JP2010169294A - Method of determining heating-up target temperature of heat pump type water heater - Google Patents

Method of determining heating-up target temperature of heat pump type water heater Download PDF

Info

Publication number
JP2010169294A
JP2010169294A JP2009010763A JP2009010763A JP2010169294A JP 2010169294 A JP2010169294 A JP 2010169294A JP 2009010763 A JP2009010763 A JP 2009010763A JP 2009010763 A JP2009010763 A JP 2009010763A JP 2010169294 A JP2010169294 A JP 2010169294A
Authority
JP
Japan
Prior art keywords
temperature
heating
hot water
boiling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009010763A
Other languages
Japanese (ja)
Other versions
JP5192406B2 (en
Inventor
Hiroshi Kikuchi
洋 菊池
Makoto Honma
誠 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2009010763A priority Critical patent/JP5192406B2/en
Publication of JP2010169294A publication Critical patent/JP2010169294A/en
Application granted granted Critical
Publication of JP5192406B2 publication Critical patent/JP5192406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of determining a heating-up target temperature of a heat pump type water heater, capable of improving comprehensive heating efficiency of the heat pump while considering reduction of running costs. <P>SOLUTION: This method includes a step of determining heating efficiencies ηd, ηn of the heat pump according to an outside air temperature Tad of daytime and an outside air temperature Tan of night time of each of a plurality of temporary heating-up target temperatures Tbt from the relationship stored in advance, a step of calculating electric power charge Ya necessary for achieving a target hot water storage heat quantity Qtt by each of the plurality of temporary heating-up target temperatures Tbt by using electric power charge unit price Cd of daytime and electric power charge unit price Cn of night time stored in advance, and a step of determining the heating-up target temperature Tbt on the basis of the electric power charge Ya calculated by each of the plurality of temporary heating-up target temperatures Tbt. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ヒートポンプ式加熱手段によって湯を沸き上げて貯湯するヒートポンプ式給湯機の沸き上げ目標温度の決定方法に関するものである。   The present invention relates to a method for determining a boiling target temperature of a heat pump water heater that boils and stores hot water by a heat pump heating means.

従来よりこの種のヒートポンプ式給湯機においては、特許文献1や特許文献2に示されるように、深夜時間帯に電力料金単価の安い深夜電力で翌日に必要な熱量を沸き上げるように沸き上げ目標温度を設定し、空気熱源のヒートポンプ式加熱手段によって貯湯タンク内の水を沸き上げ目標温度になるように沸き上げ運転を行い、昼間時間帯に貯湯タンク内の残湯量が足りなくなると、電力料金単価の高い昼間電力で不足分を沸き増すようにしているものであった。   Conventionally, in this type of heat pump type hot water heater, as shown in Patent Document 1 and Patent Document 2, the boiling target is set so that the necessary amount of heat is boiled on the next day with midnight power at a low unit price during the midnight hours. When the temperature is set and the water in the hot water tank is heated to the target temperature by the heat pump type heating means of the air heat source, and the remaining hot water in the hot water tank is insufficient during the daytime, It was designed to increase the shortage with daytime electricity with a high unit price.

特開2004−218873号公報JP 2004-218873 A 特開2004−233002号公報Japanese Patent Laid-Open No. 2004-233002

一般的にヒートポンプ式加熱手段は低外気温度時には加熱効率が低下するため、外気温度の高い昼間時間帯の方がヒートポンプの加熱効率は高い。しかし、従来のものでは、翌日に必要な熱量を深夜時間帯の間に沸き上げようとするため、沸き上げ目標温度は高めの温度に設定され加熱効率を低下させると共に外気温度の低い深夜時間帯での沸き上げであるためさらに加熱効率を低下させてしまい、電気料金が高くなってしまう場合があった。   In general, the heat efficiency of the heat pump heating means decreases at low outside air temperature, so the heat efficiency of the heat pump is higher in the daytime period when the outside air temperature is high. However, in the conventional system, in order to boil the amount of heat required for the next day during midnight hours, the boiling target temperature is set to a higher temperature, lowering the heating efficiency and lowering the outside air temperature at midnight hours In some cases, the heating efficiency is further reduced due to the boiling of the water, resulting in a high electricity bill.

本発明は上記課題を解決するため、湯水を貯湯する貯湯タンクと、圧縮機と冷媒水熱交換器と減圧器と空気熱交換器とを有し前記貯湯タンクの水を加熱するためのヒートポンプ式加熱手段と、外気温度を検出する外気温度センサと、を備えたヒートポンプ式給湯機の沸き上げ目標温度決定方法であって、複数の仮の沸き上げ目標温度毎の昼間の外気温度および夜間の外気温度のそれぞれに応じたヒートポンプの加熱効率を予め記憶されている関係から決定するステップと、予め記憶されている昼間の電力料金単価および夜間の電力料金単価とを用いて複数の仮の沸き上げ目標温度毎に目標貯湯熱量を沸かすのに必要な電力料金を算出するステップと、複数の仮の沸き上げ目標温度毎に算出された電力料金に基づいて沸き上げ目標温度を決定するステップとを有したものとした。   In order to solve the above-mentioned problems, the present invention has a hot water storage tank for storing hot water, a compressor, a refrigerant water heat exchanger, a decompressor, and an air heat exchanger, and a heat pump type for heating the water in the hot water storage tank. A heating target temperature determination method for a heat pump water heater comprising a heating means and an outside air temperature sensor for detecting an outside air temperature, wherein the daytime outside air temperature and nighttime outside air for each of a plurality of temporary boiling target temperatures A plurality of provisional boiling targets using the step of determining the heating efficiency of the heat pump according to each of the temperatures from a pre-stored relationship and the prestored daytime power rate unit price and nighttime power rate unit price The step of calculating the electricity charge necessary to boil the target hot water storage amount for each temperature, and the boiling target temperature is determined based on the electricity charge calculated for each of the plurality of temporary boiling target temperatures. Was one having a step.

また、請求項2では、湯水を貯湯する貯湯タンクと、圧縮機と冷媒水熱交換器と減圧器と空気熱交換器とを有し前記貯湯タンクの水を加熱するためのヒートポンプ式加熱手段と、外気温度を検出する外気温度センサと、前記貯湯タンクに給水される給水の温度を検出する給水温度センサと、を備えたヒートポンプ式給湯機の沸き上げ目標温度決定方法であって、少なくとも給湯用を含む前記貯湯タンクから使用した熱量を算出する使用熱量算出ステップと、前記使用熱量算出ステップで算出された過去数日分の使用熱量に基づいて翌日に必要な目標貯湯熱量を設定する目標貯湯熱量設定ステップと、前記給水温度センサの検出値に基づき給水温度を記憶する給水温度記憶ステップと、前記外気温度センサの検出値に基づき昼間時間帯と夜間時間帯のそれぞれの外気温度を記憶する時間帯別外気温度記憶ステップと、前記目標貯湯熱量に基づき複数の仮の沸き上げ目標温度毎の夜間沸き上げ熱量と昼間沸き増し熱量を算出する時間帯別沸き上げ熱量算出ステップと、複数の仮の沸き上げ目標温度毎に前記給水温度記憶ステップで記憶された給水温度と前記時間帯別外気温度記憶ステップで記憶された夜間外気温度とに基づいた夜間加熱効率の値を予め記憶されている給水温度と外気温度と沸き上げ目標温度とに基づく加熱効率の関係から決定する夜間加熱効率決定ステップと、複数の仮の沸き上げ目標温度毎に前記給水温度記憶ステップで記憶した前記給水温度記憶ステップで記憶された給水温度と前記時間帯別外気温度記憶ステップで記憶された昼間外気温度とに基づいた昼間加熱効率の値を前記予め記憶されている給水温度と外気温度と沸き上げ目標温度とに基づいた加熱効率の関係から決定する昼間加熱効率決定ステップと、複数の仮の沸き上げ目標温度毎に前記時間帯別沸き上げ熱量算出ステップで算出した夜間沸き上げ熱量と前記夜間加熱効率設定ステップで決定した夜間加熱効率とから夜間電力使用量を算出する夜間電力使用量算出ステップと、複数の仮の沸き上げ温度毎に前記夜間電力使用量算出ステップで算出された夜間電力使用量と予め記憶されている夜間電力料金単価とから夜間電力料金を算出する夜間電力料金算出ステップと、複数の仮の沸き上げ目標温度毎に前記時間帯別沸き上げ熱量算出ステップで算出した昼間沸き上げ熱量と前記昼間加熱効率設定ステップで決定した昼間加熱効率とから昼間電力使用量を算出する昼間電力使用量算出ステップと、複数の仮の沸き上げ目標温度毎に前記昼間電力使用量算出ステップで算出された昼間電力使用量と予め記憶されている昼間電力料金単価とから昼間電力料金を算出する昼間電力料金算出ステップと、複数の仮の沸き上げ目標温度毎に前記夜間電力料金算出ステップで算出した夜間電力料金と前記昼間電力料金算出ステップで算出した昼間電力料金とを合算する総電力料金算出ステップと、前記総電力料金算出ステップで算出した仮の沸き上げ目標温度毎の総電力料金を比較して沸き上げ目標温度を決定する沸き上げ温度決定ステップとを有したものとした。   Further, in claim 2, there is provided a hot water storage tank for storing hot water, a heat pump heating means for heating the water in the hot water storage tank, comprising a compressor, a refrigerant water heat exchanger, a decompressor and an air heat exchanger. A method for determining a boiling target temperature of a heat pump water heater, comprising: an outside air temperature sensor for detecting an outside air temperature; and a feed water temperature sensor for detecting a temperature of feed water supplied to the hot water storage tank. The amount of heat used to calculate the amount of heat used from the hot water storage tank, including the amount of heat used, and the target amount of heat stored in the hot water for the next day based on the amount of heat used for the past several days calculated in the step of calculating the amount of heat used A setting step, a feed water temperature storing step for storing a feed water temperature based on a detection value of the feed water temperature sensor, a daytime time zone and a night time based on a detection value of the outside air temperature sensor Steps for storing outside air temperature for each time zone for storing each outside air temperature of the belt, and boiling for each time zone for calculating the amount of heat for night boiling and the amount of heat for daytime heating for each of a plurality of temporary boiling target temperature based on the target hot water storage heat amount Night heating efficiency based on the heating heat amount calculation step, the feed water temperature stored in the feed water temperature storage step for each of a plurality of provisional boiling target temperatures, and the night outside air temperature stored in the outside air temperature storage step for each time zone The night heating efficiency determining step for determining the value of the heating temperature based on the relationship between the heating efficiency based on the stored feed water temperature, the outside air temperature, and the boiling target temperature, and the feed water temperature storing step for each of a plurality of temporary boiling target temperatures Daytime heating based on the water supply temperature stored in the water supply temperature storage step stored in step 1 and the daytime outdoor air temperature stored in the time-dependent outdoor air temperature storage step A daytime heating efficiency determination step for determining a rate value from a relationship of heating efficiency based on the previously stored feed water temperature, outside air temperature, and boiling target temperature, and the time for each of a plurality of temporary boiling target temperatures Night power usage calculation step for calculating the night power usage from the night heating heat amount calculated in the zone-specific heating heat amount calculation step and the night heating efficiency determined in the night heating efficiency setting step, and a plurality of temporary boiling A night power charge calculating step for calculating a night power charge from the night power consumption calculated in the night power consumption calculating step for each temperature and a night power charge unit price stored in advance, and a plurality of temporary boiling targets For each temperature, the daytime electric power is calculated from the daytime boiling heat amount calculated in the hourly heating amount calculation step and the daytime heating efficiency determined in the daytime heating efficiency setting step. A daytime power usage calculation step for calculating a power usage amount, a daytime power usage amount calculated in the daytime power usage amount calculation step for each of a plurality of provisional boiling target temperatures, and a daytime power rate unit price stored in advance. A daytime power rate calculation step for calculating a daytime power rate from the nighttime power rate calculated in the nighttime power rate calculation step for each of a plurality of temporary boiling target temperatures, and a daytime power rate calculated in the daytime power rate calculation step And a heating temperature determination step for determining a heating target temperature by comparing the total power charges for each temporary heating target temperature calculated in the total power charging calculation step. It was supposed to be.

また、請求項3では、前記請求項2のものにおいて、前記時間帯別沸き上げ熱量算出ステップでは、仮の沸き上げ目標温度での夜間沸き上げ熱量を算出し、前記目標貯湯熱量から前記夜間沸き上げ熱量を減じて昼間沸き増し熱量を算出するステップを複数の仮の沸き上げ目標温度毎に行うようにした。   Further, according to claim 3, in the method of claim 2, in the heating heat amount calculation step according to time zone, a night heat value is calculated at a temporary boiling target temperature, and the night heat value is calculated from the target hot water storage amount. The step of increasing the amount of heat during the day by reducing the amount of heat to be raised and calculating the amount of heat was performed for each of a plurality of temporary boiling target temperatures.

また、請求項4では、前記請求項3のものにおいて、前記昼間沸き増し熱量があり、かつこの昼間沸き増し熱量が一定の最小沸き増し熱量以下の場合は、前記昼間沸き増し熱量を一定の最小沸き増し熱量とするステップを有した。   Further, according to claim 4, in the case of claim 3, when the daytime boiling heat amount is equal to or less than a certain minimum boiling heat amount, the daytime boiling heat amount is reduced to a certain minimum amount. It had a step of making the amount of heat increased.

また、請求項5では、前記請求項4のものにおいて、前記貯湯タンク内の貯湯熱を外部の熱負荷の熱源として利用する場合は、複数の仮の沸き上げ目標温度の内、最も低い仮の沸き上げ目標温度を熱源として利用しない場合よりも高い温度とした。   Moreover, in Claim 5, in the thing of the said Claim 4, when utilizing the hot water in the said hot water storage tank as a heat source of an external thermal load, it is the lowest temporary among several temporary boiling target temperature. The boiling target temperature was set to a higher temperature than when not used as a heat source.

このように本発明によれば、ランニングコストを安くするよう考慮した上で総合的なヒートポンプの加熱効率を向上させて省エネルギーとすることができると共に、沸き上げ目標温度Tbtが低めに設定されることがあるため放熱ロスも低減できる。   As described above, according to the present invention, the heating efficiency of the overall heat pump can be improved and energy can be saved in consideration of reducing the running cost, and the boiling target temperature Tbt is set lower. Therefore, heat dissipation loss can be reduced.

本発明の一実施形態の概略構成図。The schematic block diagram of one Embodiment of this invention. 同一実施形態の作動を説明するフローチャート。The flowchart explaining the action | operation of the same embodiment.

本発明の一実施形態について図面に基づいて説明する。
1は湯水を貯湯する貯湯タンク2を有した貯湯タンクユニット、3は貯湯タンク2内の湯水を加熱するヒートポンプ式加熱手段、4は前記貯湯タンク2の下部に接続されたヒーポン往き管5および前記貯湯タンク2の上部に接続されたヒーポン戻り管6よりなるヒーポン循環回路、7は前記貯湯タンク2の下部に接続され貯湯タンク2に水を給水する給水管、8は前記貯湯タンク2の上部に接続され貯湯されている高温水を給湯する出湯管である。
An embodiment of the present invention will be described with reference to the drawings.
1 is a hot water storage tank unit having a hot water storage tank 2 for storing hot water, 3 is a heat pump heating means for heating hot water in the hot water storage tank 2, 4 is a heat pump forward pipe 5 connected to the lower part of the hot water storage tank 2, and A heat pump circulation circuit comprising a heat pump return pipe 6 connected to the upper part of the hot water storage tank 2, 7 is connected to the lower part of the hot water storage tank 2, a water supply pipe for supplying water to the hot water storage tank 2, and 8 is connected to the upper part of the hot water storage tank 2. This is a hot water supply pipe that supplies hot water that is connected and stored.

9は給水管7から分岐された給水バイパス管、10は出湯管8からの湯と給水バイパス管9からの水を混合して給湯設定温度Thtの湯とする混合弁、11は混合弁10で混合された湯を給湯端末(図示せず)へ供給する給湯管、12は給湯管11に設けられ混合後の給湯温度Thを検出する給湯温度センサ、13は給湯管11に設けられ給湯流量Fを検出する流量センサ、14は貯湯タンク2の側面上下にわたり複数設けられ、貯湯タンク2内の湯の温度を検出する貯湯温度センサ、15は給水管7に設けられて給水圧を一定の圧力に減圧する減圧弁、16は貯湯タンク2の過圧を逃がす過圧逃がし弁である。ここで前記貯湯温度センサ14は、上から下へ向かって14a〜14eと呼ぶ。   9 is a water supply bypass pipe branched from the water supply pipe 7, 10 is a mixing valve that mixes hot water from the hot water outlet pipe 8 and water from the water supply bypass pipe 9 to make hot water at a hot water supply set temperature Tht, and 11 is a mixing valve 10. A hot water supply pipe for supplying the mixed hot water to a hot water supply terminal (not shown), 12 is provided in the hot water supply pipe 11 to detect a hot water supply temperature Th after mixing, and 13 is provided in the hot water supply pipe 11 to supply a hot water flow rate F. A plurality of flow rate sensors 14 are provided across the upper and lower sides of the hot water storage tank 2, and a hot water storage temperature sensor 15 for detecting the temperature of the hot water in the hot water storage tank 2, 15 is provided in the water supply pipe 7 to keep the water supply pressure constant. A pressure reducing valve 16 for reducing the pressure is an overpressure relief valve for releasing the overpressure in the hot water storage tank 2. Here, the hot water storage temperature sensor 14 is referred to as 14a to 14e from top to bottom.

17は浴槽、18は貯湯タンク2内上部に配置され浴槽水を加熱するための間接熱交換器、19は浴槽17と間接熱交換器18とを浴槽水が循環可能に接続するフロ循環回路、20はフロ循環回路19途中に設けられ浴槽水を循環させるフロ循環ポンプ、21は給湯管11から分岐されてフロ循環回路19に接続された湯張り管、22は湯張り管21途中に設けられて浴槽17への湯水の供給の開始停止を行うための湯張り開閉弁、23は給湯温度の設定変更や湯張り運転の開始を行う複数の操作スイッチ(23a、23b)を有したリモートコントローラである。   17 is a bathtub, 18 is an indirect heat exchanger disposed in the upper part of the hot water storage tank 2 for heating the bath water, 19 is a flow circulation circuit that connects the bathtub 17 and the indirect heat exchanger 18 so that the bath water can circulate, 20 is a flow circulation pump provided in the middle of the flow circulation circuit 19 for circulating the bath water, 21 is a hot water supply pipe branched from the hot water supply pipe 11 and connected to the flow circulation circuit 19, and 22 is provided in the middle of the hot water supply pipe 21. A hot water on / off valve for starting and stopping the supply of hot water to the bathtub 17 is a remote controller having a plurality of operation switches (23a, 23b) for changing the hot water temperature setting and starting the hot water operation. is there.

前記ヒートポンプ式加熱手段3には、冷媒を圧縮する圧縮機24と、高温高圧の冷媒と貯湯タンク2内の湯水とを熱交換する水熱交換器25と、水熱交換器25通過後の冷媒を減圧させる減圧器としての膨張弁26と、膨張弁26からの低温低圧の冷媒を蒸発させる蒸発器としての空気熱交換器27とを冷媒配管で環状に接続したヒートポンプサイクル28と、空気熱交換器27へ外気を供給するための送風ファン29と、水熱交換器25の水側のヒーポン循環回路4途中に設けられて貯湯タンク2の湯水を循環させるヒーポン循環ポンプ30と、圧縮機24からの吐出冷媒温度Trを検出する冷媒温度センサ31と、空気熱交換器27へ供給される空気の温度(外気温度Ta)を検出する外気温度センサ32と、水熱交換器25へ供給される水の温度(入水温度Twh)を検出する入水温度センサ33と、水熱交換器25で加熱された湯の温度を検出する沸き上げ温度センサ34とが設けられている。そして、このヒートポンプサイクル28には、二酸化炭素冷媒が充填され、高圧側で超臨界状態となるようにされている。   The heat pump type heating means 3 includes a compressor 24 for compressing refrigerant, a water heat exchanger 25 for exchanging heat between the high-temperature and high-pressure refrigerant and hot water in the hot water storage tank 2, and the refrigerant after passing through the water heat exchanger 25. A heat pump cycle 28 in which an expansion valve 26 as a pressure reducer for reducing the pressure and an air heat exchanger 27 as an evaporator for evaporating the low-temperature and low-pressure refrigerant from the expansion valve 26 are connected in an annular shape by a refrigerant pipe, and air heat exchange From a blower fan 29 for supplying outside air to the water heater 27, a heat pump circulation pump 30 provided in the middle of the water heat exchanger circuit 4 on the water side of the water heat exchanger 25 and circulating hot water in the hot water storage tank 2, and a compressor 24 The refrigerant temperature sensor 31 for detecting the discharged refrigerant temperature Tr, the outside air temperature sensor 32 for detecting the temperature of the air supplied to the air heat exchanger 27 (outside air temperature Ta), and the water heat exchanger 25 are supplied. The incoming water temperature sensor 33 for detecting the temperature (incoming water temperature Twh) of water, and the temperature sensor 34 boiling for detecting the temperature of the hot water heated by the water heat exchanger 25 is provided. The heat pump cycle 28 is filled with carbon dioxide refrigerant so as to be in a supercritical state on the high pressure side.

35はヒートポンプ式加熱手段3の制御を行うヒーポン側制御手段で、冷媒温度センサ31、外気温度センサ32、入水温度センサ33、沸き上げ温度センサ34の検出値が入力され、圧縮機24、膨張弁26、送風ファン29、ヒーポン循環ポンプ30の作動を制御し、貯湯タンク2から取り出した水を加熱して沸き上げ温度センサ34で検出する沸き上げ温度Tbが予め複数レベルに設定されている沸き上げ目標温度Tbt(例えば65℃〜90℃の5℃刻みの6レベル)のうち選択決定された何れかの温度になるようにヒートポンプ式加熱手段3を制御する。   35 is a heat pump side control means for controlling the heat pump type heating means 3, and the detection values of the refrigerant temperature sensor 31, the outside air temperature sensor 32, the incoming water temperature sensor 33, and the boiling temperature sensor 34 are inputted, the compressor 24, the expansion valve 26, the heating temperature Tb detected by the boiling temperature sensor 34 by heating the water taken out from the hot water storage tank 2 and controlling the operation of the blower fan 29 and the heat pump circulation pump 30 is set to a plurality of levels in advance. The heat pump heating means 3 is controlled so as to be any one of the temperatures selected and determined from the target temperature Tbt (for example, 6 levels in increments of 5 ° C. from 65 ° C. to 90 ° C.).

36は給湯温度センサ12、流量センサ13、貯湯温度センサ14a〜14eの検出値が入力され、混合弁10、フロ循環ポンプ20、湯張り開閉弁22、フロ循環ポンプ15、湯張り開閉弁17の作動を制御すると共に、リモートコントローラ23およびヒーポン側制御手段35と通信可能に接続された貯湯側制御手段である。この貯湯側制御手段36は、予めこの給湯装置の作動を制御するためのプログラムおよび演算に必要な定数が記憶されていると共に、演算、比較、記憶機能、時計機能を有しているもので、予め給水温度Twと外気温度Taと沸き上げ温度Tbとに基づいた加熱効率η(加熱出力/使用電力量)の関係が記憶されていると共に、時間帯別電力料金制度の時間帯別の電力料金単価Cd、Cnが記憶されているものである。なお、給水温度Twと外気温度Taと沸き上げ温度Tbとに基づいた加熱効率ηの関係は、ヒートポンプ式加熱手段3を作動させる試験によって予め求めておいた関係を式あるいはデータマップとして記憶しているものである。   36 is inputted with detection values of the hot water temperature sensor 12, the flow rate sensor 13, and the hot water storage temperature sensors 14 a to 14 e, and the mixing valve 10, the flow circulation pump 20, the hot water on / off valve 22, the flow circulation pump 15 and the hot water on / off valve 17 The hot water storage side control means is connected to the remote controller 23 and the heat-pump side control means 35 so as to be communicable with each other. The hot water storage side control means 36 has a program for controlling the operation of the hot water supply device and constants necessary for calculation in advance, and has calculation, comparison, storage function, and clock function. The relationship of the heating efficiency η (heating output / power consumption) based on the feed water temperature Tw, the outside air temperature Ta, and the boiling temperature Tb is stored in advance, and the power rate for each time zone of the power rate system for each time zone Unit prices Cd and Cn are stored. The relationship of the heating efficiency η based on the feed water temperature Tw, the outside air temperature Ta, and the boiling temperature Tb is stored as a formula or a data map that is obtained in advance by a test for operating the heat pump heating means 3. It is what.

次に、本一実施形態の作動を図2に示すフローチャートに基づいて説明する。
給湯端末からの給湯があると、貯湯タンク2内には給水管7から水が流入すると共に、出湯管8から貯湯タンク2内の湯が流出する。そして、貯湯側制御手段36は、給湯温度センサ12が検出する給湯温度Thがリモートコントローラ23で設定された給湯設定温度Thtになるように混合弁10の開度を制御し、出湯管8からの湯と給水バイパス管9からの水とを混合して給湯する。
Next, the operation of the present embodiment will be described based on the flowchart shown in FIG.
When there is hot water from the hot water supply terminal, water flows into the hot water storage tank 2 from the water supply pipe 7 and hot water in the hot water storage tank 2 flows out from the hot water discharge pipe 8. Then, the hot water storage side control means 36 controls the opening degree of the mixing valve 10 so that the hot water supply temperature Th detected by the hot water supply temperature sensor 12 becomes the hot water supply set temperature Tht set by the remote controller 23. Hot water and water from the water supply bypass pipe 9 are mixed to supply hot water.

このとき、貯湯側制御手段36は、貯湯タンク2内の貯湯熱量Qtから給湯(および浴槽17への湯張り)に供された熱量(使用熱量Qe)を給湯設定温度Thtと給水温度Twと流量センサ13で検出する給湯流量Fとから算出し、これを一日の単位で積算する(ステップS1)。なお、給水温度Twは、給湯流量Fの積算値が一定以上に達した際の最下方の貯湯温度センサ14e(給水温度センサ)で検出する温度を給水温度Twとして貯湯側制御手段36が記憶するようにしている(ステップS2)。なお、間接熱交換器18を介して浴槽17の浴槽水(外部の熱負荷)に供給した熱量を使用熱量Qeに加算するようにしてもよい。   At this time, the hot water storage side control means 36 uses the hot water storage heat amount Qt in the hot water storage tank 2 for the amount of heat (used heat amount Qe) supplied to the hot water supply (and the hot water filling to the bathtub 17), the hot water supply set temperature Tht, the water supply temperature Tw, and the flow rate. It is calculated from the hot water supply flow rate F detected by the sensor 13, and this is integrated in units of one day (step S1). The hot water storage side control means 36 stores the temperature detected by the lowest hot water storage temperature sensor 14e (water supply temperature sensor) when the integrated value of the hot water supply flow rate F reaches a certain level or more as the water supply temperature Tw. (Step S2). The amount of heat supplied to the bathtub water (external heat load) of the bathtub 17 via the indirect heat exchanger 18 may be added to the use heat amount Qe.

次に、貯湯側制御手段36は、後述する昼間沸き増し熱量Qdがあるか否かを判断する(ステップS3)。今は昼間沸き増し熱量Qdがないものとして説明する。昼間沸き増し熱量Qdがないと判断すると、ステップS9へ進んで電力料金単価の安価な夜間時間帯(ここではPM11:00からAM7:00)の開始時刻に到達したかを判断する。PM11:00に到達すると、貯湯側制御手段36で記憶していた複数日分の一日の使用熱量Qeに基づいて翌日に使用するであろうと予測される目標貯湯熱量Qttを設定する(ステップS10)。   Next, the hot water storage side control means 36 determines whether or not there is a daytime boiling-up heat quantity Qd described later (step S3). Now, the explanation will be made assuming that there is no heat quantity Qd due to boiling during the day. If it is determined that there is no daytime boiling-up heat quantity Qd, the process proceeds to step S9, and it is determined whether or not the start time of the night time zone (PM 11:00 to AM 7:00) at which the power unit price is low is reached. When PM11: 00 is reached, a target hot water storage heat amount Qtt that is predicted to be used on the next day is set based on the daily heat usage amount Qe for a plurality of days stored in the hot water storage side control means 36 (step S10). ).

ここで目標貯湯熱量Qttの算出方法の一例を示すと、複数日分の一日の使用熱量Qeの平均値Qeavと偏差Qρを合算し、ヒートポンプ式加熱手段3での沸き上げ時の放熱ロスや貯湯タンク2からの放熱ロス等を考慮した所定の効率(例えば0.8)で除算して算出されるものである。   Here, an example of a method of calculating the target hot water storage heat amount Qtt is shown. The average value Qeav of daily use heat amount Qe for a plurality of days and the deviation Qρ are added together, and the heat dissipation loss during boiling in the heat pump heating means 3 It is calculated by dividing by a predetermined efficiency (for example, 0.8) in consideration of heat loss from the hot water storage tank 2 and the like.

そして、貯湯側制御手段36は、目標貯湯熱量Qttに基づき、複数の仮の沸き上げ目標温度Tbt毎にヒートポンプ式加熱手段3で夜間時間帯に沸き上げる夜間沸き上げ熱量Qnと昼間時間帯に沸き増す昼間沸き増し熱量Qdを以下の式1および式2により算出する(ステップS11)。
夜間沸き上げ熱量Qn=(沸き上げ目標温度Tbt−給水温度Tw)×貯湯容量L ・・・(式1)
昼間沸き増し熱量Qd=目標貯湯熱量Qtt−夜間沸き上げ熱量Qn ・・・(式2)
ここで、貯湯容量Lは貯湯タンク2の全容量に基づき貯湯側制御手段36が予め記憶している値である。また、夜間沸き上げ熱量Qn>目標貯湯熱量Qttならば、昼間沸き増し熱量Qdは0とする。
Then, the hot water storage side control means 36 is heated in the daytime time zone and the night boiling heat quantity Qn that is heated in the night time zone by the heat pump heating means 3 for each of a plurality of temporary boiling target temperatures Tbt based on the target hot water storage amount Qtt. The daytime boiling-up heat quantity Qd is calculated by the following formulas 1 and 2 (step S11).
Heating amount Qn = (boiling target temperature Tbt−feed water temperature Tw) × hot water storage capacity L (Equation 1)
Daytime boiling heat amount Qd = target hot water storage heat amount Qtt−night boiling heat amount Qn (Equation 2)
Here, the hot water storage capacity L is a value stored in advance by the hot water storage side control means 36 based on the total capacity of the hot water storage tank 2. Further, if the amount of heat at night boiling Qn> the amount of heat stored in hot water Qtt, the amount of heat Bd increased during the day is set to zero.

なお、ヒートポンプ式加熱手段3は極短時間での沸き増しには適さないため、ヒートポンプ式加熱手段3が定格加熱能力Pで最低作動時間(ここでは30分間)運転した際に沸き増しできる熱量(最小沸き増し熱量Qdmin)よりも昼間沸き増し熱量Qdが小さければ、昼間沸き増し熱量Qdを最小沸き増し熱量Qdminとするようにしている。   Since the heat pump heating means 3 is not suitable for boiling in a very short time, the amount of heat that can be boiled when the heat pump heating means 3 is operated at the rated heating capacity P for the minimum operating time (here 30 minutes) ( If the daytime boiling heat quantity Qd is smaller than the minimum boiling heat quantity Qdmin), the daytime boiling heat quantity Qd is set to the minimum boiling heat quantity Qdmin.

次に、貯湯側制御手段36は、貯湯側制御手段36に予め記憶されている給水温度Twと外気温度Taと沸き上げ目標温度Tbtとに基づいたヒートポンプ式加熱手段3の加熱効率η(加熱能力/電力使用量)の関係を参照し、複数の仮の沸き上げ目標温度毎Tbtに給水温度Twと後述する夜間外気温度Tanあるいは昼間外気温度Tadに基づいた夜間加熱効率ηnと昼間加熱効率ηdを決定する(ステップS12)。   Next, the hot water storage side control means 36 has a heating efficiency η (heating capacity) of the heat pump type heating means 3 based on the feed water temperature Tw, the outside air temperature Ta and the boiling target temperature Tbt stored in advance in the hot water storage side control means 36. / Electric power consumption), the night heating efficiency ηn and the daytime heating efficiency ηd based on the water supply temperature Tw and the nighttime outside air temperature Tan or daytime outside air temperature Tad described later at each of the plurality of temporary boiling target temperatures Tbt. Determine (step S12).

また、貯湯側制御手段36は、前記ステップS11で算出した複数の仮の沸き上げ目標温度Tbt毎の夜間沸き上げ熱量Qnと昼間沸き増し熱量Qdと、前記ステップS12で決定した複数の仮の沸き上げ目標温度Tbt毎の夜間加熱効率ηnと昼間加熱効率ηdとから、複数の仮の沸き上げ目標温度Tbt毎の夜間使用電力量Wnと昼間使用電力量Wdとを以下の式3および式4により算出する(ステップS13)。
夜間使用電力量Wn=夜間沸き上げ熱量Qn/夜間加熱効率ηn ・・・(式3)
昼間使用電力量Wd=昼間沸き増し熱量Qd/昼間加熱効率ηd ・・・(式4)
The hot water storage side control means 36 also includes the night boiling heat amount Qn and the daytime boiling heat amount Qd for each of the plurality of temporary boiling target temperatures Tbt calculated in Step S11, and the plurality of temporary boiling determined in Step S12. From the nighttime heating efficiency ηn and the daytime heating efficiency ηd for each target heating temperature Tbt, the nighttime power consumption Wn and the daytime power consumption Wd for each of a plurality of temporary boiling target temperatures Tbt are expressed by the following equations 3 and 4. Calculate (step S13).
Night energy consumption Wn = Night heating energy Qn / Night heating efficiency ηn (Equation 3)
Daytime power consumption Wd = Daytime heating amount Qd / Daytime heating efficiency ηd (Equation 4)

そして、貯湯側制御手段36は予め記憶していた夜間の電力料金単価Cnと昼間の電力料金単価Cdと前記ステップS13で算出した複数の仮の沸き上げ目標温度Tbt毎の夜間使用電力量Wnと昼間使用電力量Wdから複数の仮の沸き上げ目標温度Tbt毎の夜間電力料金Ynと昼間電力料金Ydを算出する(ステップS14)。   The hot water storage side control means 36 stores the nighttime power rate unit price Cn, the daytime power rate unit price Cd, the nighttime used power amount Wn for each of the plurality of temporary boiling target temperatures Tbt calculated in step S13, and The nighttime power charge Yn and the daytime power charge Yd for each of a plurality of temporary boiling target temperatures Tbt are calculated from the daytime power consumption Wd (step S14).

次に、貯湯側制御手段36は前記ステップS14で算出した複数の仮の沸き上げ目標温度Tbt毎の夜間電力料金Ynと昼間電力料金Ydを合算し、複数の仮の沸き上げ目標温度Tbt毎の総電力料金Yaを算出する(ステップS15)。   Next, the hot water storage-side control means 36 adds the nighttime power rate Yn and the daytime power rate Yd for each of the plurality of temporary boiling target temperatures Tbt calculated in step S14, and adds each of the plurality of temporary boiling target temperatures Tbt. A total power charge Ya is calculated (step S15).

そして、貯湯側制御手段36は前記ステップS15で算出した複数の仮の沸き上げ目標温度Tbt毎の総電力料金Yaを比較して、最も安価な温度を沸き上げ目標温度Tbtとして決定する(ステップS16)。   Then, the hot water storage side control means 36 compares the total power charges Ya for each of the plurality of temporary boiling target temperatures Tbt calculated in step S15, and determines the cheapest temperature as the boiling target temperature Tbt (step S16). ).

なお、ここでは、沸き上げ目標温度Tbtの全レベルを比べて総電力料金Yaが最も安い沸き上げ目標温度Tbtを選択決定するようにしているが、前日の沸き上げ目標温度Tbtとその上下のレベルの沸き上げ目標温度Tbtのうち最も総電力料金Yaが安い温度を沸き上げ目標温度Tbtとして選択決定するようにしてもよい。このようにすることで、目標貯湯熱量Qttの日々の変動による沸き上げ目標温度Tbtの過剰な変動を防止できると共に、沸き上げ目標温度Tbt毎の計算を前日の沸き上げ目標温度Tbtとその上下の3レベル分だけ行うだけでよくなり計算の負荷を減少できる。   Here, the boiling target temperature Tbt with the lowest total power charge Ya is selected and determined by comparing all levels of the boiling target temperature Tbt, but the boiling target temperature Tbt of the previous day and the levels above and below it are selected. Of the boiling target temperature Tbt, the temperature at which the total power rate Ya is the cheapest may be selected and determined as the boiling target temperature Tbt. By doing so, it is possible to prevent excessive fluctuation of the boiling target temperature Tbt due to daily fluctuations in the target hot water storage heat amount Qtt, and to calculate the boiling target temperature Tbt and the upper and lower boiling target temperature Tbt on the previous day. Only 3 levels need to be done, and the calculation load can be reduced.

次に、貯湯側制御手段36は前記ステップS16で決定した沸き上げ目標温度Tbtでの夜間沸き上げ熱量Qnを昼間時間帯の開始直前(例えばAM6:30)にヒートポンプ式加熱手段3の定格加熱能力Pでの沸き上げが完了するように、沸き上げ開始時刻(ピークシフト時刻)を以下の式5に基づいて算出する(ステップS17)。
ピークシフト時刻=AM6:30−(夜間沸き上げ熱量Qn/定格加熱能力P) ・・・(式5)
Next, the hot water storage side control means 36 sets the night heating heat amount Qn at the boiling target temperature Tbt determined in the step S16 to the rated heating capacity of the heat pump heating means 3 immediately before the start of the daytime time zone (for example, AM 6:30). The boiling start time (peak shift time) is calculated based on the following formula 5 so that the boiling at P is completed (step S17).
Peak shift time = AM6: 30− (Night boiling heat quantity Qn / rated heating capacity P) (Formula 5)

そして、現在時刻がピークシフト時刻となると、貯湯側制御手段36は、前記ステップS16で決定した沸き上げ目標温度Tbtでの沸き上げを開始する指示をヒーポン側制御手段35に出力する。ヒーポン側制御手段35は、沸き上げ温度センサ34が検出する沸き上げ温度Tbが指示された沸き上げ目標温度Tbtになるように圧縮機24、膨張弁26、送風ファン29、ヒーポン循環ポンプ30の作動を制御して沸き上げ運転を開始する(ステップS18)。   When the current time becomes the peak shift time, the hot water storage side control means 36 outputs an instruction to start boiling at the boiling target temperature Tbt determined in step S16 to the heat pump side control means 35. The heat pump side control means 35 operates the compressor 24, the expansion valve 26, the blower fan 29, and the heat pump circulation pump 30 so that the boiling temperature Tb detected by the boiling temperature sensor 34 becomes the designated boiling target temperature Tbt. Is controlled to start boiling operation (step S18).

この沸き上げ運転の最中に、ヒーポン側制御手段35は、送風ファン29の運転開始から一定時間経過した後の外気温度センサ32で検出する外気温度Taを貯湯側制御手段36へ出力し、貯湯側制御手段36は数日分(例えば3日分)の夜間の外気温度Taの値を平均して夜間外気温度Tanとして記憶する(ステップS20)。   During the heating operation, the heat-pump side control means 35 outputs the outside air temperature Ta detected by the outside air temperature sensor 32 after a predetermined time has elapsed from the start of the operation of the blower fan 29 to the hot water storage side control means 36. The side control means 36 averages the values of the nighttime outside air temperature Ta for several days (for example, three days) and stores them as the nighttime outside air temperature Tan (step S20).

次に、沸き上げた熱量が夜間沸き上げ熱量Qnになるか(ステップS21)、夜間時間帯の終了時刻(ここではAM7:00)に到達すると(ステップS22)、沸き上げ運転を停止する(ステップS23)。   Next, when the amount of heat heated up becomes the amount of heat heated up at night Qn (step S21) or when the end time of the night time zone (here AM7: 00) is reached (step S22), the heating operation is stopped (step S21). S23).

そして、再度最初のステップへ戻り、一日の使用熱量Qeの監視(ステップS1)と給水温度Twの監視(ステップS2)を行い、前記ステップS16で決定した沸き上げ目標温度Tbtでの前記ステップS11で算出した昼間沸き増し熱量Qdがあるかどうかを判断する(ステップS3)。   Then, the process returns to the first step again to monitor the daily usage heat quantity Qe (step S1) and the feed water temperature Tw (step S2), and the step S11 at the boiling target temperature Tbt determined in the step S16. It is determined whether or not there is an amount of heat Qd increased in the daytime calculated in (Step S3).

昼間沸き増し熱量Qdが0以上の値である場合は、昼間時間帯のうち電力料金単価の比較的安い所定時刻(ここではPM5:00)に到達したかを判断する(ステップS4)。   When the daytime boiling heat quantity Qd is a value equal to or greater than 0, it is determined whether a predetermined time (PM 5:00 in this case) at which the power rate unit price is relatively low in the daytime period has been reached (step S4).

前記所定時刻に到達すると、貯湯側制御手段36は、貯湯タンク2内の現在の貯湯熱量Qtをチェックして昼間沸き増し熱量Qdを沸き増し可能な状態であれば前記ステップS16で決定した沸き上げ目標温度Tbtでの沸き増しを開始する指示をヒーポン側制御手段36に出力する。ヒーポン側制御手段35は、沸き上げ温度センサ34が検出する沸き上げ温度Tbが指示された沸き上げ目標温度Tbtになるように圧縮機24、膨張弁26、送風ファン29、ヒーポン循環ポンプ30の作動を制御して沸き増し運転を開始する(ステップS5)。   When the predetermined time is reached, the hot water storage side control means 36 checks the current hot water storage heat amount Qt in the hot water storage tank 2 and if it is in a state where it can be heated up during the day and the heat amount Qd can be increased, the boiling determined in step S16 is performed. An instruction to start boiling at the target temperature Tbt is output to the heat pump side control means 36. The heat pump side control means 35 operates the compressor 24, the expansion valve 26, the blower fan 29, and the heat pump circulation pump 30 so that the boiling temperature Tb detected by the boiling temperature sensor 34 becomes the designated boiling target temperature Tbt. Is controlled to start boiling operation (step S5).

この沸き増し運転の最中に、ヒーポン側制御手段35は、送風ファン29の運転開始から一定時間経過した後の外気温度センサ32で検出する外気温度Taを貯湯側制御手段36へ出力し、貯湯側制御手段36は数日分(例えば3日分)の昼間の外気温度Taの値を平均して昼間外気温度Tadとして記憶する(ステップS6)。ここで、昼間沸き増し熱量Qdがなく沸き増し運転が行われない日においては、ヒーポン側制御手段35は、前記所定時刻になると一定時間送風ファン29を作動させ、その時の外気温度Taを昼間外気温度Tadとして貯湯側制御手段36へ出力するようにしてもよい。   During this heating operation, the heat-pump side control means 35 outputs the outside air temperature Ta detected by the outside air temperature sensor 32 after a certain time has elapsed from the start of the operation of the blower fan 29 to the hot water storage side control means 36. The side control means 36 averages the values of the daytime outside air temperature Ta for several days (for example, three days) and stores them as the daytime outside air temperature Tad (step S6). Here, on the day when there is no daytime boiling-up heat quantity Qd and the heating-up operation is not performed, the heat pump side control means 35 operates the blower fan 29 for a certain period of time when the predetermined time comes, and the outdoor temperature Ta at that time is changed to the daytime outside air. You may make it output to the hot water storage side control means 36 as temperature Tad.

次に、沸き増した熱量が夜間沸き上げ熱量Qdになると(ステップS7)、沸き上げ運転を停止する(ステップS23)。   Next, when the amount of heat increased by boiling reaches the amount of heat heated Qd at night (step S7), the heating operation is stopped (step S23).

そして、ステップS9へ進んで電力料金単価の安価な夜間時間帯(ここではPM11:00からAM7:00)の開始時刻に到達したかを判断する。PM11:00に到達すると、前記したステップS10以降の作動を再び繰り返すようにしている。   And it progresses to step S9 and it is judged whether the start time of the night time zone (here PM11: 00 to AM7: 00) where the electricity bill unit price is cheap was reached. When PM11: 00 is reached, the operation after step S10 is repeated again.

このように、沸き上げ目標温度Tbt毎に電力料金単価Yaを算出して沸き上げ目標温度Tbtを決定するようにしたので、ランニングコストを安くするよう考慮した上で総合的なヒートポンプの加熱効率を向上させて省エネルギーとすることができると共に、沸き上げ目標温度Tbtを低めに設定されるため放熱ロスも低減できる。   In this way, the electric power unit price Ya is calculated for each boiling target temperature Tbt to determine the boiling target temperature Tbt, so that the overall heating efficiency of the heat pump can be improved with consideration given to reducing the running cost. In addition to being able to save energy, the heating target temperature Tbt is set lower, so that heat dissipation loss can be reduced.

なお、貯湯タンク2内の貯湯熱量Qtを浴槽17内の浴槽水(外部の熱負荷)に一定量以上供給する運転を行う場合は、最も低い仮の沸き上げ目標温度Tbtを熱源として利用しない場合よりも高い温度(例えば75℃)とすることで、外部の熱負荷の加熱効率を必要以上に低下させないようにすることができる。外部の熱負荷としては浴槽水に限らず、暖房用の循環水としてもよい。また、外部の熱負荷の加熱形態として貯湯タンク2内の高温の湯を外部の熱交換器に循環供給する形態としてもよいものである。   In addition, when performing the operation | movement which supplies the hot water storage amount Qt in the hot water storage tank 2 to the bathtub water (external heat load) in the bathtub 17 more than a fixed amount, when not using the lowest temporary boiling target temperature Tbt as a heat source By setting the temperature to a higher temperature (for example, 75 ° C.), it is possible to prevent the heating efficiency of the external heat load from being lowered more than necessary. The external heat load is not limited to bathtub water, and may be circulating water for heating. Moreover, it is good also as a form which circulates and supplies the hot water in the hot water storage tank 2 to an external heat exchanger as a heating form of an external heat load.

なお、本発明はこの一実施形態に限定されるものではなく、要旨を変更しない範囲で改変することを妨げるものではない。例えば、昼間の沸き増し運転はPM5:00以降に行う構成としているが、昼間の電力料金単価が昼間時間帯の全域で一定である電力料金制度下で用いる場合には、単に昼間沸き増し熱量Qdの沸き増しが可能な状態となったら沸き増し運転を開始する構成としてもよい。また、貯湯側制御手段36が予め記憶している時間帯別の電力料金単価は、リモートコントローラ23からユーザーが変更可能な構成としてもよく、その際に電力会社の燃料調整費を入力可能な構成とするとなおよい。   In addition, this invention is not limited to this one Embodiment, It does not prevent changing in the range which does not change a summary. For example, the daytime reheating operation is performed after PM 5:00, but when used under a power rate system in which the daytime power rate unit price is constant throughout the daytime time zone, the daytime heating rate Qd is simply increased. It is good also as a structure which starts a boiling increase operation when it will be in the state which can be heated again. Further, the unit price of electric power charges for each time zone stored in advance by the hot water storage side control means 36 may be configured to be changeable by the user from the remote controller 23, and at this time, the configuration in which the fuel adjustment cost of the electric power company can be input. And even better.

次に、本発明の沸き上げ目標温度Tbtの決定方法の一計算例を説明する。
以下の表1は前提条件を示す。
Next, a calculation example of the method for determining the boiling target temperature Tbt of the present invention will be described.
Table 1 below shows the preconditions.

Figure 2010169294
Figure 2010169294

表1の前提条件において、各沸き上げ目標温度Tbt毎に前記ステップS11からステップS15までの計算を行った結果を以下の表2に示す。ここで、夜間加熱効率ηnおよび昼間加熱効率ηdは貯湯側制御手段36に予め記憶されている給水温度Twと外気温度Taと沸き上げ目標温度Tbtとに基づいたヒートポンプ式加熱手段3の加熱効率η(加熱能力/電力使用量)の関係から表1の前提条件と各沸き上げ目標温度Tbtに応じて参照された値である。   Table 2 below shows the results of calculation from step S11 to step S15 for each boiling target temperature Tbt under the preconditions in Table 1. Here, the nighttime heating efficiency ηn and the daytime heating efficiency ηd are the heating efficiency η of the heat pump type heating means 3 based on the feed water temperature Tw, the outside air temperature Ta and the boiling target temperature Tbt stored in advance in the hot water storage side control means 36. These values are referred to according to the preconditions in Table 1 and each boiling target temperature Tbt from the relationship of (heating capacity / power consumption).

Figure 2010169294
Figure 2010169294

表2に示された結果より、沸き上げ目標温度Tbtが75℃の場合が総電気料金Yaが最も安いため、沸き上げ目標温度Tbtを75℃に決定すると、ランニングコストを安くするよう考慮した上で総合的なヒートポンプの加熱効率を向上させて省エネルギーとすることができると共に、目標貯湯熱量Qttを全量夜間に沸き上げる場合よりも沸き上げ目標温度Tbtを低めに設定されるため放熱ロスも低減できる。   From the results shown in Table 2, when the boiling target temperature Tbt is 75 ° C., the total electricity rate Ya is the cheapest. Therefore, when the boiling target temperature Tbt is determined to be 75 ° C., the running cost is considered to be reduced. As a result, the heating efficiency of the overall heat pump can be improved and energy can be saved, and the heat loss can be reduced because the boiling target temperature Tbt is set lower than when the total amount of heat stored in the target hot water Qtt is boiled at night. .

2 貯湯タンク
3 ヒートポンプ式加熱手段
14a〜e 貯湯温度センサ
24 圧縮機
25 水熱交換器
26 膨張弁
27 空気熱交換器
32 外気温度センサ
35 ヒーポン側制御手段
36 貯湯側制御手段
Tbt 沸き上げ目標温度
Qe 使用熱量
Qtt 目標貯湯熱量
Qd 昼間沸き増し熱量
Qn 夜間沸き上げ熱量
Qdmin 最小沸き増し熱量
Tw 給水温度

Tan 夜間外気温度
Tad 昼間外気温度
ηd 昼間加熱効率
ηn 夜間加熱効率
Wd 昼間使用電力量
Wn 夜間使用電力量
Cd 昼間電力料金単価
Cn 夜間電力料金単価
Yd 昼間電力料金
Yn 夜間電力料金
Ya 総電力料金
2 Hot water storage tank 3 Heat pump type heating means 14a to e Hot water storage temperature sensor 24 Compressor 25 Water heat exchanger 26 Expansion valve 27 Air heat exchanger 32 Outside air temperature sensor 35 Heaton side control means 36 Hot water side control means Tbt Boiling target temperature Qe Use heat amount Qtt Target hot water storage amount Qd Daytime boiling heat amount Qn Night boiling heat amount Qdmin Minimum boiling heat amount Tw Water supply temperature

Tan Night outside air temperature Tad Daytime outside air temperature ηd Daytime heating efficiency ηn Nighttime heating efficiency Wd Daytime electricity consumption Wn Nighttime electricity consumption Cd Daytime electricity rate unit price Cn Nighttime electricity rate unit price Yd Daytime electricity rate unit price Yn Nighttime electricity rate Ya Total power rate

Claims (5)

湯水を貯湯する貯湯タンクと、圧縮機と冷媒水熱交換器と減圧器と空気熱交換器とを有し前記貯湯タンクの水を加熱するためのヒートポンプ式加熱手段と、外気温度を検出する外気温度センサと、を備えたヒートポンプ式給湯機の沸き上げ目標温度決定方法であって、
複数の仮の沸き上げ目標温度毎の昼間の外気温度および夜間の外気温度のそれぞれに応じたヒートポンプの加熱効率を予め記憶されている関係から決定するステップと、予め記憶されている昼間の電力料金単価および夜間の電力料金単価とを用いて複数の仮の沸き上げ目標温度毎に目標貯湯熱量を沸かすのに必要な電力料金を算出するステップと、複数の仮の沸き上げ目標温度毎に算出された電力料金に基づいて沸き上げ目標温度を決定するステップとを有したことを特徴とするヒートポンプ式給湯機の沸き上げ目標温度決定方法。
A hot water storage tank for storing hot water, a compressor, a refrigerant water heat exchanger, a decompressor, and an air heat exchanger, heat pump heating means for heating the water in the hot water storage tank, and outside air for detecting the outside air temperature A method for determining a boiling target temperature of a heat pump type water heater provided with a temperature sensor,
A step of determining the heating efficiency of the heat pump according to each of the daytime outside air temperature and the nighttime outside air temperature for each of a plurality of provisional boiling target temperatures from a prestored relationship, and a prestored daytime power rate Calculating a power rate required to boil the target hot water storage amount for each of a plurality of temporary boiling target temperatures using a unit price and a nightly power rate unit price, and calculating for each of the plurality of temporary boiling target temperatures. And a step of determining a boiling target temperature based on the electric power price. A method for determining a boiling target temperature of a heat pump type hot water heater.
湯水を貯湯する貯湯タンクと、圧縮機と冷媒水熱交換器と減圧器と空気熱交換器とを有し前記貯湯タンクの水を加熱するためのヒートポンプ式加熱手段と、外気温度を検出する外気温度センサと、前記貯湯タンクに給水される給水の温度を検出する給水温度センサと、を備えたヒートポンプ式給湯機の沸き上げ目標温度決定方法であって、
少なくとも給湯用を含む前記貯湯タンクから使用した熱量を算出する使用熱量算出ステップと、前記使用熱量算出ステップで算出された過去数日分の使用熱量に基づいて翌日に必要な目標貯湯熱量を設定する目標貯湯熱量設定ステップと、前記給水温度センサの検出値に基づき給水温度を記憶する給水温度記憶ステップと、前記外気温度センサの検出値に基づき昼間時間帯と夜間時間帯のそれぞれの外気温度を記憶する時間帯別外気温度記憶ステップと、前記目標貯湯熱量に基づき複数の仮の沸き上げ目標温度毎の夜間沸き上げ熱量と昼間沸き増し熱量を算出する時間帯別沸き上げ熱量算出ステップと、複数の仮の沸き上げ目標温度毎に前記給水温度記憶ステップで記憶された給水温度と前記時間帯別外気温度記憶ステップで記憶された夜間外気温度とに基づいた夜間加熱効率の値を予め記憶されている給水温度と外気温度と沸き上げ目標温度とに基づく加熱効率の関係から決定する夜間加熱効率決定ステップと、複数の仮の沸き上げ目標温度毎に前記給水温度記憶ステップで記憶した前記給水温度記憶ステップで記憶された給水温度と前記時間帯別外気温度記憶ステップで記憶された昼間外気温度とに基づいた昼間加熱効率の値を前記予め記憶されている給水温度と外気温度と沸き上げ目標温度とに基づいた加熱効率の関係から決定する昼間加熱効率決定ステップと、複数の仮の沸き上げ目標温度毎に前記時間帯別沸き上げ熱量算出ステップで算出した夜間沸き上げ熱量と前記夜間加熱効率設定ステップで決定した夜間加熱効率とから夜間電力使用量を算出する夜間電力使用量算出ステップと、複数の仮の沸き上げ温度毎に前記夜間電力使用量算出ステップで算出された夜間電力使用量と予め記憶されている夜間電力料金単価とから夜間電力料金を算出する夜間電力料金算出ステップと、複数の仮の沸き上げ目標温度毎に前記時間帯別沸き上げ熱量算出ステップで算出した昼間沸き上げ熱量と前記昼間加熱効率設定ステップで決定した昼間加熱効率とから昼間電力使用量を算出する昼間電力使用量算出ステップと、複数の仮の沸き上げ目標温度毎に前記昼間電力使用量算出ステップで算出された昼間電力使用量と予め記憶されている昼間電力料金単価とから昼間電力料金を算出する昼間電力料金算出ステップと、複数の仮の沸き上げ目標温度毎に前記夜間電力料金算出ステップで算出した夜間電力料金と前記昼間電力料金算出ステップで算出した昼間電力料金とを合算する総電力料金算出ステップと、前記総電力料金算出ステップで算出した仮の沸き上げ目標温度毎の総電力料金を比較して沸き上げ目標温度を決定する沸き上げ温度決定ステップとを有したことを特徴とするヒートポンプ式給湯機の沸き上げ目標温度決定方法。
A hot water storage tank for storing hot water, a compressor, a refrigerant water heat exchanger, a decompressor, and an air heat exchanger, heat pump heating means for heating the water in the hot water storage tank, and outside air for detecting the outside air temperature A heating water temperature sensor for detecting a temperature of water supplied to the hot water storage tank, and a heating target temperature determination method for a heat pump type hot water heater comprising:
A heat consumption calculation step for calculating the amount of heat used from the hot water storage tank including at least hot water supply, and a target heat storage heat amount required for the next day is set based on the heat consumption for the past several days calculated in the heat consumption calculation step. A target hot water storage heat amount setting step, a water supply temperature storage step for storing a water supply temperature based on a detection value of the water supply temperature sensor, and an outside air temperature in a daytime time zone and a night time zone based on a detection value of the outside air temperature sensor An outside air temperature storage step for each time zone, a nighttime heating heat amount for each of a plurality of temporary boiling target temperatures and a daytime heating heat amount calculation step based on the target hot water storage heat amount, and a heating heat amount calculation step for each time zone, Water supply temperature stored in the water supply temperature storage step for each temporary boiling target temperature and nighttime stored in the outdoor air temperature storage step according to the time period Night heating efficiency determination step for determining a night heating efficiency value based on the air temperature based on the relationship between the heating efficiency based on the pre-stored feed water temperature, the outside air temperature, and the boiling target temperature, and a plurality of temporary boiling The value of the daytime heating efficiency based on the water supply temperature stored in the water supply temperature storage step stored in the water supply temperature storage step for each target temperature and the daytime outdoor air temperature stored in the outdoor air temperature storage step for each time zone is described above. Daytime heating efficiency determination step determined from the relationship of heating efficiency based on the pre-stored feed water temperature, outside air temperature and boiling target temperature, and the heating heat amount per time zone for each of a plurality of temporary boiling target temperatures Night power consumption calculation that calculates the night power consumption from the night heating heat amount calculated in the calculation step and the night heating efficiency determined in the night heating efficiency setting step. Night power charge calculation step for calculating the night power charge from the step and the night power consumption calculated in the night power consumption calculation step for each of a plurality of temporary boiling temperatures and the night power charge unit price stored in advance And daytime power consumption from the daytime heating heat amount calculated in the hourly heating heat amount calculation step and the daytime heating efficiency setting step in the daytime heating efficiency setting step for each of a plurality of temporary boiling target temperatures. Calculate the daytime power usage from the daytime power usage calculation step and the daytime power usage calculated in the daytime power usage calculation step for each of a plurality of temporary boiling target temperatures and the daytime power unit price stored in advance. A daytime electricity rate calculation step, a nighttime electricity rate calculated in the nighttime electricity rate calculation step for each of a plurality of temporary boiling target temperatures, and the daytime electricity rate The heating target temperature is determined by comparing the total power rate calculation step for adding the daytime power rate calculated in the calculation step with the total power rate for each temporary heating target temperature calculated in the total power rate calculation step. A boiling temperature determination method for a heat pump type water heater, comprising: a boiling temperature determination step.
前記時間帯別沸き上げ熱量算出ステップでは、仮の沸き上げ目標温度での夜間沸き上げ熱量を算出し、前記目標貯湯熱量から前記夜間沸き上げ熱量を減じて昼間沸き増し熱量を算出するステップを複数の仮の沸き上げ目標温度毎に行うようにしたことを特徴とする請求項2記載のヒートポンプ式給湯機の沸き上げ目標温度決定方法。   In the heating heat amount calculation step by time zone, there are a plurality of steps of calculating a night heating heat amount at a temporary boiling target temperature, and subtracting the night boiling heat amount from the target hot water storage amount to calculate a daytime boiling heat amount. The method according to claim 2, wherein the heating target temperature is determined for each temporary boiling target temperature. 前記昼間沸き増し熱量があり、かつこの昼間沸き増し熱量が一定の最小沸き増し熱量以下の場合は、前記昼間沸き増し熱量を一定の最小沸き増し熱量とするステップを有したことを特徴とする請求項3記載のヒートポンプ式給湯機の沸き上げ目標温度決定方法。   A step of setting the daytime boiling heat amount to a certain minimum boiling heat amount when the daytime boiling heat amount is equal to or less than a certain minimum boiling heat amount. Item 4. A method for determining a boiling target temperature of a heat pump water heater according to item 3. 前記貯湯タンク内の貯湯熱を外部の熱負荷の熱源として利用する場合は、複数の仮の沸き上げ目標温度の内、最も低い仮の沸き上げ目標温度を熱源として利用しない場合よりも高い温度としたことを特徴とする請求項4記載のヒートポンプ式給湯機の沸き上げ目標温度決定方法。   When the hot water stored in the hot water storage tank is used as a heat source for an external heat load, among the plurality of temporary boiling target temperatures, the lowest temporary boiling target temperature is higher than when not used as a heat source. The heating target temperature determination method for a heat pump type hot water heater according to claim 4, wherein the heating target temperature is determined.
JP2009010763A 2009-01-21 2009-01-21 Method for determining boiling target temperature of heat pump water heater Active JP5192406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010763A JP5192406B2 (en) 2009-01-21 2009-01-21 Method for determining boiling target temperature of heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010763A JP5192406B2 (en) 2009-01-21 2009-01-21 Method for determining boiling target temperature of heat pump water heater

Publications (2)

Publication Number Publication Date
JP2010169294A true JP2010169294A (en) 2010-08-05
JP5192406B2 JP5192406B2 (en) 2013-05-08

Family

ID=42701619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010763A Active JP5192406B2 (en) 2009-01-21 2009-01-21 Method for determining boiling target temperature of heat pump water heater

Country Status (1)

Country Link
JP (1) JP5192406B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237149A (en) * 2010-05-13 2011-11-24 Mitsubishi Electric Corp Hot water storage type water heater
WO2012102185A1 (en) * 2011-01-24 2012-08-02 株式会社日本イトミック Hot water supply system
JP2019168164A (en) * 2018-03-23 2019-10-03 三菱電機株式会社 Hot water supply system
CN111922326A (en) * 2020-08-28 2020-11-13 北京科技大学 Method and device for obtaining plasma heating efficiency of tundish

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030944A (en) * 1983-08-01 1985-02-16 Mitsubishi Electric Corp Hot-water storage type hot-water supply device
JP2002174459A (en) * 2000-12-07 2002-06-21 Noritz Corp Hot-water supply apparatus
JP2007139213A (en) * 2005-11-15 2007-06-07 Daikin Ind Ltd Water heater control device
JP2008281309A (en) * 2007-05-14 2008-11-20 Mitsubishi Electric Corp Heat storage control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030944A (en) * 1983-08-01 1985-02-16 Mitsubishi Electric Corp Hot-water storage type hot-water supply device
JP2002174459A (en) * 2000-12-07 2002-06-21 Noritz Corp Hot-water supply apparatus
JP2007139213A (en) * 2005-11-15 2007-06-07 Daikin Ind Ltd Water heater control device
JP2008281309A (en) * 2007-05-14 2008-11-20 Mitsubishi Electric Corp Heat storage control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237149A (en) * 2010-05-13 2011-11-24 Mitsubishi Electric Corp Hot water storage type water heater
WO2012102185A1 (en) * 2011-01-24 2012-08-02 株式会社日本イトミック Hot water supply system
JP2019168164A (en) * 2018-03-23 2019-10-03 三菱電機株式会社 Hot water supply system
JP7065661B2 (en) 2018-03-23 2022-05-12 三菱電機株式会社 Hot water supply system
CN111922326A (en) * 2020-08-28 2020-11-13 北京科技大学 Method and device for obtaining plasma heating efficiency of tundish

Also Published As

Publication number Publication date
JP5192406B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
KR20100114022A (en) Heat-pump hot-water supply apparatus
CN110730889B (en) Hot water supply system
WO2014002133A1 (en) Heat-pump type hot water supply/heating system
JP2009047334A (en) Heat pump type water heater
JP2011208864A (en) Hot water supply system
JP5192406B2 (en) Method for determining boiling target temperature of heat pump water heater
JP5797998B2 (en) Heat pump type water heater
JP5567519B2 (en) Hot water storage bath water heater
JP4389378B2 (en) Hot water storage type heat pump water heater
JP2016044849A (en) Photovoltaic power generation device cooperation heat pump hot water storage type hot water supply system
JP2007327728A (en) Heat pump hot-water supply system
JP2012177534A (en) Heat-pump type bath hot-water supply device
JP2015055389A (en) Hot water system and control method thereof
JP2013087961A (en) Storage type hot water supply apparatus
JP5813980B2 (en) Heat pump bath water heater
JP5734882B2 (en) Hot water storage water heater
JP2007093113A (en) Heat pump type water heater
JP5584163B2 (en) Hot water storage water heater
JP3869749B2 (en) Hot water storage water heater
JP5580244B2 (en) Hot water storage water heater
JP5694845B2 (en) Heat pump bath water heater
JP3903462B2 (en) Hot water storage water heater
JP5662235B2 (en) Hot water storage water heater
JP4955375B2 (en) Hot water storage water heater
JP2015127626A (en) Hot water storage type heat pump hot water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130131

R150 Certificate of patent or registration of utility model

Ref document number: 5192406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250