JP2010173005A - High-speed automatic centering method of eccentric part of eccentric workpiece, and apparatus for the same - Google Patents

High-speed automatic centering method of eccentric part of eccentric workpiece, and apparatus for the same Download PDF

Info

Publication number
JP2010173005A
JP2010173005A JP2009017680A JP2009017680A JP2010173005A JP 2010173005 A JP2010173005 A JP 2010173005A JP 2009017680 A JP2009017680 A JP 2009017680A JP 2009017680 A JP2009017680 A JP 2009017680A JP 2010173005 A JP2010173005 A JP 2010173005A
Authority
JP
Japan
Prior art keywords
eccentric
center
workpiece
work
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009017680A
Other languages
Japanese (ja)
Other versions
JP5154462B2 (en
Inventor
Shinji Kabetani
眞司 壁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KONDO KK
Original Assignee
KONDO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KONDO KK filed Critical KONDO KK
Priority to JP2009017680A priority Critical patent/JP5154462B2/en
Publication of JP2010173005A publication Critical patent/JP2010173005A/en
Application granted granted Critical
Publication of JP5154462B2 publication Critical patent/JP5154462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To carry out centering at high speed to allow the processing center of a grinder and the center of an eccentric part to coincide with each other in an eccentric workpiece having one eccentric part. <P>SOLUTION: The position of the center C<SB>2</SB>of the eccentric part B is measured by a measurement device D using a workpiece rotating device F in which a clamp tool 18 for holding the axial part A of the eccentric workpiece W<SB>1</SB>is rotated by a servo motor M with an encoder. The rotating angle θ of the axial part A required to make the center C<SB>2</SB>of the eccentric part B coincide with a processing center C<SB>0</SB>is calculated. The servo motor M constituting the workpiece rotating device F rotates the axial part A of the eccentric workpiece W<SB>1</SB>at one time by only the rotating angle θ calculated by the encoder so that the centering is carried out. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一つの偏芯部を有する偏芯ワークの場合には、研削盤の加工中心(スピンドル軸の軸芯)と前記偏芯部の中心とを一致させる芯出しを短時間で行うことができ、2つの偏芯部を有する偏芯ワークの場合には、当該2つの偏芯部の周方向に沿った研削代が同一となるように各偏芯部の加工中心を高速で芯出しする(割り出す)ことのできる偏芯ワークの偏芯部の高速自動芯出し方法、及びその装置に関するものである。   In the case of an eccentric work having one eccentric part, the present invention performs centering in a short time so that the processing center of the grinding machine (the axis of the spindle shaft) and the center of the eccentric part coincide with each other. In the case of an eccentric work having two eccentric parts, the machining center of each eccentric part can be centered at high speed so that the grinding allowance along the circumferential direction of the two eccentric parts is the same. The present invention relates to a high-speed automatic centering method for an eccentric part of an eccentric work that can be performed (indexed) and an apparatus therefor.

ワークを外周研削して製品にする場合、偏芯部を有するワークでは、研削盤にワークをセットした状態で、加工中心であるスピンドルの軸芯とワークの偏芯部の中心とがずれている場合には、研削量が無駄に多くなると共に、研削初期において断続研削が発生するので、スピンドルの軸芯とワークの偏芯部の中心とを一致させるべく芯出しを行っており、このような芯出し方法として、特許文献1に記載のものが知られている。   When a workpiece is ground by grinding the workpiece, for workpieces with an eccentric part, the center of the spindle, which is the machining center, and the center of the eccentric part of the workpiece are misaligned with the workpiece set on the grinding machine. In this case, the amount of grinding is unnecessarily increased and intermittent grinding occurs in the initial stage of grinding. Therefore, centering is performed so that the axis of the spindle coincides with the center of the eccentric part of the workpiece. As a centering method, the one described in Patent Document 1 is known.

しかし、図15に示されるように、1つの偏芯部Bを備えた偏芯ワークW1 において、当該偏芯部Bの中心C2 と研削盤の加工中心C0 とを一致させるには、偏芯ワークW1 の軸部Aを、研削盤の偏芯クランプ装置Jを構成するVブロック部4で支持して、当該軸部Aの上側をクランプ具により仮固定した状態で、測定装置Dを構成する上下一対の測定子1a,1bを偏芯部Bの上側と下側に当てて、マスターワークW10(図3参照)に当該上下一対の測定子1a,1bを当てて得られた基準データと比較して、偏芯部Bの中心C2 の位置を読み取ることにより、偏芯部Bの中心C2 を加工中心C0 に一致させるべく、軸部Aを所定方向に位相回転角度θ10だけ回転させている。 However, as shown in FIG. 15, in the eccentric work W 1 having one eccentric portion B, in order to make the center C 2 of the eccentric portion B coincide with the processing center C 0 of the grinding machine, In the state where the shaft portion A of the eccentric work W 1 is supported by the V block portion 4 constituting the eccentric clamp device J of the grinding machine, and the upper side of the shaft portion A is temporarily fixed by the clamp tool, the measuring device D A pair of upper and lower measuring elements 1a, 1b constituting the upper and lower sides of the eccentric part B are applied, and the upper and lower measuring elements 1a, 1b are applied to the master work W 10 (see FIG. 3). Compared with the reference data, by reading the position of the center C 2 of the eccentric portion B, the shaft portion A is rotated in the predetermined direction in order to make the center C 2 of the eccentric portion B coincide with the processing center C 0. It is rotated by θ 10 .

偏芯ワークW1 の軸部Aの軸芯上には、エンコーダ付きのサーボモータMの部分を除いて、図1に示される本発明に係るワーク回転装置Fとほぼ同一構成の従来のワーク回転装置を構成するクランプ具18が進退可能に配置され、当該クランプ具18の一対のクランプ爪17により偏芯ワークW1 の軸部Aを掴んだ状態で、前記ワーク回転装置Fを構成するモータ(図示せず)により前記クランプ具18を回転させて、偏芯部Bの全体を軸部Aの中心C1 を中心に回転させて、偏芯部Bの中心C2 を研削盤の加工中心C0 に一致させる。なお、軸部Aの中心C1 は、加工中心C0 と結ぶ線分が水平となるような位置に予め配置されている。 On the axis of the shaft part A of the eccentric work W 1 , except for the servo motor M with an encoder, a conventional work rotation having substantially the same configuration as the work rotation device F according to the present invention shown in FIG. The clamp tool 18 constituting the apparatus is arranged so as to be able to advance and retreat, and the motor constituting the work rotating apparatus F is held in a state where the shaft part A of the eccentric work W 1 is gripped by the pair of clamp claws 17 of the clamp tool 18 ( The clamp 18 is rotated by an unillustrated), and the entire eccentric part B is rotated about the center C 1 of the shaft part A, and the center C 2 of the eccentric part B is set as the machining center C of the grinding machine. Match 0 . Note that the center C 1 of the shaft portion A is disposed in advance at a position where the line segment connecting to the processing center C 0 is horizontal.

従来、軸部Aを回転させる際には、回転開始位置から、偏芯部Bの中心C2 と研削盤の加工中心C0 とが一致する回転停止位置までの間において、複数の中間信号点を設けて、一対の測定子1a,1bがいずれかの中間信号点に達したことを検出して、前記モータの回転速度を切り替えて順次遅くすることにより、偏芯部Bの中心C2 が加工中心C0 に一致し易いように制御していた。これは、回転開始位置から最初の速度のままで軸部Aを回転停止位置まで回すと、回転に要する時間は短くなるが、偏芯部Bの中心C2 が回転停止位置である加工中心C0 を超えて停止してしまうことがあって、停止精度を高めるために、各中間信号点において、モータの速度を順次遅くすることにより、偏芯部Bの停止精度を高めて、当該偏芯部Bの中心C2 と加工中心C0 の一致精度を高めていた。しかし、このようにして、偏芯部Bの停止精度を高めると、軸部A、或いは偏芯部Bが回転を開始してから停止するまでの時間が長くなって、研削に直接に係わらない偏芯部Bのセット時間が長くなり、ひいては偏芯ワークW1 の偏芯部Bの加工能率(単位時間内に加工可能な偏芯ワークW1 の数)が低下することになる。 Conventionally, when rotating the shaft portion A, a plurality of intermediate signal points from the rotation start position to the rotation stop position where the center C 2 of the eccentric portion B coincides with the machining center C 0 of the grinding machine. The center C 2 of the eccentric portion B is determined by detecting that the pair of measuring elements 1a and 1b has reached one of the intermediate signal points and switching the rotational speed of the motor to decrease the speed sequentially. Control was made so that it would easily coincide with the processing center C 0 . This is because if the shaft A is turned to the rotation stop position with the initial speed from the rotation start position, the time required for the rotation is shortened, but the center C 2 of the eccentric part B is the rotation stop position. In order to increase the stopping accuracy, in order to increase the stopping accuracy, the stopping speed of the eccentric portion B is increased by sequentially decreasing the motor speed at each intermediate signal point. The matching accuracy between the center C 2 of the part B and the processing center C 0 was increased. However, when the stopping accuracy of the eccentric portion B is increased in this way, the time from the start of rotation of the shaft portion A or the eccentric portion B to the stop becomes longer, and it is not directly related to grinding. setting time of the eccentric portion B becomes longer, and thus the working efficiency of the eccentric portion B of the eccentric workpiece W 1 (the number of processable eccentric workpiece W 1 in a unit time) is lowered.

また、図15においては、説明を簡単にするために、中間信号点は一つであって、軸部Aの回転速度(モータの回転速度)は、二段階になっているが、現実の芯出しでは、偏芯部Bの停止精度を高めるために三段階以上となっており、これが原因で偏芯部Bの芯出し時間が一層長くなっていた。図15において、実線から一点鎖線が示される間の回転角度θ11の間は、一点鎖線から二点鎖線で示される回転角度θ12の間よりも、軸部Aの回転速度を速く設定してある。なお、偏芯部Bの加工時には、偏芯クランプ装置Jは、加工中心C0 を中心にして回転(公転)する。 In FIG. 15, for the sake of simplicity, there is one intermediate signal point, and the rotational speed of the shaft portion A (motor rotational speed) is in two stages. In the alignment, there are three or more stages in order to increase the stopping accuracy of the eccentric part B, and this has caused the centering time of the eccentric part B to be longer. In FIG. 15, the rotation speed of the shaft portion A is set faster between the rotation angle θ 11 between the solid line and the alternate long and short dash line than between the rotation angle θ 12 indicated by the alternate long and short dash line. is there. Incidentally, at the time of processing of the eccentric part B, eccentric clamping device J is around the processing center C 0 rotate (revolve).

一方、図16は、偏芯部B1 の中心C21を加工中心C0 に一致させて、当該い加工中心C0 を中心として偏芯部B1 を外周研削した後に、軸部Aを中心にして180°回転させて、他方の偏芯部B2 を外周研削した状態を示す図であって、二つの偏芯部B1,B2 を有する偏芯ワークW2 では、図示のように各偏芯部B1,B2 の中心C21,C22の位相のずれが大きい場合には、各偏芯部B1,B2 の加工中心をうまく選択しないと、二つの偏芯部B1,B2 の周方向に沿った研削代が異なるのが原因となって、一方の偏芯部B1 は全周に亘って研削できて外周の黒皮部が全て除去できるが、他方の偏芯部B2 は、周方向の一部に未研削部31が発生して、外周の一部にそのまま黒皮が残存する不具合が発生し、加工不良となる問題があった。なお、図16において、C22’は外周研削後における各偏芯部B2 の中心を示す。 On the other hand, FIG. 16, to match the center C 21 of the eccentric portion B 1 in the processing center C 0, the eccentric portion B 1 After grinding the outer periphery around the have processing center C 0, around the shaft portion A As shown in the figure, the eccentric workpiece W 2 having two eccentric portions B 1 and B 2 is shown in a state where the other eccentric portion B 2 is rotated by 180 ° and the other eccentric portion B 2 is externally ground. each eccentric unit B 1, if the phase shift of the center C 21, C 22 of B 2 is large, do not select the processing center of the eccentric portion B 1, B 2 well, the two eccentric portions B 1 and B 2 , because the grinding allowance along the circumferential direction is different, one eccentric part B 1 can be ground over the entire circumference and the entire outer skin can be removed. The eccentric portion B 2 has a problem that the unground portion 31 is generated in a part of the circumferential direction, and a black skin remains as it is in a part of the outer periphery, resulting in a processing failure. In FIG. 16, C 22 ′ indicates the center of each eccentric portion B 2 after outer periphery grinding.

特開平5−245741号公報Japanese Patent Laid-Open No. 5-245541

本発明の第1の課題は、1つの偏芯部を有する偏芯ワークにおいて、研削盤の加工中心(スピンドル軸の軸芯)と前記偏芯部の中心とを一致させる芯出しを高速で行うことであり、第2の課題は、2つの偏芯部を有する偏芯ワークにおいて、当該2つの偏芯部の未研削部の発生を無くすために、周方向に沿った研削代が同一となるように各偏芯部の加工中心を割り出して加工可能にすることである。   A first object of the present invention is to perform high-speed centering that aligns the machining center of the grinding machine (spindle shaft axis) and the center of the eccentric part in an eccentric work having one eccentric part. The second problem is that, in an eccentric work having two eccentric parts, the grinding allowance along the circumferential direction is the same in order to eliminate the occurrence of unground parts of the two eccentric parts. In this way, the processing center of each eccentric part is determined to enable processing.

上記の課題を解決するための請求項1の発明は、加工中心であるスピンドル軸の軸芯に対して偏芯ワークの偏芯量だけ偏芯した位置で当該偏芯ワークの軸部を把持可能な偏芯クランプ装置と、当該偏芯クランプ装置で把持される軸部と同一軸芯上に進退可能に配置されて、前記軸部の自由端部を把持して偏芯ワークを回転させるためのワーク回転装置と、前記偏芯ワークの偏芯部の上側及び下側に一対の測定子を接触させて、偏芯部の中心位置を測定する測定装置とを備えた芯出し装置を用いて、偏芯ワークの軸部に対して偏芯している偏芯部の芯出しを自動的に行う方法であって、前記ワーク回転装置は、偏芯ワークの軸部を把持するクランプ具がエンコーダ付のサーボモータで回転される構成であって、前記測定装置により偏芯部の中心位置を測定して、当該偏芯部の中心を加工中心に一致させるのに必要な軸部の回転角度を演算し、ワーク回転装置を構成するサーボモータが、エンコーダにより割り出された前記回転角度だけ、偏芯ワークの軸部を一挙に回転させて芯出しを行うことを特徴としている。   In order to solve the above-mentioned problem, the invention according to claim 1 is capable of gripping the shaft portion of the eccentric workpiece at a position eccentric by the eccentric amount of the eccentric workpiece with respect to the axis of the spindle shaft which is the processing center. An eccentric clamp device, and a shaft portion gripped by the eccentric clamp device, which is disposed so as to be able to advance and retreat, and for gripping the free end portion of the shaft portion and rotating the eccentric workpiece Using a centering device provided with a workpiece rotating device and a measuring device for measuring the center position of the eccentric portion by contacting a pair of measuring elements on the upper side and the lower side of the eccentric portion of the eccentric workpiece, A method of automatically centering an eccentric part that is eccentric with respect to a shaft part of an eccentric work, wherein the work rotating device has an encoder provided with a clamp for gripping the shaft part of the eccentric work The center of the eccentric portion is rotated by the measuring device. The rotation angle of the shaft portion necessary for measuring the position of the eccentric portion to coincide with the center of machining is calculated, and the servo motor that constitutes the workpiece rotating device determines the rotation angle determined by the encoder. However, it is characterized by centering by rotating the shaft part of the eccentric work at once.

請求項1の発明によれば、測定装置の一対の測定子を偏芯部の上側と下側に接触させて、マスターワークにより得られた基準データと比較することにより、当該偏芯部の中心位置を測定できる。偏芯部の中心位置の判明により、当該偏芯部の中心を加工中心に一致させるのに必要な軸部の回転角度が演算されて、エンコーダの指令によりサーボモータを一回の回転操作により前記回転角度だけ偏芯ワークの軸部を回転させて、正確に停止させられるので、偏芯ワークの偏芯部の中心を加工中心に一致させる芯出しを高精度で、しかも高速で行える。この結果、偏芯ワークの偏芯部の研削のための準備時間が削減されて、加工能率が高められる。   According to the invention of claim 1, the center of the eccentric portion is obtained by comparing the pair of measuring elements of the measuring device with the upper side and the lower side of the eccentric portion and comparing with the reference data obtained by the master work. The position can be measured. By determining the center position of the eccentric part, the rotation angle of the shaft part necessary to make the center of the eccentric part coincide with the machining center is calculated, and the servo motor is operated by one rotation operation according to the command of the encoder. Since the shaft part of the eccentric work is rotated by the rotation angle and stopped accurately, the center of the eccentric part of the eccentric work can be aligned with the machining center with high accuracy and at high speed. As a result, the preparation time for grinding the eccentric portion of the eccentric workpiece is reduced, and the processing efficiency is increased.

請求項2の発明は、加工中心であるスピンドル軸の軸芯に対して偏芯ワークの偏芯量だけ偏芯した位置で当該偏芯ワークの軸部を把持可能な偏芯クランプ装置と、当該偏芯クランプ装置で把持される軸部と同一軸芯上に進退可能に配置されて、前記軸部の自由端部を把持して偏芯ワークを回転させるためのワーク回転装置と、前記偏芯ワークに位相をほぼ180°異にして設けられた第1及び第2の各偏芯部の上側及び下側の各位置に一対の測定子を接触させて、各偏芯部の中心位置を測定する第1及び第2の各測定装置とを備えた芯出し装置を用いて、偏芯ワークの軸部に対して偏芯している2つの偏芯部の芯出しを自動的に行う方法であって、前記第1及び第2の各測定装置により第1及び第2の各偏芯部の中心の位置を測定して、前記軸部の中心と各偏芯部の中心とを結ぶ各線分と水平線とで形成される各角度を算出して、当該各角度が等しくなるように、前記ワーク回転装置により前記軸部を必要角度だけ回転させ、上記の状態で、加工中心側に配置された第1又は第2のいずれかの偏芯部を外周研削した後に、前記軸部を180°回転させて他方の偏芯部を外周研削することを特徴としている。   The invention of claim 2 includes an eccentric clamp device capable of gripping the shaft portion of the eccentric workpiece at a position eccentric by the eccentric amount of the eccentric workpiece with respect to the axis of the spindle shaft which is the processing center, A workpiece rotating device arranged to be movable back and forth on the same axis as the shaft gripped by the eccentric clamp device, for gripping the free end of the shaft and rotating the eccentric workpiece, and the eccentric The center position of each eccentric part is measured by bringing a pair of measuring elements into contact with the upper and lower positions of the first and second eccentric parts provided with a phase difference of about 180 ° on the workpiece. By using a centering device provided with each of the first and second measuring devices to automatically center the two eccentric portions that are eccentric with respect to the shaft portion of the eccentric workpiece. And measuring the positions of the centers of the first and second eccentric portions by the first and second measuring devices, The angle formed by each line segment connecting the center of the part and the center of each eccentric part and the horizontal line is calculated, and the work part rotation device is used to make the shaft part a necessary angle so that the angles are equal. After rotating and grinding the first or second eccentric part arranged on the processing center side in the above state, the shaft part is rotated by 180 ° and the other eccentric part is circumferentially ground. It is characterized by doing.

請求項2の発明によれば、偏芯ワークの2つの偏芯部が同一の状態で、即ち、偏芯部の周方向に沿った研削代を同一にして研削できるので、各偏芯部の中心と軸部の中心を結ぶ2本の線分で形成される角度が180°に対して大きくずれていて、即ち2つの偏芯部の位相差が180°に対して大きくずれていて、そのまま研削した場合には、いずれか一方の外周面に未研削部が残ったままになること、即ち、ワークの黒皮が残ったままになる研削不良を防止できる。   According to the invention of claim 2, since the two eccentric parts of the eccentric work can be ground in the same state, that is, with the same grinding allowance along the circumferential direction of the eccentric part, The angle formed by the two line segments connecting the center and the center of the shaft part is greatly deviated with respect to 180 °, that is, the phase difference between the two eccentric parts is greatly deviated with respect to 180 °. In the case of grinding, it is possible to prevent a grinding failure in which an unground portion remains on one of the outer peripheral surfaces, that is, a black skin of the workpiece remains.

請求項3は、請求項2の発明において、前記ワーク回転装置は、偏芯ワークの軸部を把持するクランプ具がエンコーダ付のサーボモータで回転される構成であることを特徴としている。   A third aspect of the present invention is characterized in that, in the second aspect of the invention, the workpiece rotating device is configured such that a clamp tool for gripping the shaft portion of the eccentric workpiece is rotated by a servo motor with an encoder.

請求項3の発明によれば、ワーク回転装置のクランプ具により偏芯ワークの軸部を把持して、当該偏芯ワークを算出角度だけ正確に回転させる際に、当該回転を短時間に行える。   According to the invention of claim 3, when the shaft part of the eccentric workpiece is gripped by the clamp of the workpiece rotating device and the eccentric workpiece is accurately rotated by the calculated angle, the rotation can be performed in a short time.

請求項4の発明は、請求項1の発明を実施するために、偏芯ワークの偏芯部の中心を研削盤の加工中心と一致させるべく自動的に芯出しを行う装置であって、加工中心であるスピンドル軸の軸芯に対して偏芯ワークの偏芯量だけ偏芯した位置で偏芯ワークの軸部を把持可能な偏芯クランプ装置と、当該偏芯クランプ装置で把持される軸部と同一軸芯上に進退可能に配置されて、前記軸部の自由端部を把持して偏芯ワークを回転させるためのワーク回転装置と、前記偏芯部の上側及び下側に一対の測定子を接触させて、偏芯部の中心位置を測定する測定装置とを備え、前記ワーク回転装置は、偏芯ワークの軸部を把持するクランプ具がエンコーダ付のサーボモータで回転される構成であることを特徴としている。   In order to carry out the invention of claim 1, the invention of claim 4 is an apparatus for automatically centering to make the center of the eccentric part of the eccentric work coincide with the processing center of the grinding machine. An eccentric clamp device capable of gripping the shaft portion of the eccentric workpiece at a position eccentric by the eccentric amount of the eccentric workpiece relative to the center axis of the spindle shaft, and an axis gripped by the eccentric clamp device A workpiece rotating device that is disposed so as to be capable of advancing and retreating on the same axis as the part, and that grips the free end of the axis and rotates the eccentric work, and a pair of upper and lower sides of the eccentric part And a measuring device for measuring the center position of the eccentric part by contacting the measuring element, and the work rotating device is configured such that a clamp for gripping the shaft part of the eccentric work is rotated by a servo motor with an encoder. It is characterized by being.

請求項4の発明によれば、請求項1の偏芯ワークの芯出し方法を的確に実施できる。   According to invention of Claim 4, the centering method of the eccentric work of Claim 1 can be implemented exactly.

請求項5の発明は、請求項2の発明を実施するために、偏芯ワークの2つの偏芯部の芯出しを自動的に行う装置であって、加工中心であるスピンドル軸の軸芯に対して偏芯細溝の偏芯量だけ偏芯した位置で当該偏芯ワークの軸部を把持可能な偏芯クランプ装置と、当該偏芯クランプ装置で把持される軸部と同一軸芯上に進退可能に配置されて、前記軸部の自由端部を把持して偏芯ワークを回転させるためのワーク回転装置と、前記偏芯ワークに位相をほぼ180°異にして設けられた第1及び第2の各偏芯部の上側及び下側の各位置に一対の測定子を接触させて、各偏芯部の中心位置を測定する第1及び第2の各測定装置とを備え、前記第1及び第2の各測定装置により第1及び第2の各偏芯部の中心の位置を測定して、前記軸部の中心と各偏芯部の中心とを結ぶ各線分と水平線とで形成される各角度を算出して、当該各角度が等しくなるように、前記ワーク回転装置により前記軸部を必要角度だけ回転させて、各偏芯部の加工中心を割り出すことを特徴としている。   In order to implement the invention of claim 2, the invention of claim 5 is an apparatus for automatically centering the two eccentric portions of the eccentric work, and is provided on the axis of the spindle shaft which is the processing center. On the other hand, an eccentric clamp device capable of gripping the shaft portion of the eccentric workpiece at a position eccentric by the eccentric amount of the eccentric fine groove, and the shaft portion gripped by the eccentric clamp device on the same axis A workpiece rotating device that is arranged so as to be able to advance and retreat, and that grips the free end of the shaft portion to rotate the eccentric workpiece; A first measuring device and a second measuring device for measuring the center position of each eccentric portion by bringing a pair of measuring elements into contact with each of the upper and lower positions of each second eccentric portion; The center positions of the first and second eccentric parts are measured by the first and second measuring devices, and the center of the shaft part and each Each angle formed by each line segment connecting the center of the core and the horizontal line is calculated, and the shaft is rotated by a necessary angle by the work rotating device so that the angles are equal to each other. It is characterized by determining the processing center of the core.

請求項5の発明によれば、請求項2の偏芯ワークの芯出し方法を的確に実施できる。   According to the invention of claim 5, the eccentric work centering method of claim 2 can be carried out accurately.

請求項1の発明によれば、測定装置の一対の測定子を偏芯ワークの偏芯部の上側及び下側に接触させて得られたデータを、マスターワークを用いた場合の同様のデータと比較することにより、偏芯部の中心位置が判明して、当該偏芯部の中心を加工中心に一致させるのに必要な軸部の回転角度が演算される。研削盤に備え付けのワーク回転装置は、エンコーダ付きのサーボモータにより駆動されて、1回の回転操作のみにより、エンコーダの指令によりサーボモータを前記回転角度だけ、偏芯ワークの軸部を回転させて正確に停止させられるので、偏芯ワークの偏芯部の中心を加工中心に一致させる芯出しを高精度で、しかも高速で行える。この結果、偏芯ワークの偏芯部の研削のための準備時間が削減されて、加工能率が高められる。   According to the invention of claim 1, the data obtained by bringing the pair of measuring elements of the measuring device into contact with the upper side and the lower side of the eccentric part of the eccentric work are similar to the data when using the master work. By comparing, the center position of the eccentric part is found, and the rotation angle of the shaft part necessary to make the center of the eccentric part coincide with the machining center is calculated. The workpiece rotating device provided in the grinding machine is driven by a servo motor with an encoder, and rotates the shaft part of the eccentric workpiece by the rotation angle according to the command of the encoder by only one rotation operation. Since it can be stopped accurately, the centering of the eccentric part of the eccentric workpiece can be aligned with the machining center with high accuracy and at high speed. As a result, the preparation time for grinding the eccentric part of the eccentric workpiece is reduced, and the processing efficiency is increased.

また、請求項2の発明は、偏芯ワークに設けられた第1及び第2の各偏芯部の芯出しを行うのに、第1及び第2の各測定装置により第1及び第2の各偏芯部の中心の位置を測定して、前記軸部の中心と各偏芯部の中心とを結ぶ各線分と水平線とで形成される各角度を算出して、当該各角度が等しくなるように、前記ワーク回転装置により前記軸部を必要角度だけ回転させ、上記の状態で、加工中心側に配置された第1又は第2のいずれかの偏芯部を外周研削した後に、前記軸部を180°回転させて他方の偏芯部を外周研削する構成である。従って、偏芯ワークの2つの偏芯部が同一の状態で、即ち、偏芯部の周方向に沿った研削代を同一にして研削できるので、各偏芯部の中心と軸部の中心を結ぶ2本の線分で形成される角度が180°に対して大きくずれていて、即ち2つの偏芯部の位相差が180°に対して大きくずれていて、そのまま研削した場合には、いずれか一方の外周面に未研削部が残ったままになること、即ち、ワークの黒皮が残ったままになる研削不良を防止できる。   According to a second aspect of the present invention, the first and second measuring devices are used to center the first and second eccentric portions provided on the eccentric workpiece. The position of the center of each eccentric part is measured, and each angle formed by each line segment connecting the center of the shaft part and the center of each eccentric part and the horizontal line is calculated, and each angle becomes equal. As described above, after rotating the shaft portion by a necessary angle by the work rotating device and grinding the outer periphery of either the first or second eccentric portion arranged on the machining center side in the above state, the shaft This is a configuration in which the other eccentric part is ground by rotating the part by 180 °. Therefore, since the two eccentric parts of the eccentric work can be ground in the same state, that is, with the same grinding allowance along the circumferential direction of the eccentric part, the center of each eccentric part and the center of the shaft part can be set. If the angle formed by the two line segments to be connected is greatly deviated from 180 °, that is, the phase difference between the two eccentric parts is greatly deviated from 180 °, It is possible to prevent a grinding failure in which an unground portion remains on one of the outer peripheral surfaces, that is, a black skin of the workpiece remains.

偏芯ワークW1 の芯出し装置K1 の正面図である。It is a front view of a centering device K 1 of the eccentric workpiece W 1. 偏芯ワークW1 の正面図である。It is a front view of the eccentric work W 1. マスターワークW10の芯出しの原理図である。It illustrates the principle of a centering of the master work W 10. 偏芯ワークW1 の芯出しの原理図である。It illustrates the principle of a centering of the eccentric work W 1. 偏芯ワークW1 の芯出しのためのシーケンス制御のブロック線図である。It is a block diagram of a sequence control for the centering of the eccentric workpiece W 1. 偏芯ワークW2 の正面図である。It is a front view of the eccentric work W 2. 第1及び第2の各測定装置D1 ,D2 を用いて、偏芯ワークW2 の第1及び第2の各偏芯部B1 ,B2 の中心C21,C22の位置を検出する状態を示す図である。Using the first and second measuring devices D 1 and D 2 , the positions of the centers C 21 and C 22 of the first and second eccentric parts B 1 and B 2 of the eccentric work W 2 are detected. It is a figure which shows the state to do. 偏芯ワークW2 の軸部Aを回転させて、偏芯ワークW2 の第1及び第2の各偏芯部B1 ,B2 の中心C21,C22と加工中心C0 を結ぶ各線分と水平線とのなす角度が等しくなるように芯出しされた状態を示す図である。Each line that rotates the shaft portion A of the eccentric workpiece W 2, connecting the center C 21, C 22 and processing center C 0 of the eccentric workpiece W each eccentric portion B 1 of the first and second 2 2, B 2 It is a figure which shows the state centered so that the angle which a minute and a horizontal line make may become equal. 第1偏芯部B1 が外周研削された状態を示す図である。The first eccentric portion B 1 is a diagram showing a state of being periphery grinding. 第1偏芯部B1 が外周研削された偏芯ワークW2 の軸部Aを中心に180°回転させて、第2偏芯部B2 が芯出しされた状態を示図すである。It is a diagram showing a state where the second eccentric portion B 2 is centered by rotating the first eccentric portion B 1 by 180 ° around the shaft portion A of the eccentric workpiece W 2 whose outer periphery is ground. 第2偏芯部B2 が外周研削された状態を示す図である。The second eccentric portion B 2 is a diagram showing a state in which it is grinding the outer periphery. 第1及び第2の各偏芯部B1 ,B2 の位相差が180°となるように外周研削された状態を示す図である。The phase difference between the first and second respective eccentric portions B 1, B 2 is a diagram showing a state of being grinding the outer periphery so that 180 °. 偏芯ワークW1'の第1及び第2の偏芯部B1 ,B2 の各中心C21,C22がいずれも軸部Aの中心C1 を通る水平線に対して異なる側にセットされた例である。The centers C 21 and C 22 of the first and second eccentric parts B 1 and B 2 of the eccentric work W 1 ′ are set on different sides with respect to the horizontal line passing through the center C 1 of the shaft part A. This is an example. 第1及び第2の偏芯部B1 ,B2 の各中心C21,C22の位相が180°の偏芯ワークW1"において、各中心C21,C22が軸部Aの中心C1 を通る水平線に対して異なる側にセットされた例である。In the eccentric workpiece W 1 ″ in which the phases of the centers C 21 and C 22 of the first and second eccentric portions B 1 and B 2 are 180 °, the centers C 21 and C 22 are the centers C of the shaft portion A. It is an example set on a different side with respect to a horizontal line passing through 1 . 一つの偏芯部Bを有する偏芯ワークW1 の従来の芯出し方法の説明図である。It is an explanatory view of a conventional centering method of the eccentric workpiece W 1 having one of the eccentric portions B. 2つの偏芯部B1 ,B2 を有する偏芯ワークW2 において、一方の偏芯部に未研削部が発生することを示す図である。In eccentric workpiece W 2 having two eccentric portions B 1, B 2, it is a diagram showing that unground portion is generated in one of the eccentric portion.

以下、請求項1〜5の各発明について、それぞれ実施例を挙げて更に詳細に説明する。   Hereinafter, the inventions of claims 1 to 5 will be described in more detail with reference to examples.

最初に、図1〜図5を参照して、請求項1,4の各発明の実施例について説明する。図1は、偏芯ワークW1 の芯出し装置K1 の正面図であり、図2は、偏芯ワークW1 の正面図であり、図3は、マスターワークW10の芯出しの原理図であり、図4は、偏芯ワークW1 の芯出しの原理図であり、図5は、偏芯ワークW1 の芯出しのためのシーケンス制御のブロック線図である。図2及び図3に示されるように、偏芯ワークW1 は、軸部Aに対して1つの偏芯部Bが設けられた形状であって、軸部Aの中心C1 と偏芯部Bの中心C2 の偏芯量は(e)であって、研削盤Gに付設された芯出し装置K1 により、偏芯ワークW1 の偏芯部Bの芯出しを行って、当該偏芯部Bの外周研削を行う。 First, with reference to FIGS. 1 to 5, embodiments of the inventions of claims 1 and 4 will be described. Figure 1 is a front view of the centering device K 1 of the eccentric workpiece W 1, Fig. 2 is a front view of the eccentric workpiece W 1, Fig. 3, principle diagram of the centering of the master work W 10 4 is a principle diagram of the centering of the eccentric work W 1 , and FIG. 5 is a block diagram of sequence control for centering the eccentric work W 1 . As shown in FIGS. 2 and 3, the eccentric workpiece W 1 has a shape in which one eccentric portion B is provided with respect to the shaft portion A, and the center C 1 of the shaft portion A and the eccentric portion. The eccentric amount of the center C 2 of B is (e), and the eccentric part B of the eccentric work W 1 is centered by the centering device K 1 attached to the grinding machine G. Peripheral grinding of the core B is performed.

芯出し装置K1 は、図1及び図3に示されるように、偏芯ワークW1 の偏芯部Bの中心C2 の位置を測定(検出)するための測定装置Dと、当該測定装置Dにより測定された偏芯部Bの中心C2 が、加工中心( 研削盤Gのスピンドル軸11の軸芯の位置と同一)C0 を通る水平線上に配置されるように、偏芯ワークW1 の軸部Aを回転させるためのワーク回転装置Fとで構成される。測定装置Dは、研削盤Gのスピンドル軸11の軸芯C0 に対して直交する面内に配置されて、支点を中心に円弧運動を行う各アーム2a,2bの内側に対向して取付けられた一対の測定子1a,1bを備え、研削盤Gの偏芯クランプ装置Jで軸部Aを把持された偏芯ワークW1 の偏芯部Bの上側及び下側に、それぞれ当該一対の測定子1a,1bを接触させて得られるデータにより、偏芯部Bの中心C2 の位置を測定(検出)している。具体的には、図3に示されるように、加工中心C0 を通る水平線L0 と各測定子1a,1bとの間の距離a1 ,a2 を測定して、偏芯部Bの中心C2 を検出する。図3に示されるように、(a1 =a2 )ならば、偏芯部Bの中心C2 は、加工中心C0 と一致しており、a1 とa2 が等しくないならば、偏芯部Bの中心C2 は、値が大きな側に偏在していることになり、その偏在量が分かる。実施例の測定装置Dの一対のアーム2a,2bは、支点を中心にして円弧運動を行うために、各アーム2a,2bの先端部に対向して設けられた各測定子1a、1bは円弧上を移動する構成であるが、各測定子1a、1bが上下移動を行う構成のものもある。 As shown in FIGS. 1 and 3, the centering device K 1 includes a measuring device D for measuring (detecting) the position of the center C 2 of the eccentric portion B of the eccentric workpiece W 1 , and the measuring device. The eccentric workpiece W is arranged so that the center C 2 of the eccentric part B measured by D is arranged on a horizontal line passing through the machining center (same as the position of the axis of the spindle shaft 11 of the grinding machine G) C 0. It is comprised with the workpiece | work rotation apparatus F for rotating the axial part A of 1. FIG. The measuring device D is disposed in a plane orthogonal to the axis C 0 of the spindle shaft 11 of the grinding machine G, and is mounted facing the inside of each arm 2a, 2b that performs an arc motion around a fulcrum. a pair of the probe 1a, includes a 1b, above and below the eccentric part B of the eccentric workpiece W 1, which is gripped shank a with eccentric clamping device J grinder G, and measurement of the pair The position of the center C 2 of the eccentric part B is measured (detected) by data obtained by bringing the elements 1a and 1b into contact with each other. Specifically, as shown in FIG. 3, the horizontal line L 0 and the measuring element 1a through the processing center C 0, by measuring the distance a 1, a 2 between 1b, the center of the eccentric portion B to detect the C 2. As shown in FIG. 3, if (a 1 = a 2 ), the center C 2 of the eccentric portion B coincides with the processing center C 0 , and if a 1 and a 2 are not equal, The center C 2 of the core B is unevenly distributed on the larger value side, and the uneven distribution amount can be understood. Since the pair of arms 2a and 2b of the measuring device D according to the embodiment performs an arc motion around the fulcrum, the measuring elements 1a and 1b provided to face the distal ends of the arms 2a and 2b are arcs. Although it is the structure which moves above, there exists a thing of the structure where each measuring element 1a, 1b moves up and down.

研削盤Gのスピンドル軸11の先端部には、当該スピンドル軸11と一体となって回転する面板体12が取付けられ、当該面板体12の内部に、偏芯ワークW1 の軸部Aを把持する偏芯クランプ装置Jが設けられている。スピンドル軸11は、軸受9を介してケーシング10に回転可能に支持されている。偏芯クランプ装置Jは、偏芯ワークW1 の軸部AをV面3で支持するVブロック部4と、Vブロック部4で支持された軸部Aを上方から押し付けるためのクランプシリンダ5とで構成される。実施例の偏芯クランプ装置Jは、軸部Aを軸芯方向に沿った異なる部分で押し付け可能なように一対のクランプシリンダ5を備えているため、偏芯ワークW1 の軸部Aを安定して支持できる。なお、図3において、5aは、クランプシリンダ5のロッドを示す。 A face plate 12 that rotates integrally with the spindle shaft 11 is attached to the tip of the spindle shaft 11 of the grinding machine G, and the shaft A of the eccentric workpiece W 1 is held inside the face plate 12. An eccentric clamp device J is provided. The spindle shaft 11 is rotatably supported by the casing 10 via a bearing 9. The eccentric clamp device J includes a V block portion 4 that supports the shaft portion A of the eccentric workpiece W 1 with the V surface 3, and a clamp cylinder 5 that presses the shaft portion A supported by the V block portion 4 from above. Consists of. Since the eccentric clamp device J of the embodiment includes a pair of clamp cylinders 5 so that the shaft portion A can be pressed at different portions along the axial direction, the shaft portion A of the eccentric work W 1 can be stabilized. Can be supported. In FIG. 3, reference numeral 5a denotes a rod of the clamp cylinder 5.

偏芯クランプ装置Jて支持される偏芯ワークW1 の軸部Aの延長線上に、当該軸部Aを把持して回転させるためのワーク回転装置Fが配設されている。ワーク回転装置Fは、スピンドル軸11の軸芯方向に沿ってガイドレール13が配設されて、当該ガイドレール13には、エンコーダ付きのサーボモータMを支持している支持体14が嵌め込まれていて、クランプ具進退用シリンダ15の作用により、前記サーボモータMは、スピンドル軸11の軸芯方向に進退する。当該サーボモータMの回転軸16には、拡開可能な一対のクランプ爪17から成るクランプ具18が取付けられている。サーボモータMの回転軸16の軸芯は、前記偏芯クランプ装置Jでクランプされた偏芯ワークW1 の軸部Aの中心(軸芯)C1 と一致していて、図1で二点鎖線で示される位置までクランプ具18が前進して、一対のクランプ爪17により偏芯ワークW1 の軸部Aの外周をクランプした状態で、サーボモータMが指令角度だけ指令方向に回転することにより、偏芯クランプ装置Jで仮固定されている偏芯ワークW1 は、前記指令角度だけ指令方向に回転させられて、偏芯ワークW1 の偏芯部Bの芯出しが行われる。 On the extended line of the shaft portion A of the eccentric work W 1 supported by the eccentric clamp device J, a work rotating device F for gripping and rotating the shaft portion A is disposed. In the work rotation device F, a guide rail 13 is disposed along the axial direction of the spindle shaft 11, and a support body 14 that supports a servo motor M with an encoder is fitted into the guide rail 13. Thus, the servo motor M advances and retreats in the axial direction of the spindle shaft 11 by the action of the cylinder 15 for advancing and retracting the clamp tool. A clamp tool 18 including a pair of clamp claws 17 that can be expanded is attached to the rotating shaft 16 of the servo motor M. The axis of the rotating shaft 16 of the servo motor M coincides with the center (axial center) C 1 of the shaft portion A of the eccentric workpiece W 1 clamped by the eccentric clamping device J. The servo motor M rotates in the command direction by the command angle in a state where the clamp tool 18 moves forward to the position indicated by the chain line and the outer periphery of the shaft portion A of the eccentric workpiece W 1 is clamped by the pair of clamp claws 17. Thus, the eccentric work W 1 temporarily fixed by the eccentric clamp device J is rotated in the command direction by the command angle, and the eccentric part B of the eccentric work W 1 is centered.

次に、図1、図4及び図5を参照して、上記した芯出し装置K1 により偏芯ワークW1 の偏芯部Bの芯出しについて説明する。図4に示されるように、偏芯ワークW1 の軸部Aを偏芯クランプ装置JのVブロック部4で支持して、当該軸部Aの上側をクランプシリンダ5のロッド5aで軽く押し付けることにより仮固定した状態で、偏芯部Bの上側及び下側に測定装置Dの上下一対の測定子1a,1bを当てて、マスターワークW10の測定位置との差b1 ,b2 をそれぞれ算出する。この結果、偏芯部Bの中心C2 と加工中心C0 との上下方向のずれ量を(d)とすると、〔d=(b1 +b2 )/2〕の関係が成立する。そして、偏芯部Bの中心C2 を加工中心C0 に一致させるために、偏芯ワークW1 の軸部Aを回転させる角度である位相回転角度を(θ)とすると、(sinθ=d/e)の関係が成立し、演算装置Tにより位相回転角度θが演算される。 Next, with reference to FIG. 1, FIG. 4 and FIG. 5, the centering of the eccentric part B of the eccentric workpiece W 1 by the above-described centering device K 1 will be described. As shown in FIG. 4, the shaft portion A of the eccentric work W 1 is supported by the V block portion 4 of the eccentric clamp device J, and the upper side of the shaft portion A is lightly pressed by the rod 5 a of the clamp cylinder 5. The pair of upper and lower measuring elements 1a, 1b of the measuring device D are applied to the upper side and the lower side of the eccentric part B, and the difference b 1 , b 2 from the measuring position of the master work W 10 is respectively obtained. calculate. As a result, when the amount of vertical displacement between the center C 2 of the eccentric portion B and the processing center C 0 is (d), the relationship [d = (b 1 + b 2 ) / 2] is established. Then, in order to make the center C 2 of the eccentric part B coincide with the machining center C 0 , assuming that the phase rotation angle that is the angle of rotating the shaft part A of the eccentric work W 1 is (θ), (sin θ = d / E) is established, and the phase rotation angle θ is calculated by the calculation device T.

次に、ワーク回転装置Fのクランプ具進退用シリンダ15のロッドが突出して、クランプ具18が前進して、一対のクランプ爪17により偏芯ワークW1 の軸部Aをクランプする。演算装置Tにより演算された位相回転角度θに係るデータがサーボモータMのエンコーダに入力されて、当該エンコーダからサーボモータMに位相回転角度θに対応する回転指令信号が発せられて、偏芯ワークW1 の軸部Aは、1回の連続回転により前記位相回転角度θだけ指令方向に回転されて、設定された位相回転角度θだけ正確に回転して停止する。このため、偏芯ワークW1 の偏芯部Bの中心C2 を加工中心C0 と一致させる操作である芯出しを高精度で、しかも高速で行える。なお、芯出し後に、回転砥石19(図1参照)が偏芯ワークW1 の軸直角方向から偏芯部Bの外周に押し当てられて、必要量だけ研削される。 Next, the rod of the cylinder 15 for advancing / retracting the clamp tool of the work rotating device F protrudes, the clamp tool 18 moves forward, and the shaft portion A of the eccentric work W 1 is clamped by the pair of clamp claws 17. Data relating to the phase rotation angle θ calculated by the arithmetic unit T is input to the encoder of the servo motor M, and a rotation command signal corresponding to the phase rotation angle θ is issued from the encoder to the servo motor M, so that the eccentric workpiece The shaft portion A of W 1 is rotated in the command direction by the phase rotation angle θ by one continuous rotation, and is accurately rotated by the set phase rotation angle θ and stopped. For this reason, centering, which is an operation for making the center C 2 of the eccentric portion B of the eccentric workpiece W 1 coincide with the machining center C 0 , can be performed with high accuracy and at high speed. Incidentally, after the centering, (see FIG. 1) rotating grinding wheel 19 is pressed against the direction perpendicular to the axis of the eccentric workpiece W 1 on the outer circumference of the eccentric portion B, it is ground by the required amount.

次に、図6〜図12を参照して、請求項2,3,5の各発明の実施例について説明する。図6は、偏芯ワークW2 の正面図であり、図7は、第1及び第2の各測定装置D1 ,D2 を用いて、偏芯ワークW2 の第1及び第2の各偏芯部B1 ,B2 の中心C21,C22の位置を検出する状態を示す図であり、図8は、偏芯ワークW2 の軸部Aを回転させて、偏芯ワークW2 の第1及び第2の各偏芯部B1 ,B2 の中心C21,C22と加工中心C0 を結ぶ各線分と水平線とのなす角度が等しくなるように芯出しされた状態を示す図であり、図9は、第1偏芯部B1 が外周研削された状態を示す図であり、図10は、第1偏芯部B1 が外周研削された偏芯ワークW2 の軸部Aを中心に180°回転させて、第2偏芯部B2 が芯出しされた状態を示す図であり、図11は、第2偏芯部B2 が外周研削された状態を示す図であり、図12は、第1及び第2の各偏芯部B1 ,B2 の位相差が180°となるように外周研削された状態を示す図である。 Next, with reference to FIGS. 6 to 12, embodiments of the inventions of claims 2, 3, and 5 will be described. FIG. 6 is a front view of the eccentric work W 2 , and FIG. 7 shows the first and second of the eccentric work W 2 using the first and second measuring devices D 1 and D 2. FIG. 8 is a diagram showing a state in which the positions of the centers C 21 and C 22 of the eccentric parts B 1 and B 2 are detected. FIG. 8 shows the eccentric work W 2 by rotating the shaft part A of the eccentric work W 2. The first and second eccentric parts B 1 and B 2 are centered so that the angle formed between the line segment connecting the centers C 21 and C 22 of the eccentric centers B 1 and B 2 and the processing center C 0 and the horizontal line is equal. FIG. 9 is a view showing a state in which the first eccentric portion B 1 is subjected to outer peripheral grinding, and FIG. 10 is an axis of the eccentric workpiece W 2 in which the first eccentric portion B 1 is subjected to outer peripheral grinding. FIG. 11 is a diagram showing a state in which the second eccentric portion B 2 is centered by being rotated 180 ° around the portion A, and FIG. 11 is a diagram showing a state in which the second eccentric portion B 2 is peripherally ground. FIG. 12 shows the first and second Phase difference of the eccentric portion B 1, B 2 is a diagram showing a state of being grinding the outer periphery so that 180 °.

偏芯ワークW2 は、図6及び図7に示されるように、軸部Aの軸方向の異なる位置に位相がほぼ180°異なった第1及び第2の各偏芯部B1 ,B2 が設けられた形状であるが、第1及び第2の各偏芯部B1 ,B2 の位相差は正確に180°になっていない。即ち、軸部Aの中心C1 と第1偏芯部B1 の中心C21とを結ぶ線分L1 と、軸部Aの中心C1 と第2偏芯部B2 の中心C22とを結ぶ線分L2 とで形成される角度は、(180°−θ1 −θ2)となっている。但し、θ1 ,θ2 は、図7に示されるように、偏芯ワークW2 の軸部Aを偏芯クランプ装置JのVブロック部4に支持した状態において、前記各線分L1 ,L2 と水平線とのなす鋭角側の角度を示す。なお、線分L1 ,L2 の長さは、第1及び第2の各偏芯部B1 ,B2 と軸部Aとの偏芯量(e)に等しい。 As shown in FIGS. 6 and 7, the eccentric work W 2 has first and second eccentric portions B 1 and B 2 that are different in phase by approximately 180 ° at different positions in the axial direction of the shaft portion A. However, the phase difference between the first and second eccentric portions B 1 and B 2 is not exactly 180 °. That is, the line segment L 1 connecting the center C 1 of the shaft portion A and the center C 21 of the first eccentric portion B 1, the center C 1 and the second center C 22 of the eccentric portion B 2 of the shaft portion A The angle formed by the line segment L 2 connecting the two is (180 ° −θ 1 −θ 2 ). However, θ 1 and θ 2 are the line segments L 1 , L in the state where the shaft portion A of the eccentric work W 2 is supported by the V block portion 4 of the eccentric clamp device J, as shown in FIG. The acute angle between 2 and the horizontal line is shown. The lengths of the line segments L 1 and L 2 are equal to the eccentric amount (e) between the first and second eccentric portions B 1 and B 2 and the shaft portion A.

偏芯ワークW2 の各偏芯部B1 ,B2 の芯出し装置K2 は、第1偏芯部B1 の中心C21の位置を測定(検出)する第1測定装置D1 と、第2偏芯部B2 の中心C22の位置を測定(検出)する第2測定装置D2 と、前記ワーク回転装置Fとで構成される。第1及び第2の各測定装置D1 ,D2 は、前記測定装置Dと同一構成であって、研削盤Gのスピンドル軸11の軸芯方向に沿って異なる位置にそれぞれ配置される。 Centering device K 2 of each eccentric portion B 1, B 2 of the eccentric workpiece W 2 includes a first measuring apparatuses D 1 to the position of the first eccentric portion B 1 of the center C 21 to measure (detect), The second measuring device D 2 that measures (detects) the position of the center C 22 of the second eccentric portion B 2 and the workpiece rotating device F are configured. The first and second measuring devices D 1 and D 2 have the same configuration as the measuring device D, and are arranged at different positions along the axial direction of the spindle shaft 11 of the grinding machine G.

偏芯ワークW2 の各偏芯部B1 ,B2 の芯出しを行う前に、2つの偏芯部の位相差が正確に180°であるマスターワークW20の一方の偏芯部の中心が加工中心C0 と一致するようにして、当該マスターワークW20を偏芯クランプ装置JのVブロック部4にセットして仮固定した状態で、各偏芯部の上側及び下側に第1及び第2の各測定装置D1 ,D2 の上下一対の測定子1a,1bを当てて、各測定装置D1 ,D2 に基準位置(基準データ)を記憶させる。次に、図7に示されるように、偏芯ワークW2 を偏芯クランプ装置JのVブロック部4にセットして仮固定した状態で、第1及び第2の各偏芯部B1 ,B2 の上側及び下側に、第1及び第2の各測定装置D1 ,D2 の上下一対の測定子1a,1bを当てて、各偏芯部B1 ,B2 の中心C21,C22の位置を検出する。これにより、前記線分L1 ,L2 と水平線とで形成される角度θ1 ,θ2 が測定される。実施例では、(θ1 >θ2 )の関係にある。このように、第1及び第2の各偏芯部B1 ,B2 の位相差が180°に対して大きくずれている場合には、第1偏芯部B1 を外周加工した後に、軸部Aを180°回転させて、第2偏芯部B2 を外周加工すると、いずれかの偏芯部B1 (B2 )の外周面の一部が研削されずに残ったままの未研削部(図14で31で示される部分)が発生することがある。そこで、請求項2の発明では、第1及び第2の各偏芯部B1 ,B2 が同一の状態、即ち、各偏芯部B1 ,B2 の周方向に沿った研削代を同一にして研削することにより、上記した未研削部の発生をなくすことが可能となる。 The center of one eccentric part of the master work W 20 in which the phase difference between the two eccentric parts is exactly 180 ° before the eccentric parts B 1 and B 2 of the eccentric work W 2 are centered. Is aligned with the processing center C 0, and the master work W 20 is set on the V block portion 4 of the eccentric clamp device J and temporarily fixed, with the first on the upper and lower sides of each eccentric portion. and the second of each measuring device D 1, D 2 of the pair of upper and lower gauge head 1a, against the 1b, and stores the reference position (reference data) in each measuring device D 1, D 2. Next, as shown in FIG. 7, in the state where the eccentric work W 2 is set and temporarily fixed to the V block portion 4 of the eccentric clamp device J, the first and second eccentric portions B 1 , above and below the B 2, each of the first and second measuring devices D 1, D 2 of the pair of upper and lower gauge head 1a, against the 1b, the eccentric portion B 1, B 2 of the center C 21, The position of C 22 is detected. Thereby, the angles θ 1 and θ 2 formed by the line segments L 1 and L 2 and the horizontal line are measured. In the embodiment, the relationship is (θ 1 > θ 2 ). As described above, when the phase difference between the first and second eccentric portions B 1 and B 2 is greatly deviated with respect to 180 °, the shaft is formed after the first eccentric portion B 1 is processed on the outer periphery. When the part A is rotated 180 ° and the second eccentric part B 2 is peripherally processed, a part of the outer peripheral surface of any eccentric part B 1 (B 2 ) remains without being ground. (A portion indicated by 31 in FIG. 14) may occur. Therefore, in the invention of claim 2, the first and second eccentric portions B 1 and B 2 are in the same state, that is, the grinding allowance along the circumferential direction of each eccentric portion B 1 and B 2 is the same. By grinding in this manner, it is possible to eliminate the occurrence of the unground portion described above.

具体的には、一方の偏芯部の中心を加工中心に一致させて外周研削すると、他方の偏芯部に未研削部が発生し易くなったり、或いは周方向の研削代が大きく変化してしまうので、加工中心C0 から各偏芯部B1 ,B2 の中心C21,C22までのずれ量が同一となるように芯出しすることにより、各偏芯部B1 ,B2 を同一の状態で研削する。請求項2の発明では、上記のようにして加工中心C0 に対して偏芯部の位置を定めることも「芯出し」と称することにする。即ち、前記線分L1 ,L2 と水平線とで形成される角度θ1 ,θ2 (θ1 >θ2 )に差があるので、図8及び図9に示されるように、前記線分L1 ,L2 と水平線とで形成される角度を等しくすべく、軸部Aを中心にして偏芯ワークW2 を〔(θ1 −θ2 )/2〕だけ、角度θ1 が減ぜられる方向に回転させて、前記線分L1 ,L2 と水平線とで形成される角度をいずれも〔(θ1 +θ2 )/2〕にさせ、この状態で第1偏芯部B1 の外周研削を行う(図9参照)。ここで、前記線分L1 ,L2 と水平線とで形成される角度を等しくするとは、別の観点からは、2つの偏芯部の上側及び下側の各高さ方向の位置を等しくして、軸部の中心を通る垂直線に対して2つの偏芯部を対称に配置することを意味する。なお、図9〜図12において、B1',B2'は、それぞれ外周研削した後の第1及び第2の各偏芯部を示し、C21’, C22’は、外周研削後の第1及び第2の各偏芯部B1',B2'の中心を示す。 Specifically, if the center of one eccentric part is aligned with the machining center and the outer periphery is ground, an unground part tends to occur in the other eccentric part, or the circumferential grinding allowance changes greatly. Therefore, the eccentric parts B 1 and B 2 are centered so that the deviations from the processing center C 0 to the centers C 21 and C 22 of the eccentric parts B 1 and B 2 are the same. Grind in the same state. In the invention of claim 2, also will be referred to as "centering" to define the position of the eccentric portion with respect to the processing center C 0 as described above. That is, since there is a difference in the angles θ 1 and θ 21 > θ 2 ) formed by the line segments L 1 and L 2 and the horizontal line, as shown in FIG. 8 and FIG. In order to make the angles formed by L 1 , L 2 and the horizontal line equal, the angle θ 1 is reduced by [(θ 1 −θ 2 ) / 2] around the shaft part A by the eccentric work W 2. The angle formed by the line segments L 1 and L 2 and the horizontal line is all [(θ 1 + θ 2 ) / 2], and in this state, the first eccentric portion B 1 Peripheral grinding is performed (see FIG. 9). Here, to make the angles formed by the line segments L 1 and L 2 and the horizontal line equal, from another viewpoint, the positions in the height direction on the upper side and the lower side of the two eccentric parts are made equal. This means that the two eccentric portions are arranged symmetrically with respect to a vertical line passing through the center of the shaft portion. In FIGS. 9 to 12, B 1 ′ and B 2 ′ indicate the first and second eccentric portions after outer periphery grinding, respectively, and C 21 ′ and C 22 ′ indicate after outer periphery grinding. each eccentric portions of the first and 2 B 1 ', B 2' indicates the center of.

次に、偏芯ワークW1 を回転させる場合と全く同様にして、ワーク回転装置Fの一対のクランプ爪17により偏芯ワークW2 の自由端部をクランプし、軸部Aを中心にして、偏芯ワークW2 を180°回転させると、加工済の第1偏芯部B1'の中心C21’は、加工中心C0 と軸部Aの中心C1 を結ぶ線分の延長線上に配置される。ワーク回転装置Fのクランプ具18を回転させる手段が、実施例のようにエンコーダ付きのサーボモータMの場合には、偏芯ワークW2 を正確に180°回転させられるので、加工済の第1偏芯部B1'の中心C21’が、加工中心C0 と軸部Aの中心C1 を結ぶ線分の延長線上に配置されていることを第1測定装置D1 により確認する必要はないが、クランプ具18の回転手段が一般のモータ等の場合には、第1測定装置D1 により上記確認を行うことが好ましい。 Next, in exactly the same manner as when rotating the eccentric workpiece W 1 , the free end portion of the eccentric workpiece W 2 is clamped by the pair of clamp claws 17 of the workpiece rotating device F, and the shaft portion A is centered. When the eccentric work W 2 is rotated 180 °, the center C 21 ′ of the processed first eccentric part B 1 ′ is on the extension line of the line connecting the processing center C 0 and the center C 1 of the shaft part A. Be placed. When the means for rotating the clamp tool 18 of the workpiece rotating device F is a servo motor M with an encoder as in the embodiment, the eccentric workpiece W 2 can be accurately rotated 180 °, so that the processed first It is necessary to confirm by the first measuring device D 1 that the center C 21 ′ of the eccentric part B 1 ′ is arranged on the extension line of the line connecting the processing center C 0 and the center C 1 of the shaft part A. no, but if the rotation means of the clamp member 18, such as a common motor is preferably by first measuring apparatuses D 1 performs the confirmation.

上記のようにして、偏芯ワークW2 を180°回転させた後に第2偏芯部B2 の外周研削を行う(図11参照)と、図12に示されるように、第1及び第2の各偏芯部B1 ,B2 の外周研削の状態は同一となって、いずれか一方の偏芯部に未研削部が発生する不具合がなくなる。 As described above, when the outer peripheral grinding of the second eccentric portion B 2 is performed after the eccentric workpiece W 2 is rotated 180 ° (see FIG. 11), the first and second portions are obtained as shown in FIG. Each of the eccentric parts B 1 and B 2 has the same outer peripheral grinding state, and there is no problem that an unground part is generated in one of the eccentric parts.

また、図7に示される偏芯ワークW2 のセット例は、第1及び第2の各偏芯部B1 ,B2 の位相が180°に対してずれていて、しかも各偏芯部B1 ,B2 の中心C21,C22がいずれも軸部Aの中心C1 を通る水平線に対して同一側(セット例では上側)にセットされた例であるが、図13に示される偏芯ワークW2'のセット例は、各偏芯部B1 ,B2 の中心C21,C22が軸部Aの中心C1 を通る水平線に対して互いに反対側に配置されたセット例である。このセット例においても、軸部Aを中心にして、偏芯ワークW2'を〔(θ3 −(−θ4 )/2〕=〔(θ3 +θ4 )/2〕だけ回転させることにより、第1及び第2の各偏芯部B1 ,B2 は、軸部Aの中心を通る垂直線に対して対称に配置されて、各偏芯部B1 ,B2 の研削状態が同一となる。なお、θ3 ,θ4 は、いずれも正の値である。 Further, in the set example of the eccentric work W 2 shown in FIG. 7, the phases of the first and second eccentric parts B 1 and B 2 are shifted with respect to 180 °, and each eccentric part B In this example , the centers C 21 and C 22 of 1 and B 2 are both set on the same side (upper side in the set example) with respect to the horizontal line passing through the center C 1 of the shaft portion A. The set example of the core work W 2 ′ is a set example in which the centers C 21 and C 22 of the eccentric parts B 1 and B 2 are arranged on opposite sides with respect to the horizontal line passing through the center C 1 of the shaft part A. is there. Also in this set example, the eccentric work W 2 ′ is rotated by [(θ 3 − (− θ 4 ) / 2] = [(θ 3 + θ 4 ) / 2]) around the shaft portion A. The first and second eccentric parts B 1 and B 2 are arranged symmetrically with respect to the vertical line passing through the center of the shaft part A, and the grinding state of the eccentric parts B 1 and B 2 is the same. Note that θ 3 and θ 4 are both positive values.

更に、図14に示されるセット例は、第1及び第2の各偏芯部B1 ,B2 の位相が当初より正確に180°となっている偏芯ワークW2'の各偏芯部B1 ,B2 の中心C21,C22が軸部Aの中心C1 を通る水平線に対して互いに反対側に配置されたセット例である。このセット例においても、軸部Aを中心にして、偏芯ワークW2"を〔(θ5 −(−θ5)/2=θ5 〕だけ回転させることにより、第1及び第2の各偏芯部B1 ,B2 は、軸部Aの中心を通る垂直線に対して対称に配置されて、各偏芯部B1 ,B2 の研削状態が同一となる。なお、θ5 は、正の値である。 Furthermore, in the set example shown in FIG. 14, each eccentric part of the eccentric work W 2 ′ in which the phases of the first and second eccentric parts B 1 and B 2 are exactly 180 ° from the beginning. This is a set example in which the centers C 21 and C 22 of B 1 and B 2 are arranged opposite to each other with respect to a horizontal line passing through the center C 1 of the shaft portion A. Also in this set example, by rotating the eccentric work W 2 ″ by [(θ 5 − (− θ 5 ) / 2 = θ 5 ], centering on the shaft portion A, each of the first and second parts can be obtained. The eccentric parts B 1 and B 2 are arranged symmetrically with respect to the vertical line passing through the center of the shaft part A, and the ground state of the eccentric parts B 1 and B 2 is the same, θ 5 being Is a positive value.

A:偏芯ワークの軸部
B:偏芯ワークの偏芯部
1 :偏芯ワークの第1偏芯部
2 :偏芯ワークの第2偏芯部
0 :加工中心(スピンドル軸の軸芯)
1 :軸部の中心
2 :偏芯部の中心
21:第1偏芯部の中心
22:第2偏芯部の中心
D:測定装置
1 :第1測定装置
2 :第2測定装置
e:偏芯部の偏芯量
F:ワーク回転装置
G:研削盤
J:偏芯クランプ装置
1,K2 :芯出し装置
M:エンコーダ付きサーボモータ
1,W2,W2', W" :偏芯ワーク
1:スピンドル軸
A: Shaft part of eccentric work
B: Eccentric part of eccentric workpiece
B 1 : First eccentric part of the eccentric workpiece
B 2 : Second eccentric part of the eccentric workpiece
C 0: the processing center (axis of the spindle shaft)
C 1 : Center of shaft
C 2 : Center of the eccentric part
C 21 : Center of the first eccentric part
C 22 : center of the second eccentric portion
D: Measuring device
D 1 : First measuring device
D 2 : Second measuring device
e: Eccentricity of the eccentric part
F: Work rotating device
G: Grinding machine
J: Eccentric clamp device
K 1 , K 2 : Centering device
M: Servo motor with encoder W 1 , W 2 , W 2 ', W ": Eccentric workpiece
1: Spindle shaft

Claims (5)

加工中心であるスピンドル軸の軸芯に対して偏芯ワークの偏芯量だけ偏芯した位置で当該偏芯ワークの軸部を把持可能な偏芯クランプ装置と、当該偏芯クランプ装置で把持される軸部と同一軸芯上に進退可能に配置されて、前記軸部の自由端部を把持して偏芯ワークを回転させるためのワーク回転装置と、前記偏芯ワークの偏芯部の上側及び下側に一対の測定子を接触させて、偏芯部の中心位置を測定する測定装置とを備えた芯出し装置を用いて、偏芯ワークの軸部に対して偏芯している偏芯部の芯出しを自動的に行う方法であって、
前記ワーク回転装置は、偏芯ワークの軸部を把持するクランプ具がエンコーダ付のサーボモータで回転される構成であって、
前記測定装置により偏芯部の中心位置を測定して、当該偏芯部の中心を加工中心に一致させるのに必要な軸部の回転角度を演算し、
ワーク回転装置を構成するサーボモータが、エンコーダにより割り出された前記回転角度だけ、偏芯ワークの軸部を一挙に回転させて芯出しを行うことを特徴とする偏芯ワークの偏芯部の高速自動芯出し方法。
An eccentric clamp device capable of gripping the shaft part of the eccentric workpiece at a position eccentric by the eccentric amount of the eccentric workpiece with respect to the spindle axis of the spindle shaft which is the processing center, and being gripped by the eccentric clamp device A workpiece rotating device that is arranged on the same axis as the shaft portion to be moved forward and backward, and that grips the free end of the shaft portion to rotate the eccentric workpiece, and an upper side of the eccentric portion of the eccentric workpiece And a centering device having a measuring device for measuring the center position of the eccentric portion by bringing a pair of measuring elements into contact with the lower side, and the eccentricity being eccentric with respect to the shaft portion of the eccentric workpiece. A method for automatically centering a core,
The workpiece rotating device is configured such that a clamp tool that grips a shaft portion of an eccentric workpiece is rotated by a servo motor with an encoder,
The center position of the eccentric part is measured by the measuring device, and the rotation angle of the shaft part necessary to make the center of the eccentric part coincide with the machining center is calculated.
A servomotor constituting the work rotating device performs centering by rotating the shaft part of the eccentric work at a time by the rotation angle indexed by the encoder. High-speed automatic centering method.
加工中心であるスピンドル軸の軸芯に対して偏芯ワークの偏芯量だけ偏芯した位置で当該偏芯ワークの軸部を把持可能な偏芯クランプ装置と、当該偏芯クランプ装置で把持される軸部と同一軸芯上に進退可能に配置されて、前記軸部の自由端部を把持して偏芯ワークを回転させるためのワーク回転装置と、前記偏芯ワークに位相をほぼ180°異にして設けられた第1及び第2の各偏芯部の上側及び下側の各位置に一対の測定子を接触させて、各偏芯部の中心位置を測定する第1及び第2の各測定装置とを備えた芯出し装置を用いて、偏芯ワークの軸部に対して偏芯している2つの偏芯部の芯出しを自動的に行う方法であって、
前記第1及び第2の各測定装置により第1及び第2の各偏芯部の中心の位置を測定して、前記軸部の中心と各偏芯部の中心とを結ぶ各線分と水平線とで形成される各角度を算出して、当該各角度が等しくなるように、前記ワーク回転装置により前記軸部を必要角度だけ回転させ、
上記の状態で、加工中心側に配置された第1又は第2のいずれかの偏芯部を外周研削した後に、前記軸部を180°回転させて他方の偏芯部を外周研削することを特徴とする偏芯ワークの偏芯部の高速自動芯出し方法。
An eccentric clamp device capable of gripping the shaft part of the eccentric workpiece at a position eccentric by the eccentric amount of the eccentric workpiece with respect to the spindle axis of the spindle shaft which is the processing center, and being gripped by the eccentric clamp device And a workpiece rotating device for rotating the eccentric work by gripping the free end of the shaft, and a phase of the eccentric work approximately 180 °. A first and a second measuring the center position of each eccentric part by bringing a pair of measuring elements into contact with each of the upper and lower positions of the first and second eccentric parts provided differently. Using a centering device provided with each measuring device, it is a method of automatically centering two eccentric parts that are eccentric with respect to the shaft part of the eccentric work,
Measure the position of the center of each of the first and second eccentric portions by the first and second measuring devices, and each line segment connecting the center of the shaft portion and the center of each eccentric portion and a horizontal line Calculate each angle formed by, and rotate the shaft portion by a necessary angle by the work rotation device so that the respective angles become equal,
In the above state, after the outer peripheral grinding of either the first or the second eccentric portion arranged on the processing center side, the shaft portion is rotated 180 ° and the other eccentric portion is outer peripheral grounded. A high-speed automatic centering method for the eccentric part of the eccentric work.
前記ワーク回転装置は、偏芯ワークの軸部を把持するクランプ具がエンコーダ付のサーボモータで回転される構成であることを特徴とする請求項2に記載の偏芯ワークの偏芯部の高速自動芯出し方法。   The high speed of the eccentric part of the eccentric work according to claim 2, wherein the work rotating device is configured such that a clamp for gripping the shaft part of the eccentric work is rotated by a servo motor with an encoder. Automatic centering method. 請求項1の発明を実施するために、偏芯ワークの偏芯部の中心を研削盤の加工中心と一致させるべく自動的に芯出しを行う装置であって、
加工中心であるスピンドル軸の軸芯に対して偏芯ワークの偏芯量だけ偏芯した位置で偏芯ワークの軸部を把持可能な偏芯クランプ装置と、当該偏芯クランプ装置で把持される軸部と同一軸芯上に進退可能に配置されて、前記軸部の自由端部を把持して偏芯ワークを回転させるためのワーク回転装置と、前記偏芯部の上側及び下側に一対の測定子を接触させて、偏芯部の中心位置を測定する測定装置とを備え、
前記ワーク回転装置は、偏芯ワークの軸部を把持するクランプ具がエンコーダ付のサーボモータで回転される構成であることを特徴とする偏芯ワークの偏芯部の高速自動芯出し装置。
In order to carry out the invention of claim 1, it is an apparatus for automatically centering to make the center of the eccentric part of the eccentric work coincide with the processing center of the grinding machine,
An eccentric clamp device capable of gripping the shaft portion of the eccentric workpiece at a position eccentric by the eccentric amount of the eccentric workpiece with respect to the spindle axis of the spindle shaft that is the processing center, and gripped by the eccentric clamp device A work rotating device that is disposed on the same axis as the shaft so as to be able to advance and retract, and that grips the free end of the shaft and rotates the eccentric work, and a pair on the upper and lower sides of the eccentric. And a measuring device for measuring the center position of the eccentric part,
The work rotation device is a high-speed automatic centering device for an eccentric part of an eccentric work, wherein a clamp for gripping a shaft part of the eccentric work is rotated by a servo motor with an encoder.
請求項2の発明を実施するために、偏芯ワークの2つの偏芯部の芯出しを自動的に行う装置であって、
加工中心であるスピンドル軸の軸芯に対して偏芯細溝の偏芯量だけ偏芯した位置で当該偏芯ワークの軸部を把持可能な偏芯クランプ装置と、当該偏芯クランプ装置で把持される軸部と同一軸芯上に進退可能に配置されて、前記軸部の自由端部を把持して偏芯ワークを回転させるためのワーク回転装置と、前記偏芯ワークに位相をほぼ180°異にして設けられた第1及び第2の各偏芯部の上側及び下側の各位置に一対の測定子を接触させて、各偏芯部の中心位置を測定する第1及び第2の各測定装置とを備え、
前記第1及び第2の各測定装置により第1及び第2の各偏芯部の中心の位置を測定して、前記軸部の中心と各偏芯部の中心とを結ぶ各線分と水平線とで形成される各角度を算出して、当該各角度が等しくなるように、前記ワーク回転装置により前記軸部を必要角度だけ回転させて、各偏芯部の加工中心を割り出すことを特徴とする偏芯ワークの2つの偏芯部の高速自動芯出し装置。
In order to carry out the invention of claim 2, an apparatus for automatically centering two eccentric parts of an eccentric work,
An eccentric clamp device capable of gripping the shaft part of the eccentric workpiece at a position eccentric by the eccentric amount of the eccentric fine groove with respect to the axis of the spindle shaft which is the processing center, and gripped by the eccentric clamp device And a workpiece rotating device that is arranged on the same axis as the shaft portion to be moved forward and backward, grips the free end of the shaft portion and rotates the eccentric workpiece, and a phase of the eccentric workpiece approximately 180. First and second measuring the center position of each eccentric part by bringing a pair of measuring elements into contact with the upper and lower positions of the first and second eccentric parts provided differently Each measuring device,
Measure the position of the center of each of the first and second eccentric portions by the first and second measuring devices, and each line segment connecting the center of the shaft portion and the center of each eccentric portion and a horizontal line And calculating the processing center of each eccentric portion by rotating the shaft portion by a necessary angle so that the angles are equal to each other. A high-speed automatic centering device for two eccentric parts of an eccentric workpiece.
JP2009017680A 2009-01-29 2009-01-29 High speed automatic centering method and apparatus for eccentric part of eccentric work Active JP5154462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009017680A JP5154462B2 (en) 2009-01-29 2009-01-29 High speed automatic centering method and apparatus for eccentric part of eccentric work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009017680A JP5154462B2 (en) 2009-01-29 2009-01-29 High speed automatic centering method and apparatus for eccentric part of eccentric work

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012247976A Division JP2013049132A (en) 2012-11-12 2012-11-12 High-speed automatic centering method and device of eccentric part of eccentric workpiece

Publications (2)

Publication Number Publication Date
JP2010173005A true JP2010173005A (en) 2010-08-12
JP5154462B2 JP5154462B2 (en) 2013-02-27

Family

ID=42704446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009017680A Active JP5154462B2 (en) 2009-01-29 2009-01-29 High speed automatic centering method and apparatus for eccentric part of eccentric work

Country Status (1)

Country Link
JP (1) JP5154462B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021167050A (en) * 2020-04-13 2021-10-21 株式会社コンドウ Method for alignment of eccentric work piece on grinder outside machine, device for its alignment outside machine, and chuck for grinder
CN118060990A (en) * 2024-04-15 2024-05-24 贵州航天控制技术有限公司 Rotor machining tool clamp, machining equipment and machining method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245741A (en) * 1992-02-28 1993-09-24 Kondo:Kk Automatic centering for eccentric part of eccentric work and phasing method in cylindrical grinding machine
JP2001162478A (en) * 1999-12-13 2001-06-19 Micron Seimitsu Kk Method for aligning composite eccentric shaft, and alignment device for eccentric composite shaft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245741A (en) * 1992-02-28 1993-09-24 Kondo:Kk Automatic centering for eccentric part of eccentric work and phasing method in cylindrical grinding machine
JP2001162478A (en) * 1999-12-13 2001-06-19 Micron Seimitsu Kk Method for aligning composite eccentric shaft, and alignment device for eccentric composite shaft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021167050A (en) * 2020-04-13 2021-10-21 株式会社コンドウ Method for alignment of eccentric work piece on grinder outside machine, device for its alignment outside machine, and chuck for grinder
JP7316665B2 (en) 2020-04-13 2023-07-28 株式会社コンドウ Out-of-machine centering method for eccentric workpiece in grinder, out-of-machine centering device therefor, and chuck of grinder
CN118060990A (en) * 2024-04-15 2024-05-24 贵州航天控制技术有限公司 Rotor machining tool clamp, machining equipment and machining method

Also Published As

Publication number Publication date
JP5154462B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
US9427816B2 (en) Method and automatic machine for machining a gear wheel
JP5655576B2 (en) Work centering device and centering method
JP2010117196A (en) Method of measuring gear
US6616508B1 (en) Internal grinding method and internal grinding machine
JP5385330B2 (en) High precision processing equipment
KR20130122760A (en) Centering method for optical elements
JP2010194623A (en) Thread grinding machine and thread groove grinding method
JP5154462B2 (en) High speed automatic centering method and apparatus for eccentric part of eccentric work
JP4511862B2 (en) Glass tube manufacturing method and manufacturing apparatus
JP5395570B2 (en) Cylindrical grinding method and apparatus
JP5970964B2 (en) Grinding resistance measuring method and grinding machine
JP3660920B2 (en) Machine tool and processing method
JP2009113161A (en) Grinding method and grinder
JP2013049132A (en) High-speed automatic centering method and device of eccentric part of eccentric workpiece
JP6390220B2 (en) Workpiece deflection measurement method, workpiece rigidity measurement method, and machine tool
JPH1133801A (en) Groove machining device
JP2013123758A (en) Mechanical rigidity measuring method and machine tool
JP3687770B2 (en) Method and apparatus for controlling sizing of twin head grinder
JP4161317B2 (en) Method of setting coordinate system for controlling workpiece steadying member in grinding machine and grinding machine for carrying out these methods
JP3920231B2 (en) Inner diameter ball groove measuring apparatus and inner diameter ball groove measuring method
JP2015044248A (en) Lathe-turning processing device
JP4296291B2 (en) Cylindrical grinding method and cylindrical grinding machine
CN114131068B (en) Four-claw automatic centering device and method based on end tooth transmission
JP3834493B2 (en) Compound grinding method and apparatus
JPH08347B2 (en) Method and apparatus for automatically centering and phasing an eccentric part of an eccentric work in a cylindrical grinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250