JP2008281309A - Heat storage control device - Google Patents

Heat storage control device Download PDF

Info

Publication number
JP2008281309A
JP2008281309A JP2007128074A JP2007128074A JP2008281309A JP 2008281309 A JP2008281309 A JP 2008281309A JP 2007128074 A JP2007128074 A JP 2007128074A JP 2007128074 A JP2007128074 A JP 2007128074A JP 2008281309 A JP2008281309 A JP 2008281309A
Authority
JP
Japan
Prior art keywords
heat
midnight
assumption
heat generation
daytime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007128074A
Other languages
Japanese (ja)
Other versions
JP4994108B2 (en
Inventor
Tomihiro Takano
富裕 高野
Masashi Fujitsuka
正史 藤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007128074A priority Critical patent/JP4994108B2/en
Publication of JP2008281309A publication Critical patent/JP2008281309A/en
Application granted granted Critical
Publication of JP4994108B2 publication Critical patent/JP4994108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To determine a heat generation quantity of the day so that electricity cost is minimized. <P>SOLUTION: This heat storage control device has an actual database 31 storing a heat consumption actual quantity of a user of a plurality of days in the past, an assumption generating part 34 generating a candidate of a heat generation quantity generated at midnight by one or more as an assumption N, and a frequency distribution arithmetic operation part 32 determining the frequency distribution of the heat consumption actual quantity stored in the actual database 31 and calculating a probability X of causing a heat shortage in the daytime with every assumption N based on its frequency distribution, and also has an electricity cost arithmetic operation part 35 determining the sum total of an electricity cost expected value Cn (Yen) at midnight and an electricity cost expected value Cd (Yen) by additional generation in the daytime for every assumption N, an assumption evaluating part 36 determining as the heat generation quantity Na to be generated at midnight by selecting the assumption N of minimizing this sum total, and a heat generation control means 37 controlling starting or stopping of a heat generator 1 based on the heat generation quantity Na determined by the assumption evaluating part 36. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は蓄熱制御装置に関し、特に、安価な深夜電力を用いて生成した熱(温熱/冷熱)を一旦蓄熱装置に蓄えて使用する蓄熱システムにおいて、熱生成量を決定する蓄熱制御装置に関するものである。   The present invention relates to a heat storage control device, and more particularly, to a heat storage control device that determines the amount of heat generation in a heat storage system that temporarily stores and uses heat (heat / cold heat) generated using inexpensive late-night power. is there.

一般に、ヒータ式給湯器(電気温水器)やヒートポンプ式給湯器(エコキュート)などの電気式給湯システム、氷蓄熱式空調システム(エコアイス)などの蓄熱システムは、過去数日分の熱(温熱/冷熱)消費量の実績から当日分の熱生成量を決定する。   In general, heat storage systems such as heater water heaters (electric water heaters) and heat pump water heaters (EcoCute) and ice storage air conditioning systems (Eco Ice) are used for the heat of the past few days (heat / cold heat). ) The amount of heat generation for the day is determined from the actual consumption.

この種の従来の電気式給湯システムとして、例えば、数日分の湯消費平均値を算出し、それに補正分の±αを加えた量の湯だけを沸かすことにより、必要以上の湯沸しを防止するものが提案されている。ここで、α(補正値)は、外気温や前日の消費実績から算出している(例えば、特許文献1参照。)。   As this type of conventional electric hot water supply system, for example, the average value of hot water consumption for several days is calculated, and by boiling only the amount of hot water with the correction amount ± α added to it, unnecessary hot water boiling is prevented. Things have been proposed. Here, α (correction value) is calculated from the outside air temperature and the consumption results of the previous day (see, for example, Patent Document 1).

特開2005−257213号公報JP 2005-257213 A

しかしながら、当日生成熱量を、過去の消費実績平均値に、外気温から算出するαで補正する方法では、電気代が最小とは限らない。あくまで、深夜料金の時間帯で熱生成することを前提としており、湯切れなどの熱不足を防止するために、平均より多目に熱生成する必要があるが、どの程度多目にするかがが明確化されていないので、結果として、電気代のコスト削減につながらない可能性もあるという問題点があった。   However, in the method of correcting the generated heat amount on the day to the past actual consumption average value by α calculated from the outside air temperature, the electricity bill is not always the minimum. It is based on the premise that heat is generated in the late-night charge period, and it is necessary to generate heat more frequently than the average in order to prevent heat shortage such as running out of hot water, but how much more heat is used. As a result, there is a possibility that it may not lead to cost reduction of electricity bills.

この発明は、かかる問題点を解決するためになされたものであり、電気代が最小となるように当日の熱生成量を決定することが可能な蓄熱制御装置を得ることを目的としている。   The present invention has been made to solve such problems, and an object of the present invention is to obtain a heat storage control device capable of determining the heat generation amount on the day so that the electricity cost is minimized.

この発明は、深夜電力を利用して生成された熱を蓄熱槽に蓄積する熱生成装置を制御するための蓄熱制御装置であって、過去複数日のユーザの熱消費実績量を記憶する実績データベースと、深夜に生成する熱生成量の候補を仮定として1以上生成する仮定生成手段と、前記実績データベースに記憶された前記熱消費実績量の度数分布を求めるとともに、前記度数分布に基づいて、前記仮定ごとに、昼間熱切れが発生する確率を算出する度数分布演算手段と、前記仮定ごとに、深夜の電気代期待値と前記確率に基づく昼間の追加生成による電気代期待値との総和を求める電気代演算手段と、前記電気代演算手段により求められた前記総和が最小となる仮定を選択して、深夜に生成すべき熱生成量として決定する仮定評価手段と、前記仮定評価手段により決定された前記熱生成量に基づいて、前記熱生成装置の起動・停止を制御する熱生成制御手段とを備えた蓄熱制御装置である。   The present invention is a heat storage control device for controlling a heat generation device that accumulates heat generated by using midnight power in a heat storage tank, and stores a heat consumption performance amount of a user for a plurality of past days. And assuming generation means for generating one or more assuming heat generation amount candidates to be generated at midnight, obtaining the frequency distribution of the actual heat consumption amount stored in the actual result database, and based on the frequency distribution, For each assumption, a frequency distribution calculating means for calculating the probability of daytime heat shortage, and for each assumption, obtain the sum of the late-night electricity cost expectation value and the daytime additional electricity cost expectation value based on the probability An electricity bill calculating means, an assumption evaluating means for selecting the assumption that the sum obtained by the electricity bill calculating means is minimum, and determining the heat generation amount to be generated at midnight, and the assumption evaluating means Based on the heat generation amount determined by a heat storage controller having a heat generation control means for controlling the start and stop of the heat generating device.

この発明は、深夜電力を利用して生成された熱を蓄熱槽に蓄積する熱生成装置を制御するための蓄熱制御装置であって、過去複数日のユーザの熱消費実績量を記憶する実績データベースと、深夜に生成する熱生成量の候補を仮定として1以上生成する仮定生成手段と、前記実績データベースに記憶された前記熱消費実績量の度数分布を求めるとともに、前記度数分布に基づいて、前記仮定ごとに、昼間熱切れが発生する確率を算出する度数分布演算手段と、前記仮定ごとに、深夜の電気代期待値と前記確率に基づく昼間の追加生成による電気代期待値との総和を求める電気代演算手段と、前記電気代演算手段により求められた前記総和が最小となる仮定を選択して、深夜に生成すべき熱生成量として決定する仮定評価手段と、前記仮定評価手段により決定された前記熱生成量に基づいて、前記熱生成装置の起動・停止を制御する熱生成制御手段とを備えた蓄熱制御装置であるので、電気代が最小となるように当日の熱生成量を決定することができる。   The present invention is a heat storage control device for controlling a heat generation device that accumulates heat generated by using midnight power in a heat storage tank, and stores a heat consumption performance amount of a user for a plurality of past days. And assuming generation means for generating one or more assuming heat generation amount candidates to be generated at midnight, obtaining the frequency distribution of the actual heat consumption amount stored in the actual result database, and based on the frequency distribution, For each assumption, a frequency distribution calculating means for calculating the probability of daytime heat shortage, and for each assumption, obtain the sum of the late-night electricity cost expectation value and the daytime additional electricity cost expectation value based on the probability An electricity bill calculating means, an assumption evaluating means for selecting the assumption that the sum obtained by the electricity bill calculating means is minimum, and determining the heat generation amount to be generated at midnight, and the assumption evaluating means The heat generation control device is provided with a heat generation control means for controlling the start / stop of the heat generation device based on the heat generation amount determined by the above, so that the heat generation of the day so that the electricity bill is minimized The amount can be determined.

実施の形態1.
図1は、この発明の実施の形態1に係る蓄熱システムの構成を示した図である。本実施の形態1に係る蓄熱システムは、図1に示されるように、熱生成装置1と、蓄熱槽2と、蓄熱制御装置3とから構成されており、安価な深夜料金が適用される深夜電力を利用して、蓄熱制御装置3が決定する量・温度の水(湯・氷を含む)が蓄熱槽2に貯まるまで熱生成装置1によって給水を加熱または冷却する。
Embodiment 1 FIG.
1 is a diagram showing a configuration of a heat storage system according to Embodiment 1 of the present invention. As shown in FIG. 1, the heat storage system according to Embodiment 1 includes a heat generation device 1, a heat storage tank 2, and a heat storage control device 3. Using the electric power, the heat generation device 1 heats or cools the water supply until water (including hot water and ice) of the amount and temperature determined by the heat storage control device 3 is stored in the heat storage tank 2.

熱生成装置1は、電気により温熱もしくは冷熱を生成する装置であり、例えば、ヒートポンプ式給湯器(エコキュート)では、ヒートポンプに該当し、ヒータ式温水器(電気温水器)では、電熱ヒータに該当する。熱生成装置1で生成された温熱(もしくは冷熱)により、水道水は加熱(もしくは冷却)され、湯(もしくは氷)が生成される。   The heat generating device 1 is a device that generates heat or cold by electricity. For example, a heat pump type hot water heater (EcoCute) corresponds to a heat pump, and a heater type water heater (electric water heater) corresponds to an electric heater. . The hot water (or cold heat) generated by the heat generating device 1 heats (or cools) the tap water to generate hot water (or ice).

蓄熱槽2は、熱生成装置1によって生成した湯(もしくは氷)をユーザが使用するまで蓄えるものである。   The heat storage tank 2 stores hot water (or ice) generated by the heat generating device 1 until the user uses it.

蓄熱制御装置3は、過去の熱消費実績から、当日の熱生成量を決定し、その熱生成量が満たされるように熱生成装置1を起動および停止する。   The heat storage control device 3 determines the heat generation amount of the day from the past heat consumption results, and starts and stops the heat generation device 1 so that the heat generation amount is satisfied.

一般に、蓄熱システムは、安価な深夜料金が適用できる深夜帯に熱生成を行い、その熱を昼間にユーザが消費する。もし、深夜に生成した熱以上の当日消費が予想された場合、蓄熱制御装置3は、追加で熱生成を行う(給湯器では「沸き増し」などと呼ばれる)。   Generally, a heat storage system generates heat in the midnight zone where an inexpensive midnight charge can be applied, and the user consumes the heat in the daytime. If the same-day consumption more than the heat generated at midnight is predicted, the heat storage control device 3 performs additional heat generation (called “boiling increase” in the water heater).

図2および図3は、図1に示した蓄熱制御装置3の内部構成を示した図である。但し、図の便宜上、図2は、深夜の熱生成時に動作する構成についてのみ示したものであり、図3は、昼間の追加熱生成時に動作する構成についてのみ示したものである。従って、実際には、図2および図3に示した構成の全てが本実施の形態1に係る蓄熱制御装置3に設けられているものとする(但し、一部重複を含む。)。   2 and 3 are diagrams illustrating an internal configuration of the heat storage control device 3 illustrated in FIG. 1. However, for convenience of illustration, FIG. 2 shows only the configuration that operates when generating heat at midnight, and FIG. 3 only shows the configuration that operates when generating additional heat during the daytime. Therefore, in practice, all of the configurations shown in FIGS. 2 and 3 are provided in the heat storage control device 3 according to the first embodiment (however, some overlap is included).

図2に示すように、本実施の形態1に係る蓄熱制御装置は、ユーザの熱消費実績を記録した実績データベース31と、実績データベース31の実績データから度数分布を生成するとともに昼間熱切れが発生する確率を度数分布から求める度数分布演算部32と、現在の季節データおよび曜日データを度数分布演算部32に出力する時計(内部時計)33と、蓄熱槽2の熱容量に従って深夜に生成する熱量の候補を生成する仮定生成部34と、仮定生成部34で生成された各候補について電気代期待値を演算する電気代演算部35と、各候補の中から電気代期待値が最小となるものを選択する仮定評価部36と、選択された候補の熱量となるように熱生成装置1の起動・停止時刻を決定して熱生成装置1の制御を行う熱生成制御部37とが設けられている。また、図3に示すように、蓄熱槽2の測定温度が入力される蓄熱槽温度入力部38と、当該測定温度に基づいて熱切れか否かを判定する熱切れ判定部39とがさらに設けられている。   As shown in FIG. 2, the heat storage control device according to the first embodiment generates a frequency distribution from the record database 31 that records the user's heat consumption record and the record data of the record database 31, and the daytime heat burnout occurs. A frequency distribution calculation unit 32 for obtaining a probability of performing from the frequency distribution, a clock (internal clock) 33 for outputting the current season data and day-of-week data to the frequency distribution calculation unit 32, and the amount of heat generated at midnight according to the heat capacity of the heat storage tank 2 An assumption generation unit 34 that generates candidates, an electric charge calculation unit 35 that calculates an electric charge expected value for each candidate generated by the assumption generation unit 34, and an electric charge expected value that is the smallest among the candidates. A hypothetical evaluation unit 36 to be selected and a heat generation control unit 37 that controls the heat generation device 1 by determining the start / stop time of the heat generation device 1 so as to obtain the heat amount of the selected candidate are provided. It has been. Moreover, as shown in FIG. 3, the heat storage tank temperature input part 38 into which the measurement temperature of the heat storage tank 2 is input, and the heat-out determination part 39 which determines whether it is out of heat based on the said measurement temperature are further provided. It has been.

本実施の形態1に係る蓄熱制御装置3はこのように構成され、以下のように動作する。
まずはじめに、図2に基づき、本実施の形態1に係る蓄熱制御装置3における深夜の熱生成時の動作について説明する。
The heat storage control device 3 according to the first embodiment is configured as described above and operates as follows.
First, the operation at the time of heat generation at midnight in the heat storage control device 3 according to the first embodiment will be described based on FIG.

実績データベース31は、当該蓄熱システムの過去の日単位の熱消費実績量を季節(春夏秋冬)別・曜日別(平日/休日)に所定日数分(例えば30日分ずつ)記録する。   The actual result database 31 records the past daily heat consumption actual amount of the heat storage system for a predetermined number of days (for example, every 30 days) by season (spring, summer, autumn, winter) and by day of the week (weekday / holiday).

度数分布演算部32は、時計33から、現在の季節および曜日を示す季節データおよび曜日データを取得するとともに、取得した現在の季節データおよび曜日データに基づいて、実績データベース31から、現季節・曜日に対応する過去の熱消費実績量データを抽出し、図4に示す度数分布を算出して求めるとともに、当該度数分布に基づいて、後述する仮定生成部34が生成する深夜の熱生成量の候補である各仮定Nごとに、昼間熱切れが発生する確率Xを求める。   The frequency distribution calculation unit 32 acquires seasonal data and day data indicating the current season and day of the week from the clock 33, and based on the acquired current season data and day of the week data, from the results database 31, the current season / day of the week. The past heat consumption performance amount data corresponding to the above is extracted, and the frequency distribution shown in FIG. 4 is calculated and obtained, and based on the frequency distribution, a late-night heat generation amount candidate generated by the assumption generation unit 34 to be described later For each hypothesis N that is, the probability X that a daytime heat burnout occurs is obtained.

仮定生成部34は、深夜に生成する熱量の候補を1個以上生成する。例えば、蓄熱槽2の最大熱容量がNmaxであった場合、Nmax×0.01刻みで、0〜Nmaxまで100個の仮定Nを生成する。   The assumption generation unit 34 generates one or more candidates for the amount of heat generated at midnight. For example, when the maximum heat capacity of the heat storage tank 2 is Nmax, 100 assumptions N are generated from 0 to Nmax in increments of Nmax × 0.01.

電気代演算部35は、仮定生成部34により生成された仮定N(深夜の熱生成量)ごとに、当日かかる電気代期待値Ca(N)(深夜の電気代期待値と昼間の追加生成による電気代期待値の総和)を計算する。以下に、当日かかる電気代期待値Ca(N)を、仮定Nの関数として定式化したものを示す。   For each assumption N (amount of late-night heat production) generated by the assumption generation unit 34, the electricity bill calculator 35 expects an electricity bill expectation value Ca (N) that takes that day (by the electricity bill expectation value at midnight and additional generation during the daytime). Calculate the sum of the expected electricity bills). The following formula shows the expected electricity bill Ca (N) on the day as a function of assumption N.

まず、従来の蓄熱システムのごとく、深夜時間帯に熱量Nだけ生成・蓄熱する場合の電気代Cn(N)は、下式(1)で表現される。   First, as in the conventional heat storage system, the electricity cost Cn (N) when generating and storing heat by the amount of heat N in the midnight time zone is expressed by the following equation (1).

Cn(N) = N × 0.278 × Pn ÷ En ・・・(1)
ここで、
Cn:深夜の電気代期待値(円)
N :深夜の熱生成量(MJ)
0.278:kWhとMJの熱量換算係数(kWh/MJ)
Pn:深夜電力単価(円/kWh)
En:熱生成装置の深夜帯での平均効率(%)
Cn (N) = N × 0.278 × Pn ÷ En (1)
here,
Cn: Expected electricity bill at midnight (yen)
N: Late night heat production (MJ)
0.278: kWh and MJ calorie conversion coefficient (kWh / MJ)
Pn: Unit price of late-night electricity (yen / kWh)
En: Average efficiency (%) of the heat generator at midnight

更に、昼間に熱量Nだけでは熱不足が発生し、その結果、当日の熱生成量の総和がMとなるまで追加で熱生成をするとした場合、昼間の電気代Cd(N)は次式(2)で表現される。   Furthermore, in the daytime, heat shortage occurs only with the amount of heat N. As a result, when additional heat is generated until the sum of the heat generation amount on the day reaches M, the daytime electricity bill Cd (N) is expressed by the following formula ( 2).

Cd(N) = X × (M−N) ×0.278 ×Pd ÷ Ed ・・・(2)
ここで、
Cd:昼間の電気代期待値(円)
X :熱消費量がN以上である確率(%)
M :過去の最大熱消費量(MJ)
Pd:昼間電力単価(円/kWh)
Ed:熱生成装置の昼間帯での平均効率(%)
Cd (N) = X * (MN) * 0.278 * Pd / Ed (2)
here,
Cd: Expected electricity bill for daytime (yen)
X: Probability that heat consumption is N or more (%)
M: Past maximum heat consumption (MJ)
Pd: Unit price for daytime electricity (yen / kWh)
Ed: Average efficiency (%) of the heat generator in the daytime

従って、当日かかる電気代期待値Ca(N)は、次式(3)となる。   Therefore, the expected electricity bill Ca (N) on the day is expressed by the following equation (3).

Ca(N)=Cn(N)+Cd(N) ・・・(3)
ここで、
Ca:当日の電気代期待値(円)
Ca (N) = Cn (N) + Cd (N) (3)
here,
Ca: Expected electricity bill for the day (yen)

仮定評価部36は、電気代演算部35により求められた仮定Nごとの当日かかる電気代期待値Ca(N)に基づいて、複数の仮定Nの中から、当日かかる電気代期待値Ca(N)が最小となる仮定Nを選択し、その値を熱生成目標値として決定し、当日深夜の熱生成量Naとして出力する。   The assumption evaluation unit 36, based on the electric charge expectation value Ca (N) required for the current day for each assumption N obtained by the electric charge calculation unit 35, from among a plurality of assumptions N, the electric charge expected value Ca (N ) Is selected as the heat generation target value, and is output as the heat generation amount Na at midnight on that day.

熱生成制御部37は、深夜に生成する熱量が、仮定評価部36により熱生成目標値として決定された熱生成量Naとなるように、熱生成装置1の起動・停止時刻を決定し制御する。   The heat generation control unit 37 determines and controls the start / stop time of the heat generation device 1 so that the amount of heat generated at midnight becomes the heat generation amount Na determined as the heat generation target value by the assumption evaluation unit 36. .

以上が、本実施の形態1に係る蓄熱制御装置3における蓄熱システムの電気代を最小化するための熱生成装置1の起動・停止時間を決定・制御する動作である。従来は必要以上に生成された熱は、全て放熱により失われていたが、本実施の形態1においては、これにより、必要以上の熱生成を防止でき、電気代を節約することができる。また、環境面からも電気消費を抑え、CO2排出量削減に貢献する。   The above is the operation of determining and controlling the start / stop time of the heat generation device 1 for minimizing the electricity cost of the heat storage system in the heat storage control device 3 according to the first embodiment. Conventionally, all the heat generated more than necessary has been lost due to heat dissipation, but in the first embodiment, this can prevent generation of heat more than necessary and save electricity costs. It also contributes to reducing CO2 emissions by reducing electricity consumption from an environmental point of view.

次に、図3に基づき、本実施の形態1に係る蓄熱制御装置3における昼間の追加熱生成時の動作について説明する。   Next, based on FIG. 3, the operation | movement at the time of the additional heat production | generation in the daytime in the heat storage control apparatus 3 which concerns on this Embodiment 1 is demonstrated.

上述の図2に基づいて説明した深夜の熱生成時の動作によって決定される、深夜の熱量生成量Naは、電気代期待値を最小化する観点から決められているため、昼間に通常より多くの熱を使用した日は熱切れが発生する。その場合には、以下の動作により、追加熱生成を行う。   The late-night heat generation amount Na determined by the operation at the time of late-night heat generation described with reference to FIG. 2 described above is determined from the viewpoint of minimizing the expected electricity bill, and thus more than usual in the daytime. The day when the heat is used, heat burns out. In that case, additional heat generation is performed by the following operation.

蓄熱槽温度入力部38は、蓄熱槽2に設置された蓄熱槽温度計20によって測定される蓄熱槽2の温度を取得する。なお、当該取得は、常時行ってもよいが、所定の時間間隔で行うこととする。なお、蓄熱槽温度計20は複数の温度計から構成されており、当該複数の温度計は、蓄熱槽2の上部から下部にかけて所定間隔で均等に設置されている。   The heat storage tank temperature input unit 38 acquires the temperature of the heat storage tank 2 measured by the heat storage tank thermometer 20 installed in the heat storage tank 2. The acquisition may be performed constantly, but is performed at predetermined time intervals. The heat storage tank thermometer 20 is composed of a plurality of thermometers, and the plurality of thermometers are equally installed from the upper part to the lower part of the heat storage tank 2 at a predetermined interval.

熱切れ判定部39は、取得された蓄熱槽2の温度から熱切れを予測判断する。即ち、蓄熱槽2に設けられた当該複数の温度計で計測した蓄熱槽2内の全箇所の温度が、水道水温度(もしくは、予め設定した基準値)に近くなれば(すなわち、水道水温度または基準値から所定の範囲内の温度になれば)、熱切れと判断する。これは、蓄熱槽2内の温水と冷水は混ざるのが遅く、通常は温水層と冷水層がきれいに分離することに基づく。例えば温水の蓄熱槽2の場合、最上部の温度が著しく水道水温度に近づけば熱切れである。   The heat-out determination unit 39 predicts and determines whether heat is out of the acquired temperature of the heat storage tank 2. That is, if the temperature of all locations in the heat storage tank 2 measured by the plurality of thermometers provided in the heat storage tank 2 is close to the tap water temperature (or a preset reference value) (that is, the tap water temperature) Or, if the temperature falls within a predetermined range from the reference value), it is determined that the heat has run out. This is based on the fact that the hot water and cold water in the heat storage tank 2 are slow to mix, and the hot water layer and the cold water layer are normally separated cleanly. For example, in the case of the hot water heat storage tank 2, if the temperature at the top is extremely close to the tap water temperature, the heat is burned out.

熱生成制御部37は、熱切れ判定部39によって昼間に熱切れが発生すると判断された場合、実績データベース31(または度数分布)から現季節・曜日の最大消費熱量実績Mを得て、昼間に追加生成する追加生成熱量を、最大消費熱量実績Mと前日の深夜に生成した生成熱量Naとの差として決定し、M−Na分だけ追加熱生成を行うように、熱生成装置1の起動・停止時刻を決定して制御する。   The heat generation control unit 37 obtains the maximum heat consumption record M for the current season / day of the week from the record database 31 (or frequency distribution) when the heat burn determination unit 39 determines that the heat burn occurs in the daytime. The additional heat generation amount to be generated is determined as the difference between the maximum heat consumption record M and the generated heat amount Na generated at midnight the previous day, and the heat generation apparatus 1 is activated and activated so as to generate additional heat by M-Na. Determine and control stop time.

なお、実績データベース31が、さらに、熱消費実績量の度数分布および熱生成装置1の平均効率を季節ごとに記憶し、仮定評価部36が、季節ごとに電気代期待値を計算するようにしてもよい。   The performance database 31 further stores the frequency distribution of the actual heat consumption amount and the average efficiency of the heat generating device 1 for each season, and the assumption evaluation unit 36 calculates the expected electricity bill for each season. Also good.

熱切れが発生しそうな時、従来は蓄熱槽2の半分もしくは全部を満たすように追加熱生成していたが、本実施の形態1によれば、実際に消費されうる熱量を把握した上で追加熱生成を行うため、必要以上の熱生成を行うことを防止することができる。   Conventionally, additional heat was generated so as to fill half or all of the heat storage tank 2 when heat shortage is likely to occur. However, according to the first embodiment, it is added after grasping the amount of heat that can be actually consumed. Since heat generation is performed, it is possible to prevent heat generation more than necessary.

以上のように、本実施の形態1によれば、深夜電力を利用して生成された熱を蓄熱槽に蓄積する熱生成装置を制御するための蓄熱制御装置であって、過去複数日のユーザの熱消費実績量を記憶する実績データベース31と、深夜に生成する熱生成量の候補を仮定Nとして1以上生成する仮定生成部34と、実績データベース31に記憶された熱消費実績量の度数分布を求めるとともに、当該度数分布に基づいて、仮定Nごとに、昼間熱切れが発生する確率Xを算出する度数分布演算部22と、仮定Nごとに、深夜の電気代期待値Cn(円)と昼間の追加生成による電気代期待値Cd(円)との総和を求め、当該総和が最小となる仮定Nを選択して、深夜に生成すべき熱生成量Naとして決定する仮定評価部36と、仮定評価部36により決定された熱生成量Naに基づいて、熱生成装置1の起動・停止を制御する熱生成制御部37とを備えるようにしたので、確率的に電気代が最小となる熱生成量を決定することができる。そのため、結果的に、余分な熱生成を防止でき、電力消費も最小化されるため、CO2削減にも貢献することができる。   As mentioned above, according to this Embodiment 1, it is a heat storage control apparatus for controlling the heat generation apparatus which accumulate | stores the heat | fever produced | generated using late-night electric power in a thermal storage tank, Comprising: The user for the past several days The actual result database 31 for storing the actual heat consumption amount, a hypothetical generation unit 34 for generating one or more heat generation amount candidates generated at midnight as the assumption N, and the frequency distribution of the actual heat consumption amount stored in the actual result database 31 And a frequency distribution calculation unit 22 for calculating the probability X that a daytime heat burnout occurs for each assumption N based on the frequency distribution, and the midnight electricity bill expected value Cn (yen) for each assumption N An assumption evaluation unit 36 that obtains the sum of the electricity bill expected value Cd (yen) due to additional generation in the daytime, selects an assumption N that minimizes the sum, and determines the heat generation amount Na to be generated at midnight; Determined by the assumption evaluation unit 36 Since the heat generation control unit 37 that controls the start / stop of the heat generation device 1 is provided based on the generated heat generation amount Na, the heat generation amount that probabilistically minimizes the electricity cost is determined. Can do. As a result, excessive heat generation can be prevented and power consumption can be minimized, thereby contributing to CO2 reduction.

また、熱切れ防止のために、蓄熱槽2の現在の熱残量から当日の熱切れの可能性を判断し、熱切れが発生するか否かを判定する熱切れ判定39をさらに備えて、熱切れ判定部39が熱切れが発生すると判定した場合に、熱生成制御部37は、昼間に追加生成する追加生成熱量を、図4の度数分布における最大消費熱量と前日の深夜に生成した生成熱量との差として決定して、追加熱生成を熱生成装置1に指令するようにしたので、追加熱生成においても、必要以上の熱生成を行うことを防止することができ、結果的に、余分な熱生成を防止でき、電力消費も最小化されるため、CO2削減にも貢献することができる。   In addition, in order to prevent heat loss, the possibility of heat loss on the day is determined from the current heat remaining amount of the heat storage tank 2, and further includes a heat loss determination 39 for determining whether or not heat loss occurs, When the heat-out determining unit 39 determines that a heat-out occurs, the heat generation control unit 37 generates additional generated heat generated in the daytime at the midnight of the previous day and the maximum consumed heat amount in the frequency distribution of FIG. Since it is determined as a difference from the amount of heat and the heat generation device 1 is instructed to generate additional heat, even in the additional heat generation, it is possible to prevent generation of more heat than necessary. Excessive heat generation can be prevented and power consumption is minimized, which can contribute to CO2 reduction.

この発明の実施の形態1に係る蓄熱システムの構成を示した図である。It is the figure which showed the structure of the thermal storage system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る蓄熱制御装置の構成を示した図である(深夜の熱生成時)。It is the figure which showed the structure of the thermal storage control apparatus which concerns on Embodiment 1 of this invention (at the time of late-night heat generation). この発明の実施の形態1に係る蓄熱制御装置の構成を示した図である(昼間の追加熱生成時)。It is the figure which showed the structure of the thermal storage control apparatus which concerns on Embodiment 1 of this invention (at the time of additional heat generation in the daytime). この発明の実施の形態1に係る蓄熱制御装置において求められる熱需要の度数分布の一例を示した説明図である。It is explanatory drawing which showed an example of the frequency distribution of the heat demand calculated | required in the thermal storage control apparatus which concerns on Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 熱生成装置、2 蓄熱槽、3 蓄熱制御装置、20 蓄熱槽温度計、31 実績データベース、32 度数分布演算部、33 時計、34 仮定生成部、35 電気代演算部、36 仮定評価部、37 熱生成制御部、38 蓄熱槽温度入力部、39 熱切れ判定部。   DESCRIPTION OF SYMBOLS 1 Heat generation apparatus, 2 Thermal storage tank, 3 Thermal storage control apparatus, 20 Thermal storage tank thermometer, 31 Performance database, 32 Frequency distribution calculation part, 33 Clock, 34 Assumption generation part, 35 Electricity cost calculation part, 36 Assumption evaluation part, 37 Heat generation control unit, 38 heat storage tank temperature input unit, 39 heat burnout determination unit.

Claims (4)

深夜電力を利用して生成された熱を蓄熱槽に蓄積する熱生成装置を制御するための蓄熱制御装置であって、
過去複数日のユーザの熱消費実績量を記憶する実績データベースと、
深夜に生成する熱生成量の候補を仮定として1以上生成する仮定生成手段と、
前記実績データベースに記憶された前記熱消費実績量の度数分布を求めるとともに、前記度数分布に基づいて、前記仮定ごとに、昼間熱切れが発生する確率を算出する度数分布演算手段と、
前記仮定ごとに、深夜の電気代期待値と前記確率に基づく昼間の追加生成による電気代期待値との総和を求める電気代演算手段と、
前記電気代演算手段により求められた前記総和が最小となる仮定を選択して、深夜に生成すべき熱生成量として決定する仮定評価手段と、
前記仮定評価手段により決定された前記熱生成量に基づいて、前記熱生成装置の起動・停止を制御する熱生成制御手段と
を備えたことを特徴とする蓄熱制御装置。
A heat storage control device for controlling a heat generation device that accumulates heat generated using midnight power in a heat storage tank,
A performance database that stores the amount of heat consumed by users in the past multiple days,
Hypothetical generation means for generating one or more candidates on the assumption of heat generation candidates generated at midnight;
A frequency distribution calculation means for calculating a frequency distribution of the actual amount of heat consumption stored in the performance database and calculating a probability that a daytime heat burn will occur for each of the assumptions based on the frequency distribution;
For each of the assumptions, an electricity bill calculation means for obtaining a sum of an expected electricity bill at midnight and an expected electricity bill by additional daytime generation based on the probability;
Assumption evaluation means for selecting the assumption that the sum obtained by the electricity bill calculation means is minimum and determining it as a heat generation amount to be generated at midnight;
A heat storage control device comprising: heat generation control means for controlling start / stop of the heat generation device based on the heat generation amount determined by the assumption evaluation means.
前記仮定評価手段は、
深夜の熱生成量が前記仮定N(MJ)とした場合の深夜電気代期待値Cn(円)を、深夜電力単価Pn(円/kWh)と熱生成装置の深夜帯での平均効率En(%)とから算出するとともに、
前記仮定Nにおける昼間熱切れする確率X(%)と、昼間電力単価Pd(円/kWh)と、前記熱生成装置1の昼間帯での平均効率Ed(%)とから、昼間の追加生成による電気代期待値Cd(円)を算出し、
複数の前記仮定Nの中で、深夜と昼間の電気代期待値Cn(円)とCd(円)との総和が最小となる仮定Nを求めて、深夜に生成すべき熱生成量Naとして決定する
ことを特徴とする請求項1に記載の蓄熱制御装置。
The assumption evaluation means includes:
When the amount of heat generation at midnight is assumed to be the above assumed N (MJ), the expected midnight electricity bill Cn (yen) is the midnight power unit price Pn (yen / kWh) and the average efficiency En (%) of the heat generating device at midnight. ) And
From the probability X (%) of daytime heat burnout in the assumption N, the daytime power unit price Pd (yen / kWh), and the average efficiency Ed (%) in the daytime zone of the heat generation device 1 Calculate the expected electricity bill Cd (yen)
Among the plurality of assumptions N, a hypothesis N that minimizes the sum of the expected electricity bills Cn (yen) and Cd (yen) between midnight and daytime is determined and determined as the heat generation amount Na to be generated at midnight. The heat storage control device according to claim 1, wherein:
前記実績データベースは、さらに、前記熱消費実績量の度数分布、および、前記熱生成装置の平均効率を、季節ごとに記憶し、
前記仮定評価手段は、季節ごとに前記電気代期待値を計算する
ことを特徴とする請求項1または2に記載の蓄熱制御装置。
The actual database further stores the frequency distribution of the actual heat consumption amount and the average efficiency of the heat generating device for each season,
The heat storage control device according to claim 1, wherein the assumption evaluation unit calculates the expected electricity bill for each season.
熱切れ防止のために、前記蓄熱槽の現在の熱残量から当日の熱切れの可能性を判断し、熱切れが発生するか否かを判定する熱切れ判定手段をさらに備え、
前記熱切れ判定手段が熱切れが発生すると判定した場合に、前記熱生成制御手段は、昼間に追加生成する追加生成熱量を、前記度数分布における最大消費熱量と前日の深夜に生成した生成熱量との差として決定して、追加熱生成を前記熱生成装置に指令することを特徴とする請求項1ないし3のいずれか1項に記載の蓄熱制御装置。
In order to prevent heat shortage, it is possible to determine the possibility of heat burn of the day from the current heat remaining amount of the heat storage tank, further comprising a heat burn determination means for determining whether a heat burn occurs,
When the heat burn determination means determines that heat burn occurs, the heat generation control means adds the additional heat generated in the daytime to the maximum heat consumption in the frequency distribution and the heat generated generated at midnight the previous day. The heat storage control device according to any one of claims 1 to 3, wherein the heat generation device is commanded to generate additional heat.
JP2007128074A 2007-05-14 2007-05-14 Thermal storage control device Expired - Fee Related JP4994108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128074A JP4994108B2 (en) 2007-05-14 2007-05-14 Thermal storage control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128074A JP4994108B2 (en) 2007-05-14 2007-05-14 Thermal storage control device

Publications (2)

Publication Number Publication Date
JP2008281309A true JP2008281309A (en) 2008-11-20
JP4994108B2 JP4994108B2 (en) 2012-08-08

Family

ID=40142264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128074A Expired - Fee Related JP4994108B2 (en) 2007-05-14 2007-05-14 Thermal storage control device

Country Status (1)

Country Link
JP (1) JP4994108B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007882A (en) * 2008-06-24 2010-01-14 Panasonic Corp Storage type hot water supply device, operation planning device and operation planning method
JP2010169294A (en) * 2009-01-21 2010-08-05 Corona Corp Method of determining heating-up target temperature of heat pump type water heater

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208659A (en) * 1988-02-16 1989-08-22 Takara Standard Kk Boiling control device for electrical hot-water heater
JP2003254620A (en) * 2002-03-01 2003-09-10 Mitsubishi Electric Corp Hot water supply system and its boiling control method
JP2004069196A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2004145396A (en) * 2002-10-21 2004-05-20 Toshiba Corp Electric power transaction risk management method and system
JP2004233032A (en) * 2002-12-05 2004-08-19 Denso Corp Hot water storage type hot water supply device
JP2004324905A (en) * 2003-04-21 2004-11-18 Denso Corp Storage type water heater
JP2005257213A (en) * 2004-03-15 2005-09-22 Hanshin Electric Co Ltd Hot water storage type water heater
JP2006170542A (en) * 2004-12-16 2006-06-29 Denso Corp Hot water supply device
JP2006336937A (en) * 2005-06-01 2006-12-14 Denso Corp Storage type hot water supply device
JP2007003162A (en) * 2005-06-27 2007-01-11 Denso Corp Storage type heat pump hot water supply device
JP2007032879A (en) * 2005-07-22 2007-02-08 Chofu Seisakusho Co Ltd Thermal load predicting device and thermal load predicting method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208659A (en) * 1988-02-16 1989-08-22 Takara Standard Kk Boiling control device for electrical hot-water heater
JP2003254620A (en) * 2002-03-01 2003-09-10 Mitsubishi Electric Corp Hot water supply system and its boiling control method
JP2004069196A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2004145396A (en) * 2002-10-21 2004-05-20 Toshiba Corp Electric power transaction risk management method and system
JP2004233032A (en) * 2002-12-05 2004-08-19 Denso Corp Hot water storage type hot water supply device
JP2004324905A (en) * 2003-04-21 2004-11-18 Denso Corp Storage type water heater
JP2005257213A (en) * 2004-03-15 2005-09-22 Hanshin Electric Co Ltd Hot water storage type water heater
JP2006170542A (en) * 2004-12-16 2006-06-29 Denso Corp Hot water supply device
JP2006336937A (en) * 2005-06-01 2006-12-14 Denso Corp Storage type hot water supply device
JP2007003162A (en) * 2005-06-27 2007-01-11 Denso Corp Storage type heat pump hot water supply device
JP2007032879A (en) * 2005-07-22 2007-02-08 Chofu Seisakusho Co Ltd Thermal load predicting device and thermal load predicting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007882A (en) * 2008-06-24 2010-01-14 Panasonic Corp Storage type hot water supply device, operation planning device and operation planning method
JP2010169294A (en) * 2009-01-21 2010-08-05 Corona Corp Method of determining heating-up target temperature of heat pump type water heater

Also Published As

Publication number Publication date
JP4994108B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP6215753B2 (en) How to operate an energy supply system
EP1511108B1 (en) Cogeneration system, operation controller for cogeneration facility, and operation program for cogeneration facility
CN106651047B (en) Regional energy Internet dynamic operation optimization method
JP5254500B1 (en) Distributed power generation system and control method of distributed power generation system
JP2013221720A (en) Water heater
JP5457818B2 (en) Cogeneration system
JP4605943B2 (en) Cogeneration system operation method
KR20030024886A (en) Cogeneration apparatus, cogeneration method, program, and medium
JP2020118335A (en) Cogeneration system
JP2005030211A (en) Operation control system for home-use co-generation system
JP4994108B2 (en) Thermal storage control device
JP4966066B2 (en) Cogeneration system
JP4953217B2 (en) Fuel cell device
JP4810786B2 (en) Fuel cell cogeneration system
JP4030446B2 (en) Cogeneration system
JP5628380B2 (en) Combined heat and power system
JP5948217B2 (en) Fuel cell operation control method and operation control system in an apartment house
JP4605942B2 (en) Cogeneration system operation method
JP2006250471A (en) Energy supply system
JP2005291561A (en) Operating method for cogeneration system and cogeneration system
JP6651361B2 (en) Generator control system
JP2005009846A (en) Cogeneration system
JP2005223964A (en) Operation control system for cogeneration system
JP5671694B2 (en) Fuel cell system
JP4841994B2 (en) Cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees