JP2010166782A - Directional protective relay device and directional power relay device - Google Patents

Directional protective relay device and directional power relay device Download PDF

Info

Publication number
JP2010166782A
JP2010166782A JP2009008864A JP2009008864A JP2010166782A JP 2010166782 A JP2010166782 A JP 2010166782A JP 2009008864 A JP2009008864 A JP 2009008864A JP 2009008864 A JP2009008864 A JP 2009008864A JP 2010166782 A JP2010166782 A JP 2010166782A
Authority
JP
Japan
Prior art keywords
phase
circuit
short
current
accident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009008864A
Other languages
Japanese (ja)
Inventor
Shigeo Matsumoto
重穗 松本
Yoshiaki Date
義明 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009008864A priority Critical patent/JP2010166782A/en
Publication of JP2010166782A publication Critical patent/JP2010166782A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a directional protective relay device and a directional power relay device capable of reducing the installation number of current transformers for protecting a three-phase AC circuit against a short-circuit fault or an inverse flow, and the numbers of directional protective relays and directional power relays. <P>SOLUTION: An R-phase and an S-phase of a power transmission line are led through an annular iron core of a three-phase through current transformer 10 installed on a power transmission line so as to be mutually inverse only one time, while the T-phase of the power transmission line is led through in the same direction as the R-phase two times. Upon detecting a short-circuit fault based on a short-circuit current I<SB>Ry</SB>inputted from the three-phase through current transformer 10 and voltage information of the power transmission line, a short-circuit directional relay 4 collectively interrupts first-third breakers 2<SB>1</SB>-2<SB>3</SB>installed on the R-phase, S-phase and T-phase of the power transmission line respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、方向保護継電装置および電力方向継電装置に関し、特に、短絡事故から三相交流回路を保護するための方向保護継電装置と逆潮流から三相交流回路を保護するための電力方向継電装置とに関する。   The present invention relates to a direction protection relay device and a power direction relay device, and in particular, a direction protection relay device for protecting a three-phase AC circuit from a short circuit accident and a power for protecting the three-phase AC circuit from reverse power flow. The present invention relates to a direction relay device.

従来、三相交流回路では、短絡事故から三相交流回路を保護するために、短絡方向継電器(DS)を相ごとに設置している(下記の特許文献1など参照)。   Conventionally, in a three-phase AC circuit, in order to protect the three-phase AC circuit from a short-circuit accident, a short-circuit direction relay (DS) is installed for each phase (see Patent Document 1 below).

たとえば、図17に示すように、第1の短絡方向継電器41には、送配電線のR相に設置された第1の変流器(CT)31からR相の短絡電流を入力するとともに母線に設置された計器用変圧器(PT)6からR相の相電圧VRおよびS相の相電圧VSを入力し、また、第2の短絡方向継電器42には、送配電線のS相に設置された第2の変流器32からS相の短絡電流を入力するとともに計器用変圧器6からS相の相電圧VSおよびT相の相電圧VTを入力し、さらに、第3の短絡方向継電器43には、送配電線のT相に設置された第3の変流器33からT相の短絡電流を入力するとともに計器用変圧器6からR相の相電圧VRおよびT相の相電圧VTを入力して、送配電線において短絡事故が発生したときには、以下に示すように、その事故様相に応じて送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を第1乃至第3の短絡方向継電器41〜43で一括遮断している。
(1)R相−S相間の短絡事故の場合
送配電線のR相に内部方向(送配電線の末端に向う方向)の短絡電流が流れるとともに、送配電線のS相に外部方向の短絡電流が流れる。したがって、第1の短絡方向継電器41が、R相の短絡電流およびR相−S相の線間電圧VRSに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
送配電線のS相に内部方向の短絡電流が流れるとともに、送配電線のT相に外部方向の短絡電流が流れる。したがって、第2の短絡方向継電器42が、S相の短絡電流およびS相−T相の線間電圧VSTに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
送配電線のT相に内部方向の短絡電流が流れるとともに、送配電線のR相に外部方向の短絡電流が流れる。したがって、第3の短絡方向継電器43が、T相の短絡電流およびT相−R相の線間電圧VTRに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
送配電線のR相、S相およびT相に内部方向の短絡電流がそれぞれ流れる。したがって、第1乃至第3の短絡方向継電器41〜43が、R相、S相およびT相の短絡電流とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいてそれぞれ動作して、第1乃至第3の遮断器21〜23を一括遮断する。
For example, as shown in FIG. 17, the first short directional relay 4 1, enter the short-circuit current of the R-phase from the power distribution wires of the first current transformer installed in the R-phase (CT) 3 1 enter the phase voltage V S of the phase voltage V R and S phases of the R-phase from potential transformer (PT) 6 installed on the bus together, also in the second short directional relay 4 2, transmission and distribution lines The S-phase short-circuit current is input from the second current transformer 32 installed in the S-phase, and the S-phase phase voltage V S and the T-phase phase voltage V T are input from the instrument transformer 6. in addition, the third short-circuit direction relay 4 3, from the third current transformer 3 3 installed in the T-phase of the transmission and distribution lines from the potential transformer 6 inputs the short-circuit current of the T-phase of the R-phase enter the phase voltage V T of the phase voltage V R and T phases, when the short-circuit fault occurs in the transmission and distribution lines, as shown below, the accident appearance Depending on transmission and distribution lines of R-phase, bulk blocked in the first to third circuit breaker 2 1 to 2 3 of the first to third short directional relay 41 to 3 of which are respectively installed on the S-phase and T-phase is doing.
(1) In case of short circuit between R phase and S phase Short circuit current in the internal direction (direction toward the end of the transmission and distribution line) flows in the R phase of the transmission and distribution line, and short circuit in the external direction to the S phase of the transmission and distribution line Current flows. Therefore, the first short-circuit direction relay 4 1 operates based on the R-phase short-circuit current and the R-phase to S-phase line voltage V RS , thereby connecting the first to third circuit breakers 2 1 to 2 3 . Shut off all at once.
(2) In the case of a short-circuit accident between the S phase and the T phase An internal short circuit current flows in the S phase of the transmission and distribution line, and an external short circuit current flows in the T phase of the transmission and distribution line. Accordingly, the second short-circuit direction relay 4 2 operates based on the S-phase short-circuit current and the S-phase to T-phase line voltage V ST , and the first to third circuit breakers 2 1 to 2 3 are connected. Shut off all at once.
(3) In the case of a short circuit accident between the T phase and the R phase An internal short circuit current flows in the T phase of the transmission and distribution line, and an external short circuit current flows in the R phase of the transmission and distribution line. Therefore, the third short-circuit direction relay 4 3 operates based on the T-phase short-circuit current and the T-phase to R-phase line voltage V TR , and the first to third circuit breakers 2 1 to 2 3 are connected. Shut off all at once.
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase Short circuit currents in the internal direction flow in the R phase, the S phase, and the T phase of the transmission and distribution lines. Accordingly, the first to third short-circuit direction relays 4 1 to 4 3 are connected to the R-phase, S-phase, and T-phase short-circuit currents, the R-phase to S-phase line voltage V RS , and the S-phase to T-phase line spacing. The first to third circuit breakers 2 1 to 2 3 are collectively cut off by operating on the basis of the voltage V ST and the T-phase to R-phase line voltage V TR .

また、距離継電器(DZ)についても、図18に示すように、第1の距離継電器201には、送配電線のR相に設置された第1の変流器31および送配電線のT相に設置された第3の変流器33からR相およびT相の短絡電流をそれぞれ入力するとともに母線に設置された計器用変圧器6からR相およびT相の相電圧VR,VTを入力し、また、第2の距離継電器202には、第1の変流器31および送配電線のS相に設置された第2の変流器32からR相およびS相の短絡電流をそれぞれ入力するとともに計器用変圧器6からR相およびS相の相電圧VR,VSを入力し、さらに、第3の距離継電器203には、第2および第3の変流器32,33からS相およびT相の短絡電流をそれぞれ入力するとともに計器用変圧器6からS相の相電圧VSおよびT相の相電圧VTを入力して、送配電線において短絡事故が発生したときには、以下に示すように、その事故様相に応じて送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を第1乃至第3の距離継電器201〜203で一括遮断している。
(1)R相−S相間の短絡事故の場合
送配電線のR相に内部方向の短絡電流が流れるとともに、送配電線のS相に外部方向の短絡電流が流れる。したがって、第2の距離継電器202が、R相の短絡電流およびS相の短絡電流の差電流とR相−S相の線間電圧VRSとに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
送配電線のS相に内部方向の短絡電流が流れるとともに、送配電線のT相に外部方向の短絡電流が流れる。したがって、第3の距離継電器203が、S相の短絡電流およびT相の短絡電流の差電流とS相−T相の線間電圧VSTとに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
送配電線のT相に内部方向の短絡電流が流れるとともに、送配電線のR相に外部方向の短絡電流が流れる。したがって、第1の距離継電器201が、T相の短絡電流およびR相の短絡電流の差電流とT相−R相の線間電圧VTRとに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
送配電線のR相、S相およびT相に内部方向の短絡電流がそれぞれ流れる。したがって、第1乃至第3の距離継電器201〜203がそれぞれ動作して、第1乃至第3の遮断器21〜23を一括遮断する。
As for the distance relay (DZ), as shown in FIG. 18, the first distance relay 20 1, of the first current transformer 3 1 and the power distribution wires installed in the R-phase of the transmission and distribution lines the third current transformer 3 3 R-phase and T-phase of the short circuit current from voltage transformer 6 installed to the bus together with the respectively input R phase and T-phase phase voltage V R of the installed in the T phase, V T is input, and the second distance relay 20 2 is supplied with the R phase and S from the first current transformer 3 1 and the second current transformer 3 2 installed in the S phase of the transmission and distribution line. The short-circuit current of the phase is input and the phase voltages V R and V S of the R phase and the S phase are input from the instrument transformer 6, and the second and third phase relays 20 3 are connected to the second and third phase relays 20 3. The S-phase and T-phase short-circuit currents are input from the current transformers 3 2 and 3 3 , respectively, and the S-phase phase voltage V S is input from the instrument transformer 6. And enter the phase voltage V T of the T-phase, when the short-circuit fault occurs in the transmission and distribution lines, as shown below, R-phase of the transmission and distribution lines according to the accident aspect, each S-phase and T-phase The installed first to third circuit breakers 2 1 to 2 3 are collectively disconnected by the first to third distance relays 20 1 to 20 3 .
(1) In the case of a short circuit accident between the R phase and the S phase A short circuit current in the internal direction flows in the R phase of the transmission and distribution line, and a short circuit current in the external direction flows in the S phase of the transmission and distribution line. Therefore, the second distance relay 20 2, operates on the basis of the line voltage V RS of the differential current and R-phase -S phase of the short circuit current of the short circuit current and the S-phase of the R-phase, the first to third All circuit breakers 2 1 to 2 3 are collectively shut off.
(2) In the case of a short-circuit accident between the S phase and the T phase An internal short circuit current flows in the S phase of the transmission and distribution line, and an external short circuit current flows in the T phase of the transmission and distribution line. Accordingly, the third distance relay 20 3 operates based on the S-phase short-circuit current, the difference current between the T-phase short-circuit currents, and the S-phase to T-phase line voltage V ST, and the first to third All circuit breakers 2 1 to 2 3 are collectively shut off.
(3) In the case of a short circuit accident between the T phase and the R phase An internal short circuit current flows in the T phase of the transmission and distribution line, and an external short circuit current flows in the R phase of the transmission and distribution line. Therefore, first distance relay 20 1 operates on the basis of the line voltage V TR of the differential current and the T phase -R phase of the short circuit current and short-circuit current of R-phase of T-phase, the first to third All circuit breakers 2 1 to 2 3 are collectively shut off.
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase Short circuit currents in the internal direction flow in the R phase, the S phase, and the T phase of the transmission and distribution lines. Accordingly, the first to third distance relay 20 1 to 20 3 operate respectively, collectively blocking the first to third circuit breaker 2 1 to 2 3.

回線選択継電器(SS)についても、図19に示すように、第1の回線選択継電器301には、第1および第2の送配電線1L,2L(平衡2回線送配電線)のR相にそれぞれ設置された第1および第4の変流器31,34から第1および第2の送配電線1L,2LのR相の短絡電流を入力するとともに母線に設置された計器用変圧器6からR相の相電圧VRを入力し、また、第2の回線選択継電器302には、第1および第2の送配電線1L,2LのS相にそれぞれ設置された第2および第5の変流器32,35から第1および第2の送配電線1L,2LのS相の短絡電流を入力するとともに計器用変圧器6からS相の相電圧VSを入力し、さらに、第3の回線選択継電器303には、第1および第2の送配電線1L,2LのT相にそれぞれ設置された第3および第6の変流器33,36から第1および第2の送配電線1L,2LのT相の短絡電流を入力するとともに計器用変圧器6からT相の相電圧VTを入力して、第1または第2の送配電線1L,2Lにおいて短絡事故が発生したときには、以下に示すように、その事故様相に応じて、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を第1乃至第3の回線選択継電器301〜303で一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器21〜26を第1乃至第3の回線選択継電器301〜303で一括遮断している。
(1)R相−S相間の短絡事故の場合
たとえば第1の送配電線1LのR相−S相間において短絡事故が発生した場合には、第1および第2の送配電線1L,2LのR相に内部方向の短絡電流が流れるとともに、第1および第2の送配電線1L,2LのS相に外部方向の短絡電流が流れる。したがって、第1の回線選択継電器301が、第1および第2の送電線1L,2LのR相の短絡電流の差電流とR相の相電圧VRとに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
たとえば第1の送配電線1LのS相−T相間において短絡事故が発生した場合には、第1および第2の送配電線1L,2LのS相に内部方向の短絡電流が流れるとともに、第1および第2の送配電線1L,2のT相に外部方向の短絡電流が流れる。したがって、第2の回線選択継電器302が、第1および第2の送電線1L,2LのS相の短絡電流の差電流とS相の相電圧VSとに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
たとえば第1の送配電線1LのT相−R相間において短絡事故が発生した場合には、第1および第2の送配電線1L,2のT相に内部方向の短絡電流が流れるとともに、第1および第2の送配電線1L,2のR相に外部方向の短絡電流が流れる。したがって、第3の回線選択継電器303が、第1および第2の送配電線1L,2のT相の短絡電流の差電流とT相の相電圧VRとに基づいて動作して、第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
たとえば第1の送配電線1LのT相−R相間において短絡事故が発生した場合には、第1および第2の送配電線1L,2のR相、S相およびT相に内部方向の短絡電流がそれぞれ流れる。したがって、第1乃至第3の回線選択継電器301〜303がそれぞれ動作して、第1乃至第3の遮断器21〜23を一括遮断する。
For even line selection relay (SS), as shown in FIG. 19, in the first line selection relay 30 1, the first and second transmission and distribution lines 1L, R-phase of 2L (equilibrium 2-line transmission and distribution lines) Is connected to the first and fourth current transformers 3 1 and 3 4 respectively installed in the first and second current transmission and distribution lines 1L and 2L, and the R phase short-circuit current is input thereto, and the instrument transformer is installed on the bus. enter the phase voltage V R of the R-phase from vessel 6, also in the second line selection relay 30 2, second and disposed respectively first and second transmission and distribution lines 1L, the S phase of 2L The S-phase short-circuit current of the first and second transmission lines 1L, 2L is inputted from the fifth current transformers 3 2 , 3 5 and the S-phase phase voltage V S is inputted from the instrument transformer 6. , further, the third line selection relay 30 3, the first and second transmission and distribution lines 1L, respectively set to the T-phase of 2L Have been the third and sixth current transformer 3 3, 3 to 6 first and second transmission and distribution lines 1L, the phase voltage T-phase from the potential transformer 6 inputs the short-circuit current of the T-phase of 2L enter the V T, the first or second transmission and distribution lines 1L, when the short-circuit failure occurs in 2L, as shown below, depending on the accident aspect, short-circuit fault in the first transmission and distribution lines 1L If the first to third circuit breakers 2 1 to 2 3 are determined to be collectively disconnected by the first to third line selection relays 30 1 to 30 3 , and short-circuited to the second transmission / distribution line 2L. If it is determined that an accident has occurred, the fourth to sixth circuit breakers 2 1 to 2 6 are collectively disconnected by the first to third line selection relays 30 1 to 30 3 .
(1) In the case of a short circuit accident between the R phase and the S phase For example, when a short circuit accident occurs between the R phase and the S phase of the first transmission and distribution line 1L, the first and second transmission lines 1L and 2L While an internal short-circuit current flows in the R phase, an external short-circuit current flows in the S phase of the first and second transmission and distribution lines 1L and 2L. Thus, the first line selection relay 30 1, first and second transmission line 1L, operates on the basis of the phase voltage V R of the differential current and the R-phase of the short-circuit current of the R-phase of 2L, first To the third circuit breakers 2 1 to 2 3 are collectively cut off.
(2) In the case of a short circuit accident between the S phase and the T phase For example, when a short circuit accident occurs between the S phase and the T phase of the first transmission and distribution line 1L, the first and second transmission lines 1L and 2L A short-circuit current in the internal direction flows in the S phase, and a short-circuit current in the external direction flows in the T phase of the first and second power distribution lines 1L and 2. Accordingly, the second line selection relay 30 2 operates based on the difference current between the S-phase short-circuit currents of the first and second transmission lines 1L and 2L and the S-phase phase voltage V S, and the first To the third circuit breakers 2 1 to 2 3 are collectively cut off.
(3) In the case of a short circuit accident between the T phase and the R phase For example, when a short circuit accident occurs between the T phase and the R phase of the first transmission and distribution line 1L, the first and second transmission lines 1L and 2 While a short-circuit current in the internal direction flows in the T phase, a short-circuit current in the external direction flows in the R phase of the first and second transmission and distribution lines 1L and 2. Thus, the third line selection relay 30 3 operates on the basis of the phase voltage V R of the first and second transmission and distribution lines 1L, differential current 2 T-phase of the short-circuit current and T-phase, the 1 to the third circuit breakers 2 1 to 2 3 collectively blocking.
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase For example, when a short circuit accident occurs between the T phase and the R phase of the first transmission and distribution line 1L, the first and second transmission and distribution lines 1L , 2 short-circuit currents flow in the R phase, S phase, and T phase, respectively. Accordingly, the first to third line selection relays 30 1 to 30 3 operate to collectively shut off the first to third circuit breakers 2 1 to 2 3 .

また、三相交流回路では、逆潮流から三相交流回路を保護するために、電力方向継電器(DP)が使用されている(たとえば、下記の特許文献2参照)。
たとえば、図20に示すように、母線の下流に設置された発電設備Gからの逆潮流から送配電線を保護するために、第1乃至第3の電力方向継電器401〜403を用いて、第1の電力方向継電器401には、送配電線のR相に設置された第1の変流器31からR相の電流を入力するとともに母線に設置された計器用変圧器6からR相の相電圧VRおよびT相の相電圧VTを入力し、また、第2の電力方向継電器402には、送配電線のS相に設置された第2の変流器32からS相の電流を入力するとともに計器用変圧器6からR相の相電圧VRおよびS相の相電圧VSを入力し、さらに、第3の電力方向継電器403には、送配電線のT相に設置された第3の変流器33からT相の電流を入力するとともに計器用変圧器6からS相の相電圧VSおよびT相の相電圧VTを入力して、送配電線のR相、S相およびT相に発生した逆潮流を以下のようにして検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を第1乃至第3の電力方向継電器401〜403で一括遮断している。
送配電線に逆潮流が発生すると、図20に破線の矢印で示すように、送配電線のR相、S相およびT相に母線と反対方向(以下、この方向を「+方向」とする。)に有効電流iRP,iSP,iTPが位相差120°でそれぞれ流れる。
したがって、第1の電力方向継電器401は、計器用変圧器6から入力されるR相の相電圧VRおよびT相の相電圧VTより算出したR相−T相の線間電圧VRTを基準電圧として用いて、第1の変流器31から入力されるR相の有効電流iRPと基準電圧(線間電圧VRT)とに基づいて動作して、R相の有効電流iRPが図21に示す動作範囲に入ると第1乃至第3の遮断器21〜23を一括遮断する。
第2の電力方向継電器402は、計器用変圧器6から入力されるR相の相電圧VRおよびS相の相電圧VSより算出したS相−R相の線間電圧VSRを基準電圧として用いて、第2の変流器32から入力されるS相の有効電流iSPと基準電圧(線間電圧VSR)とに基づいて動作して、S相の有効電流iSPが動作範囲(図21参照)に入ると第1乃至第3の遮断器21〜23を一括遮断する。
第3の電力方向継電器403は、計器用変圧器6から入力されるS相の相電圧VSおよびT相の相電圧VTより算出したT相−S相の線間電圧VTSを基準電圧として用いて、第3の変流器33から入力されるT相の有効電流iTPと基準電圧(線間電圧VTS)とに基づいて動作して、T相の電流iTPが動作範囲(図21参照)に入ると第1乃至第3の遮断器21〜23を一括遮断する。
Further, in the three-phase AC circuit, a power direction relay (DP) is used in order to protect the three-phase AC circuit from reverse power flow (see, for example, Patent Document 2 below).
For example, as shown in FIG. 20, first to third power direction relays 40 1 to 40 3 are used to protect the transmission and distribution lines from the reverse power flow from the power generation equipment G installed downstream of the bus. The first power direction relay 40 1 receives the R-phase current from the first current transformer 3 1 installed in the R phase of the transmission and distribution line, and from the instrument transformer 6 installed in the bus. enter the phase voltage V T of R-phase of the phase voltage V R and T phases, also in the second power directional relay 40 2, the second current transformer installed in the S phase of the transmission and distribution lines 3 2 The S-phase current is input, and the R-phase voltage V R and the S-phase voltage V S are input from the instrument transformer 6. Further, the third power direction relay 40 3 has a power transmission and distribution line. Oyo phase voltage V S of the S-phase from the potential transformer 6 receives an input of the third current current transformer 3 3 T phase installed in T phase Enter the phase voltage V T of the T-phase, R-phase of the transmission and distribution lines, when detected as follows backward flow generated in the S-phase and T-phase, the transmission and distribution lines R-phase, S-phase and T-phase The first to third circuit breakers 2 1 to 2 3 respectively installed in the first and third power direction relays 40 1 to 40 3 are collectively cut off.
When a reverse power flow occurs in the transmission / distribution line, as indicated by the broken arrows in FIG. )), Effective currents i RP , i SP and i TP flow with a phase difference of 120 °.
Accordingly, the first power direction relay 40 1 has the R-phase to T-phase line voltage V RT calculated from the R-phase phase voltage V R and the T-phase phase voltage V T inputted from the instrument transformer 6. Is used as a reference voltage and operates based on the R-phase effective current i RP input from the first current transformer 31 and the reference voltage (line voltage V RT ), and the R-phase effective current i When the RP enters the operating range shown in FIG. 21, the first to third circuit breakers 2 1 to 2 3 are collectively cut off.
Second power directional relay 40 2, based on the line voltage V SR of S phase -R phase calculated from the phase voltage V S of the voltage transformer 6 a phase voltage of the R-phase input from V R and S phases used as a voltage, and operates based on the active current i SP and the reference voltage of S-phase inputted from the second current transformer 3 2 (line voltage V SR), the effective current i SP of S-phase When entering the operating range (see FIG. 21), the first to third circuit breakers 2 1 to 2 3 are collectively cut off.
Third power directional relay 40 3, based on the line voltage V TS T-phase -S phase calculated from the phase voltage V T of S-phase of the phase voltage V S and T phases input from the potential transformer 6 used as a voltage, and operates based on the active current i TP and the reference voltage of the T-phase input from the third current transformer 3 3 (line voltage V TS), T-phase current i TP operation When entering the range (see FIG. 21), the first to third circuit breakers 2 1 to 2 3 are collectively cut off.

なお、図20に示した第1乃至第3の電力方向継電器401〜403では、送配電線のR相、S相およびT相に発生する逆潮流を検出するための基準電圧として線間電圧VRT,VSR,VTSを用いたが、単相電圧を用いる電力方向継電器もある。
また、基準電圧として線間電圧VRT,VSR,VTSを用いる場合の最大感度角は30°とし、基準電圧として単相電圧を用いる場合の最大感度角は0°とする。
さらに、3台の電力方向継電器を用いる代わりに、電力方向継電器を1台だけ用いて送配電線のR相、S相およびT相のうちの1相のみについて逆潮流を検出することもなされている。
特開2001−16767号公報 特開昭54−67658号公報
Note that, in the first to third power direction relays 40 1 to 40 3 shown in FIG. Although the voltages V RT , V SR , and V TS are used, there is a power direction relay that uses a single-phase voltage.
The maximum sensitivity angle when the line voltages V RT , V SR , and V TS are used as the reference voltage is 30 °, and the maximum sensitivity angle when the single-phase voltage is used as the reference voltage is 0 °.
Furthermore, instead of using three power direction relays, only one power direction relay is used to detect reverse power flow for only one of the R phase, S phase, and T phase of the transmission and distribution line. Yes.
JP 2001-16767 A JP 54-67658 A

しかしながら、送配電線につき変流器および方向保護継電器(短絡方向継電器、距離継電器および回線選択継電器)や電力方向継電器を3組設置しているため、変流器および方向保護継電器や電力方向継電器の設置台数を少なくして設備コストの削減を図りたいという要請がある。   However, because there are three sets of current transformers and direction protection relays (short-circuit direction relays, distance relays and line selection relays) and power direction relays for transmission and distribution lines, current transformers, direction protection relays and power direction relays There is a demand to reduce the equipment cost by reducing the number of installations.

本発明の目的は、短絡事故や逆潮流から三相交流回路を保護するための変流器および方向保護継電器や電力方向継電器の設置台数を削減することができる方向保護継電装置および電力方向継電装置を提供することにある。   An object of the present invention is to provide a direction protection relay device and a power direction relay that can reduce the number of current transformers, direction protection relays, and power direction relays for protecting a three-phase AC circuit from a short circuit accident or reverse power flow. It is to provide an electric device.

本発明の方向保護継電装置は、短絡事故から三相交流回路を保護するための方向保護継電装置であって、2次コイルを巻装した環状鉄心に前記三相交流回路の第2の相を第1の相と逆向きに同じまたは異なる回数だけ貫通させるとともに該三相交流回路の第3の相を前記第1の相と同じ向きに異なる回数だけ貫通させた三相貫通変流器と、該三相貫通変流器から入力される短絡電流と前記三相交流回路の電圧情報とに基づいて短絡事故を検出すると、該三相交流回路の前記第1乃至第3の相にそれぞれ設置された遮断器を一括遮断する方向保護継電器とを具備することを特徴とする。
前記方向保護継電器が、前記三相交流回路の短絡事故の事故様相を判定する事故様相判定手段をさらに具備し、前記三相貫通変流器から入力される前記短絡電流に該事故様相判定手段における事故様相の判定結果に応じた所定の倍数を掛けて補正短絡電流を算出し、該算出した補正短絡電流と前記三相交流回路の電圧情報とに基づいて短絡事故を検出すると該三相交流回路の前記第1乃至第3の相にそれぞれ設置された遮断器を一括遮断してもよい。
前記事故様相判定手段が、前記三相交流回路の3つの線間電圧(VRS,VST,VTR)、3つの相電圧(VR,VS,VT)または相・線間電圧に基づいて該三相交流回路の短絡事故の事故様相を判定してもよい。
前記事故様相判定手段が、前記三相交流回路の1つの線間電圧(VRS,VST,VTR)および1つの相電圧(VR,VS,VT)の電圧値および位相に基づいて該三相交流回路の短絡事故の事故様相を判定してもよい。
前記事故様相判定手段が、前記三相交流回路の1つの線間電圧(VRS,VST,VTR)の電圧値および位相と前記三相貫通変流器から入力される短絡電流(IRy)の位相とに基づいて該三相交流回路の短絡事故の事故様相を判定してもよい。
前記三相交流回路の第1の相電圧(VR)を極性方向で、該三相交流回路の第2の相電圧(VS)を反極性方向で、該三相交流回路の第3の相電圧(VT)を反極性方向で2倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相の相電圧の合成電圧(VR-S-2T)を得るための事故様相判定用変圧器(110)をさらに具備し、前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記三相貫通変流器から入力される短絡電流(IRy)の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定してもよい。
前記三相交流回路の第1の相電圧(VR)を極性方向で、該三相交流回路の第2の相電圧(VS)を反極性方向で、該三相交流回路の第3の相電圧(VT)を極性方向で2倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相の相電圧の合成電圧(VR-S+2T)を得るための事故様相判定用変圧器(120)をさらに具備し、前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記三相貫通変流器から入力される短絡電流(IRy)の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定してもよい。
前記三相交流回路の第1の相電圧(VR)を極性方向または反極性方向でa倍して、該三相交流回路の第2の相電圧(VS)を極性方向または反極性方向でb倍して、該三相交流回路の第3の相電圧(VT)を極性方向または反極性方向でc倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相の相電圧の合成電圧(VaR+bS+cT)を得るための事故様相判定用変圧器をさらに具備し、前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記三相貫通変流器から入力される短絡電流(IRy)の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定してもよい。
前記三相貫通変流器(10)が送配電線に設置されており、該三相貫通変流器の環状鉄心に前記送配電線の第2の相が第1の相と逆向きに同じ回数だけ貫通されているとともに該送配電線の第3の相が前記第1の相と同じ向きに異なる回数だけ貫通されており、前記方向保護継電器が、前記三相貫通変流器から入力される短絡電流(IRy)と前記送配電線の電圧情報とに基づいて短絡事故を検出すると、該送配電線の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)を一括遮断する短絡方向継電器(4)であってもよい。
前記三相貫通変流器(10)が送配電線に設置されており、該三相貫通変流器の環状鉄心に前記送配電線の第2の相が第1の相と逆向きに同じ回数だけ貫通されているとともに該送配電線の第3の相が前記第1の相と同じ向きに異なる回数だけ貫通されており、前記方向保護継電器が、前記三相貫通変流器から入力される短絡電流(IRy)と前記送配電線の電圧情報とに基づいて短絡事故を検出すると、該送配電線の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)を一括遮断する距離継電器(20)であってもよい。
前記距離継電器が、請求項6乃至8いずれかに記載の事故様相判定用変圧器から入力される前記合成電圧より求めた補正電圧(VRy)と前記三相貫通変流器から入力される短絡電流(IRy)とに基づいて前記三相交流回路の短絡事故を検出してもよい。
前記三相貫通変流器が、第1および第2の送配電線(1L,2L)にそれぞれ設置された第1および第2の三相貫通変流器(101,102)であり、該第1の三相貫通変流器の環状鉄心に前記第1の送配電線の第2の相が第1の相と逆向きに同じ回数だけ貫通されているとともに該第1の送配電線の第3の相が前記第1の相と同じ向きに異なる回数だけ貫通されており、前記第2の三相貫通変流器の環状鉄心に前記第2の送配電線の前記第2の相が前記第1の相と逆向きに同じ回数だけ貫通されているとともに該第2の送配電線の前記第3の相が前記第1の相と同じ向きに異なる回数だけ貫通されており、前記方向保護継電器が、前記第1の三相貫通変流器から入力される短絡電流および前記第2の三相貫通変流器から入力される短絡電流の差電流である短絡電流(IRy)と前記送配電線の電圧情報とに基づいて前記第1の送配電線に短絡事故が発生したことを検出すると、該第1の送配電線の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)を一括遮断し、前記短絡電流と前記送配電線の電圧情報とに基づいて前記第2の送配電線に短絡事故が発生したことを検出すると、該第2の送配電線の前記第1乃至第3の相にそれぞれ設置された第4乃至第6の遮断器(24〜26)を一括遮断する回線選択継電器(30)であってもよい。
本発明の電力方向継電装置は、逆潮流から三相交流回路を保護するための電力方向継電装置であって、2次コイルを巻装した環状鉄心に前記三相交流回路の第2の相を第1の相と逆向きに同じまたは異なる回数だけ貫通させるとともに該三相交流回路の第3の相を前記第1の相と同じ向きに異なる回数だけ貫通させた三相貫通変流器(10)と、該三相貫通変流器から入力される電流(iRy)と計器用変圧器(6)から入力される前記三相交流回路の電圧情報から求めた基準電圧とに基づいて逆潮流を検出すると、該三相交流回路の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)を一括遮断する電力方向継電器(40)とを具備することを特徴とする。
ここで、前記電力方向継電器が、前記三相貫通変流器から入力される電流に所定の倍数を掛けて補正電流(iRy’)を算出し、該算出した補正電流と前記基準電圧とに基づいて逆潮流を検出すると、前記第1乃至第3の遮断器を一括遮断してもよい。
前記電力方向継電器が、前記基準電圧の位相を90°進めた電圧を他の基準電圧として、前記三相貫通変流器から入力される電流または該電流に所定の倍数を掛けて算出した補正電流と該他の基準電圧とに基づいて逆潮流を検出することにより、無効電力方向継電器として機能してもよい。
The direction protection relay device of the present invention is a direction protection relay device for protecting a three-phase AC circuit from a short circuit accident, and a second core of the three-phase AC circuit is mounted on an annular core wound with a secondary coil. A three-phase through current transformer in which a phase is passed through the same or different number of times in the opposite direction to the first phase and a third phase of the three-phase AC circuit is passed through the same number of times in the same direction as the first phase. And detecting a short-circuit accident based on the short-circuit current input from the three-phase through current transformer and the voltage information of the three-phase AC circuit, the first to third phases of the three-phase AC circuit are respectively detected. It is characterized by comprising a direction protection relay that collectively shuts off the installed circuit breakers.
The direction protection relay further includes an accident mode determination unit that determines an accident mode of a short circuit accident of the three-phase AC circuit, and the short circuit current input from the three-phase through current transformer includes the fault mode determination unit. When a corrected short circuit current is calculated by multiplying a predetermined multiple according to the determination result of the accident aspect, and a short circuit accident is detected based on the calculated corrected short circuit current and voltage information of the three phase AC circuit, the three phase AC circuit The circuit breakers installed in the first to third phases may be collectively cut off.
The accident mode determination means determines whether the three-phase AC circuit has three line voltages (V RS , V ST , V TR ), three phase voltages (V R , V S , V T ) or a phase / line voltage. Based on this, the accident aspect of the short circuit accident of the three-phase AC circuit may be determined.
The accident mode determination means is based on the voltage value and phase of one line voltage (V RS , V ST , V TR ) and one phase voltage (V R , V S , V T ) of the three-phase AC circuit. Thus, the accident aspect of the short circuit accident of the three-phase AC circuit may be determined.
The accident mode determining means is configured to detect a voltage value and phase of one line voltage (V RS , V ST , V TR ) of the three-phase AC circuit and a short-circuit current (I Ry) input from the three-phase through current transformer. ) Phase of the three-phase AC circuit may be determined on the basis of the phase).
The first phase voltage (V R ) of the three-phase AC circuit is in the polarity direction, and the second phase voltage (V S ) of the three-phase AC circuit is in the opposite polarity direction. The first to second phases are used for determining the accident aspect of the short-circuit fault of the three-phase AC circuit, where the secondary side is connected so as to synthesize the phase voltage (V T ) by doubling in the opposite polarity direction. An accident mode determination transformer (110) for obtaining a composite voltage (V RS-2T ) of the phase voltages of the three phases, wherein the accident mode determination means is input from the accident mode determination transformer. The accident aspect of the short-circuit accident of the three-phase AC circuit may be determined based on the voltage value and phase of the combined voltage and the phase of the short-circuit current (I Ry ) input from the three-phase through current transformer. .
The first phase voltage (V R ) of the three-phase AC circuit is in the polarity direction, and the second phase voltage (V S ) of the three-phase AC circuit is in the opposite polarity direction. The first to third are used to determine the accident aspect of the short-circuit accident of the three-phase AC circuit in which the secondary side is connected so that the phase voltage (V T ) is doubled and synthesized in the polarity direction. And an accident mode determination transformer (120) for obtaining a composite voltage (V R-S + 2T ) of the phases of the phases, and the accident mode determination means is input from the accident mode determination transformer Even if the accident aspect of the short circuit accident of the three-phase AC circuit is determined based on the voltage value and phase of the combined voltage and the phase of the short-circuit current (I Ry ) input from the three-phase through current transformer Good.
The first phase voltage (V R ) of the three-phase AC circuit is multiplied by a in the polarity direction or the antipolar direction, and the second phase voltage (V S ) of the three-phase AC circuit is changed in the polarity direction or antipolar direction. And the secondary side is connected so that the third phase voltage (V T ) of the three-phase AC circuit is multiplied by c in the polarity direction or the opposite polarity direction to be combined, and the three-phase AC A fault condition judging transformer for obtaining a composite voltage (V aR + bS + cT ) of the phase voltages of the first to third phases used for judging the accident situation of the short circuit accident of the circuit; The accident aspect determination means is based on the voltage value and phase of the composite voltage input from the accident aspect determination transformer and the phase of the short-circuit current (I Ry ) input from the three-phase through current transformer. You may determine the accident aspect of the short circuit accident of the said three-phase alternating current circuit.
The three-phase through current transformer (10) is installed in a transmission / distribution line, and the second phase of the transmission / distribution line is the same as the first phase in the opposite direction to the annular core of the three-phase through current transformer. And the third phase of the transmission / distribution line is penetrated a different number of times in the same direction as the first phase, and the direction protection relay is input from the three-phase through current transformer When a short-circuit accident is detected based on the short-circuit current (I Ry ) and the voltage information of the transmission / distribution line, the first to third interruptions respectively installed in the first to third phases of the transmission / distribution line The short circuit direction relay (4) which cuts off the devices (2 1 to 2 3 ) collectively may be used.
The three-phase through current transformer (10) is installed in a transmission / distribution line, and the second phase of the transmission / distribution line is the same as the first phase in the opposite direction to the annular core of the three-phase through current transformer. And the third phase of the transmission / distribution line is penetrated a different number of times in the same direction as the first phase, and the direction protection relay is input from the three-phase through current transformer When a short-circuit accident is detected based on the short-circuit current (I Ry ) and the voltage information of the transmission / distribution line, the first to third interruptions respectively installed in the first to third phases of the transmission / distribution line It may be a distance relay (20) that collectively shuts off the devices (2 1 to 2 3 ).
The distance relay is a short circuit input from the correction voltage (V Ry ) obtained from the composite voltage input from the fault condition determination transformer according to any one of claims 6 to 8 and the three-phase through current transformer. A short circuit accident of the three-phase AC circuit may be detected based on the current (I Ry ).
The three-phase through current transformers are first and second three-phase through current transformers (10 1 , 10 2 ) installed in the first and second transmission and distribution lines (1L, 2L), respectively. The second phase of the first transmission / distribution line is passed through the annular core of the first three-phase through current transformer the same number of times in the opposite direction to the first phase, and the first transmission / distribution line The third phase of the second phase of the second power transmission and distribution line is inserted through the annular core of the second three-phase through current transformer in a different number of times in the same direction as the first phase. Is penetrated the same number of times in the opposite direction to the first phase and the third phase of the second transmission and distribution line is penetrated a different number of times in the same direction as the first phase, A short-circuit current input from the first three-phase through current transformer and a short-circuit current input from the second three-phase through current transformer in the direction protection relay When short circuit to the first transmission and distribution lines on the basis of the short-circuit current which is the difference current between (I Ry) and voltage information of the transmission and distribution lines to detection of occurrence, the first of the first transmission and distribution lines The first to third circuit breakers (2 1 to 2 3 ) respectively installed in the first to third phases are collectively cut off, and the second circuit is based on the short circuit current and the voltage information of the transmission and distribution lines. When it is detected that a short-circuit accident has occurred in the transmission / distribution line, fourth to sixth circuit breakers (2 4 to 2 6 ) installed in the first to third phases of the second transmission / distribution line, respectively. It may be a line selection relay (30) that cuts off all of them.
The power direction relay device of the present invention is a power direction relay device for protecting a three-phase AC circuit from reverse power flow, and a second core of the three-phase AC circuit is mounted on an annular core wound with a secondary coil. A three-phase through current transformer in which a phase is passed through the same or different number of times in the opposite direction to the first phase and a third phase of the three-phase AC circuit is passed through the same number of times in the same direction as the first phase. (10) and the reference voltage obtained from the current (i Ry ) input from the three-phase through current transformer and the voltage information of the three-phase AC circuit input from the instrument transformer (6). When a reverse power flow is detected, a power direction relay (40) that collectively shuts off the first to third circuit breakers (2 1 to 2 3 ) installed in the first to third phases of the three-phase AC circuit, respectively. It is characterized by comprising.
Here, the power direction relay multiplies the current input from the three-phase through current transformer by a predetermined multiple to calculate a correction current (i Ry '), and calculates the correction current and the reference voltage. If a reverse power flow is detected based on this, the first to third circuit breakers may be collectively cut off.
The power direction relay uses a voltage obtained by advancing the phase of the reference voltage by 90 ° as another reference voltage, or a current input from the three-phase through current transformer or a correction current calculated by multiplying the current by a predetermined multiple. And the other reference voltage may be detected to function as a reactive power direction relay.

本発明の方向保護継電装置および電力方向継電装置は、以下に示す効果を奏する。
(1)三相貫通変流器を使用することにより、短絡事故や逆潮流から三相交流回路を保護するための変流器および方向保護継電器や電力方向継電器の設置台数を削減して、設備コストの削減を図ることができる。
(2)三相貫通変流器から出力される短絡電流の振幅は短絡事故の事故様相によって異なるが、事故様相に応じて短絡電流の振幅を補正することにより方向保護継電器の検出感度および動作時間を同じにすることができる。
(3)第1の相電圧を極性方向または反極性方向でa倍して、第2の相電圧を極性方向または反極性方向でb倍して、第3の相電圧を極性方向または反極性方向でc倍して合成するように2次側が結線された事故様相判定用変圧器を用いることにより、事故様相判定用変圧器から出力される合成電圧の電圧値および位相と短絡電流の位相とに基づいて短絡事故の事故様相を判定することができる。
(4)基準電圧の位相を90°進めた他の基準電圧を使用することにより、電力方向継電器を無効電力方向継電器として機能させることができる。
The direction protection relay device and the power direction relay device of the present invention have the following effects.
(1) By using three-phase through current transformers, the number of current transformers, direction protection relays, and power direction relays to protect the three-phase AC circuit from short-circuit accidents and reverse power flow can be reduced. Cost can be reduced.
(2) Although the amplitude of the short-circuit current output from the three-phase feed-through current transformer varies depending on the accident aspect of the short-circuit accident, the detection sensitivity and operating time of the direction protection relay are corrected by correcting the amplitude of the short-circuit current according to the accident aspect. Can be the same.
(3) The first phase voltage is multiplied by a in the polar or antipolar direction, the second phase voltage is multiplied by b in the polar or antipolar direction, and the third phase voltage is polar or antipolar. By using an accident mode determination transformer whose secondary side is connected so as to be multiplied by c in the direction, the voltage value and phase of the composite voltage output from the accident mode determination transformer and the phase of the short circuit current The accident aspect of the short-circuit accident can be determined based on the above.
(4) By using another reference voltage obtained by advancing the phase of the reference voltage by 90 °, the power direction relay can function as a reactive power direction relay.

上記の目的を、2次コイルを巻装した環状鉄心に三相交流回路の第2の相を第1の相と逆向きに同じまたは異なる回数だけ貫通させるとともに三相交流回路の第3の相を第1の相と同じ向きに異なる回数だけ貫通させた三相貫通変流器を用いて、方向保護継電器が、三相貫通変流器から入力される短絡電流と三相交流回路の線間電圧とに基づいて短絡事故を検出すると、三相交流回路の第1乃至第3の相にそれぞれ設置された遮断器を一括遮断し、また、電力方向継電器が、三相貫通変流器から入力される電流と計器用変圧器から入力される三相交流回路の電圧情報から求めた基準電圧とに基づいて逆潮流を検出すると、三相交流回路の第1乃至第3の相にそれぞれ設置された遮断器を一括遮断することにより実現した。   To achieve the above object, the second phase of the three-phase AC circuit is passed through the annular core around which the secondary coil is wound in the same direction or different times in the opposite direction to the first phase, and the third phase of the three-phase AC circuit. Using a three-phase through current transformer that penetrates the same direction as the first phase a different number of times, the direction protection relay is connected between the short-circuit current input from the three-phase through current transformer and the line of the three-phase AC circuit. When a short-circuit accident is detected based on the voltage, the circuit breakers installed in the first to third phases of the three-phase AC circuit are collectively disconnected, and the power direction relay is input from the three-phase through current transformer When a reverse power flow is detected on the basis of the detected current and the reference voltage obtained from the voltage information of the three-phase AC circuit input from the instrument transformer, it is installed in each of the first to third phases of the three-phase AC circuit. This was realized by shutting off all the circuit breakers.

以下、本発明の方向保護継電装置および電力方向継電装置の実施例について図面を参照して説明する。
本発明の第1の実施例による方向保護継電装置は、図1に示すように、送配電線に設置された三相貫通変流器10と、母線に設置された計器用変圧器6と、三相貫通変流器10から入力される短絡電流IRyと計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する短絡方向継電器4とを具備する。
Hereinafter, embodiments of the direction protection relay device and the power direction relay device of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the direction protection relay device according to the first embodiment of the present invention includes a three-phase through current transformer 10 installed on a transmission / distribution line, and an instrument transformer 6 installed on a bus. The R phase obtained from the short circuit current I Ry input from the three-phase through current transformer 10 and the R, S and T phase voltages V R , V S and V T input from the instrument transformer 6. -When a short circuit accident is detected on the transmission / distribution line based on the S-phase line voltage V RS , the S-phase / T-phase line voltage V ST and the T-phase / R-phase line voltage V TR A short-circuit direction relay 4 that collectively shuts off the first to third circuit breakers 2 1 to 2 3 installed in the R phase, the S phase, and the T phase, respectively.

ここで、三相貫通変流器10は、2次コイルを巻装した環状鉄心に送配電線のS相をR相と逆向きに同じ回数だけ貫通させるとともに送配電線のT相をR相と同じ向きに異なる回数だけ貫通させた貫通形変流器である。すなわち、送配電線のR相およびT相はともに三相貫通変流器10の極性方向(環状鉄心の第1の開口面から環状鉄心の第2の開口面への方向)に貫通されているが、送配電線のS相は三相貫通変流器10の反極性方向(環状鉄心の第2の開口面から環状鉄心の第1の開口面への方向)に向けて貫通されている。
また、送配電線のR相およびS相は1回だけ三相貫通変流器10を貫通されているが、送配電線のT相は2回ほど三相貫通変流器10を貫通されている。これにより、三相貫通変流器10からは、送配電線のR相を流れる電流とS相を流れる電流の極性を反転したものとT相を流れる電流を2倍した電流との和電流が出力される。
Here, the three-phase through current transformer 10 allows the S phase of the transmission / distribution line to pass through the annular core around which the secondary coil is wound, the same number of times in the opposite direction to the R phase, and the T phase of the transmission / distribution line to be the R phase. Is a through-type current transformer that is penetrated in the same direction by different numbers of times. That is, both the R phase and the T phase of the power transmission and distribution line are penetrated in the polarity direction of the three-phase through current transformer 10 (direction from the first opening surface of the annular core to the second opening surface of the annular core). However, the S phase of the power transmission / distribution line is penetrated in the antipolar direction of the three-phase through current transformer 10 (the direction from the second opening surface of the annular core to the first opening surface of the annular core).
Moreover, although the R phase and S phase of the transmission / distribution line are penetrated through the three-phase through current transformer 10 only once, the T phase of the transmission / distribution line is penetrated through the three-phase through current transformer 10 twice. Yes. As a result, the sum current of the current flowing through the R phase and the current flowing through the S phase of the transmission / distribution line and the current obtained by inverting the current flowing through the T phase is doubled from the three-phase through current transformer 10. Is output.

したがって、短絡事故が発生していないときに送配電線のR相、S相およびT相に流れる負荷電流をIR,IS,ITで表すと、図2(a)に示すように三相貫通変流器10から短絡方向継電器4に入力される負荷電流IはR相の負荷電流IRと極性が負のS相の負荷電流−ISとT相の負荷電流ITを2倍した電流(=2IT)とのベクトル和となるが、R相の負荷電流IRとS相の負荷電流ISとT相の負荷電流ITとは位相が120°間隔でずれているため、負荷電流Iの振幅はR相の負荷電流IR(S相およびT相の負荷電流IS,IT)の振幅の71/2倍となる。
I=IR−IS+2IT
|I|=|IR−IS+2IT|={(31/22+221/2×|IR
=71/2×|IR|(=71/2×|IS|=71/2×
そこで、短絡方向継電器4は、図17に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される負荷電流の振幅と同じにするために、次式で示すように負荷電流Iを1/71/2倍して補正負荷電流I’を算出する。
I’=I×1/71/2
|I’|=|I|×1/71/2-=|IR|(=|IS|=|IT|)
Therefore, when the load currents flowing in the R phase, S phase, and T phase of the transmission and distribution line when no short circuit accident has occurred are represented by I R , I S , and I T , as shown in FIG. phase through the load current I from the current transformer 10 is input to the short-circuit direction relay 4 twice the load current I T of the load current -I S and T phases of the load R-phase current I R and polarity negative S phase the current (= 2I T) and becomes the vector sum of the phase of the load current I T of the load current I S and T phases of the load current I R and S phases of the R phase is shifted by 120 ° intervals The amplitude of the load current I is 7 1/2 times the amplitude of the R-phase load current I R (S-phase and T-phase load currents I S and I T ).
I = I R −I S + 2I T
| I | = | I R −I S + 2I T | = {(3 1/2 ) 2 +2 2 } 1/2 × | I R |
= 7 1/2 × | I R | (= 7 1/2 × | I S | = 7 1/2 ×
Therefore, in order to make the short-circuit direction relay 4 the same as the amplitude of the load current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. The corrected load current I ′ is calculated by multiplying the load current I by 1/7 1/2 .
I ′ = I × 1/7 1/2
| I ′ | = | I | × 1/7 1/ 2- = | I R | (= | I S | = | I T |)

また、送配電線に短絡事故が発生したときに送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFT(インピーダンス角をθとする。)で表すと、短絡方向継電器4は、事故様相に応じて以下のように動作する。
(1)R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図1に破線の矢印で示すように送配電線のR相にR相の短絡電流IFRが内部方向に流れ、送配電線のS相にS相の短絡電流IFSが外部方向に流れるが、送配電線のT相にはT相の短絡電流IFTが流れない。
したがって、三相貫通変流器10から短絡方向継電器4に出力される短絡電流IRyはR相の短絡電流IFRと極性が負のS相の短絡電流−IFSとのベクトル和となるが、R相の短絡電流IFRとS相の短絡電流IFSとの位相差が180°であるため、短絡電流IRyの振幅は図3(a)に示すようにR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=2×|IFR|(=2×|IFS|)
なお、図3および図4においては、送配電線の内部方向に流れる短絡電流IFR,IFS,IFTは実線の矢印で、送配電線の外部方向に流れる短絡電流IFR,IFS,IFTは一点鎖線の矢印で示している。
そこで、短絡方向継電器4は、図17に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1/2
|IRy’|=|IRy|×1/2-=|IFR|(=|IFS|)
短絡方向継電器4は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて短絡電流IRyの大きさおよび方向を判別する。なお、送配電線のR相−S相間の短絡事故の場合には、図3(a)に示すように、算出した補正短絡電流IRy’とR相−S相の線間電圧VRSとに基づいて短絡電流IRyの大きさおよび方向が判別される。
短絡方向継電器4は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、図5に破線の矢印で示すように、送配電線のS相にS相の短絡電流IFSが内部方向に流れ、送配電線のT相にT相の短絡電流IFTが外部方向に流れるが、送配電線のR相にはR相の短絡電流IFRが流れない。
したがって、三相貫通変流器10から短絡方向継電器4に出力される短絡電流IRyは極性が負のS相の短絡電流−IFSとT相の短絡電流IFTを2倍した電流(=2IFT)とのベクトル和となるが、S相の短絡電流IFSとT相の短絡電流IFTとの位相差が180°であるため、短絡電流IRyの振幅は図3(b)に示すようにT相の短絡電流IFT(S相の短絡電流IFS)の振幅の3倍となる。
Ry=−IFS+2IFT
|IRy|=|−IFS+2IFT|=3×|IFT|(=3×|IFS|)
そこで、短絡方向継電器4は、図17に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1/3倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1/3
|IRy’|=|IRy|×1/3=|IFT|(=|IFS|)
短絡方向継電器4は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて短絡電流IRyの大きさおよび方向を判別する。なお、送配電線のS相−T相間の短絡事故の場合には、図3(b)に示すように、算出した補正短絡電流IRy’とS相−T相の線間電圧VST(極性が負)とに基づいて短絡電流IRyの大きさおよび方向が判別される。
短絡方向継電器4は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、図6に破線の矢印で示すように、送配電線のT相にT相の短絡電流IFTが内部方向に流れ、送配電線のR相にR相の短絡電流IFRが外部方向に流れるが、送配電線のS相にはS相の短絡電流IFSが流れない。
したがって、三相貫通変流器10から短絡方向継電器4に出力される短絡電流IRyはR相の短絡電流IFRとT相の短絡電流IFTを2倍した電流(=2IFT)とのベクトル和となるが、R相の短絡電流IFRとT相の短絡電流IFTとの位相差が180°であるため、短絡電流IRyの振幅は図4(a)に示すようにT相の短絡電流IFT(R相の短絡電流IFR)の振幅となる。
Ry=IFR+2IFT
|IRy|=|IFR+2IFT|=|IFT|(=|IFR|)
そこで、短絡方向継電器4は、図17に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1
|IRy’|=|IRy|×1=|IFT|(=|IFR|)
短絡方向継電器4は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて短絡電流IRyの大きさおよび方向を判別する。なお、送配電線のT相−R相間の短絡事故の場合には、図4(a)に示すように、算出した補正短絡電流IRy’とT相−R相の線間電圧VTRとに基づいて短絡電流IRyの大きさおよび方向が判別される。
短絡方向継電器4は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、図7に破線の矢印で示すように、送配電線のR相,S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120度で内部方向にそれぞれ流れる。
したがって、三相貫通変流器10から短絡方向継電器4に出力される短絡電流IRyはR相の短絡電流IFRと極性が負のS相の短絡電流−IFSとT相の短絡電流IFTを2倍した電流(=2IFT)とのベクトル和となるが、R相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTは位相が120°間隔でずれているため、短絡電流IRyの振幅は図4(b)に示すようにR相の短絡電流IFR(S相およびT相の短絡電流IFS,IFT)の振幅の71/2倍となる。
Ry=IFR−IFS+2IFT
|IRy|=|IFR−IFS+2IFT|={(31/22+221/2×|IR
=71/2×|IFR|(=71/2×|IFS|=71/2×|IFT|)
そこで、短絡方向継電器4は、図17に示した従来の第1乃至第3の短絡方向継電器41〜43に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1/71/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1/71/2
|IRy’|=|IRy|×1/71/2-=|IFR|(=|IFS|=|IFT|)
また、短絡電流IRyは49.1°の進み位相で三相貫通変流器10から短絡方向継電器4に入力されるため、短絡方向継電器4は補正短絡電流IRy’の位相補正も行う。
短絡方向継電器4は、位相補正した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて短絡電流IRyの大きさおよび方向を判別する。なお、送配電線のR相−S相−T相間の短絡事故の場合には、図4(b)に示すように、位相補正した補正短絡電流IRy’とR相−S相の線間電圧VRSとに基づいて短絡電流IRyの大きさおよび方向が判別される。
短絡方向継電器4は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
In addition, when a short circuit accident occurs in the transmission / distribution line, the short-circuit currents flowing in the R phase, S phase, and T phase of the transmission / distribution line are represented by I FR , I FS , I FT (impedance angle is θ). The short-circuit direction relay 4 operates as follows according to the accident aspect.
(1) In the case of a short circuit accident between the R phase and the S phase When a short circuit accident between the R phase and the S phase occurs, the short circuit current I FR of the R phase is generated in the R phase of the power transmission and distribution line as shown by the broken arrow in FIG. The S-phase short-circuit current I FS flows in the S-phase of the transmission / distribution line, and the S-phase short-circuit current I FS flows in the external direction. However, the T-phase short-circuit current I FT does not flow in the T-phase of the transmission / distribution line.
Therefore, the short-circuit current I Ry output from the three-phase through current transformer 10 to the short-circuit direction relay 4 is a vector sum of the R-phase short-circuit current I FR and the negative-polarity S-phase short-circuit current −I FS. Since the phase difference between the R-phase short-circuit current I FR and the S-phase short-circuit current I FS is 180 °, the amplitude of the short-circuit current I Ry is R-phase short-circuit current I FR as shown in FIG. It becomes twice the amplitude of (S phase short circuit current I FS ).
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 2 × | I FR | (= 2 × | I FS |)
In FIGS. 3 and 4, short-circuit currents I FR , I FS , I FT flowing in the inner direction of the transmission / distribution line are solid arrows, and short-circuit currents I FR , I FS , I FT is indicated by a dashed-dotted arrow.
Therefore, in order to make the short-circuit direction relay 4 the same as the amplitude of the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. The short-circuit current I Ry is halved to calculate a corrected short-circuit current I Ry '.
I Ry '= I Ry × 1/2
| I Ry '| = | I Ry | × 1 / 2- = | I FR | (= | I FS |)
The short-circuit direction relay 4 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the magnitude and direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the R phase and the S phase of the transmission and distribution line, as shown in FIG. 3A, the calculated corrected short circuit current I Ry ′ and the line voltage V RS between the R phase and the S phase Is used to determine the magnitude and direction of the short-circuit current I Ry .
When it is determined that a short-circuit accident has occurred in the transmission / distribution line, the short-circuit direction relay 4 collectively shuts off the first to third circuit breakers 2 1 to 2 3 .
(2) S-phase -T For short circuit between the phases when the short circuit of the S-phase -T phase occurs, as indicated by broken line arrow in FIG. 5, the short-circuit current of the S-phase to the S phase of the transmission and distribution lines I FS There flow inside direction, but the short-circuit current I FT T-phase to the T phase of the transmission and distribution lines to flow to the outside direction, the R-phase of the transmission and distribution lines does not flow a short-circuit current I FR of R-phase.
Therefore, the short-circuit current I Ry output from the three-phase through current transformer 10 to the short-circuit direction relay 4 is a current obtained by doubling the S-phase short-circuit current −I FS and the T-phase short-circuit current I FT having a negative polarity (= 2I FT ), but since the phase difference between the S-phase short-circuit current I FS and the T-phase short-circuit current I FT is 180 °, the amplitude of the short-circuit current I Ry is shown in FIG. As shown, it is three times the amplitude of the T-phase short-circuit current I FT (S-phase short-circuit current I FS ).
I Ry = −I FS + 2I FT
| I Ry | = | −I FS + 2I FT | = 3 × | I FT | (= 3 × | I FS |)
Therefore, in order to make the short-circuit direction relay 4 the same as the amplitude of the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. The corrected short-circuit current I Ry ′ is calculated by multiplying the short-circuit current I Ry by 1/3.
I Ry '= I Ry × 1/3
| I Ry '| = | I Ry | × 1/3 = | I FT | (= | I FS |)
The short-circuit direction relay 4 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the magnitude and direction of the short-circuit current I Ry are determined. In the case of a short circuit accident S phase -T phase of transmission and distribution lines, as shown in FIG. 3 (b), the calculated correction circuit current I Ry 'and S phase -T phase of the line voltage V ST ( The magnitude and direction of the short-circuit current I Ry is determined based on the negative polarity.
When it is determined that a short-circuit accident has occurred in the transmission / distribution line, the short-circuit direction relay 4 collectively shuts off the first to third circuit breakers 2 1 to 2 3 .
(3) When T phase -R phase short fault when T-phase -R phase short-circuit accident occurs, as indicated by broken line arrow in FIG. 6, the short-circuit current of the T-phase to the T phase of the transmission and distribution lines I FT There flow inside direction, but the short-circuit current I FR of R-phase to R-phase of transmission and distribution lines to flow to the outside direction, the S-phase of the transmission and distribution lines does not flow a short-circuit current I FS of S phase.
Therefore, the short-circuit current I Ry output from the three-phase through current transformer 10 to the short-circuit direction relay 4 is obtained by doubling the R-phase short-circuit current I FR and the T-phase short-circuit current I FT (= 2I FT ). Although it is a vector sum, since the phase difference between the R-phase short-circuit current I FR and the T-phase short-circuit current I FT is 180 °, the amplitude of the short-circuit current I Ry is T-phase as shown in FIG. The amplitude of the short-circuit current I FT (R-phase short-circuit current I FR ).
I Ry = I FR + 2I FT
| I Ry | = | I FR + 2I FT | = | I FT | (= | I FR |)
Therefore, in order to make the short-circuit direction relay 4 the same as the amplitude of the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. The corrected short-circuit current I Ry 'is calculated by multiplying the short-circuit current I Ry by 1.
I Ry '= I Ry × 1
| I Ry '| = | I Ry | × 1 = | I FT | (= | I FR |)
The short-circuit direction relay 4 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the magnitude and direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the T phase and the R phase of the transmission and distribution line, as shown in FIG. 4A, the calculated corrected short circuit current I Ry ′ and the line voltage V TR between the T phase and the R phase The magnitude and direction of the short-circuit current I Ry is determined based on the above.
When it is determined that a short-circuit accident has occurred in the transmission / distribution line, the short-circuit direction relay 4 collectively shuts off the first to third circuit breakers 2 1 to 2 3 .
(4) In case of short-circuit accident between R-phase, S-phase, and T-phase When a short-circuit accident occurs between R-phase, S-phase, and T-phase, as indicated by the dashed arrows in FIG. The R-phase short-circuit current I FR , the S-phase short-circuit current I FS, and the T-phase short-circuit current I FT flow in the internal direction with a phase difference of 120 degrees.
Therefore, the short-circuit current I Ry output from the three-phase through current transformer 10 to the short-circuit direction relay 4 is the R-phase short-circuit current I FR , the negative polarity S-phase short-circuit current −I FS, and the T-phase short-circuit current I Although it is a vector sum with the current doubled by FT (= 2I FT ), the R-phase short-circuit current I FR , the S-phase short-circuit current I FS and the T-phase short-circuit current I FT are out of phase by 120 °. Therefore, the amplitude of the short-circuit current I Ry is 7 1/2 times the amplitude of the R-phase short-circuit current I FR (S-phase and T-phase short-circuit currents I FS and I FT ) as shown in FIG. It becomes.
I Ry = I FR -I FS + 2I FT
| I Ry | = | I FR −I FS + 2I FT | = {(3 1/2 ) 2 +2 2 } 1/2 × | I R |
= 7 1/2 × | I FR | (= 7 1/2 × | I FS | = 7 1/2 × | I FT |)
Therefore, in order to make the short-circuit direction relay 4 the same as the amplitude of the short-circuit current input to the conventional first to third short-circuit direction relays 4 1 to 4 3 shown in FIG. The corrected short-circuit current I Ry 'is calculated by multiplying the short-circuit current I Ry by 1/7 1/2 .
I Ry '= I Ry × 1/7 1/2
| I Ry '| = | I Ry | × 1/7 1/2 - = | I FR | (= | I FS | = | I FT |)
Further, since the short-circuit current I Ry is input from the three-phase through current transformer 10 to the short-circuit direction relay 4 with a leading phase of 49.1 °, the short-circuit direction relay 4 also performs phase correction of the corrected short-circuit current I Ry ′.
The short-circuit direction relay 4 includes a phase-corrected corrected short-circuit current I Ry ′, an R-phase / S-phase line voltage V RS , an S-phase / T-phase line voltage V ST, and a T-phase / R-phase line voltage V Based on TR , the magnitude and direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the R phase, the S phase, and the T phase of the transmission / distribution line, as shown in FIG. 4B, the corrected short circuit current I Ry 'corrected for the phase and the line between the R phase and the S phase The magnitude and direction of the short circuit current I Ry is determined based on the voltage V RS .
When it is determined that a short-circuit accident has occurred in the transmission / distribution line, the short-circuit direction relay 4 collectively shuts off the first to third circuit breakers 2 1 to 2 3 .

なお、三相貫通変流器10には送配電線のS相をR相と逆向きに同じ回数だけ貫通させるとともに送配電線のT相をR相と同じ向きに異なる回数だけ貫通させたが、送配電線のT相をS相と逆向きに同じ回数だけ貫通させるとともに送配電線のR相をS相と同じ向きに異なる回数だけ貫通させてもよいし、送配電線のR相をT相と逆向きに同じ回数だけ貫通させるとともに送配電線のS相をT相と同じ向きに異なる回数だけ貫通させてもよい。   The three-phase through current transformer 10 has the S phase of the transmission / distribution line penetrated the same number of times in the opposite direction to the R phase and the T phase of the transmission / distribution line has been penetrated a different number of times in the same direction as the R phase. The T phase of the transmission / distribution line may be penetrated the same number of times in the opposite direction to the S phase, and the R phase of the transmission / distribution line may be penetrated the same number of times in the same direction as the S phase. The S phase of the power transmission / distribution line may be penetrated the same number of times in the same direction as the T phase while being penetrated the same number of times in the opposite direction to the T phase.

ただし、三相貫通変流器10に貫通させる送配電線の相の組合せ(以下、「CT結線」と称する。)によって、短絡方向継電器4は、事故様相に応じて、表1に示す倍率で補正短絡電流IRy’を算出するとともに、算出した補正短絡電流IRy’と表2に示す線間電圧とに基づいて送配電線に短絡事故が発生したか否かを判定する。
なお、表1および表2において、CT結線の“+”は三相貫通変流器の極性方向に貫通される相を示し、CT結線の“−”は三相貫通変流器の反極性方向に貫通される相を示す。
However, depending on the accident aspect, the short-circuit direction relay 4 has the magnification shown in Table 1 depending on the combination of the phases of the transmission and distribution lines (hereinafter referred to as “CT connection”) penetrating the three-phase through current transformer 10. The corrected short-circuit current I Ry ′ is calculated, and it is determined whether or not a short-circuit accident has occurred in the transmission and distribution line based on the calculated corrected short-circuit current I Ry ′ and the line voltage shown in Table 2.
In Tables 1 and 2, “+” in the CT connection indicates a phase that penetrates in the polarity direction of the three-phase through current transformer, and “−” in the CT connection indicates the opposite polarity direction in the three-phase through current transformer. The phase penetrated by is shown.

以上説明したように、本実施例による方向保護継電装置では、三相貫通変流器10を用いることにより、変流器および短絡方向継電器の設置台数を更に削減することができるが、負荷電流Iの振幅が71/2倍になるとともに、R相−S相間の短絡事故における短絡電流IRyの振幅がT相−R相間の短絡事故における短絡電流IRyの振幅の2倍になり、S相−T相間の短絡事故における短絡電流IRyの振幅がT相−R相間の短絡事故における短絡電流IRyの振幅の3倍になり、また、R相−S相−T相間の短絡事故における短絡電流IRyの振幅がT相−R相間の短絡事故における短絡電流IRyの振幅の71/2倍になるので、短絡方向継電器の検出感度および動作時間をすべての事故様相に対して同じにするためには、短絡電流IRyを事故様相に応じて補正する必要がある。 As described above, in the direction protection relay device according to the present embodiment, the number of installed current transformers and short-circuit direction relays can be further reduced by using the three-phase through current transformer 10, but the load current the amplitude of I is 7 1/2, twice the amplitude of the short-circuit current I Ry amplitude of the short-circuit current I Ry in short circuit of the R-phase -S phase is in a short circuit accident T phase -R phase, The amplitude of the short-circuit current I Ry in the short-circuit accident between the S phase and the T phase is three times the amplitude of the short-circuit current I Ry in the short-circuit accident between the T phase and the R phase, and the short circuit accident between the R phase, the S phase, and the T phase. short-circuit current the amplitude of the I Ry is 71/2 times the amplitude of the short-circuit current I Ry in short circuit of the T-phase -R phases in the detection sensitivity and operating time of the short-circuit direction relay for all accidents aspects in order to be the same, the response of the short-circuit current I Ry to the accident aspects It is necessary to correct Te.

そこで、短絡方向継電器4は、以下に示す第1乃至第5の事故様相判定方法のいずれかを用いて事故様相を判定し、三相貫通変流器10からの短絡電流IRyに事故様相判定結果に応じた所定の倍数(表1参照)を掛けることによって短絡電流IRyを補正する。 Therefore, the short-circuit direction relay 4 determines the accident aspect using any one of the following first to fifth accident aspect determination methods, and determines the accident aspect to the short-circuit current I Ry from the three-phase through current transformer 10. The short-circuit current I Ry is corrected by multiplying by a predetermined multiple (see Table 1) according to the result.

(第1の事故様相判定方法)
3つの線間電圧、3つの相電圧または相・線間電圧(相電圧と線間電圧との組合せ)に基づいて事故様相を判定する。
(First accident mode judgment method)
The accident aspect is determined based on the three line voltages, the three phase voltages, or the phase / line voltage (combination of the phase voltage and the line voltage).

表3に、3つの線間電圧に基づく事故様相判定条件を示す。なお、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された線間電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった線間電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。
Table 3 shows the accident condition determination conditions based on the three line voltages. In addition, ○ mark indicates the line voltage in which the voltage drop is detected based on the voltage information from the undervoltage relay installed on the bus, and the X mark is based on the voltage information from this undervoltage relay. Indicates a line voltage in which no voltage drop was detected (voltage drop detection sensitivity is about 75 to 80% of the rated voltage).

表4に、3つの相電圧に基づく事故様相判定条件を示す。なお、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された相電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった相電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。
Table 4 shows the accident condition determination conditions based on the three phase voltages. In addition, a circle indicates a phase voltage in which a voltage drop is detected based on voltage information from an undervoltage relay installed on the bus, and a cross indicates a voltage based on voltage information from the undervoltage relay. The phase voltage in which no decrease was detected is indicated (the voltage drop detection sensitivity is about 75 to 80% of the rated voltage).

表5に、相・線間電圧に基づく事故様相判定条件を示す。なお、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された相電圧および線間電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった相電圧および線間電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。
Table 5 shows the accident condition determination conditions based on the phase / line voltage. The circles indicate the phase voltage and the line voltage at which a voltage drop is detected based on the voltage information from the undervoltage relay installed on the bus, and the x indicates the voltage information from this undervoltage relay. The phase voltage and the line voltage in which no voltage drop was detected based on the above are shown (the voltage drop detection sensitivity is about 75 to 80% of the rated voltage).

(第2の事故様相判定方法)
1つの線間電圧および1つの相電圧の電圧値および位相に基づいて事故様相を判定する。
(Second accident mode judgment method)
The accident aspect is determined based on the voltage value and phase of one line voltage and one phase voltage.

たとえば、T相−R相の線間電圧VTRの位相が210°でかつR相の相電圧VRの位相が0°であることを基準として(図2(b)参照)、送配電線のR相−S相間の短絡事故時のR相−S相の線間電圧VRSおよびS相−T相間の短絡事故時のS相−T相の線間電圧VSTを短絡事故検出感度の85Vとすると、T相−R相の線間電圧VT Rが所定の第1の電圧値k1=85V以下であることを条件として短絡事故が発生したと判定するとともに、T相−R相の線間電圧VT Rが所定の第2の電圧値k2=104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準として短絡事故時のT相−R相の線間電圧VTRの位相が所定の角度範囲α内だけ遅れているか進んでいること(5.95°≦α≦30°または−30°≦α≦−5.95°)を条件として短絡事故が発生したと判定する(以下の(1−1)式および(1−2)式参照)。
TR≦[{(110/31/2)×1.5}2+(85/2)21/2
≦(95.262+42.521/2
≦104.3(V) ・・・(1−1)
α≧30°−tan-1(42.5/95.26)
≧5.95(°) ・・・(1−2)
For example, based on the fact that the phase of the line voltage V TR between the T phase and the R phase is 210 ° and the phase of the phase voltage V R of the R phase is 0 ° (see FIG. 2B), the transmission and distribution lines The R-phase-S phase line voltage V RS at the time of the short-circuit accident between the R-phase and S-phase and the S-phase-T-phase line voltage V ST at the time of the short-circuit accident between the S-phase and the T-phase When 85 V, as well as determined that the short-circuit failure on a condition that the line voltage V TR of the T-phase -R phase is equal to or less than a predetermined first voltage value k1 = 85 V is generated, a line of T-phase -R phase The voltage V TR is equal to or lower than a predetermined second voltage value k2 = 104.3 V, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident is 210 ° as a reference. the T-phase -R phase of the phase of the line voltage V TR is advanced or delayed by a predetermined angular range α (5.95 ° ≦ α ≦ 30 ° or -30 ° α ≦ -5.95 °) determining a short-circuit failure condition has occurred (the following (1-1) and (1-2) refer to formula).
V TR ≦ [{(110/3 1/2 ) × 1.5} 2 + (85/2) 2 ] 1/2
≦ (95.26 2 +42.5 2 ) 1/2
≦ 104.3 (V) (1-1)
α ≧ 30 ° -tan −1 (42.5 / 95.26)
≧ 5.95 (°) (1-2)

また、以下のようにして事故様相を判定する。
(1)R相−S相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れている(+α)場合に、R相−S相間の短絡事故と判定する(図8(a)参照)。
(2)S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ進んでいる(−α)場合に、S相−T相間の短絡事故と判定する(図8(b)参照)。
(3)T相−R相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡事故前のR相の相電圧VRの位相=0°を基準としてR相の相電圧VRの位相が所定の他の角度範囲β(6.76°≦β≦60°、(1−3)式参照)内だけ進んでいる(−β)場合に、T相−R相間の短絡事故と判定する(図8(c)参照)。
β≧60°−tan-1[42.5/{110/(2×31/2)}]
≧6.76(°) ・・・(1−3)
(4)R相−S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡事故前のR相の相電圧VRの位相=0°を基準としてR相の相電圧VRの位相が他の角度範囲β内だけ遅れていたり進んでいたりしていない(すなわち、−6.76°よりも大きくて6.76°よりも小さい)ことを条件に、R相−S相−T相間の短絡事故と判定する(図8(d)参照)。
Moreover, the accident aspect is determined as follows.
(1) In the case of a short-circuit accident between the R phase and the S phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is delayed by the angle range α (+ α) with reference to the phase = 210 °, it is determined that the short-circuit accident occurs between the R phase and the S phase (FIG. 8 ( a)).
(2) In the case of a short circuit accident between the S phase and the T phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is advanced only within the angle range α (−α) with respect to the phase = 210 ° as a reference, it is determined that there is a short circuit accident between the S phase and the T phase (FIG. 8). (See (b)).
(3) In the case of a short circuit accident between the T phase and the R phase The line voltage V TR between the T phase and the R phase is 85 V or less, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = The phase of the line voltage V TR between the T phase and the R phase is not delayed or advanced by an angle range α with respect to 210 ° (that is, greater than −5.95 ° and 5.95 °). And the phase of the R-phase phase voltage V R before the short circuit accident is 0 ° as a reference, and the phase of the R-phase phase voltage V R has a predetermined other angle range β (6.76 ° ≦ β ≦ 60 °, see (Equation 1-3)) (−β), it is determined that there is a short circuit accident between the T phase and the R phase (see FIG. 8C).
β ≧ 60 ° -tan −1 [42.5 / {110 / (2 × 3 1/2 )}]
≧ 6.76 (°) (1-3)
(4) In the case of a short circuit accident between R phase, S phase and T phase The line voltage V TR between T phase and R phase is 85V or less, and the line voltage V TR between T phase and R phase before the short circuit accident. The phase of the line voltage V TR between the T-phase and the R-phase is not delayed or advanced by the angle range α with respect to the phase of 210 = 210 ° (ie, greater than −5.95 ° and 5 .. is smaller than .95 °), and the phase of the R-phase voltage V R before the short-circuit accident is 0 ° or the phase of the R-phase voltage V R is delayed or advanced by another angle range β. It is determined that a short-circuit accident between the R phase, the S phase, and the T phase is performed on the condition that the phase is not larger (that is, larger than −6.76 ° and smaller than 6.76 °) (FIG. 8D). reference).

なお、T相−R相の線間電圧VTRおよびR相の相電圧VRを用いたが、表6に丸印で示す電圧の組合せのいずれか1つを用いてもよい。ただし、上述した短絡事故発生判定条件および事故様相判定条件を電圧の組合せに応じて変更する必要がある。
Although the T-phase-R-phase line voltage V TR and the R-phase phase voltage V R are used, any one of the voltage combinations indicated by circles in Table 6 may be used. However, the short-circuit accident occurrence determination condition and the accident aspect determination condition described above need to be changed according to the combination of voltages.

(第3の事故様相判定方法)
1つの線間電圧の電圧値および位相と三相貫通変流器から入力される短絡電流IRyの位相とに基づいて事故様相を判定する。
(Third accident mode determination method)
The accident aspect is determined based on the voltage value and phase of one line voltage and the phase of the short-circuit current IRy input from the three-phase through current transformer.

たとえば、T相−R相の線間電圧VTRの位相が210°であることを基準として、送配電線のR相−S相間の短絡事故時のR相−S相の線間電圧VRSおよびS相−T相間の短絡事故時のS相−T相の線間電圧VSTを短絡事故検出感度の85Vとすると、T相−R相の線間電圧VTRが所定の第1の電圧値k1=85V以下であることを条件として短絡事故が発生したと判定するとともに、T相−R相の線間電圧VTRが所定の第2の電圧値k2=104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準として短絡事故時のT相−R相の線間電圧VTRの位相が所定の角度範囲α内だけ遅れているか進んでいること(5.95°≦α≦30°または−30°≦α≦−5.95°)を条件として短絡事故が発生したと判定する((1−1)式および(1−2)式参照)。 For example, based on that phase of the line voltage V TR of the T-phase -R phase is 210 °, R phase -S phase of the line voltage V RS during short-circuit accident R phase -S phase of transmission and distribution lines and S phase -T When the line voltage V ST between phases S phase -T phase when a short circuit accident and 85V of short-circuit failure detection sensitivity, a first voltage line voltage V TR of the T-phase -R phase is given It is determined that a short-circuit accident has occurred on condition that the value k1 = 85 V or less, and the T-phase to R-phase line voltage V TR is a predetermined second voltage value k2 = 104.3 V or less, and The phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = 210 ° as a reference, the phase of the line voltage V TR between the T phase and the R phase at the time of the short circuit accident is delayed by a predetermined angle range α. A short-circuit accident occurs on the condition that it is moving or advanced (5.95 ° ≦ α ≦ 30 ° or −30 ° ≦ α ≦ −5.95 °) A constant ((1-1) see formula and (1-2) below).

また、以下のようにして事故様相を判定する。
(1)R相−S相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れている(+α)場合に、R相−S相間の短絡事故と判定する(図9(a)参照)。
(2)S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ進んでいる(−α)場合に、S相−T相間の短絡事故と判定する(図9(b)参照)。
(3)T相−R相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡電流IRyの位相が所定の第1の角度範囲γ(30°≦γ≦90°、γはインピーダンス角θ=75°としアーク抵抗などを考慮して決定する。)内にある場合に、T相−R相間の短絡事故と判定する(図9(c)参照)。
(4)R相−S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡電流IRyの位相が所定の第2の角度範囲δ(100.9°≦δ≦169.1°、δはインピーダンス角θ=75°としアーク抵抗などを考慮して決定する。)内にある場合に、R相−S相−T相間の短絡事故と判定する(図9(d)参照)。
Moreover, the accident aspect is determined as follows.
(1) In the case of a short-circuit accident between the R phase and the S phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is delayed by the angle range α (+ α) with respect to the phase = 210 ° as a reference, it is determined that there is a short circuit accident between the R phase and the S phase (FIG. 9 ( a)).
(2) In the case of a short circuit accident between the S phase and the T phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is advanced only within the angle range α (−α) with reference to the phase = 210 °, it is determined that a short circuit accident between the S phase and the T phase occurs (FIG. 9). (See (b)).
(3) In the case of a short circuit accident between the T phase and the R phase The line voltage V TR between the T phase and the R phase is 85 V or less, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = The phase of the line voltage V TR between the T phase and the R phase is not delayed or advanced by an angle range α with respect to 210 ° (that is, greater than −5.95 ° and 5.95 °). And the phase of the short-circuit current I Ry is determined in consideration of arc resistance and the like with a predetermined first angle range γ (30 ° ≦ γ ≦ 90 °, γ is an impedance angle θ = 75 °). ), It is determined that there is a short circuit accident between the T phase and the R phase (see FIG. 9C).
(4) In the case of a short circuit accident between R phase, S phase and T phase The line voltage V TR between T phase and R phase is 85V or less, and the line voltage V TR between T phase and R phase before the short circuit accident. The phase of the line voltage V TR between the T-phase and the R-phase is not delayed or advanced by the angle range α with respect to the phase of 210 = 210 ° (ie, greater than −5.95 ° and 5 Less than .95 °) and the phase of the short-circuit current I Ry is within a predetermined second angle range δ (100.9 ° ≦ δ ≦ 169.1 °, where δ is an impedance angle θ = 75 °, arc resistance, etc. If it is within the range, it is determined that there is a short circuit accident between the R phase, the S phase, and the T phase (see FIG. 9D).

(第4の事故様相判定方法)
図10に示す事故様相判定用変圧器110(本発明の第1の実施例による事故様相判定用変圧器)を母線に設置し、事故様相判定用変圧器110から出力される合成電圧VR-S-2Tの電圧値および位相と短絡電流IRyの位相とに基づいて、以下のようにして事故様相を判定する。
ここで、事故様相判定用変圧器110の2次側は、R相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを反極性方向で2倍して合成するように結線されている。その結果、事故様相判定用変圧器110から出力される合成電圧VR-S-2Tは次式で表される。
R-S-2T=VR−VS−2VT
また、インピーダンス角θは通常75°であるが、短絡電流IRyの位相角は、アーク抵抗を考慮して、30°(−45°)から短絡事故時の最大角である90°(+15°)とする。
(Fourth accident mode determination method)
The accident aspect determination transformer 110 (according to the first embodiment of the present invention) shown in FIG. 10 is installed on the bus, and the composite voltage V RS− output from the accident aspect determination transformer 110 is installed. Based on the voltage value and phase of 2T and the phase of the short-circuit current I Ry , the accident aspect is determined as follows.
Here, the secondary side of the accident phase determination transformer 110 reverses the phase voltage V R of the R phase in the polarity direction, the phase voltage V S of the S phase in the antipolar direction, and the phase voltage V T of the T phase. They are wired so that they are doubled in the polarity direction for synthesis. As a result, the composite voltage V RS-2T output from the accident aspect determination transformer 110 is expressed by the following equation.
V RS-2T = V R -V S -2V T
Further, although the impedance angle θ is usually 75 °, the phase angle of the short-circuit current I Ry is 90 ° (+ 15 °) which is the maximum angle at the time of a short-circuit accident from 30 ° (−45 °) in consideration of arc resistance. ).

(1)R相−S相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第1の合成電圧値K1=100.1V以下であり((2−1)式参照)、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第1の合成電圧角度範囲ε1(7.10°(=X1)≦ε1≦40.9°(=X2)。(2−2)式および(2−3)式参照)内だけ遅れており(+ε1)、かつ、短絡電流IRyの位相が所定の第1の短絡電流角度範囲λ1(−19.1°≦λ1≦40.9°)内にある場合に、R相−S相間の短絡事故と判定する。
1=[(83.15)2+(72.01×85/110)21/2
=100.1(V) ・・・(2−1)
1=cos-1(83.15/110.0)−cos-1(83.15/110.05)
=7.10(°) ・・・(2−2)
2=60−19.1
=40.9(°) ・・・(2−3)
(2)S相−T相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第2の合成電圧値K2=107.6V以下であり((2−4)式参照)、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第2の合成電圧角度範囲ε2(4.12°(=X3)≦ε2≦19.1°(=X4)。(2−5)式および(2−6)式参照)内だけ進んでおり(−ε2)、かつ、短絡電流IRyの位相が所定の第2の短絡電流角度範囲λ2(19.1°≦λ2≦79.1°)内だけ進んでいる(−λ2)場合に、S相−T相間の短絡事故と判定する。
2=[(103.94)2+(36.01×85/110)21/2
=107.6(V) ・・・(2−4)
3=cos-1(103.94/110)−cos-1(103.94/107.60)
=4.12(°) ・・・(2−5)
4=19.1−0
=19.1(°) ・・・(2−6)
(3)T相−R相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第3の合成電圧値K3=86.0V以下であり((2−7)式参照)、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第3の合成電圧角度範囲ε3(3.09°(=X5)≦ε3≦79.1°(=X6)。(2−8)式および(2−9)式参照)内だけ進んでおり(−ε3)、かつ、短絡電流IRyの位相が所定の第3の短絡電流角度範囲λ3(79.1°≦λ3≦139.1°)内だけ進んでいる(−λ3)場合に、T相−R相間の短絡事故と判定する。
3=[(20.79)2+(108.02×85/110)21/2
=86.0(V) ・・・(2−7)
5=cos-1(20.79/110)−cos-1(20.79/86.02)
=3.09(°) ・・・(2−8)
6=60+19.1
=79.1(°) ・・・(2−9)
(4)R相−S相−T相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第4の合成電圧値K4=85V(定格電圧の75〜80%)以下であり、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第4の合成電圧角度範囲ε4(−3.09°(=−X5)≦ε4≦7.10°(=X1))内に入っており(すなわち、同位相であり)、かつ、短絡電流IRyの位相が所定の第4の短絡電流角度範囲λ4(8.2°≦λ4≦68.2°)内だけ進んでいる(−λ4)場合に、R相−S相−T相間の短絡事故と判定する。
(1) In the case of a short-circuit accident between the R phase and the S phase The voltage value of the composite voltage V RS-2T is a predetermined first composite voltage value K 1 = 100.1 V or less (see equation (2-1)). Further, the phase of the composite voltage V RS-2T at the time of the short circuit accident is determined to be a predetermined first composite voltage angle range ε 1 (7 based on the phase of the composite voltage V RS-2T at the normal time being 19.1 °. .10 ° (= X 1 ) ≦ ε 1 ≦ 40.9 ° (= X 2 ) (Refer to equations (2-2) and (2-3)) (+ ε 1 ) and short circuit When the phase of the current I Ry is within a predetermined first short-circuit current angle range λ 1 (−19.1 ° ≦ λ 1 ≦ 40.9 °), it is determined that a short-circuit accident between the R phase and the S phase occurs.
K 1 = [(83.15) 2 + (72.01 × 85/110) 2 ] 1/2
= 100.1 (V) (2-1)
X 1 = cos −1 (83.15 / 110.0) −cos −1 (83.15 / 110.05)
= 7.10 (°) (2-2)
X 2 = 60-19.1
= 40.9 (°) (2-3)
(2) In the case of a short circuit accident between the S phase and the T phase The voltage value of the composite voltage V RS-2T is a predetermined second composite voltage value K 2 = 107.6 V or less (see the formula (2-4)), In addition, the phase of the composite voltage V RS-2T at the time of the short-circuit accident is determined to be a predetermined second composite voltage angle range ε 2 (4 based on the phase of the composite voltage V RS-2T at the normal time being 19.1 °. .12 ° (= X 3 ) ≦ ε 2 ≦ 19.1 ° (= X 4 ) (see formulas (2-5) and (2-6)) (−ε 2 ) When the phase of the short-circuit current I Ry is advanced only within a predetermined second short-circuit current angle range λ 2 (19.1 ° ≦ λ 2 ≦ 79.1 °) (−λ 2 ), between the S phase and the T phase Judged as a short circuit accident.
K 2 = [(103.94) 2 + (36.01 × 85/110) 2 ] 1/2
= 107.6 (V) (2-4)
X 3 = cos −1 (103.94 / 110) −cos −1 (103.94 / 107.60)
= 4.12 (°) (2-5)
X 4 = 19.1-0
= 19.1 (°) (2-6)
(3) In the case of a short-circuit accident between the T phase and the R phase The voltage value of the composite voltage V RS-2T is equal to or less than a predetermined third composite voltage value K 3 = 86.0 V (see formula (2-7)) Further, the phase of the composite voltage V RS-2T at the time of a short-circuit accident is determined to be a predetermined third composite voltage angle range ε 3 (3 based on the phase of the composite voltage V RS-2T at the normal time being 19.1 °. .09 ° (= X 5 ) ≦ ε 3 ≦ 79.1 ° (= X 6 ) (see formulas (2-8) and (2-9)) (−ε 3 ) When the phase of the short-circuit current I Ry advances only within a predetermined third short-circuit current angle range λ 3 (79.1 ° ≦ λ 3 ≦ 139.1 °) (−λ 3 ), the phase between the T phase and the R phase Judged as a short circuit accident.
K 3 = [(20.79) 2 + (108.02 × 85/110) 2 ] 1/2
= 86.0 (V) (2-7)
X 5 = cos -1 (20.79 / 110) -cos -1 (20.79 / 86.02)
= 3.09 (°) (2-8)
X 6 = 60 + 19.1
= 79.1 (°) (2-9)
(4) In the case of a short-circuit accident between the R phase, the S phase, and the T phase The voltage value of the composite voltage V RS-2T is equal to or less than a predetermined fourth composite voltage value K 4 = 85 V (75 to 80% of the rated voltage). The phase of the composite voltage V RS-2T at the time of the short-circuit accident is a predetermined fourth composite voltage angle range ε 4 (wherein the phase of the composite voltage V RS-2T at the normal time is 19.1 °. −3.09 ° (= −X 5 ) ≦ ε 4 ≦ 7.10 ° (= X 1 )) (that is, the same phase), and the phase of the short-circuit current I Ry is predetermined. When it is advanced (−λ 4 ) only within the fourth short-circuit current angle range λ 4 (8.2 ° ≦ λ 4 ≦ 68.2 °), it is determined as a short-circuit accident between the R phase, the S phase, and the T phase. .

(第5の事故様相判定方法)
図11に示す事故様相判定用変圧器120(本発明の第2の実施例による事故様相判定用変圧器)を母線に設置し、事故様相判定用変圧器120から出力される合成電圧VR-S+2Tの電圧値および位相と短絡電流IRyの位相とに基づいて、以下のようにして事故様相を判定する。
ここで、事故様相判定用変圧器120の2次側は、R相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを極性方向で2倍して合成するように結線されている。その結果、事故様相判定用変圧器120から出力される合成電圧VR-S+2Tは次式で表される。
R-S+2T=VR−VS+2VT
また、インピーダンス角θは通常75°であるが、短絡電流IRyの位相角は、アーク抵抗を考慮して、30°(−45°)から短絡事故時の最大角である90°(+15°)とする。
(Fifth accident mode determination method)
Accident aspects determination transformer 120 shown in FIG. 11 (accident appearance determination transformer according to a second embodiment of the present invention) is placed to the bus, composite voltage output from the accident aspect determination transformer 120 V R- Based on the voltage value and phase of S + 2T and the phase of the short-circuit current I Ry , the accident aspect is determined as follows.
Here, the secondary side of the accident phase determination transformer 120 has the R phase voltage V R in the polarity direction, the S phase voltage V S in the opposite direction, and the T phase voltage V T in the polarity direction. They are wired so as to be doubled in the direction of synthesis. As a result, the composite voltage V R-S + 2T output from the accident aspect determination transformer 120 is expressed by the following equation.
V R−S + 2T = V R −V S + 2V T
Further, although the impedance angle θ is usually 75 °, the phase angle of the short-circuit current I Ry is 90 ° (+ 15 °) which is the maximum angle at the time of a short-circuit accident from 30 ° (−45 °) in consideration of arc resistance. ).

(1)R相−S相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第5の合成電圧値K5=100.1V以下であり((3−1)式参照)、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第5の合成電圧角度範囲ε5(7.10°(=X7)≦ε5≦40.9°(=X8)。(3−2)式および(3−3)式参照)内だけ進んでおり(−ε5)、かつ、短絡電流IRyの位相が所定の第5の短絡電流角度範囲λ5(79.1°≦λ5≦139.1°)内だけ遅れている(+λ5)場合に、R相−S相間の短絡事故と判定する。
5=[(83.15)2+(72.01×85/110)21/2
=100.1(V) ・・・(3−1)
7=cos-1(83.15/110.0)−cos-1(83.15/110.05)
=7.10(°) ・・・(3−2)
8=280.9−240
=40.9(°) ・・・(3−3)
(2)S相−T相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第6の合成電圧値K6=86.0V以下であり((3−4)式参照)、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第6の合成電圧角度範囲ε6(3.09°(=X9)≦ε6≦79.1°(=X10)。(3−5)式および(3−6)式参照)内だけ遅れており(+ε6)、かつ、短絡電流IRyの位相が所定の第6の短絡電流角度範囲λ6(19.1°≦λ6≦79.1°)内だけ遅れている(+λ6)場合に、S相−T相間の短絡事故と判定する。
6=[(20.79)2+(108.02×85/110)21/2
=86.0(V) ・・・(3−4)
9=cos-1(20.79/110)−cos-1(20.79/86.02)
=3.09(°) ・・・(3−5)
10=360−280.9
=79.1(°) ・・・(3−6)
(3)T相−R相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第7の合成電圧値K7=107.6V以下であり((3−7)式参照)、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第7の合成電圧角度範囲ε7(4.12°(=X11)≦ε7≦19.1°(=X12)。(3−8)式および(3−9)式参照)内だけ遅れており(+ε7)、かつ、短絡電流IRyの位相が所定の第7の短絡電流角度範囲λ7(−40.9°≦λ7≦19.1°)内にある場合に、T相−R相間の短絡事故と判定する。
7=[103.942+(36.01×85/110)21/2
=107.6(V) ・・・(3−7)
11=cos-1(103.94/110)−cos-1(103.94/107.60)
=4.12(°) ・・・(3−8)
12=300−280.9
=19.1(°) ・・・(3−9)
(4)R相−S相−T相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第8の合成電圧値K8=85V(定格電圧の75〜80%)以下であり、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第8の合成電圧角度範囲ε8(−7.10°(=−X7)≦ε8≦3.09°(=X9))内に入っており(すなわち、同位相であり)、かつ、短絡電流IRyの位相が所定の第8の短絡電流角度範囲λ8(30°≦λ8≦90°)内だけ遅れている(+λ8)場合に、R相−S相−T相間の短絡事故と判定する。
(1) In the case of a short-circuit accident between the R phase and the S phase The voltage value of the composite voltage V R-S + 2T is equal to or less than a predetermined fifth composite voltage value K 5 = 100.1 V (see equation (3-1)) ), And the phase of the composite voltage V R-S + 2T at the normal time is 280.9 °, and the phase of the composite voltage V R-S + 2T at the time of the short-circuit accident is a predetermined fifth composite voltage The angle range ε 5 (7.10 ° (= X 7 ) ≦ ε 5 ≦ 40.9 ° (= X 8 ), see (3-2) and (3-3))) (− ε 5 ) and the phase of the short-circuit current I Ry is delayed (+ λ 5 ) by a predetermined fifth short-circuit current angle range λ 5 (79.1 ° ≦ λ 5 ≦ 139.1 °) It is determined as a short-circuit accident between the R phase and the S phase.
K 5 = [(83.15) 2 + (72.01 × 85/110) 2 ] 1/2
= 100.1 (V) (3-1)
X 7 = cos -1 (83.15 / 110.0) -cos -1 (83.15 / 110.05)
= 7.10 (°) (3-2)
X 8 = 280.9-240
= 40.9 (°) (3-3)
(2) In the case of a short circuit accident between the S phase and the T phase The voltage value of the composite voltage V R-S + 2T is equal to or less than a predetermined sixth composite voltage value K 6 = 86.0 V (see formula (3-4)) ), And the phase of the composite voltage V R-S + 2T at the normal time is 280.9 ° as a reference, the phase of the composite voltage V R-S + 2T at the time of the short-circuit accident is a predetermined sixth composite voltage Angular range ε 6 (3.09 ° (= X 9 ) ≦ ε 6 ≦ 79.1 ° (= X 10 ) (see equations (3-5) and (3-6))) (+ ε 6 ) and the phase of the short-circuit current I Ry is delayed by (+ λ 6 ) within the predetermined sixth short-circuit current angle range λ 6 (19.1 ° ≦ λ 6 ≦ 79.1 °) It is determined as a short-circuit accident between phase T and phase T.
K 6 = [(20.79) 2 + (108.02 × 85/110) 2 ] 1/2
= 86.0 (V) (3-4)
X 9 = cos -1 (20.79 / 110) -cos -1 (20.79 / 86.02)
= 3.09 (°) (3-5)
X 10 = 360-280.9
= 79.1 (°) (3-6)
(3) In the case of a short-circuit accident between the T phase and the R phase The voltage value of the composite voltage V R-S + 2T is a predetermined seventh composite voltage value K 7 = 107.6 V or less (see equation (3-7)) ), And the phase of the composite voltage V R-S + 2T at the normal time is 280.9 ° as a reference, the phase of the composite voltage V R-S + 2T at the time of the short-circuit accident is a predetermined seventh composite voltage Angular range ε 7 (4.12 ° (= X 11 ) ≦ ε 7 ≦ 19.1 ° (= X 12 ) (see equations (3-8) and (3-9)) (+ ε 7 ) and when the phase of the short-circuit current I Ry is within a predetermined seventh short-circuit current angle range λ 7 (−40.9 ° ≦ λ 7 ≦ 19.1 °) Judged as a short circuit accident.
K 7 = [103.94 2 + (36.01 × 85/110) 2 ] 1/2
= 107.6 (V) (3-7)
X 11 = cos -1 (103.94 / 110) -cos -1 (103.94 / 107.60)
= 4.12 (°) (3-8)
X 12 = 300-280.9
= 19.1 (°) (3-9)
(4) In the case of a short-circuit accident between the R phase, the S phase, and the T phase, the voltage value of the composite voltage V R-S + 2T is equal to or less than a predetermined eighth composite voltage value K 8 = 85 V (75 to 80% of the rated voltage) And the phase of the composite voltage V R-S + 2T at the time of a short-circuit accident is a predetermined eighth composite on the basis that the phase of the composite voltage V R-S + 2T at a normal time is 280.9 ° It is within the voltage angle range ε 8 (−7.10 ° (= −X 7 ) ≦ ε 8 ≦ 3.09 ° (= X 9 )) (that is, in phase), and the short circuit current I When the phase of Ry is delayed (+ λ 8 ) by a predetermined eighth short-circuit current angle range λ 8 (30 ° ≦ λ 8 ≦ 90 °), it is determined as a short-circuit accident between the R phase, the S phase, and the T phase. To do.

次に、本発明の第2の実施例による方向保護継電装置について、図12を参照して説明する。
本実施例による方向保護継電装置は、図12に示すように、送配電線に設置された三相貫通変流器10と、母線に設置された計器用変圧器6と、三相貫通変流器10から入力される短絡電流IRyと計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する距離継電器20とを具備する。
Next, a directional protection relay device according to a second embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 12, the direction protection relay device according to the present embodiment includes a three-phase through current transformer 10 installed in a transmission / distribution line, an instrument transformer 6 installed in a bus, and a three-phase through transformer. R-phase-S-phase line obtained from short-circuit current I Ry input from current collector 10 and R-phase, S-phase, and T-phase phase voltages V R , V S , V T input from instrument transformer 6 When a short circuit fault is detected on the transmission / distribution line based on the line voltage V RS , the S-phase / T-phase line voltage V ST and the T-phase / R-phase line voltage V TR , And a distance relay 20 that collectively shuts off the first to third circuit breakers 2 1 to 2 3 installed in the phase and the T phase, respectively.

ここで、三相貫通変流器10は、2次コイルを巻装した環状鉄心に送配電線のS相をR相と逆向きに同じ回数だけ貫通させるとともに送配電線のT相をR相と同じ向きに異なる回数だけ貫通させた貫通形変流器である。すなわち、送配電線のR相およびT相はともに三相貫通変流器10の極性方向に貫通されているが、送配電線のS相は三相貫通変流器10の反極性方向に向けて貫通されている。
また、送配電線のR相およびS相は1回だけ三相貫通変流器10を貫通されているが、送配電線のT相は2回ほど三相貫通変流器10を貫通されている。これにより、三相貫通変流器10からは、送配電線のR相を流れる電流とS相を流れる電流の極性を反転したものとT相を流れる電流を2倍した電流との和電流が出力される。
Here, the three-phase through current transformer 10 allows the S phase of the transmission / distribution line to pass through the annular core around which the secondary coil is wound, the same number of times in the opposite direction to the R phase, and the T phase of the transmission / distribution line to be the R phase. Is a through-type current transformer that is penetrated in the same direction by different numbers of times. That is, the R phase and the T phase of the transmission / distribution line are both penetrated in the polarity direction of the three-phase through current transformer 10, but the S phase of the transmission / distribution line is directed in the opposite polarity direction of the three-phase through current transformer 10. Is penetrated.
Moreover, although the R phase and S phase of the transmission / distribution line are penetrated through the three-phase through current transformer 10 only once, the T phase of the transmission / distribution line is penetrated through the three-phase through current transformer 10 twice. Yes. As a result, the sum current of the current flowing through the R phase and the current flowing through the S phase of the transmission / distribution line and the current obtained by inverting the current flowing through the T phase is doubled from the three-phase through current transformer 10. Is output.

したがって、短絡事故が発生していないときに送配電線のR相、S相およびT相に流れる負荷電流をIR,IS,ITで表すと、三相貫通変流器10から距離継電器20に入力される負荷電流Iは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の負荷電流IRと極性が負のS相の負荷電流−ISとT相の負荷電流ITを2倍した電流(=2IT)とのベクトル和となり、負荷電流Iの振幅はR相の負荷電流IR(S相およびT相の負荷電流IS,IT)の振幅の71/2倍となる。
I=IR−IS+2IT
|I|=|IR−IS+2IT|={(31/22+221/2×|IR
=71/2×|IR|(=71/2×|IS|=71/2×|IT|)
そこで、距離継電器20は、図18に示した従来の第1乃至第3の距離継電器201〜203に入力される負荷電流の振幅と同じにするために、次式で示すように負荷電流Iを31/2/71/2倍して補正負荷電流I’を算出する。
I’=I×31/2/71/2
|I’|=|I|×31/2/71/2-=31/2×|IR|(=31/2×|IS|=31/2×|IT|)
Therefore, when the load currents flowing in the R-phase, S-phase, and T-phase of the transmission and distribution line when no short-circuit accident has occurred are represented by I R , I S , and I T , the distance relay from the three-phase through current transformer 10 As in the case of the short-circuit direction relay 4 in the first embodiment described above, the load current I input to 20 is the R-phase load current I R and the negative-polarity S-phase load current −I S It becomes a vector sum with a current (= 2I T ) that is twice the T-phase load current I T , and the amplitude of the load current I is R-phase load current I R (S-phase and T-phase load currents I S , I T ) Is 7 1/2 times the amplitude of.
I = I R −I S + 2I T
| I | = | I R −I S + 2I T | = {(3 1/2 ) 2 +2 2 } 1/2 × | I R |
= 7 1/2 × | I R | (= 7 1/2 × | I S | = 7 1/2 × | I T |)
Therefore, distance relay 20, to the same as the amplitude of the load current inputted to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 18, the load current as shown by the following formula The corrected load current I ′ is calculated by multiplying I by 3 1/2 / 7 1/2 .
I ′ = I × 3 1/2 / 7 1/2
| I ′ | = | I | × 3 1/2 / 7 1/2 − = 3 1/2 × | I R | (= 3 1/2 × | I S | = 3 1/2 × | I T | )

また、送配電線に短絡事故が発生したときに送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFT(インピーダンス角をθとする。)で表すと、距離継電器20は、事故様相に応じて以下のように動作する。
(1)R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図12に破線の矢印で示すように、送配電線のR相にR相の短絡電流IFRが内部方向に流れ、送配電線のS相にS相の短絡電流IFSが外部方向に流れるが、送配電線のT相にはT相の短絡電流IFTが流れない。
したがって、三相貫通変流器10から距離継電器20に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の短絡電流IFRと極性が負のS相の短絡電流−IFSとのベクトル和となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる(図3(a)参照)。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=2×|IFR|(=2×|IFS|)
そこで、距離継電器20は、図18に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1
|IRy’|=|IRy|×1-=2×|IFR|(=2×|IFS|)
距離継電器20は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および短絡電流IRyの方向を判別する。なお、送配電線のR相−S相間の短絡事故の場合には、算出した補正短絡電流IRy’とR相−S相の線間電圧VRSとに基づいて事故点の距離および短絡電流IRyの方向が判別される(図3(a)参照)。
距離継電器20は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、送配電線のS相にS相の短絡電流IFSが内部方向に流れ、送配電線のT相にT相の短絡電流IFTが外部方向に流れるが、送配電線のR相にはR相の短絡電流IFRが流れない(図5参照)。
したがって、三相貫通変流器10から距離継電器20に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、極性が負のS相の短絡電流−IFSとT相の短絡電流IFTを2倍した電流(=2IFT)とのベクトル和となり、短絡電流IRyの振幅はT相の短絡電流IFT(S相の短絡電流IFS)の振幅の3倍となる(図3(b)参照)。
Ry=−IFS+2IFT
|IRy|=|−IFS+2IFT|=3×|IFT|(=3×|IFS|)
そこで、距離継電器20は、図18に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを2/3倍して補正短絡電流IRy’を算出する。
Ry’=IRy×2/3
|IRy’|=|IRy|×2/3=2×|IFT|(=2×|IFS|)
距離継電器20は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および短絡電流IRyの方向を判別する。なお、送配電線のS相−T相間の短絡事故の場合には、算出した補正短絡電流IRy’とS相−T相の線間電圧VST(極性が負)とに基づいて事故点の距離および短絡電流IRyの方向が判別される(図3(b)参照)。
距離継電器20は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、送配電線のT相にT相の短絡電流IFTが内部方向に流れ、送配電線のR相にR相の短絡電流IFRが外部方向に流れるが、送配電線のS相にはS相の短絡電流IFSが流れない(図6参照)。
したがって、三相貫通変流器10から距離継電器20に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の短絡電流IFRとT相の短絡電流IFTを2倍した電流(=2IFT)とのベクトル和となり、短絡電流IRyの振幅はT相の短絡電流IFT(R相の短絡電流IFR)の振幅となる(図4(a)参照)。
Ry=IFR+2IFT
|IRy|=|IFR+2IFT|=|IFT|(=|IFR|)
そこで、距離継電器20は、図18に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×2
|IRy’|=|IRy|×2=2×|IFT|(=2×|IFR|)
距離継電器20は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および短絡電流IRyの方向を判別する。なお、送配電線のT相−R相間の短絡事故の場合には、算出した補正短絡電流IRy’とT相−R相の線間電圧VTRとに基づいて事故点の距離および短絡電流IRyの方向が判別される(図4(a)参照)。
距離継電器20は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、送配電線のR相,S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120度で内部方向にそれぞれ流れる(図7参照)。
したがって、三相貫通変流器10から距離継電器20に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の短絡電流IFRと極性が負のS相の短絡電流−IFSとT相の短絡電流IFTを2倍した電流(=2IFT)とのベクトル和となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相およびT相の短絡電流IFS,IFT)の振幅の71/2倍となる(図4(b)参照)。
Ry=IFR−IFS+2IFT
|IRy|=|IFR−IFS+2IFT|={(31/22+221/2×|IFR
=71/2×|IFR|(=71/2×|IFS|=71/2×|IFT|)
そこで、距離継電器20は、図18に示した従来の第1乃至第3の距離継電器201〜203に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを31/2/71/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×31/2/71/2
|IRy’|=|IRy|×31/2/71/2-=31/2×|IFR|(=31/2×|IFS|=31/2×|IFT|)
また、短絡電流IRyは49.1°の進み位相で三相貫通変流器10から距離継電器20に入力されるため、距離継電器20は補正短絡電流IRy’の位相補正も行う。
距離継電器20は、位相補正した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故点の距離および短絡電流IRyの方向を判別する。なお、送配電線のR相−S相−T相間の短絡事故の場合には、位相補正した補正短絡電流IRy’とR相−S相の線間電圧VRSとに基づいて事故点の距離および短絡電流IRyの方向が判別される(図4(b)参照)。
距離継電器20は、送配電線に短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断する。
In addition, when a short circuit accident occurs in the transmission / distribution line, the short-circuit currents flowing in the R phase, S phase, and T phase of the transmission / distribution line are represented by I FR , I FS , I FT (impedance angle is θ). The distance relay 20 operates as follows according to the accident aspect.
(1) When the short circuit in the case of a short-circuit accident R phase -S phase R phase -S phase occurs, as indicated by broken line arrow in FIG. 12, the short-circuit current of the R-phase to R-phase of transmission and distribution lines I FR There flow inside direction, but the short-circuit current I FS of S phase to the S phase of the transmission and distribution lines to flow to the outside direction, the T-phase of the transmission and distribution lines does not flow a short-circuit current I FT T-phase.
Therefore, the short-circuit current I Ry input from the three-phase through current transformer 10 to the distance relay 20 is the same as the short-circuit current relay 4 in the first embodiment described above and the R-phase short-circuit current I FR . The vector sum of the negative polarity S-phase short-circuit current −I FS and the amplitude of the short-circuit current I Ry is twice the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ). 3 (a)).
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 2 × | I FR | (= 2 × | I FS |)
Therefore, distance relay 20, to the same as the amplitude of the short circuit current inputted to the first to third distance relay 20 1 to 20 3 of the prior art shown in Figure 18, short-circuit current as shown by the following formula The corrected short-circuit current I Ry ′ is calculated by multiplying I Ry by 1.
I Ry '= I Ry × 1
| I Ry '| = | I Ry | × 1− = 2 × | I FR | (= 2 × | I FS |)
The distance relay 20 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR Based on the above, the distance of the accident point and the direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the R phase and the S phase of the transmission and distribution line, the distance of the fault point and the short circuit current based on the calculated corrected short circuit current I Ry ′ and the line voltage V RS between the R phase and the S phase. The direction of I Ry is determined (see FIG. 3A).
Distance relay 20 is collectively cut off when it is determined that the short-circuit accident occurs the first to third circuit breaker 2 1 to 2 3 of the transmission and distribution lines.
(2) In the case of a short-circuit accident between the S phase and the T phase When a short circuit accident between the S phase and the T phase occurs, the S phase short circuit current I FS flows in the S phase of the transmission and distribution line in the internal direction, and the T of the transmission and distribution line While the short-circuit current I FT T-phase to phase flows to the outside direction, the R-phase of the transmission and distribution lines does not flow a short-circuit current I FR of R-phase (see FIG. 5).
Accordingly, the short-circuit current I Ry input from the three-phase through current transformer 10 to the distance relay 20 is short-circuited in the S phase having a negative polarity in the same manner as the short-circuit direction relay 4 in the first embodiment described above. The vector sum of the current −I FS and the current (= 2I FT ) twice the T-phase short-circuit current I FT , and the amplitude of the short-circuit current I Ry is the T-phase short-circuit current I FT (S-phase short-circuit current I FS ) Is three times the amplitude (see FIG. 3B).
I Ry = −I FS + 2I FT
| I Ry | = | −I FS + 2I FT | = 3 × | I FT | (= 3 × | I FS |)
Therefore, distance relay 20, to the same as the amplitude of the short-circuit current which is input to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 18, the short-circuit current as shown by the following formula The corrected short circuit current I Ry ′ is calculated by multiplying I Ry by 2/3.
I Ry '= I Ry × 2/3
| I Ry '| = | I Ry | × 2/3 = 2 × | I FT | (= 2 × | I FS |)
The distance relay 20 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR Based on the above, the distance of the accident point and the direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the S phase and the T phase of the transmission / distribution line, the accident point is based on the calculated corrected short circuit current I Ry ′ and the line voltage V ST (negative polarity) between the S phase and the T phase. And the direction of the short-circuit current I Ry are determined (see FIG. 3B).
Distance relay 20 is collectively cut off when it is determined that the short-circuit accident occurs the first to third circuit breaker 2 1 to 2 3 of the transmission and distribution lines.
(3) When T phase -R phase short fault when T-phase -R phase short-circuit accident occurs, the short-circuit current I FT T-phase to the T phase of the transmission and distribution lines to flow inside direction, the transmission and distribution lines R While the short-circuit current I FR of R-phase to phase flows to the outside direction, the S-phase of the transmission and distribution lines does not flow a short-circuit current I FS of S phase (see FIG. 6).
Therefore, short-circuit current I Ry inputted from the three-phase through current transformer 10 to the distance relay 20, as in the case of the short-circuit direction relay 4 in the first embodiment described above, the short-circuit current I FR of R-phase It becomes a vector sum with a current (= 2I FT ) that is twice the T-phase short-circuit current I FT, and the amplitude of the short-circuit current I Ry becomes the amplitude of the T-phase short-circuit current I FT (R-phase short-circuit current I FR ). (See FIG. 4 (a)).
I Ry = I FR + 2I FT
| I Ry | = | I FR + 2I FT | = | I FT | (= | I FR |)
Therefore, distance relay 20, to the same as the amplitude of the short-circuit current which is input to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 18, the short-circuit current as shown by the following formula by doubling the I Ry to calculate a correction circuit current I Ry '.
I Ry '= I Ry × 2
| I Ry '| = | I Ry | × 2 = 2 × | I FT | (= 2 × | I FR |)
The distance relay 20 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR Based on the above, the distance of the accident point and the direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the T phase and the R phase of the transmission and distribution line, the distance of the fault point and the short circuit current based on the calculated corrected short circuit current I Ry ′ and the line voltage V TR between the T phase and the R phase. The direction of I Ry is determined (see FIG. 4A).
Distance relay 20 is collectively cut off when it is determined that the short-circuit accident occurs the first to third circuit breaker 2 1 to 2 3 of the transmission and distribution lines.
(4) In the case of a short circuit accident between R phase, S phase, and T phase When a short circuit accident between R phase, S phase, and T phase occurs, short circuit current I of R phase to R phase, S phase, and T phase of the transmission and distribution line FR , S-phase short-circuit current I FS and T-phase short-circuit current I FT flow in the internal direction with a phase difference of 120 degrees (see FIG. 7).
Therefore, the short-circuit current I Ry input from the three-phase through current transformer 10 to the distance relay 20 is the same as the short-circuit current relay 4 in the first embodiment described above and the R-phase short-circuit current I FR . The negative polarity S-phase short-circuit current -I FS and the T-phase short-circuit current I FT are multiplied by the vector (= 2I FT ), and the amplitude of the short-circuit current I Ry is the R-phase short-circuit current I FR (S phase and T phase short circuit currents I FS , I FT ) is 7 1/2 times the amplitude (see FIG. 4B).
I Ry = I FR -I FS + 2I FT
| I Ry | = | I FR −I FS + 2I FT | = {(3 1/2 ) 2 +2 2 } 1/2 × | I FR |
= 7 1/2 × | I FR | (= 7 1/2 × | I FS | = 7 1/2 × | I FT |)
Therefore, distance relay 20, to the same as the amplitude of the short-circuit current which is input to the first to third distance relay 20 1 to 20 3 of the prior art shown in FIG. 18, the short-circuit current as shown by the following formula I Ry is multiplied by 3 1/2 / 7 1/2 to calculate a corrected short-circuit current I Ry '.
I Ry '= I Ry × 3 1/2 / 7 1/2
| I Ry '| = | I Ry | × 3 1/2 / 7 1/2 - = 3 1/2 × | I FR | (= 3 1/2 × | I FS | = 3 1/2 × | I FT |)
Further, since the short circuit current I Ry is input from the three-phase through current transformer 10 to the distance relay 20 with a leading phase of 49.1 °, the distance relay 20 also performs phase correction of the corrected short circuit current I Ry ′.
The distance relay 20 includes a phase-corrected short-circuit current I Ry ′, an R-phase / S-phase line voltage V RS , an S-phase / T-phase line voltage V ST, and a T-phase / R-phase line voltage V TR. Based on the above, the distance of the accident point and the direction of the short-circuit current I Ry are determined. In the case of a short circuit accident between the R phase, the S phase, and the T phase of the transmission / distribution line, the fault point is determined based on the corrected short circuit current I Ry ′ corrected for the phase and the line voltage V RS between the R phase and the S phase. The distance and the direction of the short-circuit current I Ry are determined (see FIG. 4B).
Distance relay 20 is collectively cut off when it is determined that the short-circuit accident occurs the first to third circuit breaker 2 1 to 2 3 of the transmission and distribution lines.

なお、距離継電器20は、上述した第1の事故様相判定方法を用いて事故様相を判定する場合には、以下に示すようにして補正電圧VRyを求めることによって事故点の距離を算出する。
(1)R相−S相間の短絡事故の場合
計器用変圧器6から入力されるR相およびS相の相電圧VR,VSより求めたR相−S相の線間電圧VRSを補正電圧VRyとする。
Ry=VRS
(2)S相−T相間の短絡事故の場合
計器用変圧器6から入力されるS相およびT相の相電圧VS,VTより求めたS相−T相の線間電圧VSTを補正電圧VRyとする。
Ry=VST
(3)T相−R相間の短絡事故の場合
計器用変圧器6から入力されるT相およびR相の相電圧VT,VRより求めたT相−R相の線間電圧VTRを補正電圧VRyとする。
Ry=VTR
(4)R相−S相−T相間の短絡事故の場合
計器用変圧器6から入力されるR相およびS相の相電圧VR,VSより求めたR相−S相の線間電圧VRSを補正電圧VRyとする。
Ry=VRS
The distance relay 20 calculates the accident point distance by obtaining the correction voltage V Ry as described below when determining the accident aspect using the first accident aspect determination method described above.
(1) In case of short-circuit accident between R phase and S phase R-phase and S-phase line voltage V RS obtained from R-phase and S-phase voltage V R , V S input from instrument transformer 6 The correction voltage is V Ry .
V Ry = V RS
(2) In the case of a short-circuit accident between the S phase and the T phase The S-phase and T-phase line voltage V ST obtained from the S-phase and T-phase phase voltages V S and V T input from the instrument transformer 6 The correction voltage is V Ry .
V Ry = V ST
(3) In the case of a short-circuit accident between the T phase and the R phase The line voltage V TR between the T phase and the R phase obtained from the phase voltages V T and V R of the T phase and the R phase input from the instrument transformer 6 The correction voltage is V Ry .
V Ry = V TR
(4) In the case of a short circuit accident between R phase, S phase and T phase R-phase and S-phase line voltage obtained from R-phase and S-phase phase voltages V R and V S input from instrument transformer 6 Let V RS be the correction voltage V Ry .
V Ry = V RS

また、距離継電器20は、上述した第2または第3の事故様相判定方法を用いて事故様相を判定する場合には、計器用変圧器6から入力されるT相およびR相の相電圧VT,VRより求めたT相−R相の線間電圧VTR(図2(b)参照)を用いて、以下に示すようにして補正電圧VRyを求めることによって事故点の距離を算出する。なお、V=VTR∠(210°+α)とする。
(1)R相−S相間の短絡事故の場合
Ry=2×V×cos(60°+α)
(2)S相−T相間の短絡事故の場合
Ry=2×V×cos(60°+α)
(3)T相−R相間の短絡事故の場合
Ry=V
(4)R相−S相−T相間の短絡事故の場合
Ry=V
Further, when determining the accident aspect using the above-described second or third accident aspect determination method, the distance relay 20 receives the phase voltage V T of the T phase and the R phase input from the instrument transformer 6. , V R , using the T-phase to R-phase line voltage V TR (see FIG. 2B), the correction voltage V Ry is calculated as follows to calculate the distance of the accident point. . Note that V = V TR ∠ (210 ° + α).
(1) In case of short circuit accident between R phase and S phase V Ry = 2 × V × cos (60 ° + α)
(2) In case of short-circuit accident between S phase and T phase V Ry = 2 × V × cos (60 ° + α)
(3) In case of short-circuit accident between T phase and R phase V Ry = V
(4) In case of short circuit between R phase, S phase and T phase V Ry = V

また、距離継電器20は、上述した第4の事故様相判定方法を用いて事故様相を判定する場合には、事故様相判定用変圧器110から入力される合成電圧VR-S-2Tを用いて、以下に示すようにして補正電圧VRyを求めることによって事故点の距離を算出する。これにより、計器用変圧器6を不要とすることができる。
(1)R相−S相間の短絡事故の場合
Ry=110×(VR-S-2T−83.15)/26.85
(2)S相−T相間の短絡事故の場合
Ry=110×(VR-S-2T−103.94)/6.06
(3)T相−R相間の短絡事故の場合
Ry=110×(VR-S-2T−20.79)/89.21
(4)R相−S相−T相間の短絡事故の場合
Ry=VR-S-2T
The distance relay 20 uses the composite voltage V RS-2T input from the accident aspect determination transformer 110 to determine the accident aspect using the above-described fourth accident aspect determination method. The distance of the accident point is calculated by obtaining the correction voltage V Ry as shown in FIG. Thereby, the instrument transformer 6 can be made unnecessary.
(1) In the case of a short-circuit accident between the R phase and the S phase V Ry = 110 × (V RS-2T −83.15) /26.85
(2) In the case of a short circuit accident between the S phase and the T phase V Ry = 110 × (V RS-2T −103.94) /6.06
(3) In the case of a short circuit accident between the T phase and the R phase V Ry = 110 × (V RS-2T -20.79) /89.21
(4) In case of short circuit between R phase, S phase and T phase V Ry = V RS-2T

また、距離継電器20は、上述した第5の事故様相判定方法を用いて事故様相を判定する場合には、事故様相判定用変圧器120から入力される合成電圧VR-S+2Tを用いて、以下に示すようにして補正電圧VRyを求めることによって事故点の距離を算出する。これにより、計器用変圧器6を不要とすることができる。
(1)R相−S相間の短絡事故の場合
Ry=110×(VR-S+2T−83.15)/26.85
(2)S相−T相間の短絡事故の場合
Ry=110×(VR-S+2T−20.79)/89.21
(3)T相−R相間の短絡事故の場合
Ry=110×(VR-S+2T−103.94)/6.06
(4)R相−S相−T相間の短絡事故の場合
Ry=VR-S+2T
The distance relay 20 uses the composite voltage V R-S + 2T input from the accident aspect determination transformer 120 when determining the accident aspect using the fifth accident aspect determination method described above. Then, the distance of the accident point is calculated by obtaining the correction voltage V Ry as shown below. Thereby, the instrument transformer 6 can be made unnecessary.
(1) In the case of a short-circuit accident between the R phase and the S phase V Ry = 110 × (V R−S + 2T −83.15) /26.85
(2) In the case of a short circuit accident between the S phase and the T phase V Ry = 110 × (V R−S + 2T −20.79) /89.21
(3) In the case of a short-circuit accident between the T phase and the R phase V Ry = 110 × (V R−S + 2T −103.94) /6.06
(4) In case of short circuit between R phase, S phase and T phase V Ry = V R-S + 2T

なお、三相貫通変流器10には送配電線のS相をR相と逆向きに同じ回数だけ貫通させるとともに送配電線のT相をR相と同じ向きに異なる回数だけ貫通させたが、送配電線のT相をS相と逆向きに同じ回数だけ貫通させるとともに送配電線のR相をS相と同じ向きに異なる回数だけ貫通させてもよいし、送配電線のR相をT相と逆向きに同じ回数だけ貫通させるとともに送配電線のS相をT相と同じ向きに異なる回数だけ貫通させてもよい。   The three-phase through current transformer 10 has the S phase of the transmission / distribution line penetrated the same number of times in the opposite direction to the R phase and the T phase of the transmission / distribution line has been penetrated a different number of times in the same direction as the R phase. The T phase of the transmission / distribution line may be penetrated the same number of times in the opposite direction to the S phase, and the R phase of the transmission / distribution line may be penetrated the same number of times in the same direction as the S phase. The S phase of the power transmission / distribution line may be penetrated the same number of times in the same direction as the T phase while being penetrated the same number of times in the opposite direction to the T phase.

ただし、CT結線によって、距離継電器20は、事故様相に応じて、表7に示す倍率で補正短絡電流IRy’を算出するとともに、算出した補正短絡電流IRy’と表2に示した線間電圧とに基づいて事故点の距離および短絡電流IRyの方向を判別して、送配電線に短絡事故が発生したか否かを判定する。
However, according to the CT connection, the distance relay 20 calculates the corrected short-circuit current I Ry ′ at the magnification shown in Table 7 according to the accident situation, and between the calculated corrected short-circuit current I Ry ′ and the line shown in Table 2 Based on the voltage, the distance of the fault point and the direction of the short-circuit current I Ry are discriminated to determine whether or not a short-circuit fault has occurred in the transmission and distribution line.

次に、本発明の第3の実施例による方向保護継電装置について、図13を参照して説明する。
本実施例による方向保護継電装置は、図13に示すように、平衡2回線送配電線の第1の送配電線1Lに設置された第1の三相貫通変流器101と、平衡2回線送配電線の第2の送配電線2Lに設置された第2の三相貫通変流器102と、母線に設置された計器用変圧器6と、第1の三相貫通変流器101から入力される短絡電流および第2の三相貫通変流器102から入力される短絡電流の差電流(以下、「短絡電流IRy」と称する。)と計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて第1または第2の送配電線1L,2Lの短絡事故を検出すると、第1および第2の送配電線1L,2Lのうち短絡事故が発生した方(以下、「事故回線」と称する。)のR相、S相およびT相にそれぞれ設置された遮断器(第1の送配電線1LのR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23、または第2の送配電線2LのR相、S相およびT相にそれぞれ設置された第4乃至第6の遮断器24〜26)を一括遮断する回線選択継電器30とを具備する。
Next, a directional protection relay device according to a third embodiment of the present invention will be described with reference to FIG.
Direction protective relay apparatus according to this embodiment, as shown in FIG. 13, the first three-phase through current transformer 10 1 installed in the first transmission and distribution lines 1L equilibrium two-line transmission and distribution lines, the equilibrium the second three-phase through current transformers 10 2 installed in the second transmission and distribution lines 2L two-line transmission and distribution lines, and instrument transformer 6 installed to the bus, the first three-phase through current transformer vessel 10 1 short-circuit current is input and from the second three-phase through the difference in short-circuit current input from the current transformer 10 2 current (hereinafter, "short-circuit current I Ry" as referred.) and a potential transformer 6 R-phase to S-phase line voltage V RS obtained from input R-phase, S-phase and T-phase phase voltages V R , V S and V T , S-phase to T-phase line voltages V ST and T the first or second transmission and distribution lines 1L based on the line voltage V TR phase -R phase, upon detecting a short circuit of 2L, the first and second transmission and distribution lines 1L, among 2L Circuit breakers (R phase, S phase, and T phase of the first transmission / distribution line 1L) installed in the R phase, S phase, and T phase of the person who has the fault (hereinafter referred to as "accident line") 1st to 3rd circuit breakers 2 1 to 2 3 respectively installed in the 4th to 6th circuit breakers 2 respectively installed in the R phase, S phase and T phase of the second transmission and distribution line 2L 4 to 2 6 ) and a line selection relay 30 that collectively cuts off.

ここで、第1の三相貫通変流器101は、2次コイルを巻装した環状鉄心に第1の送配電線1LのS相をR相と逆向きに同じ回数だけ貫通させるとともに第1の送配電線1LのT相をR相と同じ向きに異なる回数だけ貫通させた貫通形変流器である。すなわち、第1の送配電線1LのR相およびT相はともに第1の三相貫通変流器101の極性方向に貫通されているが、第1の送配電線1LのS相は第1の三相貫通変流器101の反極性方向に貫通されている。
また、第1の送配電線1LのR相およびS相は1回だけ第1の三相貫通変流器101を貫通されているが、第1の送配電線1LのT相は2回ほど第1の三相貫通変流器101を貫通されている。これにより、第1の三相貫通変流器101からは、第1の送配電線1LのR相を流れる電流とS相を流れる電流の極性を反転したものとT相を流れる電流を2倍した電流との和電流が出力される。
同様に、第2の三相貫通変流器102は、2次コイルを巻装した環状鉄心に第2の送配電線2LのS相をR相と逆向きに同じ回数だけ貫通させるとともに第2の送配電線2LのT相をR相と同じ向きに異なる回数だけ貫通させた貫通形変流器である。すなわち、第2の送配電線2LのR相およびT相はともに第2の三相貫通変流器102の極性方向に貫通されているが、第2の送配電線2LのS相は第2の三相貫通変流器102の反極性方向に貫通されている。
また、第2の送配電線2LのR相およびS相は1回だけ第2の三相貫通変流器102を貫通されているが、第2の送配電線2LのT相は2回ほど第2の三相貫通変流器102を貫通されている。これにより、第2の三相貫通変流器102からは、第2の送配電線2LのR相を流れる電流とS相を流れる電流の極性を反転したものとT相を流れる電流を2倍した電流との和電流が出力される。
また、第2の三相貫通変流器102は、第2の三相貫通変流器102から回線選択継電器30に入力される短絡電流の極性が第1の三相貫通変流器101から回線選択継電器30に入力される短絡電流の極性の逆となるように、回線選択継電器30と接続されている。
Here, the first three-phase through current transformer 10 1, the annular core formed by winding a secondary coil of S-phase of the first transmission and distribution lines 1L with pass through the same number of times in the R-phase and opposite second This is a through-type current transformer in which the T phase of one transmission / distribution line 1L is penetrated a different number of times in the same direction as the R phase. Ie, R-phase and T-phase of the first transmission and distribution lines 1L are both through the first three-phase through current transformer 10 first polarity direction but, S-phase of the first transmission and distribution lines 1L Part It extends through one of the three-phase through opposite polarity direction of the current transformer 10 1.
In addition, R-phase and S-phase of the first transmission and distribution lines 1L is through only the first three-phase through current transformer 10 1 once but, T-phase of the first transmission and distribution lines 1L twice as it has been through the first three-phase through current transformer 10 1. Thus, from the first three-phase through current transformer 10 1, the current flowing through inverted ones and T phases of the polarity of the current flowing through the current and the S phase through the R-phase of the first transmission and distribution lines 1L 2 A sum current with the multiplied current is output.
Similarly, the second three-phase through current transformers 10 2, the annular core formed by winding a secondary coil of S-phase of the second transmission and distribution lines 2L with pass through the same number of times in the R-phase and opposite second This is a through-type current transformer in which the T phase of the second power transmission / distribution line 2L is passed through the same direction as the R phase a different number of times. Ie, R-phase and T-phase of the second transmission and distribution lines 2L are both through the second three-phase through current transformer 10 second polarity direction but, S-phase of the second transmission and distribution lines 2L Part The two three-phase through current transformers 10 2 are penetrated in the opposite polarity direction.
In addition, R-phase and S-phase of the second transmission and distribution lines 2L is through only the second three-phase through current transformers 10 2 once, but, T-phase of the second transmission and distribution lines 2L twice as it has been through the second three-phase through current transformer 10 2. As a result, the second three-phase through current transformer 10 2 has a current flowing through the R phase and a current flowing through the S phase of the second transmission / distribution line 2L, and a current flowing through the T phase as 2 A sum current with the multiplied current is output.
The second three-phase through current transformer 10 2 has a short-circuit current polarity input to the line selection relay 30 from the second three-phase through current transformer 10 2 in the first three-phase through current transformer 10. The line selection relay 30 is connected so that the polarity of the short-circuit current input from 1 to the line selection relay 30 is reversed.

したがって、短絡事故が発生していないときに第1の送配電線1LのR相、S相およびT相に流れる負荷電流をIR1,IS1,IT1で表すとともに第2の送配電線2LのR相、S相およびT相に流れる負荷電流をIR2,IS2,IT2で表すと、第1の三相貫通変流器101から回線選択継電器30に入力される負荷電流i1は、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の負荷電流IR1と極性が負のS相の負荷電流−IS1とT相の負荷電流IT1を2倍した電流(=2IT1)とのベクトル和となり、負荷電流Iの振幅はR相の負荷電流IR1(S相およびT相の負荷電流IS1,IT1)の振幅の71/2倍となる。
1=IR1−IS1+2IT1
|i1|=|IR1−IS1+2IT1|=71/2×|IR1|(=71/2×|IS1|=71/2×|IT1|)
同様に、第2の三相貫通変流器102から回線選択継電器30に入力される負荷電流i2はR相の負荷電流IR2と極性が負のS相の負荷電流−IS2とT相の負荷電流IT2を2倍した電流(=2IT2)とのベクトル和となり、負荷電流i2の振幅はR相の負荷電流IR2(S相およびT相の負荷電流IS2,IT2)の振幅の71/2倍となる。
2=−(IR2−IS2+2IT2
|i2|=|IR2−IS2+2IT2|=71/2×|IR2|(=71/2×|IS2|=71/2×|IT2|)
その結果、回線選択継電器30に入力される負荷電流Iは負荷電流i1と負荷電流i2とのベクトル和となり、負荷電流Iの振幅は“0”となる(I=i1+i2=0)。
なお、回線選択継電器30は、図19に示した従来の第1乃至第3の回線選択継電器301〜303に入力される負荷電流の振幅と同じにするために、次式で示すように負荷電流Iを1/71/2倍して補正負荷電流I’を算出する。
I’=I×1/71/2
|I’|=|I|×1/71/2-
Accordingly, the load current flowing in the R phase, S phase, and T phase of the first transmission / distribution line 1L when no short circuit accident has occurred is represented by I R1 , I S1 , I T1 and the second transmission / distribution line 2L. When the load currents flowing in the R-phase, S-phase and T-phase are represented by I R2 , I S2 and I T2 , the load current i 1 input from the first three-phase through current transformer 10 1 to the line selection relay 30 In the same manner as in the case of the short-circuit direction relay 4 in the first embodiment, the R-phase load current I R1 , the negative polarity S-phase load current −I S1 and the T-phase load current I T1 are obtained. It becomes a vector sum with the doubled current (= 2I T1 ), and the amplitude of the load current I is 7 1/2 of the amplitude of the R-phase load current I R1 (S-phase and T-phase load currents I S1 , I T1 ). Doubled.
i 1 = I R1 −I S1 + 2I T1
| I 1 | = | I R1 −I S1 + 2I T1 | = 7 1/2 × | I R1 | (= 7 1/2 × | I S1 | = 7 1/2 × | I T1 |)
Similarly, the load current i 2 input from the second three-phase through current transformer 10 2 to the line selection relay 30 is the R-phase load current I R2 and the negative-polarity S-phase load current −I S2 and T It becomes a vector sum with a current (= 2I T2 ) that is twice the phase load current I T2, and the amplitude of the load current i 2 is the R-phase load current I R2 (S-phase and T-phase load currents I S2 , I T2 ) Is 7 1/2 times the amplitude.
i 2 = − (I R2 −I S2 + 2I T2 )
| I 2 | = | I R2 −I S2 + 2I T2 | = 7 1/2 × | I R2 | (= 7 1/2 × | I S2 | = 7 1/2 × | I T2 |)
As a result, the load current I input to the line selection relay 30 is a vector sum of the load current i 1 and the load current i 2, and the amplitude of the load current I is “0” (I = i 1 + i 2 = 0). ).
In order to make the line selection relay 30 the same as the amplitude of the load current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. The corrected load current I ′ is calculated by multiplying the load current I by 1/7 1/2 .
I ′ = I × 1/7 1/2
| I '| = | I | × 1/7 1/ 2-

また、第1または第2の送配電線1L,2Lに短絡事故が発生したときに第1および第2の送配電線1L,2LのR相、S相およびT相に流れる短絡電流をIFR,IFS,IFT(インピーダンス角をθとする。)で表すと、回線選択継電器30は、事故様相に応じて以下のように動作する。
(1)R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図13に破線の矢印で示すように、第1および第2の送配電線1L,2LのR相にR相の短絡電流IFRが内部方向に流れ、第1および第2の送配電線1L,2LのS相にS相の短絡電流IFSが外部方向に流れるが、第1および第2の送配電線1L,2LのT相にはT相の短絡電流IFTが流れない。
したがって、回線選択継電器30に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の短絡電流IFR(第1の送配電線1LのR相に流れる短絡電流と第2の送配電線2LのR相に流れる短絡電流との差電流)と極性が負のS相の短絡電流−IFS(第1の送配電線1LのS相に流れる短絡電流と第2の送配電線2LのS相に流れる短絡電流との差電流の極性を反転したもの)とのベクトル和となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる(図3(a)参照)。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=2×|IFR|(=2×|IFS|)
そこで、回線選択継電器30は、図19に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1/2
|IRy’|=|IRy|×1/2-=|IFR|(=|IFS|)
回線選択継電器30は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送配電線1L,2LのR相−S相間の短絡事故の場合には、算出した補正短絡電流IRy’とR相−S相の線間電圧VRSとに基づいて事故回線が判別される(図3(a)参照)。
回線選択継電器30は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、第1および第2の送配電線1L,2LのS相にS相の短絡電流IFSが内部方向に流れ、第1および第2の送配電線1L,2LのT相にT相の短絡電流IFTが外部方向に流れるが、第1および第2の送配電線1L,2LのR相にはR相の短絡電流IFRが流れない(図5参照)。
したがって、回線選択継電器30に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、極性が負のS相の短絡電流−IFS(第1の送配電線1LのS相に流れる短絡電流と第2の送配電線2LのS相に流れる短絡電流との差電流の極性を反転したもの)とT相の短絡電流IFT(第1の送配電線1LのT相に流れる短絡電流と第2の送配電線2LのT相に流れる短絡電流との差電流)を2倍した電流(=2IFT)のベクトル和となり、短絡電流IRyの振幅はT相の短絡電流IFT(S相の短絡電流IFS)の振幅の3倍となる(図3(b)参照)。
Ry=−IFS+2IFT
|IRy|=|−IFS+2IFT|=3×|IFT|(=3×|IFS|)
そこで、回線選択継電器30は、図19に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1/3倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1/3
|IRy’|=|IRy|×1/3=|IFT|(=|IFS|)
回線選択継電器30は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送配電線1L,2LのS相−T相間の短絡事故の場合には、算出した補正短絡電流IRy’とS相−T相の線間電圧VST(極性が負)とに基づいて事故回線が判別される(図3(b)参照)。
回線選択継電器30は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、第1および第2の送配電線1L,2LのT相にT相の短絡電流IFTが内部方向に流れ、第1および第2の送配電線1L,2LのR相にR相の短絡電流IFRが外部方向に流れるが、第1および第2の送配電線1L,2LのS相にはS相の短絡電流IFSが流れない(図6参照)。
したがって、回線選択継電器30に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の短絡電流IFR(第1の送配電線1LのR相に流れる短絡電流と第2の送配電線2LのR相に流れる短絡電流との差電流)とT相の短絡電流IFT(第1の送配電線1LのT相に流れる短絡電流と第2の送配電線2LのT相に流れる短絡電流との差電流)を2倍した電流(=2IFT)とのベクトル和となり、短絡電流IRyの振幅はT相の短絡電流IFT(R相の短絡電流IFR)の振幅となる(図4(a)参照)。
Ry=IFR+2IFT
|IRy|=|IFR+2IFT|=|IFT|(=|IFR|)
そこで、回線選択継電器30は、図19に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1
|IRy’|=|IRy|×1=|IFT|(=|IFR|)
回線選択継電器30は、算出した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送配電線1L,2LのT相−R相間の短絡事故の場合には、算出した補正短絡電流IRy’とT相−R相の線間電圧VTRとに基づいて事故回線が判別される(図4(a)参照)。
回線選択継電器30は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、第1および第2の送配電線1L,2LのR相,S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120°で内部方向にそれぞれ流れる(図7参照)。
したがって、回線選択継電器30に入力される短絡電流IRyは、上述した第1の実施例における短絡方向継電器4の場合と同様にして、R相の短絡電流IFR(第1の送配電線1LのR相に流れる短絡電流と第2の送配電線2LのR相に流れる短絡電流との差電流)と極性が負のS相の短絡電流−IFS(第1の送配電線1LのS相に流れる短絡電流と第2の送配電線2LのS相に流れる短絡電流との差電流の極性を反転したもの)とT相の短絡電流IFT(第1の送配電線1LのT相に流れる短絡電流と第2の送配電線2LのT相に流れる短絡電流との差電流)を2倍した電流(=2IFT)とのベクトル和となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相およびT相の短絡電流IFS,IFT)の振幅の71/2倍となる(図4(b)参照)。
Ry=IFR−IFS+2IFT
|IRy|=|IFR−IFS+2IFT|=71/2×|IFR|(=71/2×|IFS|=71/2×|IFT|)
そこで、回線選択継電器30は、図19に示した従来の第1乃至第3の回線選択継電器301〜303に入力される短絡電流の振幅と同じにするために、次式で示すように短絡電流IRyを1/71/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy×1/71/2
|IRy’|=|IRy|×1/71/2-=|IFR|(=|IFS|=|IFT|)
また、短絡電流IRyは49.1°の進み位相で三相貫通変流器10から回線選択継電器30に入力されるため、回線選択継電器30は補正短絡電流IRy’の位相補正も行う。
回線選択継電器30は、位相補正した補正短絡電流IRy’とR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRとに基づいて事故回線を判別する。なお、第1または第2の送配電線1L,2LのR相−S相−T相間の短絡事故の場合には、位相補正短絡電流IRy’とR相−S相の線間電圧VRSとに基づいて事故回線が判別される(図4(b)参照)。
回線選択継電器30は、第1の送配電線1Lに短絡事故が発生したと判定すると第1乃至第3の遮断器21〜23を一括遮断し、また、第2の送配電線2Lに短絡事故が発生したと判定すると第4乃至第6の遮断器24〜26を一括遮断する。
In addition, when a short circuit accident occurs in the first or second transmission / distribution lines 1L, 2L, the short-circuit current flowing in the R phase, S phase, and T phase of the first and second transmission / distribution lines 1L, 2L is expressed as I FR , I FS , I FT (impedance angle is θ), the line selection relay 30 operates as follows according to the aspect of the accident.
(1) In the case of a short circuit accident between the R phase and the S phase When a short circuit accident between the R phase and the S phase occurs, the R of the first and second transmission / distribution lines 1L and 2L, as indicated by the dashed arrows in FIG. An R-phase short-circuit current IFR flows in the internal direction, and an S-phase short-circuit current IFS flows in the S-phase of the first and second transmission and distribution lines 1L and 2L. The T-phase short circuit current I FT does not flow in the T-phase of the transmission and distribution lines 1L and 2L.
Accordingly, the short-circuit current I Ry input to the line selection relay 30 is the same as that of the short-circuit direction relay 4 in the first embodiment described above, and the R-phase short-circuit current I FR (the first transmission / distribution line 1L). The short-circuit current flowing in the R-phase and the short-circuit current flowing in the R-phase of the second transmission and distribution line 2L) and the negative S-phase short-circuit current -I FS (S of the first transmission and distribution line 1L) Of the difference between the short-circuit current flowing in the phase and the short-circuit current flowing in the S-phase of the second transmission and distribution line 2L), and the amplitude of the short-circuit current I Ry is the short-circuit current I in the R-phase It becomes twice the amplitude of FR (S-phase short-circuit current I FS ) (see FIG. 3A).
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 2 × | I FR | (= 2 × | I FS |)
Therefore, in order to make the line selection relay 30 the same as the amplitude of the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. The short-circuit current I Ry is halved to calculate a corrected short-circuit current I Ry '.
I Ry '= I Ry × 1/2
| I Ry '| = | I Ry | × 1 / 2- = | I FR | (= | I FS |)
The line selection relay 30 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the accident line is determined. In the case of a short-circuit accident between the R-phase and S-phase of the first or second transmission and distribution lines 1L, 2L, the calculated corrected short-circuit current I Ry ′ and the R-phase to S-phase line voltage V RS Based on this, an accident line is determined (see FIG. 3A).
When the line selection relay 30 determines that a short-circuit accident has occurred in the first transmission / distribution line 1L, the line selection relay 30 disconnects the first to third circuit breakers 2 1 to 2 3 all together, and the second transmission / distribution line 2L If it is determined that a short circuit accident has occurred, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
(2) In the case of a short circuit accident between the S phase and the T phase When a short circuit accident between the S phase and the T phase occurs, the S phase short circuit current I FS is internally contained in the S phase of the first and second power transmission lines 1L and 2L. The T-phase short circuit current I FT flows outward in the T phase of the first and second transmission / distribution lines 1L, 2L, but the R phase of the first and second transmission / distribution lines 1L, 2L. No R-phase short-circuit current I FR flows (see FIG. 5).
Accordingly, the short-circuit current I Ry input to the line selection relay 30 is the same as the short-circuit direction relay 4 in the first embodiment described above, and the S-phase short-circuit current −I FS (first The polarity of the difference current between the short-circuit current flowing in the S phase of the first transmission and distribution line 1L and the short-circuit current flowing in the S phase of the second transmission and distribution line 2L) and the T-phase short-circuit current I FT (first becomes the vector sum of the transmission and distribution lines 1L of T phase short-circuit current flowing through the differential current) to twice the current of the short-circuit current flowing through the T-phase of the second transmission and distribution lines 2L (= 2I FT), short-circuit current I Ry Is three times the amplitude of the T-phase short-circuit current I FT (S-phase short-circuit current I FS ) (see FIG. 3B).
I Ry = −I FS + 2I FT
| I Ry | = | −I FS + 2I FT | = 3 × | I FT | (= 3 × | I FS |)
Therefore, in order to make the line selection relay 30 the same as the amplitude of the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. The corrected short-circuit current I Ry ′ is calculated by multiplying the short-circuit current I Ry by 1/3.
I Ry '= I Ry × 1/3
| I Ry '| = | I Ry | × 1/3 = | I FT | (= | I FS |)
The line selection relay 30 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the accident line is determined. In the case of a short circuit accident between the S phase and the T phase of the first or second transmission / distribution lines 1L, 2L, the calculated corrected short circuit current I Ry ′ and the line voltage V ST (polarity between the S phase and the T phase) Is negative), the accident line is determined (see FIG. 3B).
When the line selection relay 30 determines that a short-circuit accident has occurred in the first transmission / distribution line 1L, the line selection relay 30 disconnects the first to third circuit breakers 2 1 to 2 3 all together, and the second transmission / distribution line 2L If it is determined that a short circuit accident has occurred, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
(3) In the case of a short circuit accident between the T phase and the R phase When a short circuit accident occurs between the T phase and the R phase, the T phase short circuit current I FT is internally generated in the T phase of the first and second power transmission lines 1L and 2L. The R-phase short-circuit current IFR flows to the R phase of the first and second transmission and distribution lines 1L and 2L, but flows to the S phase of the first and second transmission and distribution lines 1L and 2L. No S-phase short-circuit current IF flows (see FIG. 6).
Therefore, the short-circuit current I Ry input to the line selection relay 30 is the same as that of the short-circuit direction relay 4 in the first embodiment described above, and the R-phase short-circuit current I FR (the first transmission / distribution line 1L). Difference current between the short-circuit current flowing in the R-phase and the short-circuit current flowing in the R-phase of the second transmission and distribution line 2L) and the T-phase short-circuit current I FT (short-circuit current flowing in the T-phase of the first transmission and distribution line 1L) And the current (= 2I FT ) that is twice the difference between the short-circuit current flowing in the T-phase of the second transmission / distribution line 2L and the amplitude of the short-circuit current I Ry is the T-phase short-circuit current I FT (R phase short-circuit current I FR ) (see FIG. 4A).
I Ry = I FR + 2I FT
| I Ry | = | I FR + 2I FT | = | I FT | (= | I FR |)
Therefore, in order to make the line selection relay 30 the same as the amplitude of the short-circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. The corrected short-circuit current I Ry 'is calculated by multiplying the short-circuit current I Ry by 1.
I Ry '= I Ry × 1
| I Ry '| = | I Ry | × 1 = | I FT | (= | I FR |)
The line selection relay 30 includes the calculated corrected short-circuit current I Ry ′, the R-phase / S-phase line voltage V RS , the S-phase / T-phase line voltage V ST, and the T-phase / R-phase line voltage V TR. Based on the above, the accident line is determined. In the case of a short circuit accident between the T phase and the R phase of the first or second transmission and distribution lines 1L and 2L, the calculated corrected short circuit current I Ry ′ and the line voltage V TR between the T phase and the R phase are used. Based on this, the accident line is determined (see FIG. 4A).
When the line selection relay 30 determines that a short-circuit accident has occurred in the first transmission / distribution line 1L, the line selection relay 30 disconnects the first to third circuit breakers 2 1 to 2 3 all together, and the second transmission / distribution line 2L If it is determined that a short circuit accident has occurred, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase When a short circuit accident between the R phase, the S phase, and the T phase occurs, the R phase, the S phase, and the first and second power transmission lines 1L and 2L An R-phase short-circuit current I FR , an S-phase short-circuit current I FS and a T-phase short-circuit current I FT flow in the T phase in the internal direction with a phase difference of 120 ° (see FIG. 7).
Therefore, the short-circuit current I Ry input to the line selection relay 30 is the same as that of the short-circuit direction relay 4 in the first embodiment described above, and the R-phase short-circuit current I FR (the first transmission / distribution line 1L). The short-circuit current flowing in the R-phase and the short-circuit current flowing in the R-phase of the second transmission and distribution line 2L) and the negative S-phase short-circuit current -I FS (S of the first transmission and distribution line 1L) The polarity of the difference current between the short-circuit current flowing in the phase and the short-circuit current flowing in the S-phase of the second transmission and distribution line 2L) and the T-phase short-circuit current I FT (the T-phase of the first transmission and distribution line 1L) the flow circuit current and the differential current) to twice the current of the short-circuit current flowing through the T-phase of the second transmission and distribution lines 2L (= become vector sum of 2I FT), the amplitude of the short-circuit current I Ry is the R-phase short-circuit current I FR (S-phase and T-phase of the short-circuit current I FS, I FT) becomes 71/2 times the amplitude (see FIG. 4 (b) .
I Ry = I FR -I FS + 2I FT
| I Ry | = | I FR −I FS + 2I FT | = 7 1/2 × | I FR | (= 7 1/2 × | I FS | = 7 1/2 × | I FT |)
Therefore, in order to make the line selection relay 30 the same as the amplitude of the short circuit current input to the conventional first to third line selection relays 30 1 to 30 3 shown in FIG. The corrected short-circuit current I Ry 'is calculated by multiplying the short-circuit current I Ry by 1/7 1/2 .
I Ry '= I Ry × 1/7 1/2
| I Ry '| = | I Ry | × 1/7 1/2 - = | I FR | (= | I FS | = | I FT |)
Further, since the short-circuit current I Ry is input from the three-phase through current transformer 10 to the line selection relay 30 with a leading phase of 49.1 °, the line selection relay 30 also performs phase correction of the corrected short-circuit current I Ry ′.
The line selection relay 30 includes a phase-corrected short circuit current I Ry ′, an R-phase / S-phase line voltage V RS , an S-phase / T-phase line voltage V ST, and a T-phase / R-phase line voltage V Determine the accident line based on TR . In the case of a short circuit accident between the R-phase, S-phase, and T-phase of the first or second transmission / distribution lines 1L, 2L, the phase-corrected short-circuit current I Ry 'and the R-phase-S-phase line voltage V RS Based on the above, the accident line is determined (see FIG. 4B).
When the line selection relay 30 determines that a short-circuit accident has occurred in the first transmission / distribution line 1L, the line selection relay 30 disconnects the first to third circuit breakers 2 1 to 2 3 all together, and the second transmission / distribution line 2L If it is determined that a short circuit accident has occurred, the fourth to sixth circuit breakers 2 4 to 2 6 are collectively disconnected.

なお、第1の三相貫通変流器101には第1の送配電線1LのS相をR相と逆向きに同じ回数だけ貫通させるとともに第1の送配電線1LのT相をR相と同じ向きに異なる回数だけ貫通させたが、第1の送配電線1LのT相をS相と逆向きに同じ回数だけ貫通させるとともに第1の送配電線1LのR相をS相と同じ向きに異なる回数だけ貫通させてもよいし、第1の送配電線1LのR相をT相と逆向きに同じ回数だけ貫通させるとともに第1の送配電線1LのS相をT相と同じ向きに異なる回数だけ貫通させてもよい。
第2の三相貫通変流器102についても同様である。
Note that the first three-phase through current transformer 10 1 T-phase of the first transmission and distribution lines 1L with pass through the same number of times the S-phase of the first transmission and distribution lines 1L to R-phase and reverse R The T phase of the first transmission / distribution line 1L is penetrated the same number of times in the opposite direction to the S phase and the R phase of the first transmission / distribution line 1L is defined as the S phase. The same direction may be penetrated a different number of times, or the R phase of the first transmission and distribution line 1L may be penetrated the same number of times in the opposite direction to the T phase and the S phase of the first transmission and distribution line 1L may be defined as the T phase. You may penetrate through the same direction different times.
The same applies to the second three-phase through current transformer 10 2 .

ただし、CT結線によって、回線選択継電器30は、上述した第1乃至第5の事故様相判定方法のいずれかを用いて判定した事故様相に応じて、表1に示した倍率で補正短絡電流IRy’を算出するとともに、算出した補正短絡電流IRy’と表2に示した線間電圧とに基づいて事故回線を判別して、第1または第2の送配電線1L,2Lに短絡事故が発生したか否かを判定する。 However, according to the CT connection, the line selection relay 30 causes the correction short-circuit current I Ry at the magnification shown in Table 1 according to the accident aspect determined using any of the first to fifth accident aspect determination methods described above. ' Is calculated, and the fault line is determined based on the calculated corrected short-circuit current I Ry ' and the line voltage shown in Table 2, and a short-circuit fault occurs in the first or second power distribution line 1L, 2L. It is determined whether or not it has occurred.

次に、本発明の一実施例による電力方向継電装置について、図14を参照して説明する。
本実施例による電力方向継電装置は、図14に示すように、送配電線に設置された三相貫通変流器10と、母線に設置された計器用変圧器6と、三相貫通変流器10から入力される電流iRyと計器用変圧器6から入力される電圧情報(R相、S相およびT相の相電圧VR,VS,VT)から求めた基準電圧とに基づいて逆潮流を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する電力方向継電器40とを具備する。
Next, a power direction relay device according to an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 14, the power direction relay device according to the present embodiment includes a three-phase through current transformer 10 installed in a transmission / distribution line, an instrument transformer 6 installed in a bus, and a three-phase through transformer. The current i Ry input from the flow device 10 and the reference voltage obtained from the voltage information (R-phase, S-phase, and T-phase phase voltages V R , V S , V T ) input from the instrument transformer 6. When a reverse power flow is detected based on this, a power direction relay 40 that collectively cuts off the first to third circuit breakers 2 1 to 2 3 installed in the R phase, S phase, and T phase of the transmission and distribution lines is provided. .

ここで、三相貫通変流器10は、2次コイルを巻装した環状鉄心に送配電線のS相をR相と逆向きに同じ回数だけ貫通させるとともに送配電線のT相をR相と同じ向きに異なる回数だけ貫通させた貫通形変流器である。すなわち、送配電線のR相およびT相はともに三相貫通変流器10の極性方向に貫通されているが、送配電線のS相は三相貫通変流器10の反極性方向に貫通されている。
また、送配電線のR相およびS相は1回だけ三相貫通変流器10を貫通されているが、送配電線のT相は2回ほど三相貫通変流器10を貫通されている。これにより、三相貫通変流器10からは、送配電線のR相を流れる電流とS相を流れる電流の極性を反転したものとT相を流れる電流を2倍した電流との和電流が出力される。
Here, the three-phase through current transformer 10 allows the S phase of the transmission / distribution line to pass through the annular core around which the secondary coil is wound, the same number of times in the opposite direction to the R phase, and the T phase of the transmission / distribution line to be the R phase. Is a through-type current transformer that is penetrated in the same direction by different numbers of times. That is, the R phase and the T phase of the transmission and distribution line are both penetrated in the polarity direction of the three-phase through current transformer 10, while the S phase of the transmission and distribution line is penetrated in the opposite polarity direction of the three-phase through current transformer 10. Has been.
Moreover, although the R phase and S phase of the transmission / distribution line are penetrated through the three-phase through current transformer 10 only once, the T phase of the transmission / distribution line is penetrated through the three-phase through current transformer 10 twice. Yes. As a result, the sum current of the current flowing through the R phase and the current flowing through the S phase of the transmission / distribution line and the current obtained by inverting the current flowing through the T phase is doubled from the three-phase through current transformer 10. Is output.

送配電線に逆潮流が発生すると、図14に破線の矢印で示すように送配電線のR相、S相およびT相に有効電流iRP,iSP,iTPが+方向にそれぞれ流れる。
このとき、送配電線のR相の有効電流iRPとS相の有効電流iSPとは三相貫通変流器10の環状鉄心を逆向きに貫通して流れ(すなわち、R相の有効電流iRPは三相貫通変流器10を極性方向に貫通して流れ、S相の有効電流iSPは三相貫通変流器10を反極性方向に貫通して流れ)、R相の有効電流iRPとT相の有効電流iTPとは三相貫通変流器10の環状鉄心を同じ向きに貫通して流れる(すなわち、R相の有効電流iRPとT相の有効電流iTPとは三相貫通変流器10を極性方向に貫通して流れる)。
そのため、三相貫通変流器10から電力方向継電器40に入力される電流iRyに含まれる有効電流iRyPは、図14に実線の太矢印で示すように、R相の有効電流iRPと極性が負のS相の有効電流−iSPとT相の有効電流iTPを2倍した電流(2iTP)とのベクトル和となるが、R相の有効電流iRPとS相の有効電流iSPとT相の有効電流iTPとは図15(a)に示すように120°の位相差で三相貫通変流器10を貫通して流れるため、有効電流iRyPの振幅はR相の有効電流iRP(S相およびT相の有効電流iSP,iTP)の振幅の71/2倍となる(図15(a)参照)。
RyP=iRP−iSP+2iTP
|iRyP|=|iRP−iSP+2iTP|=71/2×|iRP|(=71/2×|iSP|=71/2×|iTP|)
そこで、電力方向継電器40は、図20に示した従来の第1乃至第3の電力方向継電器401〜403に入力される有効電流の振幅と同じにするために、次式で示すように電流iRyを1/71/2倍して補正電流iRy’を算出する。
Ry’=iRy×1/71/2
|iRy’|=|iRy|×1/71/2
(|iRyP’|=|iRP|(=|iSP|=|iTP|))
電力方向継電器40は、計器用変圧器6から入力されるR相の相電圧VRを基準電圧として用いて、算出した補正電流iRy’と基準電圧(R相の相電圧VR)とに基づいて動作して(最大感度角=79.1°)、補正電流iRy’に含まれる補正有効電流iRyP’が図15(b)に破線の矢印で示すように動作範囲に入ると第1乃至第3の遮断器21〜23を一括遮断する。
When reverse power flow occurs in the transmission / distribution line, effective currents i RP , i SP , i TP flow in the + direction in the R-phase, S-phase, and T-phase of the transmission / distribution line, as indicated by the dashed arrows in FIG.
At this time, the R-phase effective current i RP and the S-phase effective current i SP of the power transmission / distribution line flow through the annular core of the three-phase through current transformer 10 in the opposite direction (that is, the R-phase effective current). i RP flows through the three-phase through current transformer 10 in the polarity direction, and the S-phase effective current i SP flows through the three-phase through current transformer 10 in the opposite polarity direction), and the R-phase effective current. The i RP and the T-phase effective current i TP flow through the annular core of the three-phase through current transformer 10 in the same direction (that is, the R-phase effective current i RP and the T-phase effective current i TP are And flows through the three-phase through current transformer 10 in the polar direction).
Therefore, the effective current i RyP included in the current i Ry input from the three-phase through current transformer 10 to the power direction relay 40 is equal to the R-phase effective current i RP as shown by a solid line thick arrow in FIG. The S-phase effective current -i SP and the T-phase effective current i TP are multiplied by the vector sum (2i TP ), but the R-phase effective current i RP and the S-phase effective current are negative. Since the i SP and the T-phase effective current i TP flow through the three-phase through current transformer 10 with a phase difference of 120 ° as shown in FIG. 15A , the amplitude of the effective current i RyP is R-phase. The effective current i RP (S phase and T phase effective currents i SP and i TP ) is 7 1/2 times the amplitude (see FIG. 15A).
i RyP = i RP -i SP +2 i TP
| I RyP | = | i RP -i SP + 2i TP | = 7 1/2 × | i RP | (= 7 1/2 × | i SP | = 7 1/2 × | i TP |)
Therefore, in order to make the power direction relay 40 have the same amplitude as the effective current input to the conventional first to third power direction relays 40 1 to 40 3 shown in FIG. The correction current i Ry ′ is calculated by multiplying the current i Ry by 1/7 1/2 .
i Ry '= i Ry × 1/7 1/2
| I Ry '| = | i Ry | × 1/7 1/2
(| I RyP '| = | i RP | (= | i SP | = | i TP |))
The power direction relay 40 uses the R-phase phase voltage V R input from the instrument transformer 6 as a reference voltage, and calculates the corrected current i Ry ′ and the reference voltage (R-phase phase voltage V R ). Based on (maximum sensitivity angle = 79.1 °), the correction effective current i RyP ′ included in the correction current i Ry ′ enters the operation range as indicated by the dashed arrow in FIG. 1 to the third circuit breakers 2 1 to 2 3 collectively blocking.

なお、R相の相電圧VRを基準電圧として用いたが、S相−T相の線間電圧VSTの位相を90°進めたものを用いてもよい。 Although the phase voltage V R of the R phase is used as the reference voltage, the phase voltage V ST of the S phase / T phase advanced by 90 ° may be used.

また、三相貫通変流器10には送配電線のS相をR相と逆向きに同じ回数だけ貫通させるとともに送配電線のT相をR相と同じ向きに異なる回数だけ貫通させたが、送配電線のT相をS相と逆向きに同じ回数だけ貫通させるとともに送配電線のR相をS相と同じ向きに異なる回数だけ貫通させてもよいし、送配電線のR相をT相と逆向きに同じ回数だけ貫通させるとともに送配電線のS相をT相と同じ向きに異なる回数だけ貫通させてもよい。
ただし、CT結線によって、電力方向継電器40は、三相貫通変流器10から入力される電流iRyを1/71/2倍して補正した補正電流iRy’と表8に示す基準電圧とに基づいて動作する。なお、表8において、CT結線の“+”および“−”は、送配電線の各相を流れる電流の向きが+方向である場合に三相貫通変流器10から出力される電流の極性が“+”および“−”となることを示す。
The three-phase through current transformer 10 has the S phase of the transmission / distribution line penetrated the same number of times in the opposite direction to the R phase and the T phase of the transmission / distribution line has been penetrated in the same direction as the R phase by a different number of times. The T phase of the transmission / distribution line may be penetrated the same number of times in the opposite direction to the S phase, and the R phase of the transmission / distribution line may be penetrated the same number of times in the same direction as the S phase. The S phase of the transmission / distribution line may be penetrated the same number of times in the same direction as the T phase while being penetrated the same number of times in the opposite direction to the T phase.
However, the CT connection, power directional relay 40, the reference voltage of the current i Ry inputted from the three-phase through current transformer 10 1/7 1/2 corrected current i Ry obtained by correcting 'shown in Table 8 And work on the basis of. In Table 8, “+” and “−” of the CT connection indicate the polarity of the current output from the three-phase through current transformer 10 when the direction of the current flowing through each phase of the transmission and distribution line is the + direction. Indicates “+” and “−”.

また、電力方向継電器40を以下のように動作させることにより、電力方向継電器40を無効電力方向継電器(DQ)として機能させることができる。   Further, by operating the power direction relay 40 as follows, the power direction relay 40 can function as a reactive power direction relay (DQ).

送配電線に逆潮流が発生すると、送配電線のR相、S相およびT相に無効電流iRQ,iSQ,iTQが+方向にそれぞれ流れる。
このとき、送配電線のR相の無効電流iRQとS相の無効電流iSQとは三相貫通変流器10の環状鉄心を逆向きに貫通して流れ(すなわち、R相の無効電流iRQは三相貫通変流器10を極性方向に貫通して流れ、S相の無効電流iSQは三相貫通変流器10を反極性方向に貫通して流れ)、R相の無効電流iRQとT相の無効電流iTQとは三相貫通変流器10の環状鉄心を同じ向きに貫通して流れる(すなわち、R相の無効電流iRQとT相の無効電流iTQとは三相貫通変流器10を極性方向に貫通して流れる)。
そのため、三相貫通変流器10から電力方向継電器40に入力される電流iRyに含まれる無効電流iRyQはR相の無効電流iRQと極性が負のS相の無効電流−iSQとT相の無効電流iTQを2倍した電流(2iTQ)とのベクトル和となるが、R相の無効電流iRQとS相の無効電流iSQとT相の無効電流iTQとは図16(a)に示すように120°の位相差で三相貫通変流器10を貫通して流れるため、無効電流iRyQの振幅はR相の無効電流iRQ(S相およびT相の有効電流iSQ,iTQ)の振幅の71/2倍となる(図16(a)参照)。
RyQ=iRQ−iSQ+2iTQ
|iRyQ|=|iRQ−iSQ+2iTQ|=71/2×|iRQ|(=71/2×|iSQ|=71/2×|iTQ|)
そこで、電力方向継電器40は、次式で示すように電流iRyを1/71/2倍して補正電流iRy’を算出する。
Ry’=iRy×1/71/2
|iRy’|=|iRy|×1/71/2-
(|iRyQ’|=|iRQ|(=|iSQ|=|iTQ|))
電力方向継電器40は、計器用変圧器6から入力されるR相、S相およびT相の相電圧VR,VS,VTより求めたS相−T相の線間電圧VSTの極性を反転したもの(−VST)を基準電圧として用いて、算出した補正電流iRy’と基準電圧(極性が負のS相−T相の線間電圧−VST)とに基づいて動作して(最大感度角=79.1°)、補正電流iRy’に含まれる補正無効電流iRyQ’が図16(b)に破線の矢印で示すように動作範囲に入ると第1乃至第3の遮断器21〜23を一括遮断する。
When a reverse power flow occurs in the transmission / distribution line, reactive currents i RQ , i SQ , i TQ flow in the + direction in the R phase, S phase, and T phase of the transmission / distribution line, respectively.
At this time, the R-phase reactive current i RQ and the S-phase reactive current i SQ of the transmission / distribution line flow through the annular core of the three-phase through current transformer 10 in the opposite direction (that is, the R-phase reactive current i SQ i RQ flows through the three-phase through current transformer 10 in the polarity direction, and the S-phase reactive current i SQ flows through the three-phase through current transformer 10 in the opposite polarity direction), and the R-phase reactive current. The i RQ and the T-phase reactive current i TQ flow through the annular core of the three-phase through current transformer 10 in the same direction (that is, the R-phase reactive current i RQ and the T-phase reactive current i TQ are And flows through the three-phase through current transformer 10 in the polar direction).
Therefore, the reactive current i RyQ included in the current i Ry input from the three-phase through current transformer 10 to the power direction relay 40 is an R-phase reactive current i RQ and an S-phase reactive current −i SQ having a negative polarity. This is the vector sum of the current (2i TQ ) that is twice the T-phase reactive current i TQ , but the R-phase reactive current i RQ , the S-phase reactive current i SQ, and the T-phase reactive current i TQ are Since the current flows through the three-phase through current transformer 10 with a phase difference of 120 ° as shown in FIG. 16 (a), the reactive current i RyQ has an amplitude of the reactive current i RQ of the R phase (effective of the S phase and the T phase). It becomes 71/2 times the amplitude of the current i SQ , i TQ ) (see FIG. 16A).
i RyQ = i RQ -i SQ + 2i TQ
| I RyQ | = | i RQ −i SQ + 2i TQ | = 7 1/2 × | i RQ | (= 7 1/2 × | i SQ | = 7 1/2 × | i TQ |)
Therefore, the power direction relay 40 calculates the corrected current i Ry ′ by multiplying the current i Ry by 1/7 1/2 as shown in the following equation.
i Ry '= i Ry × 1/7 1/2
| I Ry '| = | i Ry | × 1/7 1/2 -
(| I RyQ '| = | i RQ | (= | i SQ | = | i TQ |))
The electric power direction relay 40 is the polarity of the line voltage V ST of the S phase-T phase obtained from the phase voltages V R , V S , V T of the R phase, S phase and T phase input from the instrument transformer 6. Is operated based on the calculated correction current i Ry ′ and the reference voltage (the negative-polarity S-phase to T-phase line voltage −V ST ) using the inverted version (−V ST ) as the reference voltage. (Maximum sensitivity angle = 79.1 °), when the corrected reactive current i RyQ ′ included in the corrected current i Ry ′ enters the operating range as indicated by the dashed arrow in FIG. All circuit breakers 2 1 to 2 3 are collectively shut off.

なお、極性が負のS相−T相の線間電圧−VSTを基準電圧として用いたが、極性が負のR相の相電圧−VRの位相を90°進めたものを用いてもよい。 The negative polarity S-phase to T-phase line voltage -V ST was used as the reference voltage, but the polarity of the negative polarity R-phase voltage -V R may be 90 ° advanced. Good.

以上の説明では、三相貫通変流器にはR相およびS相を逆向きに1回貫通させるとともにT相を同じ向きに2回貫通させたが、たとえばR相を基準とした場合には、三相貫通変流器にR相をl(l≧1)回貫通させ、S相をR相と逆向き(逆方向)にm(m≧1)回貫通させるとともに、T相をR相と同じ向き(同方向)にn(n≧2)回貫通させてもよい。   In the above description, the R-phase and S-phases are passed through the three-phase through current transformer once in the opposite direction and the T-phase is passed twice in the same direction. , Let the R phase pass through the three-phase through current transformer l (l ≧ 1) times, let the S phase pass m (m ≧ 1) times in the opposite direction (reverse direction) to the R phase, and make the T phase R phase May be penetrated n (n ≧ 2) times in the same direction (same direction).

また、上述した第4の事故様相判定方法においてR相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを反極性方向で2倍して合成するように事故様相判定用変圧器110の2次側を結線し、上述した第5の事故様相判定方法においてR相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを極性方向で2倍して合成するように事故様相判定用変圧器120の2次側を結線したが、R相の相電圧VRを極性方向または反極性方向でa倍して、S相の相電圧VSを極性方向または反極性方向でb倍して、T相の相電圧VTを極性方向または反極性方向でc倍して合成するように事故様相判定用変圧器の2次側を結線してもよい。この事故様相判定用変圧器から出力される合成電圧VaR+bS+cTは次式で表される。
aR+bS+cT=±aVR±bVS±cVT
Further, in the fourth accident mode determination method described above, the R-phase phase voltage V R is 2 in the polarity direction, the S-phase phase voltage V S is in the opposite polarity direction, and the T-phase phase voltage V T is 2 in the opposite polarity direction. The secondary side of the accident aspect determination transformer 110 is connected so as to be combined, and in the fifth accident aspect determination method described above, the phase voltage V R of the R phase is in the polarity direction and the phase voltage V of the S phase. The secondary side of the accident mode determination transformer 120 is connected so that S is antipolar and the T phase voltage V T is doubled in the polarity direction to synthesize, but the R phase voltage V R is Multiply a in the polar or antipolar direction by a, multiply the S phase voltage V S in the polar or antipolar direction by b, and multiply the T phase voltage V T in the polar or antipolar direction by c The secondary side of the accident mode determination transformer may be connected so as to be combined. The composite voltage V aR + bS + cT output from this accident aspect determination transformer is expressed by the following equation.
V aR + bS + cT = ± aV R ± bV S ± cV T

さらに、短絡方向継電器4、距離継電器20および回線選択継電器30では、R相−S相−T相間の短絡事故において短絡電流IRyを位相補正したが、これは従来の方向特性に近似させるためであるので、位相補正する代わりに方向特性を変更してもよい。 Further, in the short-circuit direction relay 4, the distance relay 20, and the line selection relay 30, the phase of the short-circuit current I Ry is corrected in the short-circuit accident between the R phase, the S phase, and the T phase. This is to approximate the conventional directional characteristics. Therefore, the direction characteristics may be changed instead of phase correction.

さらに、送配電線において使用される方向保護継電器や電力方向継電器との組合せで三相貫通変流器について説明したが、三相貫通変流器は、送配電線以外の三相交流回路において使用されている方向保護装置や電力方向継電器と組み合わせても、同様の効果を得ることができる。   In addition, the three-phase through current transformer has been described in combination with the direction protection relay and power direction relay used in the transmission and distribution lines, but the three-phase through current transformer is used in three-phase AC circuits other than the transmission and distribution lines. The same effect can be obtained by combining with a directional protection device or a power direction relay.

本発明の第1の実施例による方向保護継電装置について説明するための図である。It is a figure for demonstrating the direction protection relay apparatus by 1st Example of this invention. 短絡事故が発生していないときの負荷電流IとT相−R相の線間電圧VTRおよびR相の相電圧VRとについて説明するための図である。It is a diagram for explaining the load current I and the T-phase -R phase phase voltage V R of the line voltage V TR and R-phase when a short circuit does not occur. 短絡事故が発生したときに図1に示した三相貫通変流器10から短絡方向継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating short circuit current IRy input into the short circuit direction relay 4 from the three-phase through current transformer 10 shown in FIG. 1 when a short circuit accident generate | occur | produces. 短絡事故が発生したときに図1に示した三相貫通変流器10から短絡方向継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating short circuit current IRy input into the short circuit direction relay 4 from the three-phase through current transformer 10 shown in FIG. 1 when a short circuit accident generate | occur | produces. 図1に示した送配電線のS相−T相間に短絡事故が発生したときに三相貫通変流器10から短絡方向継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating the short circuit current IRy input into the short circuit direction relay 4 from the three-phase through current transformer 10 when the short circuit accident generate | occur | produces between the S phase-T phases of the power transmission and distribution line shown in FIG. . 図1に示した送配電線のT相−R相間に短絡事故が発生したときに三相貫通変流器10から短絡方向継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating the short circuit current IRy input into the short circuit direction relay 4 from the three-phase penetration current transformer 10 when the short circuit accident generate | occur | produces between T phase-R phases of the power transmission and distribution line shown in FIG. . 図1に示した送配電線のR相−S相−T相間に短絡事故が発生したときに三相貫通変流器10から短絡方向継電器4に入力される短絡電流IRyについて説明するための図である。For explaining the short-circuit current I Ry input from the three-phase through current transformer 10 to the short-circuit direction relay 4 when a short-circuit accident occurs between the R-phase, the S-phase, and the T-phase of the transmission and distribution line shown in FIG. FIG. 第2の事故様相判定方法について説明するための図である。It is a figure for demonstrating the 2nd accident aspect determination method. 第3の事故様相判定方法について説明するための図である。It is a figure for demonstrating the 3rd accident aspect determination method. 第4の事故様相判定方法において用いられる事故様相判定用変圧器110の構成を示す図である。It is a figure which shows the structure of the transformer 110 for an accident aspect determination used in the 4th accident aspect determination method. 第5の事故様相判定方法において用いられる事故様相判定用変圧器120の構成を示す図である。It is a figure which shows the structure of the transformer 120 for accident aspect determination used in the 5th accident aspect determination method. 本発明の第2の実施例による方向保護継電装置について説明するための図である。It is a figure for demonstrating the direction protection relay apparatus by 2nd Example of this invention. 本発明の第3の実施例による方向保護継電装置について説明するための図である。It is a figure for demonstrating the direction protection relay apparatus by the 3rd Example of this invention. 本発明の一実施例による電力方向継電装置について説明するための図である。It is a figure for demonstrating the electric power direction relay apparatus by one Example of this invention. 図14に示した電力方向継電器40の動作について説明するための図である。It is a figure for demonstrating operation | movement of the electric power direction relay 40 shown in FIG. 無効電力継電器として機能させるときの図14に示した電力方向継電器40の動作について説明するための図である。It is a figure for demonstrating operation | movement of the electric power direction relay 40 shown in FIG. 14 when making it function as a reactive power relay. 従来の短絡方向継電器について説明するための図である。It is a figure for demonstrating the conventional short circuit direction relay. 従来の距離継電器について説明するための図である。It is a figure for demonstrating the conventional distance relay. 従来の回線選択継電器について説明するための図である。It is a figure for demonstrating the conventional line selection relay. 従来の電力方向継電器について説明するための図である。It is a figure for demonstrating the conventional electric power direction relay. 図20に示した従来の第1の電力方向継電器401の動作について説明するための図である。It is a diagram for explaining a first operation of the power directional relay 40 1 of prior art shown in FIG. 20.

1 電源
1〜26 第1乃至第6の遮断器
1〜36 第1乃至第6の変流器
4 短絡方向継電器
1〜43 第1乃至第3の短絡方向継電器
6 計器用変圧器
10 三相貫通変流器
101,102 第1および第2の三相貫通変流器
20 距離継電器
201〜203 第1乃至第3の距離継電器
30 回線選択継電器
301〜303 第1乃至第3の回線選択継電器
40 電力方向継電器
401〜403 第1乃至第3の電力方向継電器
1L,2L 第1および第2の送配電線
I,IR,IS,IT,IR1,IS1,IT1,IR2,IS2,IT2,i1,i2 負荷電流
I’ 補正負荷電流
Ry,IFR,IFS,IFT 短絡電流
Ry’ 補正短絡電流
R,VS,VT 相電圧
RS,VST,VTR 線間電圧
Ry 補正電圧
θ インピーダンス角
RP,iSP,iTP,iRyP 有効電流
RQ,iSQ,iTQ,iRyQ 無効電流
Ry 電流
Ry’ 補正電流
RyP’ 補正有効電流
RyQ’ 補正無効電流
G 発電設備
L 負荷
1 Power supply 2 1 to 2 6 1st to 6th circuit breakers 3 1 to 3 6 1st to 6th current transformers 4 Short circuit direction relays 4 1 to 4 3 1st to 3rd short circuit direction relays 6 transformer 10 three phase through current transformer 10 1, 10 2 first and second three-phase through current transformer 20 distance relay 20 1 to 20 3 first to third distance relay 30 lines selected relay 30 1 - 30 3 First to third line selection relays 40 Power direction relays 40 1 to 40 3 First to third power direction relays 1L, 2L First and second transmission and distribution lines I, I R , I S , I T I R1 , I S1 , I T1 , I R2 , I S2 , I T2 , i 1 , i 2 Load current I ′ corrected load current I Ry , I FR , I FS , I FT short circuit current I Ry ′ corrected short circuit current V R , V S , V T phase voltage V RS , V ST , V TR line voltage V Ry correction voltage θ impedance angle i RP , i SP , i TP , i RyP effective current i RQ , i S Q , i TQ , i RyQ reactive current i Ry current i Ry 'corrected current i RyP ' corrected effective current i RyQ 'corrected reactive current G power generation equipment L load

Claims (15)

短絡事故から三相交流回路を保護するための方向保護継電装置であって、
2次コイルを巻装した環状鉄心に前記三相交流回路の第2の相を第1の相と逆向きに同じまたは異なる回数だけ貫通させるとともに該三相交流回路の第3の相を前記第1の相と同じ向きに異なる回数だけ貫通させた三相貫通変流器と、
該三相貫通変流器から入力される短絡電流と前記三相交流回路の電圧情報とに基づいて短絡事故を検出すると、該三相交流回路の前記第1乃至第3の相にそれぞれ設置された遮断器を一括遮断する方向保護継電器と、
を具備することを特徴とする、方向保護継電装置。
A directional protection relay device for protecting a three-phase AC circuit from a short circuit accident,
A second phase of the three-phase AC circuit is passed through the annular core around which the secondary coil is wound in the same or different number of times in the opposite direction to the first phase, and the third phase of the three-phase AC circuit is passed through the first phase. A three-phase through current transformer that is penetrated differently in the same direction as one phase;
When a short-circuit fault is detected based on the short-circuit current input from the three-phase through current transformer and the voltage information of the three-phase AC circuit, it is installed in each of the first to third phases of the three-phase AC circuit. A directional protective relay that collectively shuts off
A directional protection relay device comprising:
前記方向保護継電器が、前記三相交流回路の短絡事故の事故様相を判定する事故様相判定手段をさらに具備し、前記三相貫通変流器から入力される前記短絡電流に該事故様相判定手段における事故様相の判定結果に応じた所定の倍数を掛けて補正短絡電流を算出し、該算出した補正短絡電流と前記三相交流回路の電圧情報とに基づいて短絡事故を検出すると該三相交流回路の前記第1乃至第3の相にそれぞれ設置された遮断器を一括遮断することを特徴とする、請求項1記載の方向保護継電装置。   The direction protection relay further includes an accident mode determination unit that determines an accident mode of a short circuit accident of the three-phase AC circuit, and the short circuit current input from the three-phase through current transformer includes the fault mode determination unit. When the corrected short circuit current is calculated by multiplying a predetermined multiple according to the determination result of the accident aspect, and the short circuit accident is detected based on the calculated corrected short circuit current and the voltage information of the three phase AC circuit, the three phase AC circuit The directional protection relay device according to claim 1, wherein the circuit breakers respectively installed in the first to third phases are collectively cut off. 前記事故様相判定手段が、前記三相交流回路の3つの線間電圧(VRS,VST,VTR)、3つの相電圧(VR,VS,VT)または相・線間電圧に基づいて該三相交流回路の短絡事故の事故様相を判定することを特徴とする、請求項2記載の方向保護継電装置。 The accident mode determination means determines whether the three-phase AC circuit has three line voltages (V RS , V ST , V TR ), three phase voltages (V R , V S , V T ), or a phase / line voltage. The direction protection relay device according to claim 2, wherein an accident aspect of a short circuit accident of the three-phase AC circuit is determined based on the basis. 前記事故様相判定手段が、前記三相交流回路の1つの線間電圧(VRS,VST,VTR)および1つの相電圧(VR,VS,VT)の電圧値および位相に基づいて該三相交流回路の短絡事故の事故様相を判定することを特徴とする、請求項2記載の方向保護継電装置。 The accident mode determination means is based on the voltage value and phase of one line voltage (V RS , V ST , V TR ) and one phase voltage (V R , V S , V T ) of the three-phase AC circuit. The directional protection relay device according to claim 2, wherein an accident aspect of a short circuit accident of the three-phase AC circuit is determined. 前記事故様相判定手段が、前記三相交流回路の1つの線間電圧(VRS,VST,VTR)の電圧値および位相と前記三相貫通変流器から入力される短絡電流(IRy)の位相とに基づいて該三相交流回路の短絡事故の事故様相を判定することを特徴とする、請求項2記載の方向保護継電装置。 The accident mode determination means is configured to detect a voltage value and phase of one line voltage (V RS , V ST , V TR ) of the three-phase AC circuit and a short-circuit current (I Ry) input from the three-phase through current transformer. The direction protection relay device according to claim 2, wherein an accident aspect of a short-circuit accident of the three-phase AC circuit is determined based on the phase of the three-phase AC circuit. 前記三相交流回路の第1の相電圧(VR)を極性方向で、該三相交流回路の第2の相電圧(VS)を反極性方向で、該三相交流回路の第3の相電圧(VT)を反極性方向で2倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相の相電圧の合成電圧(VR-S-2T)を得るための事故様相判定用変圧器(110)をさらに具備し、
前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記三相貫通変流器から入力される短絡電流(IRy)の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定する、
ことを特徴とする、請求項2記載の方向保護継電装置。
The first phase voltage (V R ) of the three-phase AC circuit is in the polarity direction, and the second phase voltage (V S ) of the three-phase AC circuit is in the opposite polarity direction. The first to second circuits are used for determining the accident aspect of the short-circuit accident of the three-phase AC circuit in which the secondary side is connected so as to synthesize the phase voltage (V T ) by doubling in the opposite polarity direction. An accident mode judging transformer (110) for obtaining a composite voltage (V RS-2T ) of the phase voltages of the three phases;
The accident aspect determination means is based on the voltage value and phase of the composite voltage input from the accident aspect determination transformer and the phase of the short-circuit current (I Ry ) input from the three-phase through current transformer. Determine the accident aspect of the short circuit accident of the three-phase AC circuit,
The direction protection relay device according to claim 2, wherein
前記三相交流回路の第1の相電圧(VR)を極性方向で、該三相交流回路の第2の相電圧(VS)を反極性方向で、該三相交流回路の第3の相電圧(VT)を極性方向で2倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相の相電圧の合成電圧(VR-S+2T)を得るための事故様相判定用変圧器(120)をさらに具備し、
前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記三相貫通変流器から入力される短絡電流(IRy)の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定する、
ことを特徴とする、請求項2記載の方向保護継電装置。
The first phase voltage (V R ) of the three-phase AC circuit is in the polarity direction, and the second phase voltage (V S ) of the three-phase AC circuit is in the opposite polarity direction. The first to third are used for determining the accident aspect of the short-circuit accident of the three-phase AC circuit in which the secondary side is connected so that the phase voltage (V T ) is doubled and synthesized in the polarity direction. A fault condition judging transformer (120) for obtaining a composite voltage (V R-S + 2T ) of the phase voltages of the phases;
The accident aspect determination means is based on the voltage value and phase of the composite voltage input from the accident aspect determination transformer and the phase of the short-circuit current (I Ry ) input from the three-phase through current transformer. Determine the accident aspect of the short circuit accident of the three-phase AC circuit,
The direction protection relay device according to claim 2, wherein
前記三相交流回路の第1の相電圧(VR)を極性方向または反極性方向でa倍して、該三相交流回路の第2の相電圧(VS)を極性方向または反極性方向でb倍して、該三相交流回路の第3の相電圧(VT)を極性方向または反極性方向でc倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相の相電圧の合成電圧(VaR+bS+cT)を得るための事故様相判定用変圧器をさらに具備し、
前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記三相貫通変流器から入力される短絡電流(IRy)の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定する、
ことを特徴とする、請求項2記載の方向保護継電装置。
The first phase voltage (V R ) of the three-phase AC circuit is multiplied by a in the polarity direction or the antipolar direction, and the second phase voltage (V S ) of the three-phase AC circuit is changed in the polarity direction or antipolar direction. And the secondary side is connected so that the third phase voltage (V T ) of the three-phase AC circuit is multiplied by c in the polarity direction or the opposite polarity direction to be combined, and the three-phase AC A fault condition judging transformer for obtaining a composite voltage (V aR + bS + cT ) of the phase voltages of the first to third phases used for judging the accident situation of the short circuit accident of the circuit;
The accident aspect determination means is based on the voltage value and phase of the composite voltage input from the accident aspect determination transformer and the phase of the short-circuit current (I Ry ) input from the three-phase through current transformer. Determine the accident aspect of the short circuit accident of the three-phase AC circuit,
The direction protection relay device according to claim 2, wherein
前記三相貫通変流器(10)が送配電線に設置されており、
該三相貫通変流器の環状鉄心に前記送配電線の第2の相が第1の相と逆向きに同じ回数だけ貫通されているとともに該送配電線の第3の相が前記第1の相と同じ向きに異なる回数だけ貫通されており、
前記方向保護継電器が、前記三相貫通変流器から入力される短絡電流(IRy)と前記送配電線の電圧情報とに基づいて短絡事故を検出すると、該送配電線の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)を一括遮断する短絡方向継電器(4)である、
ことを特徴とする、請求項1乃至8いずれかに記載の方向保護継電装置。
The three-phase through current transformer (10) is installed in the transmission and distribution line;
The second phase of the transmission / distribution line is penetrated through the annular core of the three-phase through current transformer by the same number of times in the opposite direction to the first phase, and the third phase of the transmission / distribution line is the first phase. Has been penetrated a different number of times in the same direction as
When the direction protection relay detects a short-circuit fault based on a short-circuit current (I Ry ) input from the three-phase through current transformer and voltage information of the transmission / distribution line, the first to the first of the transmission / distribution line It is a short-circuit direction relay (4) that collectively shuts off the first to third circuit breakers (2 1 to 2 3 ) respectively installed in the third phase.
The direction protection relay device according to any one of claims 1 to 8, characterized in that.
前記三相貫通変流器(10)が送配電線に設置されており、
該三相貫通変流器の環状鉄心に前記送配電線の第2の相が第1の相と逆向きに同じ回数だけ貫通されているとともに該送配電線の第3の相が前記第1の相と同じ向きに異なる回数だけ貫通されており、
前記方向保護継電器が、前記三相貫通変流器から入力される短絡電流(IRy)と前記送配電線の電圧情報とに基づいて短絡事故を検出すると、該送配電線の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)を一括遮断する距離継電器(20)である、
ことを特徴とする、請求項1乃至8いずれかに記載の方向保護継電装置。
The three-phase through current transformer (10) is installed in the transmission and distribution line;
The second phase of the transmission / distribution line is penetrated through the annular core of the three-phase through current transformer by the same number of times in the opposite direction to the first phase, and the third phase of the transmission / distribution line is the first phase. Has been penetrated a different number of times in the same direction as
When the direction protection relay detects a short-circuit accident based on the short-circuit current (I Ry ) input from the three-phase through current transformer and the voltage information of the transmission / distribution line, the first to the first of the transmission / distribution line A distance relay (20) that collectively shuts off first to third circuit breakers (2 1 to 2 3 ) respectively installed in the third phase;
The direction protection relay device according to any one of claims 1 to 8, characterized in that.
前記距離継電器が、請求項6乃至8いずれかに記載の事故様相判定用変圧器から入力される前記合成電圧より求めた補正電圧(VRy)と前記三相貫通変流器から入力される短絡電流(IRy)とに基づいて前記三相交流回路の短絡事故を検出することを特徴とする、請求項10記載の方向保護継電装置。 Shorting the distance relay is input from the claims 6 to 8 or accident aspects the composite voltage than obtained correction voltage inputted from the determining transformer (V Ry) and the three-phase through current transformer according to The directional protection relay device according to claim 10, wherein a short-circuit accident of the three-phase AC circuit is detected based on a current (I Ry ). 前記三相貫通変流器が、第1および第2の送配電線(1L,2L)にそれぞれ設置された第1および第2の三相貫通変流器(101,102)であり、
該第1の三相貫通変流器の環状鉄心に前記第1の送配電線の第2の相が第1の相と逆向きに同じ回数だけ貫通されているとともに該第1の送配電線の第3の相が前記第1の相と同じ向きに異なる回数だけ貫通されており、
前記第2の三相貫通変流器の環状鉄心に前記第2の送配電線の前記第2の相が前記第1の相と逆向きに同じ回数だけ貫通されているとともに該第2の送配電線の前記第3の相が前記第1の相と同じ向きに異なる回数だけ貫通されており、
前記方向保護継電器が、前記第1の三相貫通変流器から入力される短絡電流および前記第2の三相貫通変流器から入力される短絡電流の差電流である短絡電流(IRy)と前記送配電線の電圧情報とに基づいて前記第1の送配電線に短絡事故が発生したことを検出すると、該第1の送配電線の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)を一括遮断し、前記短絡電流と前記送配電線の電圧情報とに基づいて前記第2の送配電線に短絡事故が発生したことを検出すると、該第2の送配電線の前記第1乃至第3の相にそれぞれ設置された第4乃至第6の遮断器(24〜26)を一括遮断する回線選択継電器(30)である、
ことを特徴とする、請求項1乃至8いずれかに記載の方向保護継電装置。
The three-phase through current transformers are first and second three-phase through current transformers (10 1 , 10 2 ) installed in the first and second transmission and distribution lines (1L, 2L), respectively.
The second phase of the first transmission / distribution line is passed through the annular core of the first three-phase through current transformer the same number of times in the opposite direction to the first phase, and the first transmission / distribution line The third phase is penetrated a different number of times in the same direction as the first phase,
The second phase of the second transmission / distribution line is passed through the annular core of the second three-phase through current transformer the same number of times in the opposite direction to the first phase, and the second transmission line The third phase of the distribution line is penetrated a different number of times in the same direction as the first phase;
The directional protection relay is a short-circuit current (I Ry ) that is a difference between a short-circuit current input from the first three-phase through current transformer and a short-circuit current input from the second three-phase through current transformer. And the voltage information of the transmission / distribution line are detected in the first to third phases of the first transmission / distribution line when it is detected that a short circuit accident has occurred in the first transmission / distribution line. The first to third circuit breakers (2 1 to 2 3 ) were collectively cut off, and a short circuit accident occurred in the second transmission and distribution line based on the short circuit current and the voltage information of the transmission and distribution line. Is detected, the line selection relay (30) that collectively shuts off the fourth to sixth circuit breakers (2 4 to 2 6 ) installed in the first to third phases of the second transmission and distribution line, respectively. Is,
The direction protection relay device according to any one of claims 1 to 8, characterized in that.
逆潮流から三相交流回路を保護するための電力方向継電装置であって、
2次コイルを巻装した環状鉄心に前記三相交流回路の第2の相を第1の相と逆向きに同じまたは異なる回数だけ貫通させるとともに該三相交流回路の第3の相を前記第1の相と同じ向きに異なる回数だけ貫通させた三相貫通変流器(10)と、
該三相貫通変流器から入力される電流(iRy)と計器用変圧器(6)から入力される前記三相交流回路の電圧情報から求めた基準電圧とに基づいて逆潮流を検出すると、該三相交流回路の前記第1乃至第3の相にそれぞれ設置された第1乃至第3の遮断器(21〜23)を一括遮断する電力方向継電器(40)と、
を具備することを特徴とする、電力方向継電装置。
A power direction relay device for protecting a three-phase AC circuit from reverse power flow,
A second phase of the three-phase AC circuit is passed through the annular core around which the secondary coil is wound in the same or different number of times in the opposite direction to the first phase, and the third phase of the three-phase AC circuit is passed through the first phase. A three-phase through current transformer (10) that is penetrated a different number of times in the same direction as one phase;
When a reverse power flow is detected based on the current (i Ry ) input from the three-phase through current transformer and the reference voltage obtained from the voltage information of the three-phase AC circuit input from the instrument transformer (6) A power direction relay (40) that collectively cuts off the first to third circuit breakers (2 1 to 2 3 ) respectively installed in the first to third phases of the three-phase AC circuit;
A power direction relay device comprising:
前記電力方向継電器が、前記三相貫通変流器から入力される電流に所定の倍数を掛けて補正電流(iRy’)を算出し、該算出した補正電流と前記基準電圧とに基づいて逆潮流を検出すると、前記第1乃至第3の遮断器を一括遮断することを特徴とする、請求項13記載の電力方向継電装置。 The power direction relay multiplies the current input from the three-phase through current transformer by a predetermined multiple to calculate a correction current (i Ry '), and reverses based on the calculated correction current and the reference voltage. 14. The power direction relay device according to claim 13, wherein when the power flow is detected, the first to third circuit breakers are collectively cut off. 前記電力方向継電器が、前記基準電圧の位相を90°進めた電圧を他の基準電圧として、前記三相貫通変流器から入力される電流または該電流に所定の倍数を掛けて算出した補正電流と該他の基準電圧とに基づいて逆潮流を検出することにより、無効電力方向継電器として機能することを特徴とする、請求項13または14記載の電力方向継電装置。   The power direction relay uses a voltage obtained by advancing the phase of the reference voltage by 90 ° as another reference voltage, or a current input from the three-phase through current transformer or a correction current calculated by multiplying the current by a predetermined multiple. The power direction relay device according to claim 13 or 14, wherein the power direction relay device functions as a reactive power direction relay by detecting a reverse power flow based on the reference voltage and the other reference voltage.
JP2009008864A 2009-01-19 2009-01-19 Directional protective relay device and directional power relay device Withdrawn JP2010166782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009008864A JP2010166782A (en) 2009-01-19 2009-01-19 Directional protective relay device and directional power relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009008864A JP2010166782A (en) 2009-01-19 2009-01-19 Directional protective relay device and directional power relay device

Publications (1)

Publication Number Publication Date
JP2010166782A true JP2010166782A (en) 2010-07-29

Family

ID=42582501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009008864A Withdrawn JP2010166782A (en) 2009-01-19 2009-01-19 Directional protective relay device and directional power relay device

Country Status (1)

Country Link
JP (1) JP2010166782A (en)

Similar Documents

Publication Publication Date Title
Yaleinkaya et al. Characterization of voltage sags in industrial distribution systems
US7319576B2 (en) Apparatus and method for providing differential protection for a phase angle regulating transformer in a power system
WO2006130722A2 (en) An apparatus and method for determining a faulted phase of a three-phase ungrounded power system
JP2009077562A (en) Two-phase bushing current transformer and protective relay device
Sidhu et al. A power transformer protection technique with stability during current transformer saturation and ratio-mismatch conditions
Schlake et al. Performance of third harmonic ground fault protection schemes for generator stator windings
JP2010127860A (en) Device and method for measuring leak current
JP2010166783A (en) Directional protective relay device and directional power relay device
JP2009198442A (en) Voltage abnormality detection device and voltage protection relay device
JP2010166778A (en) Directional protective relay device and directional power relay device
JP2010166782A (en) Directional protective relay device and directional power relay device
Mohanty et al. Current restrained undervoltage protection scheme of converter dominated microgrids
JP2010166781A (en) Directional protective relay device and directional power relay device
JP2009077563A (en) Three-phase bushing current transformer and protective relay device
JP2010166777A (en) Directional protective relay device and directional power relay device
Ciontea et al. A feeder protection method against the phase-phase fault using symmetrical components
JP2009044954A (en) Cross-through current transformer and protective relay system
JP2010148269A (en) Protective relay system
JP2010166784A (en) Different-line different-phase cross through current transformer and line selecting relay device
JP2009077564A (en) Three-phase bushing current transformer and protective relay device
JP2010273478A (en) Method and system for detection of line-to-ground fault in dc and ac circuit
JP2009050147A (en) Overcurrent relay apparatus with voltage suppression function
JP2010166774A (en) Directional power relay device
JP2010051122A (en) Direction protective relay device
JP2009295839A (en) Cross through current transformer, terminal block, and protective relay device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403