JP2010169398A - Method of testing load of rolling stock structure body - Google Patents

Method of testing load of rolling stock structure body Download PDF

Info

Publication number
JP2010169398A
JP2010169398A JP2009004979A JP2009004979A JP2010169398A JP 2010169398 A JP2010169398 A JP 2010169398A JP 2009004979 A JP2009004979 A JP 2009004979A JP 2009004979 A JP2009004979 A JP 2009004979A JP 2010169398 A JP2010169398 A JP 2010169398A
Authority
JP
Japan
Prior art keywords
load
support
movement amount
amount
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009004979A
Other languages
Japanese (ja)
Other versions
JP5307564B2 (en
Inventor
Kenji Asada
謙二 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Car Corp
Original Assignee
Tokyu Car Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Car Corp filed Critical Tokyu Car Corp
Priority to JP2009004979A priority Critical patent/JP5307564B2/en
Publication of JP2010169398A publication Critical patent/JP2010169398A/en
Application granted granted Critical
Publication of JP5307564B2 publication Critical patent/JP5307564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To predict a movement amount when one support is moved until any of four supports supporting a structure body is separated from the structure body. <P>SOLUTION: A structure body 1 is supported by the supports 12 at four points to establish four-point horizontal supporting state such that the supports points M are positioned on the same horizontal surface H. The supports 12<SB>1</SB>, 12<SB>2</SB>are settled from this state, respectively, to obtain a first settlement amount component Y independent from a total weight and a second settlement amount component Y<SB>P</SB>dependent on the total weight. The settlement amount until the support 12<SB>1</SB>is separated from the structure body 1 when the support 12<SB>1</SB>is settled from the four-point horizontal supporting state after loading of an empty weight on the structure body 1, is predicted on the basis of the first and second settlement amount components Y, Y<SB>P</SB>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄道車両構体の荷重試験方法に関し、特に、鉄道車両の構体における強度又は剛性を確認するための荷重試験方法に関する。   The present invention relates to a load test method for a railway vehicle structure, and more particularly to a load test method for confirming strength or rigidity in a structure of a railway vehicle.

従来の鉄道車両構体の荷重試験方法としては、例えば特許文献1に記載されたものが知られている。この鉄道車両構体の荷重試験方法では、車両全長より短い構体を巧みに支持して荷重を負荷することで、車両全長の構体に荷重を負荷したときと同等のたわみ又は応力を把握することが図られており、荷重試験のコスト軽減が可能とされている。   As a conventional load test method for a railway vehicle structure, for example, a method described in Patent Document 1 is known. In this load test method for railway vehicle structures, it is possible to grasp the same deflection or stress as when a load is applied to the structure of the full length of the vehicle by skillfully supporting the structure shorter than the full length of the vehicle and applying a load. The cost of load tests can be reduced.

特開昭59−7238号公報JP 59-7238 A

ところで、上述したような鉄道車両構体の荷重試験方法としては、例えば「JIS E7105」に規定されているように、鉄道車両の構体における強度又は剛性を確認するためのものが知られている。このJISによる荷重試験方法では、メンテナンス時に一般的に行われている車体のリフティング作業を想定し、構体を3点支持(又は2点支持)した状態で荷重試験を行うことが義務付けられている。   By the way, as a load test method for a railway vehicle structure as described above, for example, as defined in “JIS E7105”, a method for confirming the strength or rigidity of a railway vehicle structure is known. In the load test method according to JIS, it is obliged to perform a load test in a state where the structure is supported at three points (or two points), assuming a lifting operation of a vehicle body generally performed at the time of maintenance.

具体的には、構体を4つの支持具で4点支持すると共に、これら支持具の支持点が同じ水平面上に位置するような4点水平支持状態(以下、単に「4点水平支持状態」という)とし、構体に試験荷重を負荷する。その後、4点水平支持状態の4つの支持具うち何れかの支持具が構体から離れるまで一の支持具を鉛直方向に沿って移動させ、その移動量を測定する。   Specifically, the structure is supported at four points by four supports, and the support points of these supports are positioned on the same horizontal plane (hereinafter simply referred to as “four-point horizontal support state”). ) And apply a test load to the structure. Thereafter, one of the four support tools in the four-point horizontal support state is moved along the vertical direction until one of the support tools leaves the structure, and the amount of movement is measured.

ここで、近年の鉄道車両構体の荷重試験方法では、前述したように、構体に試験荷重を負荷し何れかの支持具が構体から離れるまで一の支持具を鉛直方向に沿って移動させる場合において、例えば効率よく荷重試験を実施するために、その移動量を予め精度よく把握することが強く望まれている。   Here, in the load test method for a railway vehicle structure in recent years, as described above, when a test load is applied to the structure and one support tool is moved along the vertical direction until any support tool is separated from the structure, For example, in order to efficiently perform a load test, it is strongly desired to grasp the amount of movement in advance with high accuracy.

そこで、本発明は、構体を支持する4つの支持具のうち何れかの支持具が構体から離れるまで一の支持具を移動させる場合において、その移動量を精度よく予測することができる鉄道車両構体の荷重試験方法を提供することを課題とする。   Therefore, the present invention provides a railway vehicle structure capable of accurately predicting the amount of movement when one support tool is moved until any one of the four support tools supporting the structure moves away from the structure. It is an object to provide a load test method.

上記課題を解決するため、本発明者らは鋭意検討を重ねた結果、鉄道車両構体の荷重試験方法に関して次の知見を得た。すなわち、通常、構体は前後左右対称構造であることから、4点水平支持状態の4つの支持具うち何れかの支持具が構体から離れるまで一の支持具を鉛直方向に沿って移動させたときと、他の支持具を鉛直方向に沿って移動させたときとで、支持具の移動量(以下、単に「移動量」ともいう)は互いに同程度のものとなると考えられる。しかし、実際には、これらの移動量が互いに大きく相違する場合があるという知見を得た。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, have obtained the following knowledge regarding a load test method for a railway vehicle structure. That is, since the structure is normally a front / rear left / right symmetrical structure, when one support tool is moved along the vertical direction until any one of the four support tools in the four-point horizontal support state moves away from the structure. When the other support tool is moved along the vertical direction, the movement amount of the support tool (hereinafter, also simply referred to as “movement amount”) is considered to be approximately the same. However, in actuality, it has been found that these movement amounts may differ greatly from each other.

そして、かかる相違は、例えば構体において一の支持具側の高さと他の支持具側の高さとにバラツキ(非対称性)が存在する等のように4つの支持点が同じ水平面上に完全に位置しないのにもかかわらず、支持点が同じ水平面上に位置するような4点水平支持状態で構体を支持することに起因するということを見出し、ここでの移動量にあっては、例えばフックの法則に従うような「総荷重(構体に負荷されている全荷重)に依存する移動量成分」だけでなく、例えば構体形状の非対称性に関するような「総荷重に依存しない移動量成分」も含んで構成されているという知見を得た。よって、これらの移動量成分をそれぞれ把握できれば、当該移動量成分に基づき移動量を精度よく予測できることに想到し、本発明を完成するに至った。   The difference is that the four support points are completely located on the same horizontal plane, for example, there is a variation (asymmetry) between the height of one support member and the height of the other support member in the structure. In spite of the fact that the support point is located on the same horizontal plane, it is found that it is caused by supporting the structure in a four-point horizontal support state. Including not only the “movement amount component that depends on the total load (the total load applied to the structure)” that follows the law, but also the “movement amount component that does not depend on the total load” such as the asymmetry of the structure. The knowledge that it was comprised was acquired. Therefore, if each of these movement amount components can be grasped, it has been conceived that the movement amount can be accurately predicted based on the movement amount component, and the present invention has been completed.

すなわち、本発明に係る鉄道車両構体の荷重試験方法は、鉄道車両の構体における強度又は剛性を確認するための荷重試験方法であって、構体を4つの支持具で支持すると共に、当該4つの支持具の支持点が同じ水平面上に位置するような4点水平支持状態とする4点支持工程と、4点支持工程の後、構体に試験荷重を負荷する荷重負荷工程と、荷重負荷工程の後に4点水平支持状態から一の支持具を鉛直方向に沿って移動させる場合であって、4つの支持具うち何れかの支持具が構体から離れるときまでの移動量を、第1予測移動量として予測する移動量予測工程と、を備え、移動量予測工程は、荷重負荷工程の前に、4点水平支持状態から4つの支持具うち何れかの支持具が構体から離れるまで一の支持具を鉛直方向に沿って移動させ、その移動量を第1基準移動量として測定する第1工程と、荷重負荷工程の前に、4点水平支持状態からの4つの支持具うち何れかの支持具が構体から離れるまで一の支持具に対して構体の長手方向又は幅方向に隣接する他の支持具を鉛直方向に沿って移動させ、その移動量を第2基準移動量として測定する第2工程と、下記式(1)により、第1及び第2基準移動量を、構体に負荷されている総荷重に依存しない第1移動量成分と総荷重に依存する第2移動量成分とに分類する第3工程と、下記式(2)により、第1及び第2移動量成分と試験荷重を負荷する前後の総荷重の荷重比とに基づいて、第1予測移動量を求める第4工程と、を含むことを特徴とする。
Y=(δ−δ)/2, Y=(δ+δ)/2 …(1)
δ =−S・Y+λY …(2)
Y :第1移動量成分
:第2移動量成分
δ:第1基準移動量
δ:第2基準移動量
δ :第1予測移動量
λ :試験荷重を負荷する前後の総荷重の荷重比
S :定数(δ>δのときS=1,δ>δのときS=−1)
In other words, the load test method for a railway vehicle structure according to the present invention is a load test method for confirming the strength or rigidity of the structure of a railway vehicle, and the structure is supported by four supports and the four supports. A four-point support process in which a tool support point is positioned on the same horizontal plane, a four-point support process, a load-load process for applying a test load to the structure, and a load-load process. In the case where one support tool is moved in the vertical direction from the four-point horizontal support state, the movement amount until any one of the four support tools leaves the structure is defined as the first predicted movement amount. A movement amount prediction step for predicting, and the movement amount prediction step is performed before the load application step until one of the four support tools leaves the structure from the four-point horizontal support state. Move along the vertical direction, The first step of measuring the amount of movement of the first reference movement amount, and one support tool until any one of the four support tools from the four-point horizontal support state leaves the structure before the load loading step. With respect to the second step of moving the other support tool adjacent in the longitudinal direction or the width direction of the structure along the vertical direction and measuring the movement amount as the second reference movement amount, and the following formula (1): A third step for classifying the first and second reference movement amounts into a first movement amount component that does not depend on the total load applied to the structure and a second movement amount component that depends on the total load; ), And a fourth step of obtaining the first predicted movement amount based on the first and second movement amount components and the load ratio of the total load before and after applying the test load.
Y = (δ 2 −δ 1 ) / 2, Y P = (δ 2 + δ 1 ) / 2 (1)
δ * 1 = −S · Y + λY P (2)
Y: first movement amount component Y P : second movement amount component δ 1 : first reference movement amount δ 2 : second reference movement amount δ * 1 : first predicted movement amount λ: total before and after applying the test load Load ratio S of load: constant (S = 1 when δ 2 > δ 1 ; S = −1 when δ 1 > δ 2 )

この鉄道車両構体の荷重試験方法では、上記式(1)によって、総荷重に依存しない第1移動量成分と、総荷重に依存する第2移動量成分とが求められる。よって、上記式(2)によって第1及び第2移動量成分と荷重比とに基づくことで、構体に非対称性が存在する場合であっても、構体に試験荷重を負荷し何れかの支持具が構体から離れるまで一の支持具を移動させたときの移動量を、第1予測移動量として予め精度よく求めることができる。   In this railway vehicle structure load test method, the first movement amount component that does not depend on the total load and the second movement amount component that depends on the total load are obtained by the above equation (1). Therefore, based on the first and second movement amount components and the load ratio according to the above formula (2), even if there is an asymmetry in the structure, a test load is applied to the structure and any one of the supports The amount of movement when the one support tool is moved until is separated from the structure can be accurately obtained in advance as the first predicted movement amount.

また、移動量予測工程は、荷重負荷工程の後に4点水平支持状態から他の支持具を鉛直方向に沿って移動させる場合であって、4つの支持具うち何れかの支持具が構体から離れるときまでの他の支持具の移動量を、第2予測移動量としてさらに予測するものであり、第4工程においては、下記式(3)により、第1及び第2移動量成分と荷重比とに基づいて、第2予測移動量を求めることが好ましい。この場合、構体に試験荷重を負荷し何れかの支持具が構体から離れるまで他の支持具を移動させたときの移動量も、第2予測移動量として予め精度よく求められることになる。
δ =S・Y+λY …(3)
δ :第2予測移動量
The movement amount prediction step is a case where another support tool is moved along the vertical direction from the four-point horizontal support state after the load loading step, and any one of the four support tools leaves the structure. The movement amount of the other support tool until the time is further predicted as the second predicted movement amount. In the fourth step, the first and second movement amount components, the load ratio, and the following equation (3) are used. It is preferable to obtain the second predicted movement amount based on the above. In this case, the amount of movement when another test tool is moved until a test load is applied to the structure and one of the supports is separated from the structure is also obtained in advance as the second predicted movement amount.
δ * 2 = S · Y + λY P (3)
δ * 2 : second predicted movement amount

また、試験荷重は、4点水平支持状態での4つの支持具における支持荷重の合計が空車状態の車体質量となる荷重であることが好ましい。この場合、JISに規定された荷重試験方法に準拠するように荷重試験が実施されることになる。なお、「空車状態」とは、乗客、乗務員及び荷物を積載せず、水,油,砂,工具類等の運転上必要な器具及び物資を搭載した車両の状態を意味する。   Further, the test load is preferably a load in which the total of the support loads in the four support tools in the four-point horizontal support state becomes the vehicle body mass in the empty state. In this case, the load test is performed so as to comply with the load test method defined in JIS. The “empty state” means a state of a vehicle on which equipment, such as water, oil, sand, tools, etc., and materials are loaded without loading passengers, crew members and luggage.

また、移動量予測工程の第1及び第2工程においては、総荷重が、構体の自重に関する荷重と構体に試験荷重を負荷するための治具の自重に関する荷重との合計とされていることが好ましい。この場合、特段の荷重を構体に別途負荷することなく移動量予測工程を実施でき、よって、荷重試験方法を好適に実施することが可能となる。   Further, in the first and second steps of the movement amount prediction step, the total load may be the sum of the load related to the weight of the structure and the load related to the weight of the jig for applying the test load to the structure. preferable. In this case, the movement amount prediction step can be performed without separately applying a special load to the structure, and thus the load test method can be suitably performed.

本発明によれば、構体を支持する4つの支持具のうち何れかの支持具が構体から離れるまで一の支持具を鉛直方向に沿って移動させる場合において、その移動量を精度よく予測することが可能となる。   According to the present invention, when one support tool is moved along the vertical direction until any one of the four support tools supporting the structure moves away from the structure, the movement amount can be accurately predicted. Is possible.

本発明の一実施形態に係る鉄道車両構体の荷重試験方法の対象となる構体を示す斜視図である。It is a perspective view which shows the structure used as the object of the load test method of the railway vehicle structure which concerns on one Embodiment of this invention. 本実施形態の手順を示すフローチャートである。It is a flowchart which shows the procedure of this embodiment. 本実施形態の沈下量予測工程における手順を示すフローチャートである。It is a flowchart which shows the procedure in the settlement amount prediction process of this embodiment. (a)は図1の構体の支持方法を説明するための正面図、(b)は図1の構体の支持方法を説明するための背面図である。(A) is a front view for demonstrating the support method of the structure of FIG. 1, (b) is a rear view for demonstrating the support method of the structure of FIG. (a)は図1の構体の4点水平支持状態を示す上面図、(b)は(a)の4点水平支持状態から1位側支持具が沈下し離れたときの支持状態を示す上面図、(c)は(a)の4点水平支持状態から2位側支持具が沈下し離れたときの支持状態を示す上面図である。1A is a top view showing a four-point horizontal support state of the structure of FIG. 1, and FIG. 2B is a top view showing a support state when the first supporter sinks away from the four-point horizontal support state of FIG. FIG. 4C is a top view showing a support state when the second-side support tool sinks away from the four-point horizontal support state of FIG. 本実施形態において1位側支持具を沈下させる場合の説明図である。It is explanatory drawing in the case of sinking a 1st-position side support tool in this embodiment. 本実施形態において2位側支持具を沈下させる場合の説明図である。It is explanatory drawing in the case of sinking a 2nd-position side support tool in this embodiment. 本実施形態の確認試験の結果を示す図である。It is a figure which shows the result of the confirmation test of this embodiment. (a)は他の例に係る構体の4点水平支持状態を示す上面図、(b)は(a)の4点水平支持状態から1位側支持具が離れたときの支持状態を示す上面図、(c)は(a)の4点水平支持状態から2位側支持具が沈下し離れたときの支持状態を示す上面図である。(A) is a top view showing a four-point horizontal support state of a structure according to another example, and (b) is an upper surface showing a support state when the first supporter is separated from the four-point horizontal support state of (a). FIG. 4C is a top view showing a support state when the second-side support tool sinks away from the four-point horizontal support state of FIG.

以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、図面において、同一又は相当要素には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.

まず、本発明の一実施形態に係る鉄道車両構体の荷重試験方法(以下、単に「荷重試験方法」という)の対象となる構体について説明する。図1は荷重試験方法の対象となる構体を示す斜視図である。図1に示すように、構体1は、電車等の鉄道車両の構造体であって、内装や艤装が行われる前のものとして車体の主構造部分を構成する。   First, a description will be given of a structure that is a target of a load test method (hereinafter simply referred to as “load test method”) for a railway vehicle structure according to an embodiment of the present invention. FIG. 1 is a perspective view showing a structure to be subjected to a load test method. As shown in FIG. 1, the structure 1 is a structure of a railway vehicle such as a train, and constitutes a main structural portion of the vehicle body before being subjected to interior decoration or outfitting.

この構体1は、ステンレス等の合金鋼で形成されており、その内部に乗客を収容する空間を有する略箱型の形状をなしている。構体1は、車両の底部に位置する台枠8と、車両の両側に位置し窓部及びドアを有する側構体2と、車両の前後に位置する妻構体4と、車両の上部に位置する屋根構体6とから構成されている。   This structure 1 is formed of alloy steel such as stainless steel, and has a substantially box shape having a space for accommodating passengers therein. The structure 1 includes a frame 8 positioned at the bottom of the vehicle, a side structure 2 positioned on both sides of the vehicle and having windows and doors, a wife structure 4 positioned before and after the vehicle, and a roof positioned above the vehicle. It consists of a structure 6.

具体的には、台枠8は略矩形状を有し、構体1の底部に配置されている。台枠8の周縁には、両側に位置する側構体2と、車両の前側及び後側に位置する妻構体4とが台枠8を囲むように立設されている。構体1の上部には、屋根構体6が側構体2と妻構体4とから構成された空間に蓋をするように配置されている。側構体2及び妻構体4は、車両の外側に配置された外板とその外板の内側に配置された柱や骨材等とから構成されている。   Specifically, the underframe 8 has a substantially rectangular shape and is arranged at the bottom of the structure 1. On the periphery of the frame 8, side structures 2 located on both sides and wife structures 4 positioned on the front and rear sides of the vehicle are erected so as to surround the frame 8. In the upper part of the structure 1, the roof structure 6 is arranged so as to cover the space formed by the side structure 2 and the wife structure 4. The side structure 2 and the wife structure 4 are composed of an outer plate disposed outside the vehicle and columns, aggregates, and the like disposed inside the outer plate.

この構体1には、後述する荷重試験方法にて応力を測定するためのものとして、歪ゲージが貼付されて装着されており、よって、以下の説明における構体1の応力は、具体的には、歪ゲージ貼付箇所の応力値を意味している。   A strain gauge is affixed and attached to this structure 1 for measuring stress by a load test method to be described later. Therefore, the stress of the structure 1 in the following description is specifically: It means the stress value at the location where the strain gauge is applied.

次に、本実施形態の荷重試験方法について、図2に示すフローチャートを参照しつつ詳細に説明する。なお、本実施形態は、「JIS E7105」に規定された荷重試験方法に準ずるものである。   Next, the load test method of this embodiment will be described in detail with reference to the flowchart shown in FIG. The present embodiment conforms to the load test method defined in “JIS E7105”.

まず、図4(a),(b)に示すように、構体1に鉛直方向下方の荷重を負荷するものとして、構体1の台枠8上にエアバッグ治具11を取り付ける。ここでは、台枠8上に床板(不図示)を配置し、この床板上にエアバック治具11を取り付けている。これと共に、例えば構体1において台枠8のまくらばり(空気バネ位置)付近に設けられた4箇所のジャッキ受部を、支持具12が有するロードセル13の頂点に当接させて載置し、構体1を支持具12で4点支持する。   First, as shown in FIGS. 4A and 4B, the airbag jig 11 is attached on the frame 8 of the structure 1 so as to apply a load in the vertical direction to the structure 1. Here, a floor board (not shown) is arranged on the underframe 8, and an airbag jig 11 is attached on the floor board. At the same time, for example, four jack receiving portions provided in the structure 1 in the vicinity of the sleepers (air spring positions) of the underframe 8 are placed in contact with the apexes of the load cells 13 of the support 12, 1 is supported by the support 12 at four points.

このエアバッグ治具11は、その膨張力を利用して台枠8上に荷重を負荷するものである。支持具12のロードセル13の下方には、ジャッキ14が設置されている。このジャッキ14によって、支持具12が鉛直方向に沿って移動可能にされ、支持点Mの高さ位置が調整可能とされている。   The airbag jig 11 applies a load on the underframe 8 by using the inflating force. A jack 14 is installed below the load cell 13 of the support 12. The jack 14 enables the support 12 to move along the vertical direction, and the height position of the support point M can be adjusted.

なお、本実施形態では、構体1の前方右側に配置された支持具を1位側支持具(一の支持具)12と称し、その支持点を1位側支持点Mと称すると共に、前方左側に配置された支持具を2位側支持具(他の支持具)12と称し、その支持点を2位側支持点Mと称する。また、構体1の後方右側に配置された支持具を3位側支持具12と称し、その支持点を3位側支持点Mと称すると共に、後方左側に配置された支持具を4位側支持具12と称し、その支持点を4位側支持点Mと称する。 Incidentally, with this embodiment, referred to support disposed in the front right of the structure 1 1 of the side support (one of the support) 12 1 refers to the support point position 1 side support point M 1, referred to support disposed in the front left position 2 side support (other support) 12 2, referred to the support point position 2 side supporting point M 2. Further, called support the 3-position side support 12 3 arranged behind the right side of the structure 1, the support point with referred to 3-position side supporting point M 3, a support which is arranged behind the left position 4 called side support 12 4, referred to the supporting point and the 4-position side support point M 4.

続いて、ジャッキ14を作動させ、4つの支持具12〜12の支持点M〜Mが同じ水平面H(図6参照)上に位置するような4点水平支持状態(以下、単に「4点水平支持状態」という)とする(S1)。つまり、各ジャッキ14の頭部を互いに水平にする。ここでは、例えば水盛法によって4点水平支持状態を実現している。 Subsequently, the jack 14 is operated, and a four-point horizontal support state (hereinafter simply referred to as “support points M 1 to M 4” of the four support members 12 1 to 12 4 is located on the same horizontal plane H (see FIG. 6)). (Referred to as “4-point horizontal support state”) (S1). That is, the heads of the jacks 14 are leveled with each other. Here, a four-point horizontal support state is realized by, for example, the water filling method.

続いて、応力の絶対基準を画定すべく、4点水平支持状態での構体1の応力を0とする(S2)。換言すると、このときの構体1に負荷されている総荷重(すなわち、構体1の自重とエアバッグ治具11の自重との合計)による構体1の応力が0として測定されるように初期化する。   Subsequently, the stress of the structure 1 in the four-point horizontal support state is set to 0 in order to define the absolute reference of the stress (S2). In other words, initialization is performed so that the stress of the structure 1 due to the total load applied to the structure 1 at this time (that is, the total weight of the weight of the structure 1 and the weight of the airbag jig 11) is measured as zero. .

続いて、後段のS9,S12にて測定される沈下量を予測するためのものとして、構体1に負荷されている総荷重に依存しない第1沈下量成分と、総荷重に依存する第2沈下量成分と、を求める(予測前工程:S3)。   Subsequently, as a means for predicting the settlement amount measured in the subsequent steps S9 and S12, a first settlement component that does not depend on the total load applied to the structure 1 and a second settlement that depends on the total load. An amount component is obtained (pre-prediction step: S3).

続いて、エアバッグ治具11を膨張させることで、4点水平支持状態においてロードセル13の総和力(支持具12の支持荷重の合計)が空車状態の車体質量となるように、構体1に空車荷重(試験荷重)Tを負荷する(S4)。具体的には、各支持具12〜12の各ロードセル13で検出された荷重の合計が空車荷重Tになるようにエアバッグ治具11の膨張圧力を調整する。ここでの空車荷重Tは、上記S2で応力が初期化されていることから、下記式(ア)で示されるものとされる。
空車荷重T=[営業運転可能な空の車両質量から台車を2つ取り除いた質量(=空車
状態の荷重)]−[構体自重C+エアバッグ治具自重A] …(ア)
Subsequently, the air bag jig 11 is inflated so that the total force of the load cell 13 (the total support load of the support 12) becomes an empty vehicle body mass in the four-point horizontal support state so that the structure 1 has an empty vehicle. A load (test load) T is applied (S4). Specifically, the sum of the load detected by each load cell 13 of each support member 12 1 to 12 4 to adjust the inflation pressure of the airbag jig 11 so that the empty car load T. The empty vehicle load T here is represented by the following formula (A) because the stress is initialized in S2.
Empty vehicle load T = [Mass obtained by removing two trolleys from the empty vehicle mass that can be used in commercial operation (= empty vehicle)
State load)]-[body weight C + airbag jig weight A] (a)

続いて、この4点水平支持状態での構体1の応力を空車応力として測定する(S5)。そして、上記S3にて求められた総荷重に依存しない第1沈下量成分、及び総荷重に依存する第2沈下量成分に基づいて、後段のS9,12にて測定される支持具12,12の沈下量をそれぞれ予測する(予測本工程:S6)。 Subsequently, the stress of the structure 1 in the four-point horizontal support state is measured as an empty car stress (S5). Based on the first subsidence amount component that does not depend on the total load obtained in S3 and the second subsidence amount component that depends on the total load, the support tools 12 1 , 12, and the like are measured in the subsequent stages S9, 12. The amount of settlement of 12 2 is predicted (prediction main step: S6).

続いて、構体1の応力を再度0とする(再初期化工程:S7)。換言すると、このときの総荷重(すなわち、空車荷重Tと構体自重Cとエアバッグ治具自重Aとの合計)による構体1の応力が0として測定されるように再び初期化する。   Subsequently, the stress of the structure 1 is set to 0 again (reinitialization step: S7). In other words, initialization is performed again so that the stress of the structure 1 due to the total load at this time (that is, the sum of the empty vehicle load T, the structure weight C, and the airbag jig weight A) is measured as zero.

続いて、ジャッキ14を作動させ、1位側支持具12(つまり、1位側支持点M)を徐々に沈下させる(S8)。これと共に、1位側支持具12が所定量沈下したごとに、構体1の応力を測定する。そして、1位側支持具12(つまり、1位側支持点M)が構体1から離れたとき、当該1位側支持具12の沈下量を第1沈下量として測定すると共に、構体1の応力を第1沈下応力として測定する(S9)。ここでは、図5(a)に示すように、上方視において構体1の重心位置Pが中心にあることから、図5(b)に示すように、このS7においては1位側支持具12だけでなく4位側支持具12が構体1から離間し、構体1が2点で支持される(やじろべー状態)。 Subsequently, the jack 14 is operated, and the first-side support tool 12 1 (that is, the first-side support point M 1 ) is gradually lowered (S8). At the same time, the stress of the structure 1 is measured every time a predetermined amount of the first- side support tool 121 sinks. When the first-side support tool 12 1 (that is, the first-side support point M 1 ) is separated from the structure 1, the amount of settlement of the first-position support tool 12 1 is measured as the first settling amount, and the structure 1 is measured as the first settlement stress (S9). Here, as shown in FIG. 5 (a), since the gravity center position P of the structure 1 it is centered in the upper view, as shown in FIG. 5 (b), 1-position side support 12 1 in this S7 not only 4-position side support 12 4 is separated from the structure 1, structure 1 is supported at two points (Yajirobe state).

続いて、応力が0となるようにジャッキ14を作動させて1位側支持具12を上昇させることで、4点水平支持状態で構体1を再び支持する(S10)。続いて、ジャッキ14を作動させ、2位側支持具12(つまり、2位側支持点M)を徐々に沈下させる(S11)と共に、2位側支持具12が所定量沈下したごとに、構体1の応力を測定する。そして、2位側支持具12(つまり、2位側支持点M)が構体1から離れたとき、当該2位側支持具12の沈下量を第2沈下量として測定すると共に、構体1の応力を第2沈下応力として測定する(S12)。ここでは、2位側支持具12だけでなく3位側支持具12が構体1から離間し、構体1が2点で支持される。 Subsequently, the stress becomes zero as by raising the 1-position side support 12 1 actuates the jacks 14 again supports the structure 1 by four points horizontal supporting state (S10). Subsequently, the jack 14 is actuated to gradually sink the second- side support tool 12 2 (that is, the second-side support point M 2 ) (S11) and every time the second- side support tool 12 2 sinks a predetermined amount. Next, the stress of the structure 1 is measured. When the second-position support tool 12 2 (that is, the second-position support point M 2 ) is separated from the structure 1, the amount of settlement of the second-position support tool 12 2 is measured as the second amount of settlement, and the structure The first stress is measured as the second settlement stress (S12). Here, not only the 2-position side support member 12 2 3-position side support 12 3 is spaced apart from the structure 1, structure 1 is supported at two points.

次に、上述した予測前工程(上記S3)及び予測本工程(上記S6)について、図3に示すフローチャートを参照しつつ詳細に説明する。   Next, the pre-prediction process (S3) and the main prediction process (S6) will be described in detail with reference to the flowchart shown in FIG.

予測前工程(上記S3)においては、構体1に空車荷重Tを負荷する前、すなわち、総荷重が構体自重Cとエアバッグ治具自重Aとの合計の状態(試験荷重を何も負荷しない状態)において、4点水平支持状態でジャッキ14を作動させ、1位側支持具12が構体1から離れるまで1位側支持具12を沈下させる(S21)。そして、その沈下量を第1基準沈下量として測定する(S22)。その後、応力が0となるようにジャッキ14を作動させて1位側支持具12を上昇させることで、4点水平支持状態で構体1を再び支持する。 In the pre-prediction process (S3), before the empty load T is applied to the structure 1, that is, the total load is the total weight of the structure weight C and the air bag jig weight A (a state in which no test load is applied). in), actuates the jacks 14 at four points horizontally supported state, position 1 side support 12 1 to sink the 1-position side support 12 1 to away from structure 1 (S21). Then, the amount of settlement is measured as the first reference settlement amount (S22). Thereafter, stress by raising the 1-position side support 12 1 actuates the jack 14 so that 0, again supporting structure 1 by four points horizontal support state.

続いて、4点水平支持状態でジャッキ14を作動させ、2位側支持具12が構体1から離れるまで2位側支持具12を沈下させる(S23)。そして、その移動量を第2基準沈下量として測定する(S23)。その後、応力が0となるようにジャッキ14を作動させて2位側支持具12を上昇させることで、4点水平支持状態で構体1を再び支持する Subsequently, by operating the jacks 14 at four points horizontal support state, 2-position side support member 12 2 to settle the 2-position side support member 12 2 to away from structure 1 (S23). Then, the movement amount is measured as the second reference settlement amount (S23). Thereafter, stress by raising become so the 2-position side support member 12 2 by operating the jacks 14 0, again supporting the structure 1 by four points horizontally supported state

ここで、構体1にあっては、概略には、前後左右対称な構造であるものの、厳密には、例えば組上げ時のずれ等の影響のために1位側と2位側との間に構体高さ誤差Yを有している場合がある。そのため、図6(a)及び図7(a)に示す一例のように、上記S1において構体1を4点水平支持状態で支持すると、構体自重Cやエアバッグ治具自重A等で構体1が支持具12に押さえ付けられることから、構体1にねじれ(構体変形)が生じる。つまり、構体1に存在する非対称性により、上記S1の構体1は、初期ねじれを有している。   Here, the structure 1 generally has a symmetrical structure in the front-rear and left-right directions, but strictly speaking, for example, the structure between the first position and the second position due to the influence of a shift during assembly or the like. There may be a height error Y. Therefore, as shown in FIG. 6A and FIG. 7A, when the structure 1 is supported in the four-point horizontal support state in S1, the structure 1 is supported by the structure weight C, the air bag jig weight A, or the like. Since it is pressed against the support 12, the structure 1 is twisted (structure deformation). That is, due to the asymmetry existing in the structure 1, the structure 1 of S1 has an initial twist.

よって、図6(b)に示すように、上記S21にて1位側支持具12を沈下させると、4点水平支持状態の水平面Hが破壊されるような状態となり、ねじれが解放されて構体高さ誤差Yが解放され、自然体としての構体1’となる。これと同時に、総荷重によって沈下し、基準沈下量δのときに1位側支持具12が構体1から離れる。よって、総荷重による沈下量成分Yは、
=Y+δ …(A)
となる。
Therefore, as shown in FIG. 6 (b), when the to settle the 1-position side support 12 1 in the above S21, a state such as a horizontal plane H of the 4-point horizontal support state is destroyed, twist is released The structure height error Y is released, and the structure 1 ′ becomes a natural body. At the same time, subsided by the total load, position 1 side support 12 to 1 when reference subsidence [delta] 1 is separated from the assembly 1. Therefore, subsidence component Y P by the gross load,
Y P = Y + δ 1 (A)
It becomes.

一方、図7(b)に示すように、上記S24にて2位側支持具12を沈下させると、同様に、水平面が破壊されるような状態となり、ねじれが解放されて構体高さ誤差Yが解放され、自然体としての構体1’となる。これと同時に、総荷重によって沈下し、基準沈下量δのときに1位側支持具12が構体1から離れる。よって、総荷重による沈下量成分Yは、
=δ−Y …(B)
となる。
On the other hand, as shown in FIG. 7 (b), when the to settle the 2-position side support member 12 2 in the above S24, similarly, a state such as a horizontal plane is destroyed, twist is released structure height errors Y is released and becomes a natural structure 1 ′. At the same time, subsided by the total load, position 1 side support 12 to 1 when reference subsidence [delta] 2 is separated from the assembly 1. Therefore, subsidence component Y P by the gross load,
Y P = δ 2 −Y (B)
It becomes.

そこで、上記式(A),(B)から下記式(1)が導かれる。つまり、下記式(1)により、第1及び第2基準沈下量δ,δが、総荷重に依存しない第1沈下量成分Y(構体高さ誤差Yに相当)と、総荷重に依存する第2沈下量成分Yとに分類されて求められる(S26)。
Y=(δ−δ)/2, Y=(δ+δ)/2 …(1)
Y :第1沈下量成分
:第2沈下量成分
δ:第1基準沈下量
δ:第2基準沈下量
Therefore, the following formula (1) is derived from the above formulas (A) and (B). That is, according to the following formula (1), the first and second reference settlement amounts δ 1 and δ 2 depend on the first settlement amount component Y (corresponding to the structure height error Y) that does not depend on the total load and the total load. It is classified into the second subsidence component Y P which is determined (S26).
Y = (δ 2 −δ 1 ) / 2, Y P = (δ 2 + δ 1 ) / 2 (1)
Y: first subsidence amount component Y P : second subsidence amount component δ 1 : first reference subsidence amount δ 2 : second reference subsidence amount

次に、予測本工程(上記S6)においては、空車荷重Tを負荷する前後の総荷重の荷重比λを、下記式(C)によって求める(S31)。
荷重比λ=(構体自重C+エアバッグ治具A+空車荷重T)/
(構体自重C+エアバッグ治具自重A) …(C)
Next, in the prediction main process (S6), the load ratio λ of the total load before and after applying the empty vehicle load T is obtained by the following equation (C) (S31).
Load ratio λ = (body weight C + airbag jig A + empty vehicle load T) /
(Structure weight C + Airbag jig weight A) (C)

そして、この荷重比λと、上述した予測前工程で求めた第1及び第2沈下量成分Y,Yとに基づくことで、下記式(2),(3)が導かれる。その結果、下記式(2),(3)により、上記S9にて測定する第1沈下量の予測値として第1予測沈下量δ が求められると共に、上記S12にて測定する第2沈下量の予測値として第2予測沈下量δ が求められることになる(S32)。なお、定数Sは、4点水平支持状態での構体1と自然体としての構体1’とに基づいて適宜設定されるものであり、第2予測沈下量δ>第1予測沈下量δのときはS=1、第1予測沈下量δ>第2予測沈下量δのときはS=−1となる。なお、図6,7に示される例では、S=1となっている。
δ =−S・Y+λY …(2)
δ =S・Y+λY …(3)
δ :第1予測沈下量
δ :第2予測沈下量
S :定数(δ>δのときS=1,δ>δのときS=−1)
Then, a the load ratio lambda, the first and second subsidence component Y obtained in the prediction before step described above, by based on the Y P, the following equation (2), (3) is derived. As a result, according to the following formulas (2) and (3), the first predicted settlement amount δ * 1 is obtained as a predicted value of the first settlement amount measured in S9, and the second settlement measured in S12. As a predicted value of the amount, the second predicted settlement amount δ * 2 is obtained (S32). The constant S is appropriately set based on the structure 1 in the four-point horizontal support state and the structure 1 ′ as a natural body, and the second predicted settlement amount δ 2 > the first predicted settlement amount δ 1 . When S = 1, and when the first predicted settlement amount δ 1 > the second predicted settlement amount δ 2 , S = −1. In the example shown in FIGS. 6 and 7, S = 1.
δ * 1 = −S · Y + λY P (2)
δ * 2 = S · Y + λY P (3)
δ * 1 : first predicted settlement amount δ * 2 : second predicted settlement amount S: constant (S = 1 when δ 2 > δ 1 ; S = −1 when δ 1 > δ 2 )

従って、本実施形態によれば、「総荷重に依存する(=初期ねじれの影響を含まない)沈下量成分Y」と「総荷重に依存しない(=初期ねじれの影響を含む)沈下量成分Y」とに沈下量を分類して把握することができる。よって、これら沈下量成分Y,Y に基づくことで、例えば構体1に非対称性が存在する場合でも、第1及び第2予測沈下量δ ,δ を精度よく求めることができる。すなわち、第1及び第2沈下量を精度よく予測することが可能となる。 Therefore, according to the present embodiment, “subsidence amount component Y P that depends on the total load (= not including the effect of initial twist)” and “subsidence amount component that does not depend on the total load (= including the effect of initial twist). The amount of settlement can be classified and grasped as “Y”. Therefore, these subsidence component Y, that based on Y P, for example, even if there is asymmetry in structure 1 can be obtained first and second predicted subsidence [delta] * 1, [delta] * 2 accurately. That is, it is possible to accurately predict the first and second sinking amounts.

また、上述したように、予測前工程(上記S3)においては、総荷重が構体自重Cとエアバッグ治具自重Aとの合計とされている。そのため、特段の荷重を構体に別途負荷することなく、4点水平支持状態とした上記S1の後そのまま予測前工程を実施でき、よって、荷重試験方法を好適且つ簡便に実施することができる。   Further, as described above, in the pre-prediction step (S3), the total load is the sum of the body weight C and the weight A of the air bag jig. Therefore, it is possible to carry out the pre-prediction process as it is after S1 in the four-point horizontal support state without separately applying a special load to the structure, and thus the load test method can be carried out suitably and simply.

また、本実施形態では、上述したように、上記S5にて応力を初期化することから、その後、支持具12を沈下させることによる応力のみを測定することができるため、例えば上記S9,12において応力を容易に測定することが可能となる。   In the present embodiment, as described above, since the stress is initialized in S5, it is possible to measure only the stress caused by the sinking of the support tool 12 thereafter. The stress can be easily measured.

ここで、説明した本実施形態に係る鉄道車両構体の荷重試験方法に関し、予測した第1及び第2予測沈下量δ ,δ と、実測した第1及び第2沈下量と、をそれぞれ比較し、第1及び第2予測沈下量δ ,δ の予測精度を確認する確認試験を行った。ここでの試験では、構体質量を68kNとし、エアバッグ治具質量を32kNとし、空車荷重を95kNとした。予測精度は、「沈下量/予測沈下量×100」とした。その結果を図8に示す。 Here, regarding the load test method for the railway vehicle structure according to the present embodiment described above, the predicted first and second predicted subsidence amounts δ * 1 , δ * 2 and the actually measured first and second subsidence amounts. A comparison test was performed in which the respective first and second predicted subsidence amounts δ * 1 and δ * 2 were confirmed for comparison. In this test, the structure mass was 68 kN, the airbag jig mass was 32 kN, and the empty load was 95 kN. The prediction accuracy was “subsidence amount / prediction subsidence amount × 100”. The result is shown in FIG.

図8に示すように、この確認試験では、予測精度94%で第1沈下量を第1予測沈下量δ として予測することができ、また、予測精度105%で第2沈下量を第2予測沈下量δ として予測することができた。よって、第1及び第2沈下量を精度よく予測するという上記効果を確認することができた。 As shown in FIG. 8, in this confirmation test, the first subsidence amount can be predicted as the first predicted subsidence amount δ * 1 with a prediction accuracy of 94%, and the second subsidence amount is predicted with a prediction accuracy of 105%. 2 was predicted as the predicted amount of settlement δ * 2 . Therefore, the above effect of accurately predicting the first and second sinking amounts could be confirmed.

なお、本実施形態では、上述したように、上方視において構体1の重心位置Pが中心にあることから、1位側支持具12を沈下させて1位側支持具12が構体1から離れたとき、4位側支持具12も構体1から離れて2点支持されるが、構体1の重心位置Pによってはこれに限定されるものではない。 In the present embodiment, as described above, since the center-of-gravity position P of the structure 1 is centered in the upper view, position 1 side support 12 1 by subsidence 1-position side support 12 1 from structure 1 when away, but 4-position side support 12 4 are also supported two points away from the assembly 1, it is not limited to this depending on the gravity center position P of the structure 1.

例えば、図9(a)に示すように、上方視において構体1の重心位置Pが、中心に対してほぼ左側(2位側支持点M寄り)にある場合、図9(b)に示すように、1位側支持具12を沈下させると、1位側支持具12のみが構体1から離れて3点支持される。また、この場合、図9(c)に示すように、2位側支持具12を沈下させると、2位側支持具12の対角に位置する3位側支持具12のみが構体1から離れて3点支持される。 For example, as shown in FIG. 9A, when the center of gravity position P of the structure 1 is substantially on the left side (near the second support point M2) with respect to the center, as shown in FIG. as such, when the to settle the 1-position side support 12 1, only one of the side support member 12 1 is supported at three points away from the assembly 1. In this case, as shown in FIG. 9 (c), 2-position side when the support member 12 2 is subsidence, only 3-position side support 12 3 is located in the diagonal of the 2-position side support member 12 2 structure Three points apart from 1 are supported.

以上において、第1沈下量成分Yが第1移動量成分に相当し、第2沈下量成分Yが第2移動量成分に相当する。また、第1基準沈下量δが第1基準移動量に相当し、第1予測沈下量δ が第1予測移動量に相当する。さらにまた、第2基準沈下量δが第2基準移動量に相当し、第2予測沈下量δ が第2予測移動量に相当する。 Or more at the first subsidence component Y corresponds to the first movement amount component, second subsidence component Y P corresponds to a second movement amount component. Further, the first reference settlement amount δ 1 corresponds to the first reference movement amount, and the first predicted settlement amount δ * 1 corresponds to the first prediction movement amount. Furthermore, the second reference settlement amount δ 2 corresponds to the second reference movement amount, and the second predicted settlement amount δ * 2 corresponds to the second predicted movement amount.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態では、エアバッグ治具11を用いて構体1に試験荷重を負荷したが、油圧、水タンク、砂袋、若しくは鉄塊(鋳物用なまこ)を用いて構体1に試験荷重を負荷してもよい。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, in the above embodiment, a test load is applied to the structure 1 using the air bag jig 11, but a test load is applied to the structure 1 using hydraulic pressure, a water tank, a sand bag, or an iron lump (a cast iron). You may load.

また、上記実施形態では、支持具12を沈下させてその沈下量を測定しているが、上昇させてその上昇量を測定してもよく、鉛直方向に沿って移動させてその移動量を測定すればよい。   Moreover, in the said embodiment, although the support tool 12 is sunk and the amount of sag is measured, you may raise and measure the amount of escalation, and it moves along the vertical direction and measures the amount of sag. do it.

また、上記実施形態では、2位側支持具12を他の支持具としたが、3側支持具12を他の支持具としてもよい。また、上記実施形態では、1位側支持具12を一の支持具としたが、2〜4位側支持具12〜12の何れかを一の支持具としてもよい。この場合、一の支持具とされた2〜4位側支持具12〜12の対角に位置しない支持具が他の支持具とされる。 In the above embodiment, although the 2-position side support member 12 2 and the other support, may be a 3-side support device 12 3 as another support. Further, in the above embodiment, the 1-position side support 12 1 one of the support, either 2-4 of side support member 12 2-12 4 may be one support. In this case, a support tool that is not positioned diagonally to the 2nd to 4th- position side support tools 12 2 to 12 4 that is one support tool is used as the other support tool.

1…構体、11…エアバッグ治具(治具)、12…支持具、12…1位側支持具(一の支持具)、12…2位側支持具(他の支持具)、H…水平面、M,M〜M…支持点、T…空車荷重(試験荷重)、Y…第1沈下量成分(第1移動量成分)、Y…第2沈下量成分(第2移動量成分)、δ…第1基準沈下量(第1基準移動量)、δ …第1予測沈下量(第1予測移動量)、δ…第2基準沈下量(第2基準移動量)、δ …第2予測沈下量(第2予測移動量)、λ…荷重比。 DESCRIPTION OF SYMBOLS 1 ... Structure, 11 ... Airbag jig | tool (jig), 12 ... Support tool, 12 1 ... 1st-position side support tool (one support tool), 12 2 ... 2nd-position side support tool (other support tool), H: Horizontal plane, M, M 1 to M 4 ... Support point, T ... Empty load (test load), Y ... First settlement amount component (first movement amount component), Y P ... Second settlement amount component (second Movement amount component), δ 1 ... First reference settlement amount (first reference movement amount), δ * 1 ... First predicted settlement amount (first predicted movement amount), δ 2 ... Second reference settlement amount (second reference) (Movement amount), δ * 2 ... second predicted settlement amount (second predicted movement amount), λ ... load ratio.

Claims (4)

鉄道車両の構体における強度又は剛性を確認するための荷重試験方法であって、
前記構体を4つの支持具で支持すると共に、当該4つの支持具の支持点が同じ水平面上に位置するような4点水平支持状態とする4点支持工程と、
前記4点支持工程の後、前記構体に試験荷重を負荷する荷重負荷工程と、
前記荷重負荷工程の後に前記4点水平支持状態から一の支持具を鉛直方向に沿って移動させる場合であって、前記4つの支持具うち何れかの支持具が前記構体から離れるときまでの移動量を、第1予測移動量として予測する移動量予測工程と、を備え、
前記移動量予測工程は、
前記荷重負荷工程の前に、前記4点水平支持状態から前記4つの支持具うち何れかの支持具が前記構体から離れるまで前記一の支持具を鉛直方向に沿って移動させ、その移動量を第1基準移動量として測定する第1工程と、
前記荷重負荷工程の前に、前記4点水平支持状態からの前記4つの支持具うち何れかの支持具が前記構体から離れるまで前記一の支持具に対して前記構体の長手方向又は幅方向に隣接する他の支持具を鉛直方向に沿って移動させ、その移動量を第2基準移動量として測定する第2工程と、
下記式(1)により、前記第1及び第2基準移動量を、前記構体に負荷されている総荷重に依存しない第1移動量成分と前記総荷重に依存する第2移動量成分とに分類する第3工程と、
下記式(2)により、前記第1及び第2移動量成分と前記試験荷重を負荷する前後の前記総荷重の荷重比とに基づいて、前記第1予測移動量を求める第4工程と、を含むことを特徴とする鉄道車両構体の荷重試験方法。
Y=(δ−δ)/2, Y=(δ+δ)/2 …(1)
δ =−S・Y+λY …(2)
Y :第1移動量成分
:第2移動量成分
δ:第1基準移動量
δ:第2基準移動量
δ :第1予測移動量
λ :試験荷重を負荷する前後の総荷重の荷重比
S :定数(δ>δのときS=1,δ>δのときS=−1)
A load test method for confirming the strength or rigidity of a railway vehicle structure,
A four-point support step of supporting the structure with four support tools and a four-point horizontal support state in which the support points of the four support tools are located on the same horizontal plane;
After the four-point support step, a load loading step of applying a test load to the structure,
Movement of one support tool from the four-point horizontal support state along the vertical direction after the load loading step until any one of the four support tools leaves the structure. A movement amount prediction step of predicting the amount as the first predicted movement amount,
The movement amount prediction step includes:
Before the load loading step, the one support tool is moved along the vertical direction from the four-point horizontal support state until any one of the four support tools is separated from the structure, and the amount of movement is determined. A first step of measuring as a first reference movement amount;
Prior to the load loading step, in the longitudinal direction or the width direction of the structure with respect to the one support tool until any one of the four support tools from the four-point horizontal support state is separated from the structure. A second step of moving another adjacent support tool along the vertical direction and measuring the movement amount as a second reference movement amount;
According to the following equation (1), the first and second reference movement amounts are classified into a first movement component that does not depend on the total load applied to the structure and a second movement component that depends on the total load. And a third step to
A fourth step of obtaining the first predicted movement amount based on the first and second movement amount components and the load ratio of the total load before and after applying the test load according to the following equation (2): A load test method for a railway vehicle structure, comprising:
Y = (δ 2 −δ 1 ) / 2, Y P = (δ 2 + δ 1 ) / 2 (1)
δ * 1 = −S · Y + λY P (2)
Y: first movement amount component Y P : second movement amount component δ 1 : first reference movement amount δ 2 : second reference movement amount δ * 1 : first predicted movement amount λ: total before and after applying the test load Load ratio S of load: constant (S = 1 when δ 2 > δ 1 ; S = −1 when δ 1 > δ 2 )
前記移動量予測工程は、前記荷重負荷工程の後に前記4点水平支持状態から前記他の支持具を鉛直方向に沿って移動させる場合であって、前記4つの支持具うち何れかの支持具が前記構体から離れるときまでの前記他の支持具の移動量を、第2予測移動量としてさらに予測するものであり、
前記第4工程においては、下記式(3)により、前記第1及び第2移動量成分と前記荷重比とに基づいて、前記第2予測移動量を求めることを特徴とする請求項1記載の鉄道車両構体の荷重試験方法。
δ =S・Y+λY …(3)
δ :第2予測移動量
The movement amount prediction step is a case where the other support tool is moved along the vertical direction from the four-point horizontal support state after the load loading step, and any one of the four support tools is The amount of movement of the other support tool until it leaves the structure is further predicted as a second predicted movement amount,
The said 4th process WHEREIN: Based on the said 1st and 2nd movement amount component and the said load ratio, the said 2nd estimated movement amount is calculated | required by following formula (3). Load test method for railway vehicle structures.
δ * 2 = S · Y + λY P (3)
δ * 2 : second predicted movement amount
前記試験荷重は、前記4点水平支持状態での前記4つの支持具における支持荷重の合計が空車状態の車体質量となる荷重であることを特徴とする請求項1又は2記載の鉄道車両構体の荷重試験方法。   3. The railway vehicle structure according to claim 1, wherein the test load is a load in which a total of the support loads of the four supports in the four-point horizontal support state becomes a vehicle body mass in an empty state. 4. Load test method. 前記移動量予測工程の前記第1及び第2工程においては、前記総荷重が、前記構体の自重に関する荷重と前記構体に前記試験荷重を負荷するための治具の自重に関する荷重との合計とされていることを特徴とする請求項1〜3の何れか一項記載の鉄道車両構体の荷重試験方法。   In the first and second steps of the movement amount prediction step, the total load is a sum of a load related to the weight of the structure and a load related to the weight of the jig for applying the test load to the structure. The load test method for a railway vehicle structure according to any one of claims 1 to 3.
JP2009004979A 2008-12-26 2009-01-13 Railway vehicle structure load test method Active JP5307564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009004979A JP5307564B2 (en) 2008-12-26 2009-01-13 Railway vehicle structure load test method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008334159 2008-12-26
JP2008334159 2008-12-26
JP2009004979A JP5307564B2 (en) 2008-12-26 2009-01-13 Railway vehicle structure load test method

Publications (2)

Publication Number Publication Date
JP2010169398A true JP2010169398A (en) 2010-08-05
JP5307564B2 JP5307564B2 (en) 2013-10-02

Family

ID=42701703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009004979A Active JP5307564B2 (en) 2008-12-26 2009-01-13 Railway vehicle structure load test method

Country Status (1)

Country Link
JP (1) JP5307564B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169397A (en) * 2008-12-26 2010-08-05 Tokyu Car Corp Method of testing load of rolling stock structure body
CN102445315A (en) * 2011-11-16 2012-05-09 贵州大自然科技有限公司 Rolling testing method and device for plant fiber mattress
CN107271205A (en) * 2017-06-13 2017-10-20 中车齐齐哈尔车辆有限公司 Rolling stock is delayed unloading the fatigue experimental device and fatigue test method of beam

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597238A (en) * 1982-07-05 1984-01-14 Hitachi Ltd Method for testing load of structural body of vehicle
JPS63156049U (en) * 1987-03-31 1988-10-13
JPH0475942U (en) * 1990-11-13 1992-07-02
JP2006292737A (en) * 2005-03-17 2006-10-26 Form Associate:Kk Method for measuring torsional rigidity of vehicle body
JP2009208763A (en) * 2008-02-07 2009-09-17 Railway Technical Res Inst Railway vehicle body
JP2010169397A (en) * 2008-12-26 2010-08-05 Tokyu Car Corp Method of testing load of rolling stock structure body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597238A (en) * 1982-07-05 1984-01-14 Hitachi Ltd Method for testing load of structural body of vehicle
JPS63156049U (en) * 1987-03-31 1988-10-13
JPH0475942U (en) * 1990-11-13 1992-07-02
JP2006292737A (en) * 2005-03-17 2006-10-26 Form Associate:Kk Method for measuring torsional rigidity of vehicle body
JP2009208763A (en) * 2008-02-07 2009-09-17 Railway Technical Res Inst Railway vehicle body
JP2010169397A (en) * 2008-12-26 2010-08-05 Tokyu Car Corp Method of testing load of rolling stock structure body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013028828; '鉄道車両-旅客車用構体-荷重試験方法' JIS E7105 , 20060220 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169397A (en) * 2008-12-26 2010-08-05 Tokyu Car Corp Method of testing load of rolling stock structure body
CN102445315A (en) * 2011-11-16 2012-05-09 贵州大自然科技有限公司 Rolling testing method and device for plant fiber mattress
CN107271205A (en) * 2017-06-13 2017-10-20 中车齐齐哈尔车辆有限公司 Rolling stock is delayed unloading the fatigue experimental device and fatigue test method of beam

Also Published As

Publication number Publication date
JP5307564B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5307563B2 (en) Railway vehicle structure load test method
JP5307564B2 (en) Railway vehicle structure load test method
CN103048149A (en) Parameter determining test bed for gantry framework type rail vehicle bogie
CN106092629B (en) The ship lift ship compartment compartment Shui Man performance test method
IT201800021199A1 (en) ELECTRIC OR HYBRID SPORTS CAR
CN204023424U (en) A kind of Hanging Basket You Ding back-pressure mechanism
CN105784388A (en) Axle lifting type hydraulic oil cylinder lifting brake platform
JP3053570B2 (en) Rolling suspension tester
KR100934766B1 (en) A testing apparatus for a lightweight bogie frame
Liliana et al. Stresses in a bogie frame of a rail carriage
JP5383358B2 (en) Building foundation loading test method
CN201540153U (en) Self-elevating drilling platform cantilever beam weighing structure
CN106323608B (en) A kind of flutter valve static test tooling
CN205691343U (en) Sedan lifted type hydraulic jack lifting brake platform
Chłus et al. Numerical standard tests of railway carriage platform
CN109747517A (en) The method of steam reformer radiant section support frame modulesization transport
CN108088733A (en) A kind of external pressure load loading device and test method for concrete box culvert
CN207129101U (en) A kind of jackstone column foot seat
JP2011017234A (en) Loading test method for building foundation
CN110688787B (en) Bolt group stress determination method for strip-shaped base under action of transverse bending moment locally
CN107807045A (en) A kind of compression test device and test method for concrete box culvert
KR100629317B1 (en) Load testing system and the method of body structure for rolling stock
CN210071205U (en) Wheel-rail force calibration tool
CN207650019U (en) A kind of compression test device for concrete box culvert
CN207636408U (en) A kind of external pressure load loading device for concrete box culvert

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5307564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150