JP2010175433A - In-line method of inspecting transparent conductive film - Google Patents

In-line method of inspecting transparent conductive film Download PDF

Info

Publication number
JP2010175433A
JP2010175433A JP2009019455A JP2009019455A JP2010175433A JP 2010175433 A JP2010175433 A JP 2010175433A JP 2009019455 A JP2009019455 A JP 2009019455A JP 2009019455 A JP2009019455 A JP 2009019455A JP 2010175433 A JP2010175433 A JP 2010175433A
Authority
JP
Japan
Prior art keywords
color filter
conductive film
transparent conductive
substrate
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009019455A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kaida
智之 海田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009019455A priority Critical patent/JP2010175433A/en
Publication of JP2010175433A publication Critical patent/JP2010175433A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of inspecting a transparent electrode which can prevent serious troubles requiring to reexamine all of color filter substrates between sampling inspection periods and be free from decrease of productivity even when all of color filter substrates are reexamined. <P>SOLUTION: In the in-line method of inspecting a transparent conductive film, existence or nonexistence of the transparent conductive film on the color filter is determined by forming the color filter and the transparent conductive film on a transparent substrate, passing the substrate through between a UV light source and a UV-ray sensor on a convey line, and measuring a transmittance of a portion where the transparent substrate and the transparent conductive film are laminated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液晶表示装置用のカラーフィルタ基板に係わり、特には、カラーフィルタ上に形成した透明導電膜の有無をインラインで検査する検査方法に関する。   The present invention relates to a color filter substrate for a liquid crystal display device, and more particularly to an inspection method for in-line inspection for the presence or absence of a transparent conductive film formed on a color filter.

カラー液晶表示装置に使用するカラーフィルタ基板においては、通常カラーフィルタを形成した後、液晶駆動用の電圧を印加するための透明導電膜(以下、ITO膜と記す)をスパッタリング法によりカラーフィルタ上にを形成する。   In a color filter substrate used for a color liquid crystal display device, a transparent conductive film (hereinafter referred to as an ITO film) for applying a voltage for driving a liquid crystal is usually formed on the color filter by sputtering after forming the color filter. Form.

カラーフィルタ製造工程で、ITO膜が適正に成膜されているかどうかは確実に管理する必要がある。しかし、ITO膜がカラーフィルタ上の所望の部位に膜付けされ、その膜厚が、カラーフィルタ上で所望の範囲に収まっているか否かを、製造した全てのカラーフィルタ基板について、特に大面積のカラーフィルタ基板について検査して確認することは、生産性の著しい低下を伴い、実際問題としてもITO膜製造工程の安定性から必要がないと考えられる。   In the color filter manufacturing process, it is necessary to reliably manage whether the ITO film is properly formed. However, whether or not the ITO film is applied to a desired portion on the color filter and the film thickness is within a desired range on the color filter is determined for all the manufactured color filter substrates, particularly in a large area. Inspecting and confirming the color filter substrate is accompanied by a significant decrease in productivity, and it is considered unnecessary in practice because of the stability of the ITO film manufacturing process.

そこで、一般にはカラーフィルタ基板を適切なタイミングで抜き取り検査を実施して、異常が見出されれば、詳しい検査を実施することで、異常発生の原因を特定して原状回復することが行われる(特許文献1参照)。   Therefore, in general, a color filter substrate is sampled at an appropriate timing, and if an abnormality is found, a detailed inspection is performed to identify the cause of the abnormality and restore the original state (patent) Reference 1).

特開2003−262566号公報JP 2003-262666 A

本発明は、ITO成膜を成膜した後の抜き取り検査だけでは、仮に抜き取り検査で異常が検出されると、当該抜き取り検査前後に製造された相当数のカラーフィルタ基板について精密な再検査を実施する必要が出てくる。こうなると、生産性を維持するために、一般に単位時間当たりの処理枚数が低く非常に高額なITO検査装置を、予め相当数常備しておく必要性がある。あるいは生産性を維持するために、ITO膜の被検査ポイントを絞るようなことが生じ得る。
そこで本発明は、抜き取り検査時点を含む一定の時間幅に製造されたカラーフィルタ基板の全数検査を必要とするような大きなトラブル発生を未然に防止できて、且つカラーフィルタ基板の全数を検査しても生産性を低下させることのないITO膜検査方法を提供することを目的とした。
In the present invention, if an abnormality is detected in the sampling inspection only by the sampling inspection after the ITO film is formed, a precise re-inspection is performed on a considerable number of color filter substrates manufactured before and after the sampling inspection. The need to come out. In this case, in order to maintain productivity, it is necessary to prepare a considerable number of ITO inspection apparatuses that are generally low in the number of processed sheets per unit time and very expensive. Or, in order to maintain productivity, it may occur that the inspection points of the ITO film are narrowed down.
In view of this, the present invention can prevent the occurrence of a large trouble that necessitates a total inspection of the color filter substrates manufactured in a certain time span including the sampling inspection time, and inspects the total number of color filter substrates. In addition, an object of the present invention is to provide an ITO film inspection method that does not reduce productivity.

上記課題を達成するための請求項1に記載の発明は、透明基板上にカラーフィルタと透明導電膜を形成した後に、前記基板を搬送ライン上に設置された紫外光源と紫外線センサーの間を通過させ、前記透明基板と透明導電膜の積層部分の透過率を測定することで、前記カラーフィルタ上の透明導電膜の有無を判断することを特徴とするインライン透明導電膜検査方法としたものである。   In order to achieve the above object, according to the first aspect of the present invention, after a color filter and a transparent conductive film are formed on a transparent substrate, the substrate passes between an ultraviolet light source and an ultraviolet sensor installed on a transport line. And determining the presence or absence of the transparent conductive film on the color filter by measuring the transmittance of the laminated portion of the transparent substrate and the transparent conductive film. .

また、請求項2に記載の発明は、450nm近傍と600nm近傍の輝度が高い光源を使用して、前記波長の透過率を測定することを特徴とする請求項1記載のインライン透明導電膜検査方法としたものである。   The invention according to claim 2 is a method for inspecting an in-line transparent conductive film according to claim 1, wherein the transmittance of the wavelength is measured using a light source having high luminance near 450 nm and near 600 nm. It is what.

本発明によれば、透過率測定という簡便な手法により、カラーフィルタ基板周辺部と多面付けされたカラーフィルタとして有効な部分以外の内側のつなぎ部分の透明基板と透明電極の積層部分の透過率を多数ポイント測定することができる。
したがって、透明電極がカラーフィルタ上にも同じように形成されたか否かについての確かな情報を得ることができる。
また、透過率測定は測定信頼性が高く短時間で測定でき装置構成も簡単であるため、検査に多大のコストを費やすことがなく、カラーフィルタ製造工程にインライン方式で導入してもカラーフィルタ基板の生産性を下げることがない。
According to the present invention, the transmittance of the laminated portion of the transparent substrate and the transparent electrode at the inner connecting portion other than the portion effective as the color filter multi-faced with the peripheral portion of the color filter substrate is measured by a simple method of transmittance measurement. Multiple points can be measured.
Therefore, it is possible to obtain reliable information as to whether or not the transparent electrode is formed on the color filter in the same manner.
In addition, transmittance measurement has high measurement reliability, can be measured in a short time, and the device configuration is simple. Therefore, it does not spend much cost for inspection, and even if it is introduced into the color filter manufacturing process by an inline method, the color filter substrate There is no reduction in productivity.

カラーフィルタ基板と発光光源と紫外線センサー配置の一例を説明する上面視図。The top view explaining an example of arrangement | positioning of a color filter board | substrate, a light emission light source, and an ultraviolet sensor. 透明電極の膜厚と透過率の波長依存性の一例を説明する図。The figure explaining an example of the film thickness of a transparent electrode, and the wavelength dependence of the transmittance | permeability.

図1に示すように、透過率を測定するための紫外〜可視領域の発光光源21,22,23と光センサー3は、透明電極の膜付けが終わったカラーフィルタ基板4を次工程に搬送する基板搬送部1の適切な位置、特にカラーフィルタ基板4が一旦停止する箇所に設置するのが望ましい。
発光光源21,22,23と光センサー3はカラーフィルタ基板4を挟んで、搬送方向と垂直方向にライン上に複数設置して、面付け位置、監視必要箇所の数等に応じて選択して使用するのが望ましい。発光光源は幅広く紫外領域をカバーする光源21、450nmの可視光源22、600nmの可視光源23と複数設置するのが好ましい。単一の波長だけでは膜厚測定の信頼性に欠ける場合があるので、少なくとも2つ以上の波長を併用して膜厚計算をするのが好ましい。測定する位置は、カラーフィルタが形成された部分以外であることが望ましい。
尚、図1では、光センサーはカラーフィルタ基板の裏面側に光源と対応して設置してあり、分かりやすくするためにずれた破線で示してある。
As shown in FIG. 1, the light source 21, 22, 23 and the optical sensor 3 in the ultraviolet to visible region for measuring the transmittance convey the color filter substrate 4 on which the transparent electrode has been formed to the next process. It is desirable to install it at an appropriate position of the substrate transport unit 1, particularly at a position where the color filter substrate 4 is temporarily stopped.
The light emitting light sources 21, 22, 23 and the light sensor 3 are installed on the line in the direction perpendicular to the conveying direction with the color filter substrate 4 interposed therebetween, and are selected according to the imposition position, the number of necessary monitoring points, and the like. It is desirable to use it. It is preferable to install a plurality of light emitting light sources such as a light source 21 that covers a wide ultraviolet region, a visible light source 22 having a wavelength of 450 nm, and a visible light source 23 having a wavelength of 600 nm. Since the reliability of film thickness measurement may be lacking with only a single wavelength, it is preferable to calculate the film thickness using at least two or more wavelengths in combination. The measurement position is preferably other than the part where the color filter is formed.
In FIG. 1, the light sensor is installed on the back side of the color filter substrate in correspondence with the light source, and is shown by a broken broken line for easy understanding.

図2は、透明電極の膜厚と透過率の波長依存性の一例を説明する図である。
例えば、透明電極の所望の膜厚が1300Å近辺かどうかを監視する場合は、450nmの波長では透過率が95%〜97%の範囲、600nmでは透過率が91%〜93%の範囲にあるか否かで判断できる。所望の膜厚が1700Å近辺かどうかを監視する場合は、450nmの波長では透過率が84%〜86%の範囲、600nmでは透過率が96%〜98%の範囲にあるか否か等で判断する。求める透過率の範囲は、透明電極の膜質あるいは膜厚の許容公差に依存するから、スパッタリング装置のターゲット交換ごとに、図2で示す透明電極の膜厚と透過率の波長依存性を測定し、予め算出しておくのが望ましい。
FIG. 2 is a diagram for explaining an example of the wavelength dependence of the film thickness and transmittance of the transparent electrode.
For example, when monitoring whether the desired film thickness of the transparent electrode is around 1300 mm, is the transmittance in the range of 95% to 97% at a wavelength of 450 nm, and whether the transmittance is in the range of 91% to 93% at 600 nm? Can be judged by no. When monitoring whether the desired film thickness is in the vicinity of 1700 mm, it is determined whether the transmittance is in the range of 84% to 86% at a wavelength of 450 nm, and whether the transmittance is in the range of 96% to 98% at 600 nm. To do. Since the range of transmittance to be obtained depends on the tolerance of the film quality or film thickness of the transparent electrode, the wavelength dependence of the film thickness and transmittance of the transparent electrode shown in FIG. It is desirable to calculate in advance.

300nm以下の紫外線透過率は、透明電極はガラスなどの透明基板に比較して十分低くなるので、リファレンスとして、透明基板を使用すれば透明電極の有無については信頼性の高い情報を得ることができる。したがって、透明電極の有無だけであれば紫外線の透過率だけで迅速に調べることが可能である。   The UV transmittance of 300 nm or less is sufficiently low for transparent electrodes compared to transparent substrates such as glass. Therefore, if a transparent substrate is used as a reference, highly reliable information on the presence or absence of the transparent electrode can be obtained. . Therefore, if there is only the presence or absence of a transparent electrode, it is possible to quickly check only by the transmittance of ultraviolet rays.

1、基板搬送部
2、発光光源
21、紫外線
22、450nm
23、600nm
3、光センサー
4、カラーフィルタ基板
1. Substrate transport unit 2, light emission source 21, ultraviolet ray 22, 450 nm
23, 600 nm
3. Optical sensor 4, color filter substrate

Claims (2)

透明基板上にカラーフィルタと透明導電膜を形成した後に、前記基板を搬送ライン上に設置された紫外光源と紫外線センサーの間を通過させ、前記透明基板と透明導電膜の積層部分の透過率を測定することで、前記カラーフィルタ上の透明導電膜の有無を判断することを特徴とするインライン透明導電膜検査方法。   After forming the color filter and the transparent conductive film on the transparent substrate, the substrate is passed between the ultraviolet light source and the ultraviolet sensor installed on the transport line, and the transmittance of the laminated portion of the transparent substrate and the transparent conductive film is determined. An in-line transparent conductive film inspection method, wherein the presence or absence of a transparent conductive film on the color filter is determined by measurement. 450nm近傍及び600nm近傍の輝度が高い光源を使用して、前記波長の透過率を測定することを特徴とする請求項1記載のインライン透明導電膜検査方法。   The in-line transparent conductive film inspection method according to claim 1, wherein the transmittance of the wavelength is measured using a light source having high luminance near 450 nm and near 600 nm.
JP2009019455A 2009-01-30 2009-01-30 In-line method of inspecting transparent conductive film Pending JP2010175433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019455A JP2010175433A (en) 2009-01-30 2009-01-30 In-line method of inspecting transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019455A JP2010175433A (en) 2009-01-30 2009-01-30 In-line method of inspecting transparent conductive film

Publications (1)

Publication Number Publication Date
JP2010175433A true JP2010175433A (en) 2010-08-12

Family

ID=42706549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019455A Pending JP2010175433A (en) 2009-01-30 2009-01-30 In-line method of inspecting transparent conductive film

Country Status (1)

Country Link
JP (1) JP2010175433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9128050B2 (en) 2012-04-09 2015-09-08 Hanwha Techwin Co., Ltd. Apparatus and method for inspecting graphene board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9128050B2 (en) 2012-04-09 2015-09-08 Hanwha Techwin Co., Ltd. Apparatus and method for inspecting graphene board

Similar Documents

Publication Publication Date Title
KR101586101B1 (en) Optical display device manufacturing system and method for manufacturing optical display device
WO2014199952A1 (en) Defect inspection system
JP6188953B2 (en) Liquid crystal display, liquid crystal display test method, and electronic apparatus
WO2011105174A1 (en) Method of determining cutting information, method of manufacturing strip-shaped polarizing sheet using same, method of manufacturing optical display unit, strip-shaped polarizing sheet, and original polarizing sheet
JP5931553B2 (en) Liquid crystal display
CN102768421A (en) Liquid crystal display panel and manufacturing method thereof
JP2011226957A (en) Defect inspection method and defect inspection device of polarizing plate
TW200307117A (en) Method for inspecting polarizing film and apparatus for the method
JP2012027455A (en) Method and system for manufacturing liquid crystal panel
TWI663391B (en) Defect inspection method of multilayer optical film, defect inspection method of optical film, and manufacturing method of multilayer optical film
WO2011077913A1 (en) Panel for display device, and method for manufacturing the panel
US20090190134A1 (en) Method and apparatus for inspecting color filter
CN105474292A (en) Apparatus and method for manufacturing optical member-bonded body
JP2010175433A (en) In-line method of inspecting transparent conductive film
JP5470456B2 (en) Lighting inspection device
JP4858106B2 (en) Color filter defect inspection method
CN102713583A (en) System and method for measuring irregularity of glass substrate
WO2015030141A1 (en) Production method for laminated optical member
JP2009236826A (en) Defect detector and defect detection method
CN107255872A (en) A kind of bad desalination method of display device line
WO2016106807A1 (en) Assembling method for liquid crystal display device
JP4508084B2 (en) Adhesive tape application inspection method
JP2013145130A (en) Method for pattern inspection
JP2018112515A (en) Panel inspection system
JP2008241469A (en) Defect inspection apparatus