JP2010174324A - 水素吸蔵装置及びその水素吸蔵電極を利用した電池 - Google Patents
水素吸蔵装置及びその水素吸蔵電極を利用した電池 Download PDFInfo
- Publication number
- JP2010174324A JP2010174324A JP2009017841A JP2009017841A JP2010174324A JP 2010174324 A JP2010174324 A JP 2010174324A JP 2009017841 A JP2009017841 A JP 2009017841A JP 2009017841 A JP2009017841 A JP 2009017841A JP 2010174324 A JP2010174324 A JP 2010174324A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- hydrogen
- electrode
- storage device
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Hybrid Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Fuel Cell (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
【課題】水素吸蔵電極を直接、被電解水に浸しながら電解し、水素を発生させて吸蔵するに際し、負電極としての水素吸蔵電極が酸化され難い材料で安価な材料にすると共に、吸蔵しやすくし、さらに吸蔵した水素を取り出しやすい構造にすること、更に単純な構造の脱着可能な水素吸蔵電極を有する水素吸蔵装置、およびその水素吸蔵電極を利用した電池を提供する。
【解決手段】負極としての水素吸蔵電極2について、粒状または多孔性のグラファイトなどのカーボン系材料を用いる構造として被電解水6との接触面積を大きくする。さらにこの水素吸蔵電極は、水素吸蔵装置の本体から脱着可能な構造にして、十分水素を蓄えた水素吸蔵電極を効率の良い水素吸蔵物質に水素を移し替えるようにして利用する電池に適用する。
【選択図】図1
【解決手段】負極としての水素吸蔵電極2について、粒状または多孔性のグラファイトなどのカーボン系材料を用いる構造として被電解水6との接触面積を大きくする。さらにこの水素吸蔵電極は、水素吸蔵装置の本体から脱着可能な構造にして、十分水素を蓄えた水素吸蔵電極を効率の良い水素吸蔵物質に水素を移し替えるようにして利用する電池に適用する。
【選択図】図1
Description
本発明は、カーボン系材料の水素吸蔵電極を用いる水素吸蔵装置及びその水素吸蔵電極を利用する電池に関するものである。被電解水としての水または水溶液を電解して、水素を発生させるにあたり、この水素を水素吸蔵電極としてのカーボン系材料の負電極に直接吸蔵させて、その後、この水素を放出させて利用できるようにした水素吸蔵装置と、その水素吸蔵させた水素吸蔵電極を用いた化学電池としての燃料電池、二次電池や一次電池、さらに混成電池などの電池および水素吸蔵させた水素吸蔵電極を更に水素吸蔵合金などの高価であるが高効率な水素吸蔵電極に吸蔵又は再吸蔵させて使用するようにした電池に関するものである。
水や水溶液を電気分解することにより、水素の製造やその水素を利用した様々な工業的応用が展開されている。
従来の電気分解による水素ガスの製造方法として、アルカリ水電解法や、太陽電池を使用した方法が挙げられ、水素は化石燃料に代わるクリーンな新エネルギーとして注目されている。
しかし、従来のアルカリ水電解法では、電気分解に石油や原子力などの既存のエネルギーを利用しているため、近年の地球環境問題やエネルギー問題の観点からは望ましくない。一方、太陽電池は、太陽光の天然の光エネルギーを電気エネルギーに変換可能なことから、クリーンな水素製造方法として期待される。
従来、太陽電池と水電気分解槽と、この水電気分解槽から発生する水素及び酸素に対する水素貯蔵手段及び酸素貯蔵手段とを備え、これらからの水素及び酸素で作動する電池(燃料電池)を有する燃料電池システムがあった(特許文献1参照)。この水素貯留システムにおいては、水素吸蔵合金を内蔵する水素貯留容器と、水素貯留容器に一体化される非導電性容器と、非導電性容器に電磁誘導用のコイルを配設した加熱装置と、水素吸蔵合金を冷却する冷却手段とからなり、水素貯留容器は、非導電性容器に対して出し入れできる構造で、これ自体で運搬自在にされているものがあった。
また、従来、被電解水に少なくとも一部が浸漬された少なくとも一対の電極 と、太陽電池と、水素吸蔵合金とを備え、太陽電池の出力を各電極に印加して被電解水を電気分解すると共に、電気分解により発生した水素を水素吸蔵合金に吸蔵させる水素発生吸蔵装置を備えたCO2冷媒サイクル装置があった(特許文献2参照)。
しかし、上述の例では、いずれも水電解槽で水を電気分解し、発生した水素と酸素のガスとしてタンクに収納し、そのうちの水素ガスをガス状態で水素吸蔵合金に吸蔵させるものであり、水素吸蔵合金を直接被電解水に浸して電解による水素を吸蔵させるものではなかった。そのために、大型になり、また、水素ガスのパイプによる循環が必要であり、タンク内も水素圧が高くならざるを得ないという問題があった。
これに対して、本出願人は、先に、水溶液を電解して水素を発生させるときに負電極の全部または一部を水素吸蔵電極として用い、これを被電解水溶液に浸し、太陽電池で電気分解して発生する水素を直接水素吸蔵電極に吸蔵させることを提案している(特許文献3参照)。また、太陽電池の正極と負極とを水溶液に浸しながら発電させて使用する太陽電池において、水溶液より比重を小さくさせたフロートを基板に備えて、被電解水に浮かすようにした太陽電池を提案した(特許文献4参照)。
従来、アルカリ性溶液中に浸す水素吸蔵合金電極は、ニッケル水素電池の開発で、活発化してきた(特許文献5参照)。しかし、ニッケル水素電池では、充放電に伴い水素の吸収と放出が特定のアルカリ性溶液中で水素イオンの出入りとして行われるのに対して、本出願人は、先に、水素吸蔵合金電極は、海水のような被電解質を用いるので、不特定の色々なイオンの存在の下での水素イオンの吸蔵のみの動作であること、更に、水素の放出に関しては、アルカリ性溶液から取り出し、気体中での加熱放出や減圧放出など水素ガスとして放出させるもので、これらに最適な構造にする必要があるとして、水素吸蔵合金電極が酸化されないようにアルカリ性溶液中で電解すること、また、やはり、水素吸蔵合金電極が酸化されないように、これをカセットの中に閉じ込めたカセット式にして、脱着可能な構造とする発明をした(特許文献6参照)。
しかしながら、現在の水素吸蔵合金は、非常に水素の吸蔵効率が良いが、水素吸蔵合金の主成分であるNi(ニッケル)や他の元素は、高価であり、装置全体の価格が高価にならざるを得ない。したがって、多少水素吸蔵効率が劣っていても安価な水素吸蔵用の負電極材料が望まれていた。更に、従来の水素吸蔵合金は、被電解水としての水の中での電解が酸化されてしまうために使用ができなかった。そのために常にアルカリ性雰囲気に晒しておけるように、アルカリ性物質と共にカセットの中に水素吸蔵合金の負電極を閉じ込めて置けるような構造にする必要があった。負電極の劣化のための交換や別に用意した電池の負電極として使用するために脱着可能な構造の負電極としての水素吸蔵電極にするためには、アルカリ性水溶液が漏れがたい構造やアルカリ性物質を貯蔵する部屋を有するような特殊な構造のカセット式にする必要があった。そのために、安価で、しかも簡単に脱着可能な構造の負電極である水素吸蔵電極を有する水素吸蔵装置が望まれていた。
特開平9−50820号公報
特開2006−46872号公報
特開2002−170980号公報
特開2004−281708号公報
特開2002−42801号公報
特開2008−174771号公報
本発明では、水素吸蔵電極を直接、水や水溶液である被電解水に浸しながら電解し、水素を発生させて吸蔵するに際し、負電極としての水素吸蔵電極が酸化され難い材料で安価な材料にすると共に、吸蔵しやすくし、さらに吸蔵した水素を取り出しやすい構造にすること、更に単純な構造の脱着可能な水素吸蔵電極を有する水素吸蔵装置を提供すること、および、その水素吸蔵電極を利用した化学電池としての燃料電池、二次電池や一次電池、さらに混成電池などの電池を提供すること目的とする。
上記の目的達成のため、本発明の請求項1の水素吸蔵装置は、水または水溶液の被電解水を電解し、そのときに発生した水素を負電極となる水素吸蔵電極に吸蔵させるようにした水素吸蔵装置において、該水素吸蔵電極としてカーボン系材料を用いたこと、該水素吸蔵電極は、水素吸蔵装置の本体から脱着可能な構造にしたこと、を特徴とするものである。
水素吸蔵装置の本体とは、少なくとも、水素吸蔵電極となる負電極を脱着可能にするための接触する電極と、被電解水に浸る正電極用の電極を有し、電解に使用する直流電源との接続用の正負の電極を有する水素吸蔵装置の部分をいう。
本発明では、室温付近では負電極として用いても酸化などの変質が困難なグラファイトやカーボンナノチューブ、フラーレン、炭、プラスチック、ゴム系材料などの有機物質やその炭化層などのカーボン系材料を水素吸蔵しやすくした負電極としての水素吸蔵物質を用いて、極めて安価な水素吸蔵装置を提供できるようにしている。一般に炭素は、水素と結びつきやすく、水素がイオン化しても良いし、分子または原子のままで炭素原子と弱い結合して吸蔵されても良い。
また、本出願人の先の発明では、被電解水が出入りできるようにしたカセット内に水素吸蔵合金電極を内蔵し、太陽電池の負極と電気的に接続してあり、水素吸蔵合金電極自体も負極として作用させて、この周辺に生成された強アルカリ水溶液が拡散などで逃げ出し難い構造で、しかも初期の酸化を防ぐために強アルカリ性物質を保持するために、負電極である水素吸蔵合金電極をカセット内に閉じ込める形状にする必要があった。これに対して、本発明は、負電極とするカーボン系材料の水素吸蔵電極は、酸化しにくいので、従来のような強アルカリ水溶液が拡散などで逃げ出し難い構造にする必要はなく、脱着可能な水素吸蔵電極として利用できるような構造であればよく、直接被電解水に晒す構造で安価なカーボン系材料の水素吸蔵電極となるようにしている。
本発明の請求項2の水素吸蔵装置は、水素吸蔵電極としてのカーボン系材料としてグラファイトとした場合である。グラファイトは、層状構造結晶であり、その層間に水素を原子の状態で吸蔵しやすい。分子状態より原子状態の水素吸蔵の方が電池として利用する場合には好都合である。本発明の太陽光発電を用いた水素吸蔵装置は、この装置を湖や海に沢山浮かべて使用する場合を主に想定しているので、可能な限りコンパクトであり、暴風雨にも耐える頑丈な構造が求められる。従って、可能な限り一体化させた構造としている。もちろん、各家庭や工場においても水溶液を太陽電池により電解する形式で使用できる。
本発明の請求項3の水素吸蔵装置は、粒状もしくは多孔性の前記カーボン系材料を用いて水素吸蔵電極を形成し、被電解水との接触面積を大きくした場合である。
例えば、グラファイトを粒状にして、これをバインダで固めて更に焼成したりして所定の形状に成型して水素吸蔵電極にしても良い。もちろん、これを薄板状に分割した水素吸蔵電極にしても良いし、本体の電極端子もカーボン系材料にして、水素吸蔵電極が脱着可能な状態となる接触面を形成しても良い。
本発明の請求項4の水素吸蔵装置は、電解に要する電源として、太陽電池を用いた場合である。海上に浮かべる場合などに好適である。
本発明の請求項5の水素吸蔵装置は、水素吸蔵装置の本体に太陽電池を一体化した場合である。
太陽光を利用し、海水などを電解してその電力を水素として水素吸蔵電極である負電極に蓄えておき、後でこれを電池の水素供給電極や単に燃料電池における水素ガスの供給源として利用できる。海水は、導電性であるので、小さい電圧で電解できるので好適である。
本発明の請求項6の水素吸蔵装置は、浮を備え、海水などなどの被電解水に浮かべるような構造にした場合である。
太陽電池をパネル状にして湖や海水などの被電解水に浮かべて動作させることを想定している。この場合、パネル状太陽電池は、湖や海水の上に顔を出して太陽からの光を受光する。暴風雨に対しても浮により安定して保持できるような構造が求められる。本発明は、浮の配置は別として、パネル状太陽電池が、多少の水を被っても良いが、通常、太陽電池の受光部が水の上に顔を出して太陽からの光を受光できる構造にした場合である。また、ひっくり返っても復元するように別に錘を設けても良いが、負電極であるカーボン系の水素吸蔵電極を錘としても利用し、常に太陽電池の受光面が被電解水の上に向くようにすることもできる。
本発明の請求項7の電池は、請求項1から6のいずれかに記載の水素吸蔵装置により水素吸蔵された水素吸蔵電極を電池の水素供給源としたことを特徴とするものである。
水素吸蔵された水素吸蔵電極を電池の負電極として用いと共に水素の供給源として利用することもできるし、単に、燃料電池としての電池の水素ガスの供給源として用いることもできる。これらの場合、電池には電解液として水酸化カリウムや水酸化ナトリウムなどの強アルカリ性溶液を用いても良いし、非水型電解液でも良い。さらに水素イオン伝導性の固体高分子の電解質のイオン交換膜などを用いても良い。
一般に、燃料電池は、エネルギーを蓄えている燃料が、電極反応を受け持つ電池本体の外に存在するのが特徴で、充電と言う動作を必要としない点が燃料電池の二次電池地に対する最大の相違点になっている。一次電池は、負極材と正極材の所定の活物質の量が決まっており、化学反応が放電により終了することで、使い捨てになる電池である。しかし、本発明では、負極として水素吸蔵された水素吸蔵電極を用い、正極としては空気中の酸素を、多孔性カーボン電極を通して補給するようにしてあり、水素吸蔵電極からの水素を、電解質を通して正極で反応させて電池を作り、水素吸蔵電極中の水素が不足したときには、別の水素吸蔵された水素吸蔵電極に取り替えるようにしてある。このような電池は、燃料電池の定義からずれており、燃料電池とは言えないが、一次電池でも二次電池でもないので、燃料電池の変形や混成電池と見ることができる。もちろん、水素吸蔵された水素吸蔵電極を負電極として用いず、単に水素を水素ガスとして放出させる水素の供給源として用いるならば、純粋に燃料電池ということができる。
本発明の請求項8の電池は、請求項1から6のいずれかに記載の水素吸蔵装置により水素吸蔵された水素吸蔵電極からの水素を、該水素吸蔵電極とは別の水素吸蔵物質に移動させて吸蔵させた後、該水素吸蔵物質を電池の水素供給源として用いたことを特徴とするものである。
グラファイトなどのカーボン系水素吸蔵材料は、水素吸蔵合金に比較するとその水素吸蔵効率は低い。しかし、安価であるので、例えば、海水に浮かべた水素吸蔵装置のカーボン系水素吸蔵材料からなる陰極は、錘の役割も兼ねるときにはその重量も必要であり、その体積を大きくしておくことにより水素吸蔵効率が悪くとも吸蔵する水素の絶対量を大きくすることができる。
自動車などに搭載する燃料電池は、その重量に対する水素の吸蔵量、すなわち、吸蔵効率のよい水素吸蔵陰極が求められる。したがって、カーボン系水素吸蔵材料に蓄えた水素を、実際に電池(燃料電池、二次電池や一次電池)に使用する吸蔵効率の良い水素吸蔵陰極、例えば、ニッケル系の水素吸蔵合金電極に再吸蔵させるようにすると良い。アルカリ性水溶液に水素吸蔵装置で水素を吸蔵させたカーボン系水素吸蔵電極と高効率の水素吸蔵電極(例えば、水素吸蔵合金電極)とを浸漬させて、電気導線で互いに短絡するか、もしくは、多少の直流電圧を印加して水素イオンの移動を促進させることによりカーボン系水素吸蔵電極に吸蔵させてある水素を水素吸蔵合金電極に効率よく移し貯蔵させることができる。そして、この水素を蓄えた吸蔵効率の良い水素吸蔵合金電極を電池の陰極として利用するものである。また、この水素の移し替えのときにも電池として作用させることもできる。
本発明の水素吸蔵装置は、負電極としてカーボン系材料を用いているので、従来の水素吸蔵合金のように被電解水を強アルカリ性水溶液にする必要がなく、水または水溶液の被電解水を用いても水素を吸蔵できると共に、極めて安価な負電極となるという利点がある。なお、被電解水が真水の場合は、電気抵抗が大きくなるので、多少、アルカリ性や食塩水のような導電性があるようにするか、海水のような被電解水が好適である。
本発明の水素吸蔵装置では、脱着可能な負電極となるために、水素を電解により蓄えた負電極を、水素吸蔵装置から取り外して、電池の負電極として用いるか、水素ガスを取り出す水素源として用いることもできる。また、水素を蓄えた負電極を取り外した後、未吸蔵の負電極と取り替えて電解を繰り返すことができる。
太陽電池の電力を用いて、例えば、湖や海に浮かべてこの水を電解するので、無尽蔵のエネルギー源としての水素を取り出すことができると共に、水素を燃やしてもクリーンなエネルギー源として利用できるという利点がある。
水素吸蔵した負電極は、水素吸蔵装置から脱着可能にしているので、容易に取り外して、所定の設備のある場所まで運搬して、加熱するなどして、水素を取り出すこともできるという利点がある。なお、所定の設備のある場所とは、特別の施設でも良いし、水素を燃料として利用する、例えば、自動車でもよい。
上述では、湖や海に浮かべて利用することを述べたが、例えば、工場や各家庭で、水槽に浮かべて、太陽電池の電力を利用して水素を取り出すようにすることもできるので、クリーンなエネルギーの製造を分散させることもできるという利点がある。なお、真水の水槽の場合は、少量の水酸化ナトリウムなどを入れて、水の導電性を高めておくと良い。
以下、本発明の水素吸蔵装置について、図面を参照して、実施例に基づき詳細に説明する。
図1は、本発明の水素吸蔵装置の一実施例を示す断面概略図で、海や湖に浮かべた場合の様子を示したものである。ここでは浮9により被電解水6である海水に浮かぶようにしてあり、負電極15としてのカーボン系材料である、例えば、グラファイトを用いた水素吸蔵電極2を取り付けてあり、太陽電池1の負極5と電気的に負電極用導体25を介して接続してある水素吸蔵電極2と、太陽電池1の正極4に電気的に繋がる正電極14とは、被電解水6である海水中で、常に海水に浸るようにしてある。太陽電池1はパネル状にしてあり、本体100に一体化してあり、その受光部101は、太陽がある大気中に顔を出している様子である。また、負電極15の水素吸蔵電極2は錘としても作用し、本体100に取り付けた浮9を利用して安定に海上に浮く状態になるようにしてあり、本体100から脱着可能な構造になっている。
図2には、本発明の水素吸蔵装置の本体100の一実施例の横断面構造概略図を示してある。正電極14は、負電極15と同様、カーボン系材料であるグラファイトなどを用いても良いが、外気からの酸素が被電解水6である電解液などの電解質250に接触することが必要であるから、多孔質にする必要がある。負電極取り付け部51の周囲にある絶縁体60は、負電極取り付け部51が被電解水6である海水などに浸ってもそこでは電解が生じないように電気的に絶縁するために設けてある。
図3に本発明の水素吸蔵装置の負電極15の水素吸蔵電極2の一実施例の断面概略図(正面図と側面図)を示している。カーボン系材料であるグラファイトを粒状にした後、バインダで固めて焼成するなどして成形した場合の例であり、本体100の負電極取り付け部51に設けてある溝52の箇所にスライドして取り付けられるように負電極スライド部27を設けてある。
本発明の水素吸蔵装置の構造の概要ついて説明すると次のようである。パネル状にした太陽電池1の受光部101に、支持板10を介して浮9が本体100と一体化された構造となっており、負電極15である水素吸蔵電極2は、本体100から脱着可能な構造となっている。
本実施例は、この太陽光発電を用いた水素吸蔵装置を海に浮かべて、海水を被電解水6として使用する場合を想定している。太陽光発電を用いた水素吸蔵装置のパネル状太陽電池1が、錘としても作用する水素吸蔵電極2と浮9とでうまくバランスするように設計してあり、海に浮かべた水素吸蔵装置は、暴風雨に晒されて、ひっくり返っても、パネル状太陽電池1の受光部101が再び海面に出て、太陽光を受光できるように設計してある。
図1を参照して、本発明の動作について説明すると次のようである。パネル状太陽電池1で発電した電力により海水である被電解水6を電解する。本来、水の電気分解に必要な電圧は2.1Vであるが、電極降下など種々の電圧降下を考慮すると、3V以上あった方が良い。太陽電池の正極4と太陽電池の負極5とは、太陽電池1のパネルに形成してあり、電気絶縁性の支持板10に埋め込まれた正電極用導体24と負電極用導体25を介して、それぞれカーボン系の正電極14とやはりカーボン系の負電極15である水素吸蔵電極2に接続されている。正電極14と水素吸蔵電極2はそのまま被電解水6である海水に浸る。
太陽電池1の電力により海水の電解が始まると、負電極15として利用する水素吸蔵電極2では、水素が発生する。多くの場合、水素ガスとならずに正にイオン化した水素か、もしくは、中性の水素原子がそのまま水素吸蔵電極2に取り込まれる。しかし、一部は水素ガスとして放出する。水素吸蔵電極2にゆっくり水素が吸蔵され、水素ガスとして放出され難いように、太陽電池1からの電圧はあまり大きくしないように設計する方が良い。
正電極14では、海水の場合は主に、塩素ガスが発生する。発生した塩素ガスなどの生成ガスは、正電極14の隙間や、必要に応じて正電極14に設けた孔140を通して外部に放出されるようにした場合を本実施例では示している。もちろん、正電極14での発生ガスを採集して利用するようにしても良いし、発生ガスを吸収する物質を備えても良い。
正電極14は、例えば、多孔質になるようにカーボンファイバを織り込んであり、更にカーボンブラックを混入した導電性ゴム系物質にし、導電性であるカーボンファイバもしくはカーボンブラックが被電解水6である海水に直接接触するようにしている。この方が、大海に浮かせ、暴風雨に晒されて、水素吸蔵装置同士が互いにぶつかり合ってもショックに耐える構造にすることができる。もちろん、ここでは、採用しなかったが、正電極14の周りを更に金属などの板などで囲み、ガード板として備えるようにしても良い。これらは、修理や補修、更には再生などを考慮して、取り外しが可能な分解できる構造にしておく方が良い。
図4は、水素を十分に吸蔵させた本発明の脱着可能な負電極15となるカーボン系の水素吸蔵電極2、又は水素を十分に吸蔵させた水素吸蔵合金等の水素吸蔵物質3からなる水素吸蔵電極2を用いた本発明の電池の一実施例を示す構造の断面構造概略図である。
本発明の電池の図4に示した構成を説明すると次のようである。例えば、多孔性の正電極14を備えた絶縁体61からなるケース500内に、アルカリ性水溶液の電解質250、不織紙にアルカリ性水溶液を浸み込ませた電解質250や水素イオン伝導性の固体高分子などの電解質250を挿入してあり、そこに水素を十分に吸蔵させた本発明の脱着可能な負電極15となるカーボン系の水素吸蔵電極2、又は水素を十分に吸蔵させた水素吸蔵合金等の水素吸蔵物質3からなる水素吸蔵電極2を取り付けて電池とするものいである。電池としての電極端子である正電極端子214と負電極端子215をケース500に取り付けて外部に電力を取り出すことができるようにしてある。なお、多孔性の正電極14は、ケース500の外に少なくとも一部が外気に触れるようにしてあり、そこから外気中の酸素が取り込まれ、水素吸蔵電極2から移動してきた水素原子と会合して水になる化学反応をして電力が取り出せるようにしてある。
図5は、水素を十分に吸蔵させた本発明の脱着可能な負電極15となるカーボン系の水素吸蔵電極2から水素を、電解質250を通して、水素吸蔵効率が良く、沢山の水素を急増ができる水素吸蔵合金等の水素吸蔵物質3に水素を吸蔵させる、もしくは再吸蔵させる装置の一実施例を示す構造の断面構造概略図である。本実施例では、電解質250を強アルカリ性水溶液である、例えば、水酸化ナトリウム水溶液を利用した場合に好適な構造にしてある。このようにして小型でありながら高価ではあるが沢山の水素を吸蔵できる水素吸蔵合金等の水素吸蔵物質3に水素を十分吸蔵させた後、この水素吸蔵物質3を本発明の電池の水素供給源としての水素吸蔵電極2や、単に燃料電池としての水素ガスの水素供給源として利用できるようにするもので、コンパクトな燃料電池などの電池が達成できる。
図5の実施例では、水素を十分に吸蔵させたカーボン系の水素吸蔵電極2から水素が空の水素吸蔵物質3に水素を吸蔵させる際に、新たな直流電源400設けた導線320を介して水素を移動させているが、水素吸蔵物質3中の水素が空に近い状態では、水素を十分に吸蔵させたカーボン系の水素吸蔵電極2からの水素が拡散により移動し、このシステム自体が電池になるので、直流電源400を設ける必要はない。また、水素吸蔵物質3は、水素を吸蔵しやすいこと、新たに水溶液の電気分解するのではないので、この水素を吸蔵に要する電力は、僅かである。
本発明の太陽光発電を用いた水素吸蔵装置は、例えば、大海に沢山浮かべて使用する場合を主に想定している。したがって、可能な限りコンパクトであり、暴風雨にも耐える頑丈な構造が求められる。太陽電池をパネル状にしてその電力を用いて、太陽電池の負極を水素吸蔵合金電極にして、被電解水6としての海水に直接浸し、これを電解し、そのときに発生した水素をグラファイトなどのカーボン系の水素吸蔵電極に直接吸蔵させる水素吸蔵装置である。このカーボン系の水素吸蔵電極は、水素吸蔵装置から脱着可能であることから、水素を吸蔵したこの水素吸蔵電極を、水素を水素ガスとして放出させる施設や場所に運搬できるようにしている。カーボン系の水素吸蔵電極から水素を取り出す場所は自動車でも良く、そこでは水素を燃料として利用することも、さらに、燃料電池として使用することもできる。カーボン系の水素吸蔵電極から水素を取り出す方法は、種々あるが、別に用意した例えばニッケル系の水素吸蔵合金で、電池の陰極として用いることができる水素吸蔵電極に、アルカリ水溶液の中でカーボン系の水素吸蔵電極から水素を移動させて吸蔵し、水素を放出したカーボン系の水素吸蔵電極は、更に別の水素を吸蔵してあるカーボン系の水素吸蔵電極に交換して、再び、ニッケル系の水素吸蔵合金電極に再吸蔵させて、繰り返し、十分多くの水素を吸蔵させたニッケル系の水素吸蔵合金電極を電池の陰極として利用するような電池として利用する方が、効率が良く、コンパクトな電池が達成できる。
カーボン系の水素吸蔵電極から水素を取り出す方法として、加熱して水素ガスとして放出させることもできる。水素を放出させたカーボン系の水素吸蔵電極は、その表面に付着した海水中の各種イオンのメッキ膜や汚染物質などを除去するなどして再生して、再利用可能な状態に戻すことができる。
1 太陽電池
2 水素吸蔵電極
3 水素吸蔵物質
4 太陽電池の正極
5 太陽電池の負極
6 被電解水
9 浮
10 支持板
14 正電極
15 負電極
24 正電極用導体
25 負電極用導体
27 負電極スライド部
28 スリット
51 負電極取り付け部
52 溝
60、61 絶縁体
100 本体
101 受光部
140 孔
200 電池
214 正電極端子
215 負電極端子
250 電解質
314 正電極突起部
320 導線
400 直流電源
500 ケース
2 水素吸蔵電極
3 水素吸蔵物質
4 太陽電池の正極
5 太陽電池の負極
6 被電解水
9 浮
10 支持板
14 正電極
15 負電極
24 正電極用導体
25 負電極用導体
27 負電極スライド部
28 スリット
51 負電極取り付け部
52 溝
60、61 絶縁体
100 本体
101 受光部
140 孔
200 電池
214 正電極端子
215 負電極端子
250 電解質
314 正電極突起部
320 導線
400 直流電源
500 ケース
Claims (8)
- 水または水溶液の被電解水を電解し、そのときに発生した水素を負電極となる水素吸蔵電極に吸蔵させるようにした水素吸蔵装置において、該水素吸蔵電極としてカーボン系材料を用いたこと、該水素吸蔵電極は、水素吸蔵装置の本体から脱着可能な構造にしたこと、を特徴とする水素吸蔵装置。
- 前記カーボン系材料としてグラファイトを用いた請求項1に記載の水素吸蔵装置。
- 粒状もしくは多孔性の前記カーボン系材料を用いて水素吸蔵電極を形成し、被電解水との接触面積を大きくした請求項1または2のいずれかに記載の水素吸蔵装置。
- 電解に要する電源として、太陽電池を用いた請求項1から3のいずれかに記載の水素吸蔵装置。
- 水素吸蔵装置の本体に太陽電池を一体化してある請求項4に記載の水素吸蔵装置。
- 浮を備え、被電解水に浮かべる構造にした請求項5に記載の水素吸蔵装置。
- 請求項1から6のいずれかに記載の水素吸蔵装置により水素吸蔵された水素吸蔵電極を電池の水素供給源としたことを特徴とする電池。
- 請求項1から6のいずれかに記載の水素吸蔵装置により水素吸蔵された水素吸蔵電極からの水素を、該水素吸蔵電極とは別の水素吸蔵物質に移動させて吸蔵させた後、該水素吸蔵物質を電池の水素供給源として用いたことを特徴とする電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009017841A JP2010174324A (ja) | 2009-01-29 | 2009-01-29 | 水素吸蔵装置及びその水素吸蔵電極を利用した電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009017841A JP2010174324A (ja) | 2009-01-29 | 2009-01-29 | 水素吸蔵装置及びその水素吸蔵電極を利用した電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010174324A true JP2010174324A (ja) | 2010-08-12 |
Family
ID=42705567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009017841A Pending JP2010174324A (ja) | 2009-01-29 | 2009-01-29 | 水素吸蔵装置及びその水素吸蔵電極を利用した電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010174324A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015004983A1 (ja) * | 2013-07-08 | 2015-01-15 | トヨタ自動車株式会社 | 空気電池 |
CN106208915A (zh) * | 2015-04-23 | 2016-12-07 | 新日光能源科技股份有限公司 | 漂浮式太阳能组件及其阵列 |
JP2019507240A (ja) * | 2015-12-23 | 2019-03-14 | レプソル,エス.エー. | 基板−電極(se)界面照射型光電極および光電気化学電池 |
CN112941552A (zh) * | 2021-01-27 | 2021-06-11 | 云南电网有限责任公司电力科学研究院 | 一种多孔炭负载钌催化剂及其制备方法 |
GB2627821A (en) * | 2023-03-03 | 2024-09-04 | Prometheon Tech Bv | Hydrogen storage material |
-
2009
- 2009-01-29 JP JP2009017841A patent/JP2010174324A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015004983A1 (ja) * | 2013-07-08 | 2015-01-15 | トヨタ自動車株式会社 | 空気電池 |
CN106208915A (zh) * | 2015-04-23 | 2016-12-07 | 新日光能源科技股份有限公司 | 漂浮式太阳能组件及其阵列 |
JP2019507240A (ja) * | 2015-12-23 | 2019-03-14 | レプソル,エス.エー. | 基板−電極(se)界面照射型光電極および光電気化学電池 |
CN112941552A (zh) * | 2021-01-27 | 2021-06-11 | 云南电网有限责任公司电力科学研究院 | 一种多孔炭负载钌催化剂及其制备方法 |
CN112941552B (zh) * | 2021-01-27 | 2024-04-09 | 云南电网有限责任公司电力科学研究院 | 一种多孔炭负载钌催化剂及其制备方法 |
GB2627821A (en) * | 2023-03-03 | 2024-09-04 | Prometheon Tech Bv | Hydrogen storage material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries | |
CA2984483C (en) | Hybrid battery, electrolyser and method for storing electrical energy | |
AU2017380457B2 (en) | Hybrid battery and electrolyser | |
CA2990483A1 (en) | Redox flow battery with carbon dioxide based redox couple | |
CN101090168A (zh) | 盐水电池 | |
JP6089188B2 (ja) | 第3電極を備えた水素製造装置および水素製造方法 | |
JP5836016B2 (ja) | 水電気分解装置 | |
JP2010174324A (ja) | 水素吸蔵装置及びその水素吸蔵電極を利用した電池 | |
WO2020141975A1 (en) | Electrolytic cell for h2 generation | |
JP2022517035A (ja) | 水性ハイブリッドスーパーキャパシタ | |
Botte et al. | Electrochemical energy storage: applications, processes, and trends | |
KR20080106839A (ko) | 분말형 연료 전지 | |
JP5051575B2 (ja) | 太陽光発電を用いた水素吸蔵装置と水素吸蔵合金電極の形成方法及びその水素吸蔵合金電極 | |
JP2015051421A (ja) | 炭素電極で構成した海水などの電気透析装置 | |
CN114457351A (zh) | 一种基于单电解槽双电极两步法分步电解水制氢的方法及装置 | |
CN104716404B (zh) | 一种金属/空气电池 | |
KR20220043322A (ko) | 알칼라인 수전해 장치용 캐소드 방식 시스템 및 이를 포함하는 수전해 장치 | |
JP2010017700A (ja) | 軽量構造材の廃材利用方法。 | |
NL2014744A (en) | Hybrid battery and electrolyser. | |
TWI840087B (zh) | 氫電共生的燃料電池及其系統 | |
CN108199063A (zh) | 一种碱性阴离子膜燃料电池 | |
US20230268540A1 (en) | All aqueous thermally-regenerative battery | |
JP2024103334A (ja) | 金属の回収方法、及び金属の回収装置 | |
Pulido | Comparison of Activated Graphitic Carbon versus Platinum-Loaded Cathode Catalysts in Near-Neutral pH and Pem Water Electrolyzers | |
Hu et al. | Liquid Metal-Air Battery for Energy Storage |