对采集器传送的 VRLA的各种信息进行分析管理。数据处理中心可以按照预定的 算法对上传的数据进行处理。  See Figure 6, which shows a schematic diagram of a platform for managing the entire lifecycle of VRLA using RFID. As shown in the figure, the data collector receives various information about the VRLA at the time of shipment and after shipment from the RFID. This information includes basic information of VRLA, VRLA detection parameters such as temperature, current, voltage and resistance, VRLA usage data, VRLA. Scrap information, etc. The data collector is connected to the internet. The data collector uploads data over the Internet to perform cloud storage on various information of the VRLA. The management platform analyzes and manages various information of the VRLA transmitted by the collector through the Internet through management policies, data maintenance policies, analysis policies, alarm policies, and charging policies. The data processing center can process the uploaded data according to a predetermined algorithm.
图 7示出了根据本发明的用于 VRLA的自动修复功能模块的电路原理框图。  Fig. 7 is a circuit block diagram showing an automatic repair function module for VRLA according to the present invention.
VRLA自动修复功能模块采用 "SPWM产生功率正弦波半波恒流"技术。在 VRLA 的使用过程中, VRLA内部产生许多位于蓄电池极板附近的硫酸铅结晶颗粒。 已 经发现, 不同颗粒大小的硫酸铅结晶具有不同谐振点。 针对硫酸铅结晶颗粒大 小不同因而谐振频率也不相同的特点, 把不同频率的功率正弦波半波施加于 VRLA两端,使得不同频率的功率正弦波半波与具有不同谐振频率的硫酸铅结晶 颗粒分别产生共振,改善电流在 VRLA极板上的分配,使较多的电流分配到 PbS04 结晶, 从而可以 "击碎" 并 "溶解" 大的硫酸铅结晶。 因此, 较大的硫酸铅结 晶溶于电解液中, 成为小颗粒硫酸铅。 小颗粒硫酸铅随着充电的进行, 可被分 解为铅离子和硫酸根离子从而能够参与反应, 最终变成铅及二氧化铅回到极板 上, 使硫酸铅结晶从极板上还原。 VRLA的自动修复功能模块采用了纯物理的方 法对电池进行修复处理, 修复后的电池保持原电池的基本特性。 The VRLA automatic repair function module uses the "SPWM to generate power sine wave half-wave constant current" technology. In VRLA During use, many of the lead sulfate crystal particles located near the battery plates are generated inside the VRLA. It has been found that lead sulfate crystals of different particle sizes have different resonance points. For the characteristics of different crystallites of lead sulfate and different resonance frequencies, power sine wave half-waves of different frequencies are applied to both ends of VRLA, so that power sine wave half-waves with different frequencies and lead sulfate crystal particles with different resonance frequencies Resonance is generated separately to improve the distribution of current on the VRLA plate, allowing more current to be distributed to the PbS0 4 crystal, which can "crush" and "dissolve" large lead sulfate crystals. Therefore, the larger lead sulfate crystals are dissolved in the electrolyte to become small particles of lead sulfate. As the charge progresses, the small particle lead sulfate can be decomposed into lead ions and sulfate ions to participate in the reaction, eventually becoming lead and lead dioxide back to the plate, and the lead sulfate crystals are reduced from the plates. VRLA's automatic repair function module uses a purely physical method to repair the battery, and the repaired battery maintains the basic characteristics of the primary battery.
当专家系统经过分析和判断得出 VRLA的健康状态, 并依据 VRLA的健康状 态决定是否起动自动修复功能模块。 例如, 如果所测量的内阻值大于 VRLA的标 称内阻值, 那么启动自动修复模块。 在优选的实施例中, 用于 VRLA的自动修复 功能模块包括第二单片机 701。 可选地, 自动修复功能模块也可以共用第一单片 机 301作为第二单片机 701。 第二单片机 701通过软件编程可以产生频率与不同大 小的硫酸铅结晶颗粒的谐振频率相同的正弦波脉宽调制信号。 正弦波脉宽调制 信号输入到第二数字低通滤波器 702 , 第二数字低通滤波器 702对输入的正弦波 脉宽调制信号进行处理, 产生正弦波信号并输入到反相器及功率放大器 703。 反 相器及功率放大器首先对输入的正弦波信号的负半波进行反相, 然后对反相后 的正弦波半波信号进行功率放大。 反相器及功率放大器的输出端连接到正弦波 半波信号电流恒流源 704。 正弦波半波信号电流恒流源基于反相器及功率放大器 的输出信号,产生不同频率的恒定的正弦波半波电流信号并将其加载到 VRLA两 端。 不同频率的正弦波半波恒定电流信号与不同颗粒大小的硫酸铅结晶分别产 生共振, 从而击碎" 并 "溶解" 大的硫酸铅结晶, 产生小颗粒硫酸铅。 随着充 电的进行, 小颗粒硫酸铅可被分解为铅离子和硫酸根离子从而能够参与反应, 最终变成铅及二氧化铅回到极板上, 使硫酸铅结晶从极板上还原。  When the expert system analyzes and judges the health status of the VRLA, and decides whether to start the automatic repair function module according to the health status of the VRLA. For example, if the measured internal resistance is greater than the nominal internal resistance of VRLA, then the automatic repair module is activated. In a preferred embodiment, the auto-repair function module for VRLA includes a second microcontroller 701. Alternatively, the automatic repair function module may share the first single chip machine 301 as the second single chip microcomputer 701. The second single chip microcomputer 701 can generate a sinusoidal pulse width modulation signal having the same resonant frequency as the lead sulfate crystal particles of different sizes by software programming. The sinusoidal pulse width modulation signal is input to a second digital low pass filter 702, and the second digital low pass filter 702 processes the input sine wave pulse width modulated signal to generate a sine wave signal and input it to the inverter and the power amplifier. 703. The inverter and the power amplifier first invert the negative half-wave of the input sine wave signal, and then power-amplify the inverted sine wave half-wave signal. The output of the inverter and power amplifier is connected to a sinusoidal half-wave signal current constant current source 704. The sine wave half-wave signal current constant current source is based on the output signals of the inverter and the power amplifier, and generates a constant sine wave half-wave current signal of different frequencies and loads it into both ends of the VRLA. The sinusoidal half-wave constant current signal of different frequencies resonates with the lead crystals of different particle sizes respectively, thereby crushing and "dissolving" large lead sulfate crystals, producing small particles of lead sulfate. With the progress of charging, small particles Lead sulfate can be decomposed into lead ions and sulfate ions to participate in the reaction, eventually becoming lead and lead dioxide back to the plates, allowing lead sulfate crystals to be reduced from the plates.
本发明中, 为了避免自动修复模块和 VRLA内阻检测器同时连接到 VRLA 上, 还包括第一开关和第二开关组成的互锁电路(未示出)。 第一开关设置在内 阻检测器和 VRLA之间, 第二开关设置在自动修复模块和 VRLA之间。 当启动自 动修复模块时, 自动修复模块的单片机同时给第二开关发送接通信号, 同时通 过互锁电路的作用使第一开关断开 VRLA内阻检测器与 VRLA的连接。 当 VRLA 内阻四线检测器进行工作时, VRLA内阻检测器的单片机同时给第一开关发送接 通信号, 通过互锁电路的作用使第二开关断开自动修复模块与 VRLA的连接。 通 过第一开关和第二开关的闭合与断开,使得自动修复模块和 VRLA内阻检测器的 信号不会发生干扰。 In the present invention, in order to prevent the automatic repair module and the VRLA internal resistance detector from being simultaneously connected to the VRLA, an interlock circuit (not shown) composed of the first switch and the second switch is further included. The first switch is set Between the resistance detector and the VRLA, the second switch is placed between the automatic repair module and the VRLA. When the automatic repair module is started, the MCU of the automatic repair module simultaneously sends an ON signal to the second switch, and at the same time, the first switch disconnects the connection between the VRLA internal resistance detector and the VRLA through the action of the interlock circuit. When the VRLA internal resistance four-wire detector is working, the MCU of the VRLA internal resistance detector simultaneously sends an ON signal to the first switch, and the second switch disconnects the automatic repair module from the VRLA through the action of the interlock circuit. By the closing and opening of the first switch and the second switch, the signals of the automatic repair module and the VRLA internal resistance detector do not interfere.
当使用自动修复模块对 VRLA进行自动修复之后, 再次启动 VRLA内阻检测 器对 VRLA进行内阻检测。 根据再次检测的内阻值, 如果专家系统判断内阻值仍 然不符合规定的要求时, 专家系统给出需要更换 VRLA的指示信息。  After the VRLA is automatically repaired using the automatic repair module, the VRLA internal resistance detector is again activated to perform internal resistance detection on the VRLA. According to the internal resistance value detected again, if the expert system judges that the internal resistance value still does not meet the specified requirements, the expert system gives an indication that the VRLA needs to be replaced.
本发明中, 蓄电池多参数传感器能够及时、准确地获得 VRLA的温度、 电压、 电流和内阻, 并把这些参数值输入到专家系统进行分析判断, 从而自动起动 VRLA修复功能模块来修复 VRLA。  In the invention, the battery multi-parameter sensor can obtain the temperature, voltage, current and internal resistance of the VRLA in time and accurately, and input these parameter values into the expert system for analysis and judgment, thereby automatically starting the VRLA repair function module to repair the VRLA.
由于本发明可以通过计算得出输出正弦波的幅频特性, 从而能够获得正弦 波信号的幅度的变化, 从中计算出 VRLA内阻。  Since the present invention can calculate the amplitude-frequency characteristic of the output sine wave, it is possible to obtain the variation of the amplitude of the sine wave signal, from which the VRLA internal resistance is calculated.
本发明的内阻检测器可随时对 VRLA进行在线测量, 而不影响 VRLA对供电 系统的备份工作。 而且, 本发明的内阻检测是密封阔控铅酸蓄电池监测技术的 质变, 即由被动检测电压到主动检测电池内部状态, 更能全面地反映 VRLA的性 能变化情况。  The internal resistance detector of the present invention can perform online measurement on the VRLA at any time without affecting the backup work of the VRLA on the power supply system. Moreover, the internal resistance detection of the present invention is a qualitative change of the monitoring technology of the sealed wide-control lead-acid battery, that is, from the passive detection voltage to the active detection of the internal state of the battery, and more comprehensively reflects the performance change of the VRLA.
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明技术原理的前提下, 还可以做出若干改进和润 饰, 这些改进和润饰也应视为本发明的保护范围。  The above description is only a preferred embodiment of the present invention, and it should be noted that those skilled in the art can make several improvements and retouchings without departing from the technical principles of the present invention. It should also be considered as the scope of protection of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种智能密封阀控铅酸蓄电池装置, 至少包括蓄电池多参数传感器和密 封阀控铅酸蓄电池 VRLA, 蓄电池多参数传感器包括检测 VRLA的温度的温度 传感器、 检测 VRLA的电压的电压传感器、 检测 VRLA电流的电流传感器和内 阻检测器, 其特征在于: 1. A smart sealed valve-regulated lead-acid battery device, comprising at least a battery multi-parameter sensor and a sealed valve-regulated lead-acid battery VRLA, the battery multi-parameter sensor includes a temperature sensor for detecting the temperature of the VRLA, a voltage sensor for detecting the voltage of the VRLA, and detecting Current sensor and internal resistance detector for VRLA current, characterized by:
内阻检测器将预定频率的正弦波恒定电流信号施加于密封闽控铅酸蓄电池 正负极上, 检测密封阀控铅酸蓄电池两端的电压响应信号, 基于预定频率的恒 定电流激励信号的幅值以及相应的电压响应信号的幅值, 利用欧姆定律可以计 算得出密封阀控铅酸的内阻, 其中, 正弦波恒定电流信号大小可根据 VRLA的 内部阻抗大小自动调节。  The internal resistance detector applies a sine wave constant current signal of a predetermined frequency to the positive and negative poles of the sealed bismuth-controlled lead-acid battery, and detects a voltage response signal at both ends of the sealed valve-regulated lead-acid battery, and the amplitude of the constant current excitation signal based on the predetermined frequency And the corresponding voltage response signal amplitude, using Ohm's law can calculate the internal resistance of the sealed valve control lead acid, wherein the sine wave constant current signal size can be automatically adjusted according to the internal impedance of the VRLA.
2. 如权利要求 1所述的智能密封闽控铅酸蓄电池装置, 其中, 所述内阻检 测器包括: 2. The smart seal 闽 control lead-acid battery device according to claim 1, wherein the internal resistance detector comprises:
第一单片机 (301 ), 用于产生预定频率的正弦波脉宽调制信号 SPWM; 正弦波恒定电流信号发生电路, 基于所述 SPWM, 输出正弦波恒定电流信 号并施加于 VRLA的正负极上;  a first single chip (301), a sine wave pulse width modulation signal SPWM for generating a predetermined frequency; a sine wave constant current signal generating circuit, based on the SPWM, outputting a sine wave constant current signal and applying it to the positive and negative electrodes of the VRLA;
电压检测电路, 用于检测响应于正弦波恒定电流信号所述 VRLA输出的电 压响应信号;  a voltage detecting circuit for detecting a voltage response signal of the VRLA output in response to the sine wave constant current signal;
其中, 单片机(301 )分别经第一 A D转换器和第二 A/D转换器接收正弦 波恒定电流信号的幅度值和电压响应信号的幅值, 并基于正弦波恒定电流信号 的幅度值和电压响应信号的幅值, 计算出 VRLA的内阻值。  The single chip microcomputer (301) receives the amplitude value of the sine wave constant current signal and the amplitude of the voltage response signal via the first AD converter and the second A/D converter, respectively, and is based on the amplitude value and voltage of the sine wave constant current signal. The internal resistance of the VRLA is calculated in response to the amplitude of the signal.
3. 如权利要求 1或 2所述的智能密封阀控铅酸蓄电池装置, 其中, 所述预 定频率是可调的, 其范围为 10Hz到 1000Hz。 The intelligent sealed valve-regulated lead-acid battery device according to claim 1 or 2, wherein the predetermined frequency is adjustable and ranges from 10 Hz to 1000 Hz.
4. 如权利要求 2所述的智能密封阀控铅酸蓄电池装置, 其中, 4. The intelligent sealed valve-regulated lead-acid battery device according to claim 2, wherein
所述正弦波恒定电流信号发生电路包括:  The sine wave constant current signal generating circuit includes:
第一数字低通滤波器(302 ), 接收单片机(301 )输出的 SPWM信号, 并产生正弦波电压信号;  a first digital low pass filter (302), receiving the SPWM signal output by the single chip (301), and generating a sine wave voltage signal;
正弦波信号电流恒流源 ( 303 ), 接收所述正弦波电压信号, 并产生所 述正弦波恒定电流信号;  a sinusoidal signal current constant current source (303), receiving the sine wave voltage signal, and generating the sine wave constant current signal;
所述电压检测电路包括:  The voltage detection circuit includes:
正弦波信号电压检测器(306 ), 用于检测 VRLA两端的电压响应信号; 仪表线性放大器 ( 307 ), 对所检测的电压响应信号进行多级电压线性 放大;  a sinusoidal signal voltage detector (306) for detecting a voltage response signal across the VRLA; an instrument linear amplifier (307) for multi-level voltage linear amplification of the detected voltage response signal;
第一低通滤波器 ( 308 ), 对仪表线性放大器输出的信号进行滤波, 以 滤除高频噪声信号;  a first low pass filter (308) that filters a signal output by the instrument linear amplifier to filter out the high frequency noise signal;
动态数字带通滤波器(309 ), 对第一低通滤波器输出的信号进行滤波, 以滤除其带宽之外的噪声信号; a dynamic digital band pass filter (309) that filters the signal output by the first low pass filter, To filter out noise signals outside its bandwidth;
相敏检波器 (310 ), 用于从动态数字带通滤波器的输出中提取期望的 信号;  a phase sensitive detector (310) for extracting a desired signal from an output of the dynamic digital bandpass filter;
第二低通滤波器 (311 ), 对相敏检波器输出的信号进行直流电压电位 提取, 并且滤除掉高频噪声信号, 输出所述电压响应信号。  The second low pass filter (311) performs DC voltage potential extraction on the signal output from the phase sensitive detector, and filters out the high frequency noise signal to output the voltage response signal.
5. 如权利要求 4所述的智能密封闽控铅酸蓄电池装置, 其中, 所述正弦波 恒定电流信号发生电路中, 第一数字低通滤波器由第一 74HC4053来实现, 正弦 波信号电流恒流源由电路 TLC2274A、 MOS管 Q1 以及电阻 R11-R14组成, 所 述正弦波恒定电流信号发生电路还包括稳压电路, 所述稳压电路包括稳压管 D5 和电阻 R10; 所述稳压管的负极连接到第一 74HC4053的端子 1Y1 , 并且通过电 阻 R10连接到 +5V电源,稳压管 D5的正极连接到 VRLA的负极;第一 74HC4053 的端子 S1接收 SPWM信号, 端子 VCC接到 +5V电源, 端子 GND和 E共同连 接到地, 端子 1Y0连接到 BAT_PVSS, 端子 VEE接到 -4V电源, 端子 1Z直接 连接到电路 TLC2274A的输入端 IN+, 并且经电阻 R11接到 VRLA的负极; 电 路 TLC2274A的输入端 IN-与 MOS管 Q1的源极相连接,输出端 OUT通过电阻 12与 MOS管 Q1的栅极相连接; MOS管 Q1的漏极经电阻 R13连接到 VRLA 的正极, 源极经电阻 R14连接到 VRLA的负极。 The intelligent sealed bismuth-controlled lead-acid battery device according to claim 4, wherein in the sine wave constant current signal generating circuit, the first digital low-pass filter is implemented by the first 74HC4053, and the sine wave signal current is constant The current source is composed of a circuit TLC2274A, a MOS transistor Q1, and a resistor R11-R14. The sine wave constant current signal generating circuit further includes a voltage stabilizing circuit, and the voltage stabilizing circuit includes a voltage stabilizing tube D5 and a resistor R10; The negative pole is connected to the terminal 1Y1 of the first 74HC4053, and is connected to the +5V power supply through the resistor R10. The anode of the Zener diode D5 is connected to the negative pole of the VRLA; the terminal S1 of the first 74HC4053 receives the SPWM signal, and the terminal VCC is connected to the +5V power supply. Terminals GND and E are connected to ground together, terminal 1Y0 is connected to BAT_PVSS, terminal VEE is connected to -4V power supply, terminal 1Z is directly connected to input terminal IN+ of circuit TLC2274A, and is connected to the negative terminal of VRLA via resistor R11; input of circuit TLC2274A The terminal IN- is connected to the source of the MOS transistor Q1, the output terminal OUT is connected to the gate of the MOS transistor Q1 through the resistor 12; the drain of the MOS transistor Q1 is via the resistor R13 is connected to the positive terminal of VRLA, and the source is connected to the negative terminal of VRLA via resistor R14.
6. 如权利要求 4所述的智能密封闽控铅酸蓄电池装置, 其中, 正弦波信号 电压检测器由电阻 R1 和 2 构成, 电阻 R1 的一端连接到 VRLA 的正极 BAT_SVDD,另一端和电阻 R2的一端共同接地,电阻 R2的另一端连接到 VRLA 的负 ¾ BAT SVSS; 仪表线性放大器由电路 AD623A来实现, 电路 AD623A的 端子 8经电 ¾ R3连接到端子 1 , 端子 3连接到 VRLA的正极 BAT— SVDD, 端 子 2连接到 VRLA的负极 BAT— SVSS, 端子 4连接到 -4V, 端子 7 接到 +5V, 端子 5接地, 电路 AD623A的 出端子 6连接到第一数字低通滤波器; 第一数 字低通滤波器釆用电路 MAX294, 电路 AD623A的输出端子 6连接到 MXA294 的端子 IN, MAX294的 GND管脚接地, V+管脚接 +5V电源, CLK管脚接时钟, V2管脚接 -4V电源, OUT管脚连接到动态数字带通滤波器的输入端; 动态数字 带通滤波器的输出端连接到相敏检波器; 相敏检波器由第二 74HC4053 和 TLC2274A来实现,第二 74HC4053的 1Z管脚与 MAX294的 OUT管脚相连接, VCC管脚接 +5V电源, VEE管脚接 -4V电源, E/与 GND管脚接地, S1管脚连 接来自单片机输出的参考信号 REF— SIGN, 1Y0管脚通过电阻 R4与 TLC2274A 的 IN-管脚相连接, 1Y1管脚连接 ¾j TLC2274A的 IN+管脚并且通过 R5接地; TLC2274A 的 OUT 管脚连接到第二数字低通滤波器; 第二数字低通滤波器由 MAX293 实现, TLC2274A 的 OUT 管脚所输出的信号作为输出信号输入到 MAX293的 IN管脚,并通过电阻 R6与 IN-管脚连接; MAX293的 V+管脚与 +5V 电源连接, V2管脚与 -4V电源连接, CLK管脚经电阻 R7接收单片机发出的时 钟信号, GND管脚通过电阻 R8与 +5V电源相连接, 并通过 R9与 -4V电源相连 接, OUT管脚输出的信号送到单片机。 6. The intelligent sealed bismuth-controlled lead-acid battery device according to claim 4, wherein the sine wave signal voltage detector is composed of resistors R1 and 2, one end of the resistor R1 is connected to the positive terminal BAT_SVDD of the VRLA, and the other end is connected to the resistor R2. One end is commonly grounded, the other end of resistor R2 is connected to the negative 3⁄4 BAT SVSS of VRLA; the instrument linear amplifier is implemented by circuit AD623A, terminal 8 of circuit AD623A is connected to terminal 1 via electric 3⁄4 R3, and terminal 3 is connected to the positive BAT of VRLA— SVDD, terminal 2 is connected to the negative terminal BAT_SVSS of VRLA, terminal 4 is connected to -4V, terminal 7 is connected to +5V, terminal 5 is grounded, and the output terminal 6 of circuit AD623A is connected to the first digital low-pass filter; The low-pass filter uses the circuit MAX294, the output terminal 6 of the circuit AD623A is connected to the terminal IN of the MXA294, the GND pin of the MAX294 is grounded, the V+ pin is connected to the +5V power supply, the CLK pin is connected to the clock, and the V2 pin is connected to the -4V power supply. The OUT pin is connected to the input of the dynamic digital bandpass filter; the output of the dynamic digital bandpass filter is connected to the phase sensitive detector; the phase sensitive detector is implemented by the second 74HC4053 and TLC2274A, and the 1Z of the second 74HC4053 tube The pin is connected to the OUT pin of the MAX294, the VCC pin is connected to the +5V power supply, the VEE pin is connected to the -4V power supply, the E/GND pin is grounded, and the S1 pin is connected to the reference signal REF_SIG from the microcontroller output, 1Y0 tube The pin is connected to the IN- pin of the TLC2274A via resistor R4, the IN1 pin of the TLC2274A is connected to the IN+ pin of the TLC2274A and is grounded through R5; the OUT pin of the TLC2274A is connected to the second digital low-pass filter; the second digital low-pass filter The signal is output from the MAX293. The signal output from the OUT pin of the TLC2274A is input as an output signal to the IN pin of the MAX293, and is connected to the IN- pin through the resistor R6. The V+ pin of the MAX293 is connected to the +5V power supply, and the V2 pin is connected. Connected to the -4V power supply, the CLK pin receives the clock signal from the microcontroller via the resistor R7. The GND pin is connected to the +5V power supply via the resistor R8 and is connected to the -4V power supply via R9. Connect, the signal output from the OUT pin is sent to the microcontroller.
7. 如权利要求 1所述的智能密封闽控铅酸蓄电池装置, 进一步包括: 专家 系统, 基于蓄电池多参数传感器提供的温度、 电压、 电流和内阻判断 VRLA的 健康状况。 7. The intelligent sealed bismuth-controlled lead-acid battery device of claim 1, further comprising: an expert system for determining a health condition of the VRLA based on temperature, voltage, current, and internal resistance provided by the battery multi-parameter sensor.
8. 如权利要求 7所述的智能密封闽控铅酸蓄电池装置, 进一步包括自动修 复功能模块, 用于在专家系统判断 VRLA的健康状况需要启动自动修复功能模 块时, 将与硫酸铅结晶颗粒的谐振频率相同的多个频率的正弦波半波恒定电流 信号施加到 VRLA两端以产生共振来修复 VRLA。 8. The intelligent sealed bismuth-controlled lead-acid battery device according to claim 7, further comprising an automatic repair function module, configured to: when the expert system determines that the health condition of the VRLA needs to start the automatic repair function module, A sine wave half-wave constant current signal of multiple frequencies having the same resonant frequency is applied across the VRLA to create resonance to repair the VRLA.
9. 如权利要求 8所述的智能密封闽控铅酸蓄电池装置, 其中, 所述自动修 复功能模块包括: 9. The smart seal 闽 control lead-acid battery device according to claim 8, wherein the automatic repair function module comprises:
第二单片机 (701 ), 产生频率与不同大小的硫酸铅结晶颗粒的谐振频率相 同的正弦波脉宽调制信号;  a second single chip microcomputer (701), which generates a sinusoidal pulse width modulation signal having the same resonant frequency as that of different sizes of lead sulfate crystal particles;
第二数字低通滤波器 (702 ), 对所述正弦波脉宽调制信号进行处理以产生 正弦波信号;  a second digital low pass filter (702) for processing the sinusoidal pulse width modulated signal to generate a sine wave signal;
反相器及功率放大器 ( 703 ), 对所述正弦波信号的负半波进行反相, 并对 反相后的正弦波半波信号进行功率放大; 和  An inverter and a power amplifier (703), inverting a negative half wave of the sine wave signal, and performing power amplification on the inverted sine wave half wave signal; and
正弦波半波信号电流恒流源 (704 ), 基于所述反相器及功率放大器的输出 信号, 产生不同频率的恒定的正弦波半波电流信号并将其加载到 VRLA两端。  A sinusoidal half-wave signal current constant current source (704), based on the output signals of the inverter and the power amplifier, generates a constant sine wave half-wave current signal of different frequencies and loads it into both ends of the VRLA.
10. 如权利要求 9所述的智能密封阔控铅酸蓄电池装置,进一步包括设置在 内阻检测器和 VRLA之间的第一开关和设置在自动修复模块和 VRLA之间的第 二开关, 第一开关和第二开关组成的互锁电路, 以确保内阻检测器和自动修复 模块之一工作时另一个与 VRLA断开。 10. The intelligent sealed wide-lead lead-acid battery device of claim 9, further comprising a first switch disposed between the internal resistance detector and the VRLA and a second switch disposed between the automatic repair module and the VRLA, An interlock circuit consisting of a switch and a second switch ensures that one of the internal resistance detector and the automatic repair module operates while the other is disconnected from the VRLA.
11. 如权利要求 1, 7或 8所述的智能密封阀控铅酸蓄电池装置, 进一步包 括: RFID模块, 用于记录 VRLA基本出厂信息和 VRLA状态信息, 以对 VRLA 全生命周期进行管理。 11. The intelligent sealed valve-regulated lead-acid battery device according to claim 1, 7 or 8, further comprising: an RFID module for recording VRLA basic factory information and VRLA status information to manage the VRLA life cycle.
12. 如权利要求 11所述的智能密封闽控铅酸蓄电池装置, 其中, 所述蓄电 池多参数传感器、 自动修复功能模块、 RFID 功能模块中的每一个可以安装在 VRLA上可容纳的位置。 12. The smart sealed tamper-regulated lead-acid battery device according to claim 11, wherein each of the battery multi-parameter sensor, the automatic repair function module, and the RFID function module can be installed at a position accommodating on the VRLA.
13. 如权利要求 11所述的智能密封阀控铅酸蓄电池装置, 其中, 所述蓄电 池多参数传感器、 自动修复功能模块、 RFID功能模块中的每一个可以通过导线 连接到 VRLA的正负极柱上来由 VRLA供电, 或者由外部电源供电。 13. The intelligent sealed valve-regulated lead-acid battery device according to claim 11, wherein each of the battery multi-parameter sensor, the automatic repair function module, and the RFID function module can be connected to the positive and negative columns of the VRLA by wires. It is powered by VRLA or powered by an external power supply.
14. 如权利要求 4所述的智能密封阀控铅酸蓄电池装置, 其中, 所述动态数 字带通滤波器 309采用 8 阶滤波芯片对正弦波电流信号的电压响应信号进行滤 波。 The intelligent sealed valve-regulated lead-acid battery device according to claim 4, wherein the dynamic digital band pass filter 309 filters the voltage response signal of the sine wave current signal by using an eighth-order filter chip.
PCT/CN2011/082381 2011-11-17 2011-11-17 Smart sealed valve-regulated lead-acid storage battery device WO2013071508A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082381 WO2013071508A1 (en) 2011-11-17 2011-11-17 Smart sealed valve-regulated lead-acid storage battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082381 WO2013071508A1 (en) 2011-11-17 2011-11-17 Smart sealed valve-regulated lead-acid storage battery device

Publications (1)

Publication Number Publication Date
WO2013071508A1 true WO2013071508A1 (en) 2013-05-23

Family

ID=48428944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082381 WO2013071508A1 (en) 2011-11-17 2011-11-17 Smart sealed valve-regulated lead-acid storage battery device

Country Status (1)

Country Link
WO (1) WO2013071508A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311591A (en) * 2013-06-28 2013-09-18 江苏玖宇实业有限公司 Repair method of lead-acid storage batteries
CN103698708A (en) * 2013-12-05 2014-04-02 北京嘉德宝业科技发展有限公司 Battery monitoring method, monitoring device and monitoring system
GB2545699A (en) * 2015-12-22 2017-06-28 Poweroasis Ltd Smart lead acid battery module
CN110441705A (en) * 2019-08-20 2019-11-12 广州供电局有限公司 Battery impedance test device and method
CN113093021A (en) * 2021-03-22 2021-07-09 复旦大学 Method for improving health state of valve-controlled lead-acid storage battery based on resonant current pulse
CN114322916A (en) * 2021-12-21 2022-04-12 扬州瑞恩电器设备有限公司 Deformation monitoring die for storage battery grid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990004188A1 (en) * 1988-10-14 1990-04-19 Allied-Signal Inc. Automotive battery status monitor
CN101894981A (en) * 2010-05-28 2010-11-24 深圳市金一泰实业有限公司 Intelligent monitoring, repair and control method of lead-acid battery pack and system thereof
CN102157975A (en) * 2011-03-31 2011-08-17 江苏大学 Intelligent charging system of lead acid batteries and charging method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990004188A1 (en) * 1988-10-14 1990-04-19 Allied-Signal Inc. Automotive battery status monitor
CN101894981A (en) * 2010-05-28 2010-11-24 深圳市金一泰实业有限公司 Intelligent monitoring, repair and control method of lead-acid battery pack and system thereof
CN102157975A (en) * 2011-03-31 2011-08-17 江苏大学 Intelligent charging system of lead acid batteries and charging method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311591A (en) * 2013-06-28 2013-09-18 江苏玖宇实业有限公司 Repair method of lead-acid storage batteries
CN103698708A (en) * 2013-12-05 2014-04-02 北京嘉德宝业科技发展有限公司 Battery monitoring method, monitoring device and monitoring system
GB2545699A (en) * 2015-12-22 2017-06-28 Poweroasis Ltd Smart lead acid battery module
CN110441705A (en) * 2019-08-20 2019-11-12 广州供电局有限公司 Battery impedance test device and method
CN113093021A (en) * 2021-03-22 2021-07-09 复旦大学 Method for improving health state of valve-controlled lead-acid storage battery based on resonant current pulse
CN113093021B (en) * 2021-03-22 2022-02-01 复旦大学 Method for improving health state of valve-controlled lead-acid storage battery based on resonant current pulse
CN114322916A (en) * 2021-12-21 2022-04-12 扬州瑞恩电器设备有限公司 Deformation monitoring die for storage battery grid
CN114322916B (en) * 2021-12-21 2023-09-05 扬州瑞恩电器设备有限公司 Storage battery grid deformation monitoring die

Similar Documents

Publication Publication Date Title
WO2013071508A1 (en) Smart sealed valve-regulated lead-acid storage battery device
CN107656211A (en) Batteries monitoring system
CN101477179A (en) On-line AC detection method and system for internal resistance of accumulator
CN103760492A (en) Method for online testing performance of lead-acid storage cells of transformer substation
CN102157759A (en) Method for charging management of emergent blade-changing battery pack of wind driven generator
CN108169693A (en) A kind of accumulator group online evaluation detecting system
CN115656861A (en) Power battery diagnosis device and method based on equalization circuit
CN106374545B (en) A kind of lead-acid accumulator control system and intelligence system
CN202330560U (en) Storage battery impedance detection device excited by SPWM (Sinusoidal Pulse Width Modulation) signals generated by single-chip microcomputer
CN204928219U (en) Lead acid battery system and intelligent system
CN102411125A (en) Automatic detection device and detection method of storage battery
CN110412474B (en) DC on-line monitoring auxiliary system in station
CN104655973B (en) A kind of method and apparatus that battery module short circuit is detected in ups system
CN117293418B (en) Internet of things battery repair management method, device, equipment and storage medium
CN201174607Y (en) On-line detection and activation apparatus for accumulator
WO2023070323A1 (en) Electrochemical apparatus management method, system, electrochemical apparatus and electronic device
CN203084169U (en) Energy storage system monitoring device of photovoltaic power generation storage battery
CN202817133U (en) Storage battery on-line monitoring system
CN106338704A (en) Real-time detection device suitable for failure and electricity larceny prevention of metering current transformer
CN204927452U (en) Lead acid battery's collection module and novel lead acid battery
WO2022062143A1 (en) Charge level early warning method for composite battery packs
CN104502846A (en) Storage battery overload performance detection apparatus
CN204330989U (en) A kind of accumulator overload performance pick-up unit
CN107037362A (en) A kind of DC charging motor ripple monitoring device
CN211785999U (en) Battery monitoring statistical system based on Internet of things

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 24/07/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11875868

Country of ref document: EP

Kind code of ref document: A1