JP2009050147A - Overcurrent relay apparatus with voltage suppression function - Google Patents

Overcurrent relay apparatus with voltage suppression function Download PDF

Info

Publication number
JP2009050147A
JP2009050147A JP2008163551A JP2008163551A JP2009050147A JP 2009050147 A JP2009050147 A JP 2009050147A JP 2008163551 A JP2008163551 A JP 2008163551A JP 2008163551 A JP2008163551 A JP 2008163551A JP 2009050147 A JP2009050147 A JP 2009050147A
Authority
JP
Japan
Prior art keywords
phase
circuit
short
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008163551A
Other languages
Japanese (ja)
Inventor
Masami Takenaka
正実 竹中
Yoshiaki Date
義明 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2008163551A priority Critical patent/JP2009050147A/en
Publication of JP2009050147A publication Critical patent/JP2009050147A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an overcurrent relay apparatus with voltage suppression function capable of more reducing the numbers of current transformers and overcurrent relays with voltage suppression function for protecting a three-phase alternating-current circuit from a damage by a short-circuit. <P>SOLUTION: The overcurrent relay apparatus with the voltage suppression function is equipped with a through current transformer 10 where crossing currents pass, designed to be passed with the R and S phases of a power distribution cable reversely in an arbitrary angle through an annular iron core with a secondary coil wound around it; and an overcurrent relay 50 with the voltage reduction function capable of collectively breaking first to third breakers 2<SB>1</SB>to 2<SB>3</SB>mounted in each phase of a power distribution cable when short-circuit damages are detected, based on a short-circuit current I<SB>Ry</SB>inputted from the through current transformer 10 where crossing currents pass and a line to line voltage V<SB>TR</SB>in T to R phases and a phase voltage V<SB>R</SB>in an R phase obtained from voltage data via an instrument transformer 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電圧抑制付過電流継電装置に関し、特に、短絡事故から三相交流回路を保護するための変流器および電圧抑制付過電流継電器の設置台数を削減するのに好適な電圧抑制付過電流継電装置に関する。   The present invention relates to an overcurrent relay device with voltage suppression, and in particular, voltage suppression suitable for reducing the number of installed current transformers and overcurrent relays with voltage suppression for protecting a three-phase AC circuit from a short circuit accident. The present invention relates to an overcurrent relay device.

従来、三相交流回路では、短絡事故から三相交流回路を保護するために、過電流継電器(OC)を相ごとに設置している(たとえば下記の特許文献1参照)。   Conventionally, in a three-phase AC circuit, an overcurrent relay (OC) is installed for each phase in order to protect the three-phase AC circuit from a short circuit accident (see, for example, Patent Document 1 below).

また、短絡事故の検出を電流値のみで行うと負荷電流と短絡電流との区別がつかないことがあるため、電圧値に応じて電流検出感度を補正する機能を具備した電圧抑制付過電流継電器が使用されている。   Moreover, if the detection of a short-circuit accident is performed only with the current value, the load current and the short-circuit current may not be distinguished. Therefore, the overcurrent relay with voltage suppression has a function of correcting the current detection sensitivity according to the voltage value. Is used.

たとえば、図9に示すように、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の変流器(CT)31〜33に第1乃至第3の電圧抑制付過電流継電器(OCV)41〜43をそれぞれ接続するとともに、母線に設置された計器用変圧器6から、第1の電圧抑制付過電流継電器41にはR相−S相の線間電圧VRSを入力し、第2の電圧抑制付過電流継電器42にはS相−T相の線間電圧VSTを入力し、第3の電圧抑制付過電流継電器43にはT相−R相の線間電圧VTRを入力し、送配電線に短絡事故が発生したときには、事故様相に応じて第1乃至第3の電圧抑制付過電流継電器41〜43が以下のように動作して、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断するようにしている。
(1)R相−S相間の短絡事故の場合
送配電線のR相およびS相に短絡電流が流れるとともにR相−S相の線間電圧VRSおよびS相−T相の線間電圧VSTが生じるので、第1および第2の電圧抑制付過電流継電器41,42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
送配電線のS相およびT相に短絡電流が流れるとともにS相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRが生じるので、第2および第3の電圧抑制付過電流継電器42,43が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
送配電線のR相およびT相に短絡電流が流れるとともにR相−S相の線間電圧VRSおよびT相−R相の線間電圧VTRが生じるので、第1および第3の電圧抑制付過電流継電器41,43が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相、S相およびT相に短絡電流が流れるとともにR相−S相の線間電圧VRS、S相−T相の線間電圧VSTおよびT相−R相の線間電圧VTRが生じるので、第1乃至第3の電圧抑制付過電流継電器41〜43が動作して第1乃至第3の遮断器21〜23を一括遮断する。
For example, as shown in FIG. 9, the first to third current transformers (CT) 3 1 to 3 3 installed in the R-phase, S-phase, and T-phase of the transmission / distribution lines are connected to the first to third current transformers. Overcurrent relays with voltage suppression (OCV) 4 1 to 4 3 are connected to each other, and from the transformer for instrument 6 installed on the bus, the first overcurrent relay with voltage suppression 4 1 has an R phase-S phase. of the line enter the voltage V RS, the 2 second overcurrent relay with voltage suppression 4 enter the line voltage V ST of S phase -T phase, the third voltage suppression with overcurrent relay 4 3 inputs the line voltage V TR of the T-phase -R phase, when the short circuit occurs in the electric transmission, the first to third biasing voltage suppression overcurrent relay 41 to 3 in accordance with the accident appearance operates as follows, R-phase of the transmission and distribution lines, to collectively block the first through third circuit breaker 2 1 to 2 3 of which are respectively installed on the S-phase and T-phase It is.
(1) In the case of a short-circuit accident between the R phase and the S phase A short circuit current flows in the R phase and the S phase of the transmission and distribution line, and the line voltage V RS between the R phase and the S phase and the line voltage V between the S phase and the T phase. Since ST occurs, the first and second overcurrent relays 4 1 , 4 2 with voltage suppression operate to collectively cut off the first to third circuit breakers 2 1 to 2 3 .
(2) In the case of a short circuit accident between the S phase and the T phase A short circuit current flows in the S phase and T phase of the transmission and distribution line, and the S phase-T phase line voltage V ST and the T phase-R phase line voltage V Since TR occurs, the second and third overcurrent relays with voltage suppression 4 2 and 4 3 operate to collectively cut off the first to third circuit breakers 2 1 to 2 3 .
(3) Short-circuit accident between T-phase and R-phase Short-circuit current flows in the R-phase and T-phase of the transmission and distribution line, and the R-S phase line voltage V RS and the T-phase-R phase line voltage V Since TR occurs, the first and third overcurrent relays 4 1 , 4 3 with voltage suppression operate to collectively cut off the first to third circuit breakers 2 1 to 2 3 .
(4) In the case of a short circuit accident between R phase, S phase and T phase Short circuit current flows in R phase, S phase and T phase, line voltage V RS between R phase and S phase, and line between S phase and T phase Since the voltage V ST and the T-phase to R-phase line voltage V TR are generated, the first to third overcurrent relays 4 1 to 4 3 with voltage suppression operate and the first to third circuit breakers 2 1 collectively shut off to 2 3.

また、末端回路の送配電線などでは、短絡電流が2相に流れることを利用し、電圧抑制付過電流継電器を2相にだけ設置して、設備コストの抑制を図っている。たとえば、図10に示すように、送配電線のR相、S相およびT相のうちR相およびT相にそれぞれ設置された第1および第2の変流器31,32に第1および第2の電圧抑制付過電流継電器41,42をそれぞれ接続するとともに、母線に設置された計器用変圧器6から、第1の電圧抑制付過電流継電器41にはR相−S相の線間電圧VRSを入力し、第2の電圧抑制付過電流継電器42にはT相−R相の線間電圧VTRを入力して、送配電線に短絡事故が発生したときには、事故様相に応じて第1および第2の電圧抑制付過電流継電器41,42が以下のように動作して、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断するようにしている。
(1)R相−S相間の短絡事故の場合
送配電線のR相に短絡電流が流れるとともにR相−S相の線間電圧VRSが生じるので、第1の電圧抑制付過電流継電器41が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
送配電線のT相に短絡電流が流れるとともにT相−R相の線間電圧VTRが生じるので、第2の電圧抑制付過電流継電器42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
送配電線のR相およびT相に短絡電流が流れるとともにR相−S相の線間電圧VRSおよびT相−R相の線間電圧VTRが生じるので、第1および第2の電圧抑制付過電流継電器41,42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相およびT相に短絡電流が流れるとともにR相−S相の線間電圧VRSおよびT相−R相の線間電圧VTRが生じるので、第1および第2の電圧抑制付過電流継電器41,42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
特開平8−005659号公報
Moreover, in the power transmission / distribution line of the terminal circuit, etc., the short circuit current flows in two phases, and the overcurrent relay with voltage suppression is installed only in the two phases to reduce the equipment cost. For example, as shown in FIG. 10, the first and second current transformers 3 1 and 3 2 respectively installed in the R phase and the T phase among the R phase, S phase, and T phase of the transmission / distribution line are firstly connected. And the second overcurrent relay with voltage suppression 4 1 , 4 2 are connected to each other, and from the transformer 6 for the instrument installed on the bus, the first overcurrent relay with voltage suppression 4 1 is connected to the R-phase-S. enter the line voltage V RS phases, the 2 second overcurrent relay with voltage suppression 4 to input line voltage V TR of the T-phase -R phase, when the short circuit occurs in the electric transmission The first and second voltage suppression overcurrent relays 4 1 , 4 2 operate as follows according to the accident situation, and are installed in the R phase, S phase and T phase of the transmission and distribution lines, respectively. The first to third circuit breakers 2 1 to 2 3 are collectively cut off.
(1) In the case of a short circuit accident between the R phase and the S phase Since a short circuit current flows in the R phase of the transmission and distribution line and a line voltage V RS between the R phase and the S phase is generated, the first overcurrent relay with voltage suppression 4 1 operates to collectively shut off the first to third circuit breakers 2 1 to 2 3 .
(2) In the case of a short circuit accident between the S phase and the T phase Since a short circuit current flows in the T phase of the transmission and distribution line and a line voltage V TR between the T phase and the R phase is generated, the second overcurrent relay with voltage suppression 4 2 operates to collectively shut off the first to third circuit breakers 2 1 to 2 3 .
(3) Short-circuit accident between T-phase and R-phase Short-circuit current flows in the R-phase and T-phase of the transmission and distribution line, and the R-S phase line voltage V RS and the T-phase-R phase line voltage V Since TR occurs, the first and second overcurrent relays with voltage suppression 4 1 and 4 2 operate to collectively cut off the first to third circuit breakers 2 1 to 2 3 .
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase A short circuit current flows in the R phase and the T phase, and the line voltage V RS between the R phase and the S phase and the line voltage V TR between the T phase and the R phase. Therefore, the first and second overcurrent relays with voltage suppression 4 1 , 4 2 operate to collectively cut off the first to third circuit breakers 2 1 to 2 3 .
JP-A-8-005659

しかしながら、送配電線ごとに変流器および電圧抑制付過電流継電器を2台または3台ずつ設置しているため、以下に示すような問題があった。
(1)変流器および電圧抑制付過電流継電器の設置台数を更に少なくして設備コストの削減を図りたいという要請がある。
(2)電圧抑制付過電流継電器の設置台数が2台である場合には、自回路の短絡事故から三相交流回路を保護することも可能であるが、電圧抑制付過電流継電器を設置していない相と他回路にまたがる短絡事故については検出することができないため、電源側の短絡保護継電器で三相交流回路を保護することになるので、停電の範囲が拡大する。
(3)電圧抑制付過電流継電器の設置台数が2台である場合には、1台の電圧抑制付過電流継電器が故障または点検により使用できなくなると、短絡事故から三相交流回路を保護することができなくなる。
However, since two or three current transformers and overcurrent relays with voltage suppression are installed for each transmission and distribution line, there are the following problems.
(1) There is a demand to reduce the installation cost by further reducing the number of installed current transformers and overcurrent relays with voltage suppression.
(2) If the number of overcurrent relays with voltage suppression is two, it is possible to protect the three-phase AC circuit from a short circuit accident of its own circuit, but an overcurrent relay with voltage suppression is installed. Short circuit accidents that do not extend to other phases and other circuits cannot be detected, and the three-phase AC circuit is protected by the short-circuit protection relay on the power supply side, thus expanding the range of power outages.
(3) When the number of overcurrent relays with voltage suppression is two, if one overcurrent relay with voltage suppression is not usable due to failure or inspection, the three-phase AC circuit is protected from a short-circuit accident. I can't do that.

本発明の目的は、短絡事故から三相交流回路を保護するための変流器および電圧抑制付過電流継電器の設置台数を更に削減することができる電圧抑制付過電流継電装置を提供することにある。   An object of the present invention is to provide an overcurrent relay device with voltage suppression that can further reduce the number of installed current transformers and overcurrent relays with voltage suppression for protecting a three-phase AC circuit from a short circuit accident. It is in.

本発明の電圧抑制付過電流継電装置は、短絡事故から三相交流回路を保護するための電圧抑制付過電流継電装置であって、2次コイルを巻装した環状鉄心に前記三相交流回路の任意の2相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器(10;101)と、該クロス貫通変流器から入力される短絡電流(IRy;IRy1)と前記三相交流回路の電圧情報とに基づいて短絡事故を検出すると、該三相交流回路の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断させる電圧抑制付過電流継電器(50;501)とを具備することを特徴とする。
ここで、前記三相交流回路の短絡事故の事故様相を判定する事故様相判定手段と、該事故様相判定手段における事故様相の判定結果に応じて、前記クロス貫通変流器から入力される前記短絡電流に所定の倍数を掛けて補正短絡電流(IRy’;IRy1’)を算出する補正短絡電流算出手段とをさらに具備してもよい。
前記電圧抑制付過電流継電器が、前記事故様相判定手段における事故様相の判定結果に応じて、前記三相交流回路の電圧情報を用いて抑制電圧(VRy)を算出し、該算出した抑制電圧に応じて電流整定値を規定する電圧抑制特性によって決定される電流整定値を前記算出した補正短絡電流の振幅が超えた場合に、前記第1乃至第3の遮断器を一括遮断してもよい。
2次コイルを巻装した環状鉄心に前記三相交流回路の前記任意の2相のうちの1相と該任意の2相以外の他の1相とが逆向きにかつ任意の角度でクロスさせて貫通させた他のクロス貫通変流器(102)と、前記第2のクロス貫通変流器から入力される他の短絡電流(IRy2)と前記三相交流回路の電圧情報とに基づいて短絡事故を検出すると、前記第1乃至第3の遮断器を一括遮断させる他の電圧抑制付過電流継電器(502)とをさらに具備してもよい。
また、前記事故様相判定手段が、前記三相交流回路の3つの線間電圧(VRS,VST,VTR)、3つの相電圧(VR,VS,VT)または相・線間電圧に基づいて該三相交流回路の短絡事故の事故様相を判定してもよい。
前記事故様相判定手段が、前記三相交流回路の1つの線間電圧(VRS,VST,VTR)および1つの相電圧(VR,VS,VT)の電圧値および位相に基づいて該三相交流回路の短絡事故の事故様相を判定してもよい。
前記事故様相判定手段が、前記三相交流回路の1つの線間電圧(VRS,VST,VTR)の電圧値および位相と前記クロス貫通変流器から入力される短絡電流の位相とに基づいて該三相交流回路の短絡事故の事故様相を判定してもよい。
前記三相交流回路の第1の相電圧(VR)を極性方向で、該三相交流回路の第2の相電圧(VS)を反極性方向で、該三相交流回路の第3の相電圧(VT)を反極性方向で2倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相の相電圧の合成電圧(VR-S-2T)を得るための事故様相判定用変圧器(110)をさらに具備し、前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記クロス貫通変流器から入力される短絡電流の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定してもよい。
前記三相交流回路の第1の相電圧(VR)を極性方向で、該三相交流回路の第2の相電圧(VS)を反極性方向で、該三相交流回路の第3の相電圧(VT)を極性方向で2倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相の相電圧の合成電圧(VR-S+2T)を得るための事故様相判定用変圧器(120)をさらに具備し、前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記クロス貫通変流器から入力される短絡電流の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定してもよい。
前記三相交流回路の第1の相電圧(VR)を極性方向または反極性方向でa倍して、該三相交流回路の第2の相電圧(VS)を極性方向または反極性方向でb倍して、該三相交流回路の第3の相電圧(VT)を極性方向または反極性方向でc倍して合成するように2次側が結線された、かつ、該三相交流回路の短絡事故の事故様相を判定するのに用いる前記第1乃至第3の相の相電圧の合成電圧(VaR+bS+cT)を得るための事故様相判定用変圧器をさらに具備し、前記事故様相判定手段が、前記事故様相判定用変圧器から入力される前記合成電圧の電圧値および位相と前記クロス貫通変流器から入力される短絡電流の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定してもよい。
The overcurrent relay device with voltage suppression of the present invention is an overcurrent relay device with voltage suppression for protecting a three-phase AC circuit from a short circuit accident, and the three-phase is mounted on an annular core wound with a secondary coil. A cross-through current transformer (10; 10 1 ) in which two arbitrary phases of the AC circuit are crossed in opposite directions and at an arbitrary angle, and a short-circuit current (I Ry ) input from the cross-through current transformer ; Ry1 ) and the voltage information of the three-phase AC circuit, when a short-circuit accident is detected, first to third circuit breakers (2 1 to 2 3 ) installed in the respective phases of the three-phase AC circuit And an overcurrent relay with voltage suppression (50; 50 1 ) that collectively cuts off the power supply.
Here, an accident mode determination unit that determines an accident mode of the short circuit accident of the three-phase AC circuit, and the short circuit that is input from the cross-through current transformer according to the determination result of the accident mode in the accident mode determination unit A correction short circuit current calculating means for calculating a correction short circuit current (I Ry '; I Ry1 ') by multiplying the current by a predetermined multiple may be further provided.
The overcurrent relay with voltage suppression calculates a suppression voltage (V Ry ) using voltage information of the three-phase AC circuit according to the determination result of the accident mode in the accident mode determination means, and the calculated suppression voltage The first to third circuit breakers may be collectively cut off when the calculated corrected short-circuit current amplitude exceeds a current set value determined by a voltage suppression characteristic that defines a current set value according to .
One phase of the arbitrary two phases of the three-phase AC circuit and one other phase other than the arbitrary two phases are crossed in an opposite direction and at an arbitrary angle on an annular core around which a secondary coil is wound. On the basis of the other cross-through current transformer (10 2 ) penetrated through, the other short-circuit current (I Ry2 ) input from the second cross-through current transformer, and the voltage information of the three-phase AC circuit. When a short circuit accident is detected, another overcurrent relay with voltage suppression (50 2 ) that collectively shuts off the first to third circuit breakers may be further provided.
In addition, the accident mode judging means may be configured such that three line voltages (V RS , V ST , V TR ), three phase voltages (V R , V S , V T ) or phase / line between the three-phase AC circuits. You may determine the accident aspect of the short circuit accident of this three-phase alternating current circuit based on a voltage.
The accident mode determination means is based on the voltage value and phase of one line voltage (V RS , V ST , V TR ) and one phase voltage (V R , V S , V T ) of the three-phase AC circuit. Thus, the accident aspect of the short circuit accident of the three-phase AC circuit may be determined.
The accident mode determination means determines the voltage value and phase of one line voltage (V RS , V ST , V TR ) of the three-phase AC circuit and the phase of the short-circuit current input from the cross-through current transformer. Based on this, the accident aspect of the short circuit accident of the three-phase AC circuit may be determined.
The first phase voltage (V R ) of the three-phase AC circuit is in the polarity direction, and the second phase voltage (V S ) of the three-phase AC circuit is in the opposite polarity direction. The first to second phases are used for determining the accident aspect of the short-circuit fault of the three-phase AC circuit, where the secondary side is connected so as to synthesize the phase voltage (V T ) by doubling in the opposite polarity direction. An accident mode determination transformer (110) for obtaining a composite voltage (V RS-2T ) of the phase voltages of the three phases, wherein the accident mode determination means is input from the accident mode determination transformer. The accident aspect of the short circuit accident of the three-phase AC circuit may be determined based on the voltage value and phase of the combined voltage and the phase of the short circuit current input from the cross-through current transformer.
The first phase voltage (V R ) of the three-phase AC circuit is in the polarity direction, and the second phase voltage (V S ) of the three-phase AC circuit is in the opposite polarity direction. The first to third are used to determine the accident aspect of the short-circuit accident of the three-phase AC circuit in which the secondary side is connected so that the phase voltage (V T ) is doubled and synthesized in the polarity direction. And an accident mode determination transformer (120) for obtaining a composite voltage (V R-S + 2T ) of the phases of the phases, and the accident mode determination means is input from the accident mode determination transformer The accident aspect of the short-circuit accident of the three-phase AC circuit may be determined based on the voltage value and phase of the combined voltage and the phase of the short-circuit current input from the cross-through current transformer.
The first phase voltage (V R ) of the three-phase AC circuit is multiplied by a in the polarity direction or the antipolar direction, and the second phase voltage (V S ) of the three-phase AC circuit is changed in the polarity direction or antipolar direction. And the secondary side is connected so that the third phase voltage (V T ) of the three-phase AC circuit is multiplied by c in the polarity direction or the opposite polarity direction to be combined, and the three-phase AC A fault condition judging transformer for obtaining a composite voltage (V aR + bS + cT ) of the phase voltages of the first to third phases used for judging the accident situation of the short circuit accident of the circuit; The three-phase AC circuit based on the voltage value and phase of the composite voltage input from the accident mode determination transformer and the phase of the short circuit current input from the cross-through current transformer, wherein the accident mode determination means The accident aspect of the short circuit accident may be determined.

本発明の電圧抑制付過電流継電装置は、以下に示す効果を奏する。
(1)クロス貫通変流器を使用することにより、変流器および電圧抑制付過電流継電器の設置台数を更に削減して、設備コストの削減を図ることができる。
(2)クロス貫通変流器および電圧抑制付過電流継電器を2台ずつ使用することにより、自回路および他回路にまたがる短絡事故であっても確実に検出することができるので、停電の範囲の拡大を防止することができる。
(3)クロス貫通変流器および電圧抑制付過電流継電器を2台ずつ使用することにより、1台の電圧抑制付過電流継電器が故障または点検によって使用できなくなっても、自回路の短絡事故は他の1台の電圧抑制付過電流継電器でバックアップすることができるので、短絡事故から三相交流回路を保護することができる。
The overcurrent relay device with voltage suppression of the present invention has the following effects.
(1) By using a cross-through current transformer, the number of installed current transformers and overcurrent relays with voltage suppression can be further reduced, and the equipment cost can be reduced.
(2) By using two cross-through current transformers and two overcurrent relays with voltage suppression, it is possible to reliably detect even a short-circuit accident that spans its own circuit and other circuits. Expansion can be prevented.
(3) By using two cross-through current transformers and two overcurrent relays with voltage suppression, even if one overcurrent relay with voltage suppression cannot be used due to failure or inspection, a short circuit accident in its own circuit Since it can back up by another one overcurrent relay with voltage suppression, a three-phase alternating current circuit can be protected from a short circuit accident.

上記の目的を、2次コイルを巻装した環状鉄心に3相の送配電線の任意の2相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器を用いて、電圧抑制付過電流継電器が、クロス貫通変流器から入力される短絡電流と送配電線の電圧情報とに基づいて短絡事故を検出すると、送配電線の各相に設置された第1乃至第3の遮断器を一括遮断させることにより実現した。   For the above purpose, a cross-through current transformer in which any two phases of a three-phase power transmission and distribution line are crossed in an opposite direction and at an arbitrary angle through an annular iron core wound with a secondary coil, When the overcurrent relay with voltage suppression detects a short-circuit accident based on the short-circuit current input from the cross-through current transformer and the voltage information of the transmission and distribution line, the first to the first installed in each phase of the transmission and distribution line This was realized by shutting off all three circuit breakers at once.

以下、本発明の電圧抑制付過電流継電装置の実施例について図面を参照して説明する。
本発明の第1の実施例による電圧抑制付過電流継電装置は、図1に示すように、送配電線のR相およびS相がクロスするように貫通されたクロス貫通変流器10と、クロス貫通変流器10から入力される短絡電流IRyと母線に設置された計器用変圧器6から入力される電圧情報(R相、S相およびT相の相電圧)から求めたT相−R相の線間電圧VTRおよびR相の相電圧VRとに基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する電圧抑制付過電流継電器50とを具備する。
Embodiments of an overcurrent relay device with voltage suppression according to the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the overcurrent relay device with voltage suppression according to the first embodiment of the present invention includes a cross through current transformer 10 that is penetrated so that the R phase and the S phase of the transmission and distribution line cross each other. T phase obtained from short circuit current I Ry input from cross through current transformer 10 and voltage information (R phase, S phase, and T phase phase voltages) input from instrument transformer 6 installed on the bus -When a short circuit accident of the transmission / distribution line is detected based on the line voltage V TR of the R phase and the phase voltage V R of the R phase, the first installed in the R phase, S phase, and T phase of the transmission / distribution line, respectively or comprises a third circuit breaker 2 1 to 2 3 voltage overcurrent relay 50 with suppressed for collectively blocking the.

ここで、クロス貫通変流器10は、2次コイルを巻装した環状鉄心に送配電線のR相およびS相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器である。
すなわち、送配電線のR相はクロス貫通変流器10の極性方向(環状鉄心の第1の開口面)から環状鉄心の第2の開口面への方向)に貫通されているが、送配電線のS相はクロス貫通変流器10の反極性方向(環状鉄心の第2の開口面から環状鉄心の第1の開口面への方向)に貫通されている。
Here, the cross-through current transformer 10 is a through-type current transformer in which an R-phase and an S-phase of a transmission / distribution line are crossed in an opposite direction and at an arbitrary angle through an annular core around which a secondary coil is wound. It is.
That is, the R phase of the transmission / distribution line is penetrated in the polarity direction of the cross-through current transformer 10 (the direction from the first opening surface of the annular core) to the second opening surface of the annular core. The S phase of the electric wire is penetrated in the opposite polarity direction of the cross through current transformer 10 (direction from the second opening surface of the annular core to the first opening surface of the annular core).

したがって、短絡事故が発生していないときに送配電線のR相、S相およびT相に流れる負荷電流をIR,IS,ITで表すと、R相の負荷電流IRとS相の負荷電流ISとは図2(a)に示すように120°の位相差でクロス貫通変流器10の環状鉄心を逆向きに貫通して流れる(すなわち、R相の負荷電流IRはクロス貫通変流器10を極性方向に貫通して流れ、S相の負荷電流ISはクロス貫通変流器10を反極性方向に貫通して流れる)。したがって、クロス貫通変流器10から電圧抑制付過電流継電器50に入力される負荷電流IはR相の負荷電流IRとS相の負荷電流ISとのベクトル差となり、負荷電流Iの振幅はR相の負荷電流IR(S相の負荷電流IS)の振幅の31/2倍となる。
I=IR−IS
|I|=|IR−IS|=31/2×|IR|=31/2×|IS
このように、負荷電流Iの振幅はR相の負荷電流IR(S相の負荷電流IS)の振幅の31/2倍となるため、電圧抑制付過電流継電器50は、次式で示すように負荷電流Iを1/31/2倍して補正負荷電流I’を算出する。
I’=I/31/2
|I’|=|I|/31/2=|IR|=|IS
Therefore, when the load currents flowing in the R-phase, S-phase, and T-phase of the transmission and distribution line when no short-circuit accident has occurred are represented by I R , I S , I T , the R-phase load current I R and the S-phase As shown in FIG. 2 (a), the load current I S of the current flows through the annular core of the cross-through current transformer 10 in a reverse direction with a phase difference of 120 ° (that is, the R-phase load current I R is The cross-through current transformer 10 flows through in the polarity direction, and the S-phase load current I S flows through the cross-through current transformer 10 in the opposite polarity direction). Therefore, the load current I input from the cross-through current transformer 10 to the overcurrent relay 50 with voltage suppression is a vector difference between the R-phase load current I R and the S-phase load current I S, and the amplitude of the load current I Is 3 1/2 times the amplitude of the R-phase load current I R (S-phase load current I S ).
I = I R −I S
| I | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I S |
Thus, since the amplitude of the load current I is 3 1/2 times the amplitude of the R-phase load current I R (S-phase load current I S ), the overcurrent relay 50 with voltage suppression is given by As shown, the load current I is multiplied by 1/3 1/2 to calculate a corrected load current I ′.
I '= I / 3 1/2
| I ′ | = | I | / 3 1/2 = | I R | = | I S |

また、電圧抑制付過電流継電器50は、以下に示す第1乃至第5の事故様相判定方法のいずれか1つを用いて短絡事故の発生および事故様相を判定する。   The overcurrent relay with voltage suppression 50 determines the occurrence of a short circuit accident and the accident aspect using any one of the following first to fifth accident aspect determination methods.

(第1の事故様相判定方法)
3つの線間電圧、3つの相電圧または相・線間電圧(相電圧と線間電圧との組合せ)に基づいて事故様相を判定する。
(First accident mode judgment method)
The accident aspect is determined based on the three line voltages, the three phase voltages, or the phase / line voltage (combination of the phase voltage and the line voltage).

表1に、3つの線間電圧に基づく事故様相判定条件を示す。なお、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された線間電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった線間電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。

Figure 2009050147
Table 1 shows the accident condition determination conditions based on the three line voltages. In addition, ○ mark indicates the line voltage in which the voltage drop is detected based on the voltage information from the undervoltage relay installed on the bus, and the X mark is based on the voltage information from this undervoltage relay. The line voltage in which no voltage drop was detected is shown (the voltage drop detection sensitivity is about 75 to 80% of the rated voltage).
Figure 2009050147

表2に、3つの相電圧に基づく事故様相判定条件を示す。なお、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された相電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった相電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。

Figure 2009050147
Table 2 shows the accident condition determination conditions based on the three phase voltages. In addition, a circle indicates a phase voltage in which a voltage drop is detected based on voltage information from an undervoltage relay installed on the bus, and a cross indicates a voltage based on voltage information from the undervoltage relay. The phase voltage in which no decrease was detected is indicated (the voltage drop detection sensitivity is about 75 to 80% of the rated voltage).
Figure 2009050147

表3に、相・線間電圧に基づく事故様相判定条件を示す。なお、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された相電圧および線間電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった相電圧および線間電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。

Figure 2009050147
Table 3 shows the accident condition judgment conditions based on the phase / line voltage. The circles indicate the phase voltage and line voltage at which a voltage drop is detected based on the voltage information from the undervoltage relay installed on the bus, and the x indicates voltage information from the undervoltage relay. The phase voltage and the line voltage in which no voltage drop was detected based on the above are shown (voltage drop detection sensitivity is about 75 to 80% of the rated voltage).
Figure 2009050147

(第2の事故様相判定方法)
1つの線間電圧および1つの相電圧の電圧値および位相に基づいて事故様相を判定する。
(Second accident mode judgment method)
The accident aspect is determined based on the voltage value and phase of one line voltage and one phase voltage.

たとえば、T相−R相の線間電圧VTRの位相が210°でかつR相の相電圧VRの位相が0°であることを基準として(図2(b)参照)、送配電線のR相−S相間の短絡事故時のR相−S相の線間電圧VRSおよびS相−T相間の短絡事故時のS相−T相の線間電圧VSTを短絡事故検出感度の85Vとすると、T相−R相の線間電圧VTRが所定の第1の電圧値k1=85V以下であることを条件として短絡事故が発生したと判定するとともに、T相−R相の線間電圧VTRが所定の第2の電圧値k2=104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準として短絡事故時のT相−R相の線間電圧VTRの位相が所定の角度範囲α内だけ遅れているか進んでいること(5.95°≦α≦30°または−30°≦α≦−5.95°)を条件として短絡事故が発生したと判定する(以下の(1−1)式および(1−2)式参照)。
TR≦[{(110/31/2)×1.5}2+(85/2)21/2
≦(95.262+42.521/2
≦104.3(V) ・・・(1−1)
α≧30°−tan-1(42.5/95.26)
≧5.95(°) ・・・(1−2)
For example, based on the fact that the phase of the line voltage V TR between the T phase and the R phase is 210 ° and the phase of the phase voltage V R of the R phase is 0 ° (see FIG. 2B), the transmission and distribution lines The R-phase-S phase line voltage V RS at the time of the short-circuit accident between the R-phase and S-phase and the S-phase-T-phase line voltage V ST at the time of the short-circuit accident between the S-phase and the T-phase 85V, it is determined that a short-circuit accident has occurred on the condition that the line voltage V TR between the T phase and the R phase is equal to or lower than a predetermined first voltage value k1 = 85 V, and the line between the T phase and the R phase The voltage V TR is equal to or lower than a predetermined second voltage value k2 = 104.3 V, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident is 210 ° as a reference. the T-phase -R phase of the phase of the line voltage V TR is advanced or delayed by a predetermined angular range α (5.95 ° ≦ α ≦ 30 ° or -30 ° α ≦ -5.95 °) determining a short-circuit failure condition has occurred (the following (1-1) and (1-2) refer to formula).
V TR ≦ [{(110/3 1/2 ) × 1.5} 2 + (85/2) 2 ] 1/2
≦ (95.26 2 +42.5 2 ) 1/2
≦ 104.3 (V) (1-1)
α ≧ 30 ° -tan −1 (42.5 / 95.26)
≧ 5.95 (°) (1-2)

また、以下のようにして事故様相を判定する。
(1)R相−S相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れている(+α)場合に、R相−S相間の短絡事故と判定する(図3(a)参照)。
(2)S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ進んでいる(−α)場合に、S相−T相間の短絡事故と判定する(図3(b)参照)。
(3)T相−R相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡事故前のR相の相電圧VRの位相=0°を基準としてR相の相電圧VRの位相が所定の他の角度範囲β(6.76°≦β≦60°、(1−3)式参照)内だけ進んでいる(−β)場合に、T相−R相間の短絡事故と判定する(図3(c)参照)。
β≧60°−tan-1[42.5/{110/(2×31/2)}]
≧6.76(°) ・・・(1−3)
(4)R相−S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡事故前のR相の相電圧VRの位相=0°を基準としてR相の相電圧VRの位相が他の角度範囲β内だけ遅れていたり進んでいたりしていない(すなわち、−6.76°よりも大きくて6.76°よりも小さい)ことを条件に、R相−S相−T相間の短絡事故と判定する(図3(d)参照)。
Moreover, the accident aspect is determined as follows.
(1) In the case of a short-circuit accident between the R phase and the S phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is delayed by an angle range α (+ α) with reference to the phase = 210 ° (+ (α)), it is determined that there is a short circuit accident between the R phase and the S phase (FIG. 3 ( a)).
(2) In the case of a short circuit accident between the S phase and the T phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is advanced only within the angle range α (−α) with respect to the phase = 210 ° as a reference, it is determined that a short circuit accident between the S phase and the T phase occurs (FIG. 3). (See (b)).
(3) In the case of a short circuit accident between the T phase and the R phase The line voltage V TR between the T phase and the R phase is 85 V or less, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = The phase of the line voltage V TR between the T phase and the R phase is not delayed or advanced by an angle range α with respect to 210 ° (that is, greater than −5.95 ° and 5.95 °). And the phase of the R-phase phase voltage V R before the short circuit accident is 0 ° as a reference, and the phase of the R-phase phase voltage V R has a predetermined other angle range β (6.76 ° ≦ β ≦ 60 °, see (Equation 1-3)) (−β), it is determined that there is a short circuit accident between the T phase and the R phase (see FIG. 3C).
β ≧ 60 ° -tan −1 [42.5 / {110 / (2 × 3 1/2 )}]
≧ 6.76 (°) (1-3)
(4) In the case of a short circuit accident between R phase, S phase and T phase The line voltage V TR between T phase and R phase is 85V or less, and the line voltage V TR between T phase and R phase before the short circuit accident. The phase of the line voltage V TR between the T-phase and the R-phase is not delayed or advanced by the angle range α with respect to the phase of 210 = 210 ° (that is, greater than −5.95 ° and 5 .. is smaller than .95 °), and the phase of the R phase voltage V R before the short-circuit accident is 0 ° or the phase of the R phase voltage V R is delayed or advanced by another angle range β. It is determined that a short-circuit accident between the R phase, the S phase, and the T phase is performed on the condition that the phase is not larger (that is, larger than −6.76 ° and smaller than 6.76 °) (FIG. 3D). reference).

なお、T相−R相の線間電圧VTRおよびR相の相電圧VRを用いたが、表4に丸印で示す電圧の組合せのいずれか1つを用いてもよい。ただし、後述する短絡事故発生判定条件および事故様相判定条件を電圧の組合せに応じて変更する必要がある。

Figure 2009050147
Although the T-phase-R phase line voltage V TR and the R-phase phase voltage V R are used, any one of the voltage combinations indicated by circles in Table 4 may be used. However, it is necessary to change the short-circuit accident occurrence determination condition and the accident aspect determination condition, which will be described later, according to the combination of voltages.
Figure 2009050147

(第3の事故様相判定方法)
1つの線間電圧の電圧値および位相とクロス貫通変流器から入力される短絡電流IRyの位相とに基づいて事故様相を判定する。
(Third accident mode determination method)
The accident aspect is determined based on the voltage value and phase of one line voltage and the phase of the short-circuit current IRy input from the cross-through current transformer.

たとえば、T相−R相の線間電圧VTRの位相が210°であることを基準として、送配電線のR相−S相間の短絡事故時のR相−S相の線間電圧VRSおよびS相−T相間の短絡事故時のS相−T相の線間電圧VSTを短絡事故検出感度の85Vとすると、T相−R相の線間電圧VTRが所定の第1の電圧値k1=85V以下であることを条件として短絡事故が発生したと判定するとともに、T相−R相の線間電圧VTRが所定の第2の電圧値k2=104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準として短絡事故時のT相−R相の線間電圧VTRの位相が所定の角度範囲α内だけ遅れているか進んでいること(5.95°≦α≦30°または−30°≦α≦−5.95°)を条件として短絡事故が発生したと判定する((1−1)式および(1−2)式参照)。 For example, with reference to the phase of the T-phase to R-phase line voltage V TR being 210 °, the R-phase to S-phase line voltage V RS at the time of a short-circuit fault between the R-phase and S-phase of the transmission and distribution line and S phase -T When the line voltage V ST between phases S phase -T phase when a short circuit accident and 85V of short-circuit failure detection sensitivity, a first voltage line voltage V TR of the T-phase -R phase is given It is determined that a short-circuit accident has occurred on condition that the value k1 = 85 V or less, and the T-phase to R-phase line voltage V TR is a predetermined second voltage value k2 = 104.3 V or less, and The phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = 210 ° as a reference, the phase of the line voltage V TR between the T phase and the R phase at the time of the short circuit accident is delayed by a predetermined angle range α. A short-circuit accident occurs on the condition that it is moving or advanced (5.95 ° ≦ α ≦ 30 ° or −30 ° ≦ α ≦ −5.95 °) A constant ((1-1) see formula and (1-2) below).

また、以下のようにして事故様相を判定する。
(1)R相−S相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れている(+α)場合に、R相−S相間の短絡事故と判定する(図11(a)参照)。
(2)S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ進んでいる(−α)場合に、S相−T相間の短絡事故と判定する(図11(b)参照)。
(3)T相−R相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡電流IRyの位相が所定の第1の角度範囲γ(−150°≦γ≦−90°、γはインピーダンス角θ=75°としアーク抵抗などを考慮して決定する。)内にある場合に、T相−R相間の短絡事故と判定する(図11(c)参照)。
(4)R相−S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡電流IRyの位相が所定の第2の角度範囲δ(−90°≦δ≦−30°、δはインピーダンス角θ=75°としアーク抵抗などを考慮して決定する。)内にある場合に、R相−S相−T相間の短絡事故と判定する(図11(d)参照)。
Moreover, the accident aspect is determined as follows.
(1) In the case of a short-circuit accident between the R phase and the S phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is delayed by an angle range α (+ α) with reference to the phase = 210 °, it is determined that the short-circuit accident occurs between the R phase and the S phase (FIG. 11 ( a)).
(2) In the case of a short circuit accident between the S phase and the T phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is advanced only within the angle range α (−α) with reference to the phase = 210 °, it is determined that there is a short circuit accident between the S phase and the T phase (FIG. 11). (See (b)).
(3) In the case of a short circuit accident between the T phase and the R phase The line voltage V TR between the T phase and the R phase is 85 V or less, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = The phase of the line voltage V TR between the T phase and the R phase is not delayed or advanced by an angle range α with respect to 210 ° (that is, greater than −5.95 ° and 5.95 °). And the phase of the short-circuit current I Ry is determined in consideration of arc resistance and the like with a predetermined first angle range γ (−150 ° ≦ γ ≦ −90 °, γ is an impedance angle θ = 75 °) If it is within the range, it is determined that there is a short circuit accident between the T phase and the R phase (see FIG. 11C).
(4) In the case of a short circuit accident between R phase, S phase and T phase The line voltage V TR between T phase and R phase is 85V or less, and the line voltage V TR between T phase and R phase before the short circuit accident. The phase of the line voltage V TR between the T-phase and the R-phase is not delayed or advanced by the angle range α with respect to the phase of 210 = 210 ° (that is, greater than −5.95 ° and 5 Smaller than .95 °) and the phase of the short-circuit current I Ry is within a predetermined second angle range δ (−90 ° ≦ δ ≦ −30 °, where δ is an impedance angle θ = 75 ° and arc resistance is taken into consideration. If it is within the range, it is determined that there is a short circuit accident between the R phase, the S phase, and the T phase (see FIG. 11D).

(第4の事故様相判定方法)
図12に示す事故様相判定用変圧器110を母線に設置し、事故様相判定用変圧器110から出力される合成電圧VR-S-2Tの電圧値および位相と短絡電流の位相とに基づいて、以下のようにして事故様相を判定する。
ここで、事故様相判定用変圧器110の2次側は、R相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを反極性方向で2倍して合成するように結線されている。その結果、事故様相判定用変圧器110から出力される合成電圧VR-S-2Tは次式で表される。
R-S-2T=VR−VS−2VT
また、インピーダンス角θは通常75°であるが、短絡電流の位相角は、アーク抵抗を考慮して、30°(−45°)から短絡事故時の最大角である90°(+15°)とする。
(Fourth accident mode determination method)
The accident mode determination transformer 110 shown in FIG. 12 is installed on the bus, and based on the voltage value and phase of the composite voltage V RS-2T output from the accident mode determination transformer 110 and the phase of the short-circuit current, Determine the accident aspect as follows.
Here, the secondary side of the accident phase determination transformer 110 sets the phase voltage V R of the R phase in the polarity direction, the phase voltage V S of the S phase in the opposite polarity direction, and the phase voltage V T of the T phase in the opposite direction. The wires are wired so as to be doubled in the polarity direction. As a result, the composite voltage V RS-2T output from the accident aspect determination transformer 110 is expressed by the following equation.
V RS-2T = V R -V S -2V T
Further, although the impedance angle θ is usually 75 °, the phase angle of the short-circuit current is from 90 ° (−45 °) to 90 ° (+ 15 °) which is the maximum angle at the time of a short-circuit accident in consideration of arc resistance. To do.

(1)R相−S相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第1の合成電圧値K1=100.1V以下であり((2−1)式参照)、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第1の合成電圧角度範囲ε1(7.10°(=X1)≦ε1≦40.9°(=X2)。(2−2)式および(2−3)式参照)内だけ遅れており(+ε1)、かつ、短絡電流の位相が所定の第1の短絡電流角度範囲λ1(−19.1°≦λ1≦40.9°)内にある場合に、R相−S相間の短絡事故と判定する。
1=[(83.15)2+(72.01×85/110)21/2
=100.1(V) ・・・(2−1)
1=cos-1(83.15/110.0)−cos-1(83.15/100.05)
=7.10(°) ・・・(2−2)
2=60−19.1
=40.9(°) ・・・(2−3)
(2)S相−T相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第2の合成電圧値K2=107.6V以下であり((2−4)式参照)、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第2の合成電圧角度範囲ε2(4.12°(=X3)≦ε2≦19.1°(=X4)。(2−5)式および(2−6)式参照)内だけ進んでおり(−ε2)、かつ、短絡電流の位相が所定の第2の短絡電流角度範囲λ2(19.1°≦λ2≦79.1°)内だけ進んでいる(−λ2)場合に、S相−T相間の短絡事故と判定する。
2=[(103.94)2+(36.01×85/110)21/2
=107.6(V) ・・・(2−4)
3=cos-1(103.94/110)−cos-1(103.94/107.60)
=4.12(°) ・・・(2−5)
4=19.1−0
=19.1(°) ・・・(2−6)
(3)T相−R相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第3の合成電圧値K3=86.0V以下であり((2−7)式参照)、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第3の合成電圧角度範囲ε3(3.09°(=X5)≦ε3≦79.1°(=X6)。(2−8)式および(2−9)式参照)内だけ進んでおり(−ε3)、かつ、短絡電流の位相が所定の第3の短絡電流角度範囲λ3(40.9°≦λ3≦100.9°)内だけ遅れている(+λ3)場合に、T相−R相間の短絡事故と判定する。
3=[(20.79)2+(108.02×85/110)21/2
=86.0(V) ・・・(2−7)
5=cos-1(20.79/110)−cos-1(20.79/86.02)
=3.09(°) ・・・(2−8)
6=60+19.1
=79.1(°) ・・・(2−9)
(4)R相−S相−T相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第4の合成電圧値K4=85V(定格電圧の75〜80%)以下であり、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第4の合成電圧角度範囲ε4(−3.09°(=−X5)≦ε4≦7.10°(=X1))内に入っており(すなわち、同位相であり)、かつ、短絡電流の位相が所定の第4の短絡電流角度範囲λ4(−19.1°≦λ4≦40.9°)内にある場合に、R相−S相−T相間の短絡事故と判定する。
(1) In the case of a short-circuit accident between the R phase and the S phase The voltage value of the composite voltage V RS-2T is a predetermined first composite voltage value K 1 = 100.1 V or less (see equation (2-1)). In addition, the phase of the composite voltage V RS-2T at the time of the short-circuit accident is set to a predetermined first composite voltage angle range ε 1 (7 based on the fact that the phase of the composite voltage V RS-2T at the normal time is 19.1 °. .10 ° (= X 1 ) ≦ ε 1 ≦ 40.9 ° (= X 2 ) (see equations (2-2) and (2-3)) (+ ε 1 ) and short circuit When the phase of the current is within the predetermined first short-circuit current angle range λ 1 (−19.1 ° ≦ λ 1 ≦ 40.9 °), it is determined that a short-circuit accident between the R phase and the S phase occurs.
K 1 = [(83.15) 2 + (72.01 × 85/110) 2 ] 1/2
= 100.1 (V) (2-1)
X 1 = cos -1 (83.15 / 110.0) -cos -1 (83.15 / 100.05)
= 7.10 (°) (2-2)
X 2 = 60-19.1
= 40.9 (°) (2-3)
(2) In the case of a short circuit accident between the S phase and the T phase The voltage value of the composite voltage V RS-2T is a predetermined second composite voltage value K 2 = 107.6 V or less (see the formula (2-4)), In addition, the phase of the composite voltage V RS-2T at the time of the short-circuit accident is determined to be a predetermined second composite voltage angle range ε 2 (4 based on the phase of the composite voltage V RS-2T at the normal time being 19.1 °. .12 ° (= X 3 ) ≦ ε 2 ≦ 19.1 ° (= X 4 ) (see formulas (2-5) and (2-6)) (−ε 2 ) When the phase of the short-circuit current is advanced only within a predetermined second short-circuit current angle range λ 2 (19.1 ° ≦ λ 2 ≦ 79.1 °) (−λ 2 ), a short circuit between the S phase and the T phase Judge as an accident.
K 2 = [(103.94) 2 + (36.01 × 85/110) 2 ] 1/2
= 107.6 (V) (2-4)
X 3 = cos −1 (103.94 / 110) −cos −1 (103.94 / 107.60)
= 4.12 (°) (2-5)
X 4 = 19.1-0
= 19.1 (°) (2-6)
(3) In the case of a short-circuit accident between the T phase and the R phase The voltage value of the composite voltage V RS-2T is equal to or less than a predetermined third composite voltage value K 3 = 86.0 V (see formula (2-7)) Further, the phase of the composite voltage V RS-2T at the time of a short circuit accident is determined to be a predetermined third composite voltage angle range ε 3 (3 based on the phase of the composite voltage V RS-2T at the normal time being 19.1 °. .09 ° (= X 5 ) ≦ ε 3 ≦ 79.1 ° (= X 6 ) (see formulas (2-8) and (2-9)) (−ε 3 ) When the phase of the short-circuit current is delayed (+ λ 3 ) by a predetermined third short-circuit current angle range λ 3 (40.9 ° ≦ λ 3 ≦ 100.9 °), a short-circuit accident between the T phase and the R phase Is determined.
K 3 = [(20.79) 2 + (108.02 × 85/110) 2 ] 1/2
= 86.0 (V) (2-7)
X 5 = cos -1 (20.79 / 110) -cos -1 (20.79 / 86.02)
= 3.09 (°) (2-8)
X 6 = 60 + 19.1
= 79.1 (°) (2-9)
(4) In the case of a short-circuit accident between the R phase, the S phase and the T phase The voltage value of the composite voltage V RS-2T is less than or equal to the predetermined fourth composite voltage value K 4 = 85 V (75 to 80% of the rated voltage). The phase of the composite voltage V RS-2T at the time of the short-circuit accident is a predetermined fourth composite voltage angle range ε 4 (wherein the phase of the composite voltage V RS-2T at the normal time is 19.1 °. −3.09 ° (= −X 5 ) ≦ ε 4 ≦ 7.10 ° (= X 1 )) (that is, the same phase), and the phase of the short-circuit current is a predetermined fourth value. Is within the short-circuit current angle range λ 4 (−19.1 ° ≦ λ 4 ≦ 40.9 °), it is determined as a short-circuit accident between the R phase, the S phase, and the T phase.

(第5の事故様相判定方法)
図13に示す事故様相判定用変圧器120を母線に設置し、事故様相判定用変圧器120から出力される合成電圧VR-S+2Tの電圧値および位相と短絡電流の位相とに基づいて、以下のようにして事故様相を判定する。
ここで、事故様相判定用変圧器120の2次側は、R相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを極性方向で2倍して合成するように結線されている。その結果、事故様相判定用変圧器120から出力される合成電圧VR-S+2Tは次式で表される。
R-S+2T=VR−VS+2VT
また、インピーダンス角θは通常75°であるが、短絡電流の位相角は、アーク抵抗を考慮して、30°(−45°)から短絡事故時の最大角である90°(+15°)とする。
(Fifth accident mode determination method)
An accident mode determination transformer 120 shown in FIG. 13 is installed on the bus, and based on the voltage value and phase of the composite voltage V R-S + 2T output from the accident mode determination transformer 120 and the phase of the short circuit current. The accident aspect is judged as follows.
Here, the secondary side of the accident phase determination transformer 120 has the R-phase voltage V R in the polarity direction, the S-phase phase voltage V S in the opposite polarity direction, and the T-phase phase voltage V T in the polarity direction. They are wired so as to be doubled in the direction of synthesis. As a result, the composite voltage V R−S + 2T output from the accident aspect determination transformer 120 is expressed by the following equation.
V R−S + 2T = V R −V S + 2V T
Further, although the impedance angle θ is usually 75 °, the phase angle of the short-circuit current is from 90 ° (−45 °) to 90 ° (+ 15 °) which is the maximum angle at the time of a short-circuit accident in consideration of arc resistance. To do.

(1)R相−S相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第5の合成電圧値K5=100.1V以下であり((3−1)式参照)、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第5の合成電圧角度範囲ε5(7.10°(=X7)≦ε5≦40.9°(=X8)。(3−2)式および(3−3)式参照)内だけ進んでおり(−ε5)、かつ、短絡電流の位相が所定の第5の短絡電流角度範囲λ5(79.1°≦λ5≦139.1°)内だけ遅れている(+λ5)場合に、R相−S相間の短絡事故と判定する。
5=[(83.15)2+(72.01×85/110)21/2
=100.1(V) ・・・(3−1)
7=cos-1(83.15/110.0)−cos-1(83.15/110.05)
=7.10(°) ・・・(3−2)
8=280.9−240
=40.9(°) ・・・(3−3)
(2)S相−T相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第6の合成電圧値K6=86.0V以下であり((3−4)式参照)、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第6の合成電圧角度範囲ε6(3.09°(=X9)≦ε6≦79.1°(=X10)。(3−5)式および(3−6)式参照)内だけ遅れており(+ε6)、かつ、短絡電流の位相が所定の第6の短絡電流角度範囲λ6(19.1°≦λ6≦79.1°)内だけ遅れている(+λ6)場合に、S相−T相間の短絡事故と判定する。
6=[(20.79)2+(108.02×85/110)21/2
=86.0(V) ・・・(3−4)
9=cos-1(20.79/110)−cos-1(20.79/86.02)
=3.09(°) ・・・(3−5)
10=360−280.9
=79.1(°) ・・・(3−6)
(3)T相−R相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第7の合成電圧値K7=107.6V以下であり((3−7)式参照)、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第7の合成電圧角度範囲ε7(4.12°(=X11)≦ε7≦19.1°(=X12)。(3−8)式および(3−9)式参照)内だけ遅れており(+ε7)、かつ、短絡電流の位相が所定の第7の短絡電流角度範囲λ7(139.1°≦λ7≦199.1°)内だけ遅れている(+λ7)場合に、T相−R相間の短絡事故と判定する。
7=[103.942+(36.01×85/110)21/2
=107.6(V) ・・・(3−7)
11=cos-1(103.94/110)−cos-1(103.94/107.60)
=4.12(°) ・・・(3−8)
12=300−280.9
=19.1(°) ・・・(3−9)
(4)R相−S相−T相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第8の合成電圧値K8=85V(定格電圧の75〜80%)以下であり、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第8の合成電圧角度範囲ε8(−7.10°(=−X7)≦ε8≦3.09°(=X9))内に入っており(すなわち、同位相であり)、かつ、短絡電流の位相が所定の第8の短絡電流角度範囲λ8(79.1°≦λ8≦139.1°)内だけ遅れている(+λ8)場合に、R相−S相−T相間の短絡事故と判定する。
(1) In the case of a short-circuit accident between the R phase and the S phase The voltage value of the composite voltage V R-S + 2T is equal to or less than a predetermined fifth composite voltage value K 5 = 100.1 V (see equation (3-1)) ), And the phase of the composite voltage V R-S + 2T at the normal time is 280.9 °, and the phase of the composite voltage V R-S + 2T at the time of the short-circuit accident is a predetermined fifth composite voltage The angle range ε 5 (7.10 ° (= X 7 ) ≦ ε 5 ≦ 40.9 ° (= X 8 ), see (3-2) and (3-3))) (− ε 5 ) and the phase of the short-circuit current is delayed by (+ λ 5 ) within a predetermined fifth short-circuit current angle range λ 5 (79.1 ° ≦ λ 5 ≦ 139.1 °) (+ λ 5 ) -Judged as a short circuit accident between S phases.
K 5 = [(83.15) 2 + (72.01 × 85/110) 2 ] 1/2
= 100.1 (V) (3-1)
X 7 = cos -1 (83.15 / 110.0) -cos -1 (83.15 / 110.05)
= 7.10 (°) (3-2)
X 8 = 280.9-240
= 40.9 (°) (3-3)
(2) In the case of a short circuit accident between the S phase and the T phase The voltage value of the composite voltage V R-S + 2T is equal to or less than a predetermined sixth composite voltage value K 6 = 86.0 V (see formula (3-4)) ), And the phase of the composite voltage V R-S + 2T at the normal time is 280.9 ° as a reference, the phase of the composite voltage V R-S + 2T at the time of the short-circuit accident is a predetermined sixth composite voltage Angular range ε 6 (3.09 ° (= X 9 ) ≦ ε 6 ≦ 79.1 ° (= X 10 ) (see equations (3-5) and (3-6))) (+ ε 6 ) and when the phase of the short-circuit current is delayed (+ λ 6 ) by a predetermined sixth short-circuit current angle range λ 6 (19.1 ° ≦ λ 6 ≦ 79.1 °) (S phase − It is determined as a short-circuit accident between T phases.
K 6 = [(20.79) 2 + (108.02 × 85/110) 2 ] 1/2
= 86.0 (V) (3-4)
X 9 = cos −1 (20.79 / 110) −cos −1 (20.79 / 86.02)
= 3.09 (°) (3-5)
X 10 = 360-280.9
= 79.1 (°) (3-6)
(3) In the case of a short-circuit accident between the T phase and the R phase The voltage value of the composite voltage V R-S + 2T is a predetermined seventh composite voltage value K 7 = 107.6 V or less (see equation (3-7)) ), And the phase of the composite voltage V R-S + 2T at the normal time is 280.9 ° as a reference, the phase of the composite voltage V R-S + 2T at the time of the short-circuit accident is a predetermined seventh composite voltage Angular range ε 7 (4.12 ° (= X 11 ) ≦ ε 7 ≦ 19.1 ° (= X 12 ) (see equations (3-8) and (3-9)) (+ ε 7 ) and when the phase of the short-circuit current is delayed by (+ λ 7 ) within a predetermined seventh short-circuit current angle range λ 7 (139.1 ° ≦ λ 7 ≦ 199.1 °) Judged as a short circuit accident between R phases.
K 7 = [103.94 2 + (36.01 × 85/110) 2 ] 1/2
= 107.6 (V) (3-7)
X 11 = cos -1 (103.94 / 110) -cos -1 (103.94 / 107.60)
= 4.12 (°) (3-8)
X 12 = 300-280.9
= 19.1 (°) (3-9)
(4) In the case of a short-circuit accident between the R phase, the S phase and the T phase, the voltage value of the composite voltage V R-S + 2T is equal to or less than a predetermined eighth composite voltage value K 8 = 85 V (75 to 80% of the rated voltage) And the phase of the composite voltage V R-S + 2T at the time of a short-circuit accident is a predetermined eighth composite on the basis that the phase of the composite voltage V R-S + 2T at a normal time is 280.9 ° Voltage angle range ε 8 (−7.10 ° (= −X 7 ) ≦ ε 8 ≦ 3.09 ° (= X 9 )) (that is, in phase) and the short-circuit current Short-circuit accident between R phase, S phase, and T phase when the phase is delayed by (+ λ 8 ) within a predetermined eighth short-circuit current angle range λ 8 (79.1 ° ≦ λ 8 ≦ 139.1 °) Is determined.

また、電圧抑制付過電流継電器50は、短絡事故が発生したと判定すると、以下のようにして事故様相の判定の結果に応じて補正短絡電流IRy’を算出する。 When the overcurrent relay with voltage suppression 50 determines that a short-circuit accident has occurred, the overcurrent relay 50 with voltage suppression calculates a corrected short-circuit current I Ry ′ according to the determination result of the accident aspect as follows.

(1)R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図1に破線の矢印で示すように送配電線のR相にR相の短絡電流IFRが内部方向に流れ、送配電線のS相にS相の短絡電流IFSが外部方向に流れるが、送配電線のT相にはT相の短絡電流IFTが流れない。
したがって、クロス貫通変流器10から電圧抑制付過電流継電器50に入力される短絡電流IRyは、図1に実線の太矢印で示すようにR相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる(図4(a)参照。なお、図4においては、送配電線の内部方向に流れる短絡電流IFR,IFS,IFTは実線の矢印で、送配電線の外部方向に流れる短絡電流IFR,IFS,IFTは一点鎖線の矢印で示しており、また、θは短絡電流IFR,IFS,IFTのインピーダンス角である。)。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=2×|IFR|=2×|IFS
このように、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となるため、電圧抑制付過電流継電器50は、次式で示すように短絡電流IRyを1/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy/2
|IRy’|=|IRy|/2=|IFR|=|IFS
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、送配電線のS相にS相の短絡電流IFSが内部方向に流れ、送配電線のT相にT相の短絡電流IFTが外部方向に流れるが、送配電線のR相にはR相の短絡電流IFRが流れない。
したがって、クロス貫通変流器10から電圧抑制付過電流継電器50に入力される短絡電流IRyは、極性が負のS相の短絡電流−IFSとなり、短絡電流IRyの振幅はS相の短絡電流IFSの振幅となる(図4(b)参照)。
Ry=−IFS
|IRy|=|IFS
このように、短絡電流IRyの振幅はS相の短絡電流IFSの振幅となるため、電圧抑制付過電流継電器50は、次式で示すように短絡電流IRyを1倍して補正短絡電流IRy’を算出する。
Ry’=IRy
|IRy’|=|IFS
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、送配電線のT相にT相の短絡電流IFTが内部方向に流れ、送配電線のR相にR相の短絡電流IFRが外部方向に流れるが、送配電線のS相にはS相の短絡電流IFSが流れない。
したがって、クロス貫通変流器10から電圧抑制付過電流継電器50に入力される短絡電流IRyは、R相の短絡電流IFRとなり、短絡電流IRyの振幅はR相の短絡電流IFRの振幅となる(図4(c)参照)。
Ry=IFR
|IRy|=|IFR
このように、短絡電流IRyの振幅はR相の短絡電流IFRの振幅となるため、電圧抑制付過電流継電器50は、次式で示すように短絡電流IRyを1倍して補正短絡電流IRy’を算出する。
Ry’=IRy
|IRy’|=|IFR
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、送配電線のR相、S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120°で内部方向にそれぞれ流れる。
したがって、クロス貫通変流器10から電圧抑制付過電流継電器50に入力される短絡電流IRyはR相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の31/2倍となる(図4(d)参照)。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=31/2×|IFR|=31/2×|IFS
このように、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の31/2倍となるため、電圧抑制付過電流継電器50は、次式で示すように短絡電流IRyを1/31/2倍して補正短絡電流IRy’を算出する。
Ry’=IRy/31/2
|IRy’|=|IRy|/31/2=|IFR|=|IFS
(1) In the case of a short circuit accident between the R phase and the S phase When a short circuit accident between the R phase and the S phase occurs, the short circuit current I FR of the R phase is generated in the R phase of the power transmission and distribution line as shown by the broken arrow in FIG. flow inside direction, but the short-circuit current I FS of S phase to the S phase of the transmission and distribution lines to flow to the outside direction, the T-phase of the transmission and distribution lines does not flow a short-circuit current I FT T-phase.
Therefore, the short-circuit current I Ry input from the cross-through current transformer 10 to the overcurrent relay 50 with voltage suppression is the short-circuit current I FR of the R phase and the short-circuit current of the S-phase as indicated by the solid thick arrow in FIG. This is a vector difference from I FS, and the amplitude of the short-circuit current I Ry is twice the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ) (see FIG. 4A). , The short-circuit currents I FR , I FS , and I FT flowing in the inner direction of the transmission / distribution line are solid arrows, and the short-circuit currents I FR , I FS , and I FT flowing in the outer direction of the transmission / distribution line are dashed-dotted arrows And θ represents the impedance angle of the short-circuit currents I FR , I FS , and I FT .)
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 2 × | I FR | = 2 × | I FS |
Thus, since the amplitude of the short-circuit current I Ry is twice the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ), the overcurrent relay 50 with voltage suppression is expressed by the following equation: The corrected short-circuit current I Ry ′ is calculated by multiplying the short-circuit current I Ry by ½.
I Ry '= I Ry / 2
| I Ry '| = | I Ry | / 2 = | I FR | = | I FS |
(2) In the case of a short-circuit accident between the S phase and the T phase When a short circuit accident between the S phase and the T phase occurs, the S phase short circuit current I FS flows in the S phase of the transmission and distribution line in the internal direction, and the T of the transmission and distribution line Although the T-phase short-circuit current I FT flows in the external direction in the phase, the R-phase short-circuit current I FR does not flow in the R-phase of the transmission and distribution line.
Therefore, the short-circuit current I Ry input from the cross-through current transformer 10 to the overcurrent relay 50 with voltage suppression becomes the S-phase short-circuit current −I FS having a negative polarity, and the amplitude of the short-circuit current I Ry is the S-phase amplitude. The amplitude of the short-circuit current I FS (see FIG. 4B).
I Ry = −I FS
| I Ry | = | I FS |
Thus, since the amplitude of the short-circuit current I Ry becomes the amplitude of the S-phase short-circuit current I FS , the overcurrent relay 50 with voltage suppression increases the short-circuit current I Ry by 1 as shown in the following equation and corrects the short-circuit. The current I Ry 'is calculated.
I Ry '= I Ry
| I Ry '| = | I FS |
(3) In the case of a short circuit accident between the T phase and the R phase When a short circuit accident occurs between the T phase and the R phase, a T phase short circuit current I FT flows in the T phase of the transmission and distribution line, and the R of the transmission and distribution line. While the short-circuit current I FR of R-phase to phase flows to the outside direction, the S-phase of the transmission and distribution lines does not flow a short-circuit current I FS of S phase.
Therefore, the short-circuit current I Ry input from the cross-through current transformer 10 to the overcurrent relay 50 with voltage suppression becomes the R-phase short-circuit current I FR , and the amplitude of the short-circuit current I Ry is the R-phase short-circuit current I FR . It becomes an amplitude (see FIG. 4C).
I Ry = I FR
| I Ry | = | I FR |
Thus, since the amplitude of the short-circuit current I Ry becomes the amplitude of the R-phase short-circuit current I FR , the overcurrent relay with voltage suppression 50 corrects the short-circuit by multiplying the short-circuit current I Ry by 1 as shown in the following equation. The current I Ry 'is calculated.
I Ry '= I Ry
| I Ry '| = | I FR |
(4) In the case of a short circuit accident between R phase, S phase, and T phase When a short circuit accident between R phase, S phase, and T phase occurs, short circuit current I of R phase to R phase, S phase, and T phase of the transmission and distribution line FR and S-phase short-circuit current I FS and T-phase short-circuit current I FT flow in the internal direction with a phase difference of 120 °.
Therefore, the short-circuit current I Ry input from the cross-through current transformer 10 to the overcurrent relay 50 with voltage suppression becomes a vector difference between the R-phase short-circuit current I FR and the S-phase short-circuit current I FS, and the short-circuit current I Ry Is 3 1/2 times the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ) (see FIG. 4D).
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 3 1/2 × | I FR | = 3 1/2 × | I FS |
Thus, the amplitude of the short-circuit current I Ry is 3 1/2 times the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ). As shown, the short-circuit current I Ry is multiplied by 1/3 1/2 to calculate a corrected short-circuit current I Ry '.
I Ry '= I Ry / 3 1/2
| I Ry '| = | I Ry | / 3 1/2 = | I FR | = | I FS |

さらに、電圧抑制付過電流継電器50は、短絡事故が発生したと判定すると、以下のようにして事故様相の判定の結果に応じて抑制電圧VRyを算出する。 Furthermore, when the overcurrent relay with voltage suppression 50 determines that a short circuit accident has occurred, it calculates the suppression voltage V Ry according to the determination result of the accident aspect as follows.

上述した第1の事故様相判定方法を用いて事故様相を判定する場合には、以下に示すようにして抑制電圧VRyを求める。
(1)正常時
計器用変圧器6から入力されるR相およびS相の相電圧VR,VSより求めたR相−S相の線間電圧VRSを抑制電圧VRyとする。
Ry=VRS
(2)R相−S相間の短絡事故の場合
計器用変圧器6から入力されるR相およびS相の相電圧VR,VSより求めたR相−S相の線間電圧VRSを抑制電圧VRyとする。
Ry=VRS
(3)S相−T相間の短絡事故の場合
計器用変圧器6から入力されるS相およびT相の相電圧VS,VTより求めたS相−T相の線間電圧VSTを抑制電圧VRyとする。
Ry=VST
(4)T相−R相間の短絡事故の場合
計器用変圧器6から入力されるT相およびR相の相電圧VT,VRより求めたT相−R相の線間電圧VTRを抑制電圧VRyとする。
Ry=VTR
(5)R相−S相−T相間の短絡事故の場合
計器用変圧器6から入力されるR相およびS相の相電圧VR,VSより求めたR相−S相の線間電圧VRSを抑制電圧VRyとする。
Ry=VRS
When the accident aspect is determined using the first accident aspect determination method described above, the suppression voltage V Ry is obtained as follows.
(1) Normal time The R-phase and S-phase line voltage V RS obtained from the R-phase and S-phase voltages V R and V S inputted from the instrument transformer 6 is defined as a suppression voltage V Ry .
V Ry = V RS
(2) In case of short-circuit accident between R-phase and S-phase R-phase and S-phase line voltage V RS obtained from R-phase and S-phase phase voltages V R and V S input from instrument transformer 6 The suppression voltage is V Ry .
V Ry = V RS
(3) In the case of a short-circuit accident between the S phase and the T phase The S-phase and T-phase line voltage V ST obtained from the S-phase and T-phase phase voltages V S and V T input from the instrument transformer 6 The suppression voltage is V Ry .
V Ry = V ST
(4) In the case of a short-circuit accident between the T phase and the R phase The line voltage V TR between the T phase and the R phase obtained from the phase voltages V T and V R of the T phase and the R phase input from the instrument transformer 6 The suppression voltage is V Ry .
V Ry = V TR
(5) In case of short-circuit accident between R phase, S phase, and T phase R-phase and S-phase line voltage obtained from R-phase and S-phase phase voltages V R and V S input from instrument transformer 6 Let V RS be the suppression voltage V Ry .
V Ry = V RS

上述した第2または第3の事故様相判定方法を用いて事故様相を判定する場合には、計器用変圧器6から入力されるT相およびR相の相電圧VT,VRより求めたT相−R相の線間電圧VTR(図2(b)参照)を用いて、事故様相に応じて以下のようにして抑制電圧VRyを求める。
(1)正常時
Ry=V
ここで、V=VTR∠210°
(2)R相−S相間の短絡事故の場合
Ry=2×V×cos(60°+α)
ここで、V=VTR∠(210°+α)
(3)S相−T相間の短絡事故の場合
Ry=2×V×cos(60°+α)
ここで、V=VTR∠(210°−α)
(4)T相−R相間の短絡事故の場合
Ry=V
ここで、V=VTR∠210°
(5)R相−S相−T相間の短絡事故の場合
Ry=V
ここで、V=VTR∠210°
When the accident aspect is determined using the second or third accident aspect determination method described above, T obtained from the phase voltages V T and V R of the T phase and the R phase input from the instrument transformer 6 is used. Using the phase-R phase line voltage V TR (see FIG. 2B), the suppression voltage V Ry is obtained as follows according to the accident aspect.
(1) When normal V Ry = V
Here, V = V TR ∠210 °
(2) In case of short circuit accident between R phase and S phase V Ry = 2 × V × cos (60 ° + α)
Here, V = V TR ∠ (210 ° + α)
(3) In case of short circuit accident between S phase and T phase V Ry = 2 × V × cos (60 ° + α)
Here, V = V TR ∠ (210 ° −α)
(4) In case of short-circuit accident between T phase and R phase V Ry = V
Here, V = V TR ∠210 °
(5) In case of short circuit between R phase, S phase and T phase V Ry = V
Here, V = V TR ∠210 °

上述した第4の事故様相判定方法を用いて事故様相を判定する場合には、事故様相判定用変圧器110から入力される合成電圧VR-S-2Tを用いて、事故様相に応じて以下のようにして抑制電圧VRyを求める。
(1)正常時
Ry=VR-S-2T
(2)R相−S相間の短絡事故の場合
Ry=110×(VR-S-2T−83.15)/26.85
(3)S相−T相間の短絡事故の場合
Ry=110×(VR-S-2T−103.94)/6.06
(4)T相−R相間の短絡事故の場合
Ry=110×(VR-S-2T−20.79)/89.21
(5)R相−S相−T相間の短絡事故の場合
Ry=VR-S-2T
When the accident aspect is determined using the above-described fourth accident aspect determination method, the composite voltage V RS-2T input from the accident aspect determination transformer 110 is used, according to the accident aspect, as follows. Thus, the suppression voltage V Ry is obtained.
(1) When normal V Ry = V RS-2T
(2) In the case of a short-circuit accident between the R phase and the S phase V Ry = 110 × (V RS-2T −83.15) /26.85
(3) In the case of a short circuit accident between the S phase and the T phase V Ry = 110 × (V RS-2T −103.94) /6.06
(4) In the case of a short circuit accident between the T phase and the R phase V Ry = 110 × (V RS-2T -20.79) /89.21
(5) In case of short circuit between R phase, S phase and T phase V Ry = V RS-2T

上述した第5の事故様相判定方法を用いて事故様相を判定する場合には、事故様相判定用変圧器120から入力される合成電圧VR-S+2Tを用いて、事故様相に応じて以下のようにして抑制電圧VRyを求める。
(1)正常時
Ry=VR-S+2T
(2)R相−S相間の短絡事故の場合
Ry=110×(VR-S+2T−83.15)/26.85
(3)S相−T相間の短絡事故の場合
Ry=110×(VR-S+2T−20.79)/89.21
(4)T相−R相間の短絡事故の場合
Ry=110×(VR-S+2T−103.94)/6.06
(5)R相−S相−T相間の短絡事故の場合
Ry=VR-S+2T
When the accident aspect is determined using the above-described fifth accident aspect determination method, the composite voltage V R-S + 2T input from the accident aspect determination transformer 120 is used to determine the accident aspect according to the accident aspect. Thus, the suppression voltage V Ry is obtained.
(1) When normal V Ry = V R-S + 2T
(2) In the case of a short circuit accident between the R phase and the S phase V Ry = 110 × (V R−S + 2T −83.15) /26.85
(3) In the case of a short circuit accident between S phase and T phase V Ry = 110 × (V R−S + 2T −20.79) /89.21
(4) In the case of a short-circuit accident between the T phase and the R phase V Ry = 110 × (V R−S + 2T −103.94) /6.06
(5) In case of short circuit between R phase, S phase and T phase V Ry = V R-S + 2T

電圧抑制付過電流継電器50は、抑制電圧VRyに応じて電流整定値の倍率を規定する電圧抑制特性によって決定される電流整定値を補正短絡電流IRy’の振幅が超えた場合には、第1乃至第3の遮断器21〜23を一括遮断する。なお、図5に電圧抑制特性の一例を示す。 The overcurrent relay with voltage suppression 50 corrects the current set value determined by the voltage suppression characteristic that defines the magnification of the current set value according to the suppression voltage V Ry when the amplitude of the correction short-circuit current I Ry ′ exceeds The first to third circuit breakers 2 1 to 2 3 are collectively cut off. FIG. 5 shows an example of voltage suppression characteristics.

次に、本発明の第2の実施例による電圧抑制付過電流継電装置について、図6乃至図8を参照して説明する。
本実施例による電圧抑制付過電流継電装置は、図6に示すように、送配電線のR相およびS相がクロスするように貫通された第1のクロス貫通変流器101と、送配電線のR相およびT相がクロスするように貫通された第2のクロス貫通変流器102と、第1のクロス貫通変流器101から入力される第1の短絡電流IRy1と母線に設置された計器用変圧器6から入力される電圧情報から求めたT相−R相の線間電圧VTRおよびR相の相電圧VRとに基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する第1の電圧抑制付過電流継電器501と、第2のクロス貫通変流器102から入力される第2の短絡電流IRy2と計器用変圧器6から入力される電圧情報から求めたT相−R相の線間電圧VTRおよびR相の相電圧VRとに基づいて送配電線の短絡事故を検出すると、第1乃至第3の遮断器21〜23を一括遮断する第2の電圧抑制付過電流継電器502とを具備する。
Next, an overcurrent relay device with voltage suppression according to a second embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 6, the overcurrent relay device with voltage suppression according to the present embodiment includes a first cross through current transformer 10 1 that is penetrated so that the R phase and the S phase of the transmission and distribution lines cross each other, A second cross through current transformer 10 2 that is penetrated so that the R phase and T phase of the power transmission and distribution line cross each other, and a first short-circuit current I Ry1 that is input from the first cross through current transformer 10 1. And T-R phase voltage V TR and R-phase voltage V R obtained from the voltage information input from the voltage transformer 6 installed on the bus, When detected, the first overcurrent relay 50 1 with voltage suppression that collectively shuts off the first to third circuit breakers 2 1 to 2 3 installed in the R phase, S phase, and T phase of the transmission and distribution lines, voltage information input from the second short-circuit current I Ry2 and instrument transformer 6 which is input from the second cross through current transformer 10 2 When a short circuit accident of the transmission / distribution line is detected based on the T-phase to R-phase line voltage V TR and the R-phase phase voltage V R obtained from the information, the first to third circuit breakers 2 1 to 2 3 And a second overcurrent relay with voltage suppression 50 2 that collectively cuts off the power.

ここで、第1のクロス貫通変流器101は、2次コイルを巻装した環状鉄心に送配電線のR相およびS相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器であり、第2のクロス貫通変流器102は、2次コイルを巻装した環状鉄心に送配電線のR相およびT相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器である。
すなわち、送配電線のR相は第1のクロス貫通変流器101の極性方向に貫通されているが、送配電線のS相は第1のクロス貫通変流器101の反極性方向に貫通されている。同様に、送配電線のR相は第2のクロス貫通変流器102の極性方向に貫通されているが、送配電線のT相は第2のクロス貫通変流器102の反極性方向に貫通されている。
Here, the first cross through the current transformer 10 1, through which is passed through by a cross at any angle and R-phase and S-phase of the transmission and distribution lines to the annular core formed by winding a secondary coil in the opposite direction forms a current transformer, a second cross through current transformer 10 2, by the cross at any angle and R-phase and T-phase of the transmission and distribution lines to the annular core formed by winding a secondary coil in the opposite direction This is a through-type current transformer.
Ie, R-phase of the electric transmission has been through the first polarity direction of the cross through the current transformer 10 1, S-phase first opposite polarity direction of the cross through the current transformer 10 first transmission and distribution lines It is penetrated by. Similarly, R-phase of the electric transmission has been through the second polarity direction of the cross through the current transformer 10 2, T-phase of the electric transmission a second opposite polarity cross the through current transformer 10 2 Penetrated in the direction.

したがって、短絡事故が発生していないときに送配電線のR相、S相およびT相に流れる負荷電流をIR,IS,ITで表すと、図7に示すようにR相の負荷電流IRとS相の負荷電流ISとが120°の位相差で第1のクロス貫通変流器101の環状鉄心を貫通して流れるため、第1のクロス貫通変流器101から電圧抑制付過電流継電器501に入力される第1の負荷電流I1は、R相の負荷電流IRとS相の負荷電流ISとのベクトル差となり、第1の負荷電流I1の振幅はR相の負荷電流IR(S相の負荷電流IS)の振幅の31/2倍となる。
1=IR−IS
|I1|=|IR−IS|=31/2×|IR|=31/2×|IS
このように、第1の負荷電流I1の振幅はR相の負荷電流IR(S相の負荷電流IS)の振幅の31/2倍となるため、第1の電圧抑制付過電流継電器501は、次式で示すように第1の負荷電流I1を1/31/2倍して第1の補正負荷電流I1’を算出する。
1’=I1/31/2
|I1’|=|I1|/31/2=|IR|=|IS
同様に、図7に示すようにR相の負荷電流IRとT相の負荷電流ITとが120°の位相差で第2のクロス貫通変流器102の環状鉄心を貫通して流れるため、第2のクロス貫通変流器102から第2の電圧抑制付過電流継電器502に入力される第2の負荷電流I2は、R相の負荷電流IRとT相の負荷電流ITとのベクトル差となり、第2の負荷電流I2の振幅はR相の負荷電流IR(T相の負荷電流IT)の振幅の31/2倍となる。
2=IR−IT
|I2|=|IR−IT|=31/2×|IR|=31/2×|IT
このように、第2の負荷電流I2の振幅はR相の負荷電流IR(T相の負荷電流IT)の振幅の31/2倍となるため、第2の電圧抑制付過電流継電器502は、次式で示すように第2の負荷電流I2を1/31/2倍して第2の補正負荷電流I2’を算出する。
2’=I2/31/2
|I2’|=|I2|/31/2=|IR|=|IT
Therefore, when the load currents flowing in the R phase, S phase, and T phase of the transmission and distribution line when no short circuit accident has occurred are represented by I R , I S , and I T , as shown in FIG. because the load current I S of the current I R and S-phase flow through the first cross through the current transformer 10 first annular core with a phase difference of 120 °, the first cross through current transformer 10 1 The first load current I 1 input to the overcurrent relay with voltage suppression 50 1 is a vector difference between the R-phase load current I R and the S-phase load current I S, and the first load current I 1 The amplitude is 3 1/2 times the amplitude of the R-phase load current I R (S-phase load current I S ).
I 1 = I R −I S
| I 1 | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I S |
Thus, since the amplitude of the first load current I 1 is 3 1/2 times the amplitude of the R-phase load current I R (S-phase load current I S ), the first overcurrent with voltage suppression is provided. The relay 50 1 calculates the first corrected load current I 1 ′ by multiplying the first load current I 1 by 1/3 1/2 as shown by the following equation.
I 1 '= I 1/3 1/2
| I 1 '| = | I 1 | / 3 1/2 = | I R | = | I S |
Similarly, flow through the load current I R and T phases of the load current I T and the second cross through current transformer 10 and second annular core with a phase difference of 120 ° in the R-phase as shown in FIG. 7 Therefore, the second load current I 2 input from the second cross-through current transformer 10 2 to the second overcurrent relay 50 2 with voltage suppression is the R-phase load current I R and the T-phase load current. It becomes a vector difference from I T, and the amplitude of the second load current I 2 is 3 1/2 times the amplitude of the R-phase load current I R (T-phase load current I T ).
I 2 = I R −I T
| I 2 | = | I R −I T | = 3 1/2 × | I R | = 3 1/2 × | I T |
Thus, since the amplitude of the second load current I 2 is 3 1/2 times the amplitude of the R-phase load current I R (T-phase load current I T ), the second overcurrent with voltage suppression is applied. The relay 50 2 calculates the second corrected load current I 2 ′ by multiplying the second load current I 2 by 1/3 1/2 as shown by the following equation.
I 2 '= I 2/3 1/2
| I 2 '| = | I 2 | / 3 1/2 = | I R | = | I T |

第1および第2の電圧抑制付過電流継電器501,502は、上述した第1乃至第5の事故様相判定方法のいずれか1つを用いて短絡事故の発生および事故様相を判定する。
また、第1および第2の電圧抑制付過電流継電器501,502は、短絡事故が発生したと判定すると、以下のようにして、事故様相の判定の結果に応じて第1および第2の補正短絡電流IRy1’,IRy2’をそれぞれ算出する。
The first and second overcurrent relays with voltage suppression 50 1 , 50 2 determine the occurrence of a short circuit accident and the accident aspect using any one of the first to fifth accident aspect determination methods described above.
Further, when the first and second overcurrent relays with voltage suppression 50 1 , 50 2 determine that a short-circuit accident has occurred, the first and second overcurrent relays 50 1 , 50 2 according to the determination result of the accident aspect as follows. correction circuit current I Ry1 ', I Ry2' is calculated respectively.

・ R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図6に破線の矢印で示すように送配電線のR相にR相の短絡電流IFRが内部方向に流れ、送配電線のS相にS相の短絡電流IFSが外部方向に流れるが、送配電線のT相にはT相の短絡電流IFTが流れない。
したがって、第1のクロス貫通変流器101から第1の電圧抑制付過電流継電器501に入力される第1の短絡電流IRy1は、図6に太矢印の実線で示すようにR相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる(図8(a)参照。なお、図8においては、送配電線の内部方向に流れる短絡電流IFR,IFS,IFTは実線の矢印で、送配電線の外部方向に流れる短絡電流IFR,IFS,IFTは一点鎖線の矢印で示している。)。
Ry1=IFR−IFS
|IRy1|=|IFR−IFS|=2×|IFR|=2×|IFS
このように、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となるため、第1の電圧抑制付過電流継電器501は、次式で示すように第1の短絡電流IRy1を1/2倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1/2
|IRy1’|=|IRy1|/2=|IFR|=|IFS
また、第2のクロス貫通変流器102から第2の電圧抑制付過電流継電器502に入力される第2の短絡電流IRy2は、図6に太矢印の破線で示すようにR相の短絡電流IFRとなり、第2の短絡電流IRy2の振幅はR相の短絡電流IFRの振幅となる(図8(a)参照)。
Ry2=IFR
|IRy2|=|IFR
このように、第2の短絡電流IRy2の振幅はR相の短絡電流IFRの振幅となるため、第2の電圧抑制付過電流継電器502は、次式で示すように第2の短絡電流IRy2を1倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2
|IRy2’|=|IRy2|=|IFR
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、送配電線のS相にS相の短絡電流IFSが内部方向に流れ、送配電線のT相にT相の短絡電流IFTが外部方向に流れるが、送配電線のR相にはR相の短絡電流IFRが流れない。
したがって、第1のクロス貫通変流器101から第1の電圧抑制付過電流継電器501に入力される第1の短絡電流IRy1は、極性が負のS相の短絡電流−IFSとなり、第1の短絡電流IRy1の振幅は、S相の短絡電流IFSの振幅となる(図8(b)参照)。
Ry1=−IFS
|IRy1|=|IFS
このように、第1の短絡電流IRy1の振幅はS相の短絡電流IFSの振幅となるため、第1の電圧抑制付過電流継電器501は、次式で示すように第1の短絡電流IRy1を1倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1
|IRy1’|=|IRy1|=|IFS
また、第2のクロス貫通変流器102から第2の電圧抑制付過電流継電器502に入力される第2の短絡電流IRy2は、極性が負のT相の短絡電流−IFTとなり、第2の短絡電流IRy2の振幅はT相の短絡電流IFTの振幅となる(図8(b)参照)。
Ry2=−IFT
|IRy2|=|IFT
このように、第2の短絡電流IRy2の振幅はT相の短絡電流IFTの振幅となるため、第2の電圧抑制付過電流継電器502は、次式で示すように第2の短絡電流IRy2を1倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2
|IRy2’|=|IRy2|=|IFT
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、送配電線のT相にT相の短絡電流IFTが内部方向に流れ、送配電線のR相にR相の短絡電流IFRが外部方向に流れるが、送配電線のS相にはS相の短絡電流IFSが流れない。
したがって、第1のクロス貫通変流器101から第1の電圧抑制付過電流継電器501に入力される第1の短絡電流IRy1は、R相の短絡電流IFRとなり、第1の短絡電流IRy1の振幅はR相の短絡電流IFRの振幅となる(図8(c)参照)。
Ry1=IFR
|IRy1|=|IFR
このように、第1の短絡電流IRy1の振幅はR相の短絡電流IFRの振幅となるため、第1の電圧抑制付過電流継電器501は、次式で示すように第1の短絡電流IRy1を1倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1
|IRy1’|=|IRy1|=|IFR
また、第2のクロス貫通変流器102から第2の電圧抑制付過電流継電器502に入力される第2の短絡電流IRy2は、R相の短絡電流IFRとT相の短絡電流IFTとのベクトル差となり、第2の短絡電流IRy2の振幅はR相の短絡電流IFR(T相の短絡電流IFT)の振幅の2倍となる(図8(c)参照)。
Ry2=IFR−IFT
|IRy2|=|IFR−IFT|=2×|IFR|=2×|IFT
このように、第2の短絡電流IRy2の振幅はR相の短絡電流IFR(T相の短絡電流IFT)の振幅の2倍となるため、第2の電圧抑制付過電流継電器502は、次式で示すように第2の短絡電流IRy2を1/2倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2/2
|IRy2’|=|IRy2|/2=|IFR|=|IFT
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、送配電線のR相、S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120°で内部方向にそれぞれ流れる。
したがって、第1のクロス貫通変流器101から第1の電圧抑制付過電流継電器501に入力される第1の短絡電流IRy1はR相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の31/2倍となる(図8(d)参照)。
Ry1=IFR−IFS
|IRy1|=|IFR−IFS|=31/2×|IFR|=31/2×|IFS
このように、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の31/2倍となるため、第1の電圧抑制付過電流継電器501は、次式で示すように第1の短絡電流IRy1を1/31/2倍して第1の補正短絡電流IRy1’を算出する。
Ry1’=IRy1/31/2
|IRy1’|=|IRy1|/31/2=|IFR|=|IFS
また、第2のクロス貫通変流器102から第2の電圧抑制付過電流継電器502に入力される第2の短絡電流IRy2はR相の短絡電流IFRとT相の短絡電流IFTとのベクトル差となり、第2の短絡電流IRy2の振幅はR相の短絡電流IFR(T相の短絡電流IFT)の振幅の31/2倍となる(図8(d)参照)。
Ry2=IFR−IFT
|IRy2|=|IFR−IFT|=31/2×|IFR|=31/2×|IFT
このように、第2の短絡電流IRy2の振幅はR相の短絡電流IFR(T相の短絡電流IFT)の振幅の31/2倍となるため、第2の電圧抑制付過電流継電器502は、次式で示すように第2の短絡電流IRy2を1/31/2倍して第2の補正短絡電流IRy2’を算出する。
Ry2’=IRy2/31/2
|IRy2’|=|IRy2|/31/2=|IFR|=|IFT
In the case of a short-circuit accident between R phase and S phase When a short circuit accident between R phase and S phase occurs, the short circuit current I FR of the R phase is internally directed to the R phase of the transmission and distribution line as shown by the dashed arrows in FIG. The S-phase short-circuit current I FS flows to the outside in the S-phase of the transmission and distribution line, but the T-phase short-circuit current I FT does not flow in the T-phase of the transmission and distribution line.
Therefore, the first short-circuit current I Ry1 input from the first cross-through current transformer 10 1 to the first overcurrent relay 50 1 with voltage suppression is the R phase as shown by the solid line in FIG. Vector short-circuit current I FR and S-phase short-circuit current I FS, and the amplitude of the first short-circuit current I Ry1 is twice the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ). (Refer to FIG. 8 (a). In FIG. 8, the short-circuit currents I FR , I FS , and I FT flowing in the internal direction of the transmission and distribution lines are solid arrows, and the short circuit flows in the external direction of the transmission and distribution line. The currents I FR , I FS , and I FT are indicated by alternate long and short dashed arrows.)
I Ry1 = I FR -I FS
| I Ry1 | = | I FR −I FS | = 2 × | I FR | = 2 × | I FS |
Thus, since the amplitude of the first short-circuit current I Ry1 is twice the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ), the first overcurrent relay with voltage suppression 50 1 As shown in the following equation, the first corrected short-circuit current I Ry1 ′ is calculated by multiplying the first short-circuit current I Ry1 by ½.
I Ry1 '= I Ry1 / 2
| I Ry1 '| = | I Ry1 | / 2 = | I FR | = | I FS |
Further, the second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second overcurrent relay 50 2 with voltage suppression is the R-phase as shown by the broken line in FIG. short-circuit current I FR next to the amplitude of the second short-circuit current I Ry2 is the amplitude of the short-circuit current I FR of R-phase (see FIG. 8 (a)).
I Ry2 = I FR
| I Ry2 | = | I FR
Thus, since the amplitude of the second short-circuit current I Ry2 becomes the amplitude of the R-phase short-circuit current I FR , the second overcurrent relay with voltage suppression 50 2 has a second short-circuit as shown in the following equation. The current I Ry2 is multiplied by 1 to calculate a second corrected short-circuit current I Ry2 ′.
I Ry2 '= I Ry2
| I Ry2 '| = | I Ry2 | = | I FR |
(2) In the case of a short-circuit accident between the S phase and the T phase When a short circuit accident between the S phase and the T phase occurs, the S phase short circuit current I FS flows in the S phase of the transmission and distribution line in the internal direction, and the T of the transmission and distribution line Although the T-phase short-circuit current I FT flows in the external direction in the phase, the R-phase short-circuit current I FR does not flow in the R-phase of the transmission and distribution line.
Accordingly, the first short-circuit current I Ry1 input from the first cross-through current transformer 10 1 to the first overcurrent relay 50 1 with voltage suppression is the S-phase short-circuit current −I FS having a negative polarity. The amplitude of the first short-circuit current I Ry1 is the amplitude of the S-phase short-circuit current I FS (see FIG. 8B).
I Ry1 = −I FS
| I Ry1 | = | I FS |
Thus, since the amplitude of the first short-circuit current I Ry1 is the amplitude of the S-phase short-circuit current I FS , the first overcurrent relay with voltage suppression 50 1 has the first short-circuit as shown in the following equation. The current I Ry1 is multiplied by 1 to calculate a first corrected short-circuit current I Ry1 ′.
I Ry1 '= I Ry1
| I Ry1 '| = | I Ry1 | = | I FS |
Further, the second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second overcurrent relay with voltage suppression 50 2 becomes a T-phase short-circuit current −I FT having a negative polarity. The amplitude of the second short-circuit current I Ry2 is the amplitude of the T-phase short-circuit current I FT (see FIG. 8B).
I Ry2 = −I FT
| I Ry2 | = | I FT |
Thus, since the amplitude of the second short-circuit current I Ry2 becomes the amplitude of the T-phase short-circuit current I FT , the second overcurrent relay with voltage suppression 50 2 has a second short-circuit as shown in the following equation. The current I Ry2 is multiplied by 1 to calculate a second corrected short-circuit current I Ry2 ′.
I Ry2 '= I Ry2
| I Ry2 '| = | I Ry2 | = | I FT |
(3) In the case of a short circuit accident between the T phase and the R phase When a short circuit accident occurs between the T phase and the R phase, a T phase short circuit current I FT flows in the T phase of the transmission and distribution line, and the R of the transmission and distribution line. While the short-circuit current I FR of R-phase to phase flows to the outside direction, the S-phase of the transmission and distribution lines does not flow a short-circuit current I FS of S phase.
Accordingly, the first short-circuit current I Ry1 input from the first cross-through current transformer 10 1 to the first overcurrent relay 50 1 with voltage suppression becomes the R-phase short-circuit current I FR , and the first short circuit The amplitude of the current I Ry1 is the amplitude of the R-phase short-circuit current I FR (see FIG. 8C).
I Ry1 = I FR
| I Ry1 | = | I FR
Thus, since the amplitude of the first short-circuit current I Ry1 is the amplitude of the R-phase short-circuit current I FR , the first short-circuit overcurrent relay 50 1 has the first short-circuit as shown in the following equation. The current I Ry1 is multiplied by 1 to calculate a first corrected short-circuit current I Ry1 ′.
I Ry1 '= I Ry1
| I Ry1 '| = | I Ry1 | = | I FR |
The second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second overcurrent relay with voltage suppression 50 2 includes the R-phase short-circuit current I FR and the T-phase short-circuit current. It becomes a vector difference from I FT, and the amplitude of the second short-circuit current I Ry2 is twice the amplitude of the R-phase short-circuit current I FR (T-phase short-circuit current I FT ) (see FIG. 8C).
I Ry2 = I FR −I FT
| I Ry2 | = | I FR −I FT | = 2 × | I FR | = 2 × | I FT |
Thus, since the amplitude of the second short-circuit current I Ry2 is twice the amplitude of the R-phase short-circuit current I FR (T-phase short-circuit current I FT ), the second overcurrent relay with voltage suppression 50 2 is used. As shown by the following equation, the second corrected short-circuit current I Ry2 ′ is calculated by multiplying the second short-circuit current I Ry2 by ½.
I Ry2 '= I Ry2 / 2
| I Ry2 '| = | I Ry2 | / 2 = | I FR | = | I FT |
(4) In the case of a short circuit accident between R phase, S phase, and T phase When a short circuit accident between R phase, S phase, and T phase occurs, short circuit current I of R phase to R phase, S phase, and T phase of the transmission and distribution line FR and S-phase short-circuit current I FS and T-phase short-circuit current I FT flow in the internal direction with a phase difference of 120 °.
Therefore, the first short-circuit current I Ry1 input from the first cross-through current transformer 10 1 to the first overcurrent relay 50 1 with voltage suppression is the R-phase short-circuit current I FR and the S-phase short-circuit current I. becomes a vector difference between the FS, the amplitude of the first short-circuit current I Ry1 is three half the amplitude of the short-circuit current I FR of R-phase (short-circuit current I FS of S phase) (see FIG. 8 (d) ).
I Ry1 = I FR -I FS
| I Ry1 | = | I FR −I FS | = 3 1/2 × | I FR | = 3 1/2 × | I FS |
Thus, since the amplitude of the first short-circuit current I Ry1 is 3 1/2 times the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ), the first overcurrent with voltage suppression The relay 50 1 calculates the first corrected short-circuit current I Ry1 ′ by multiplying the first short-circuit current I Ry1 by 1/3 1/2 as shown by the following equation.
I Ry1 '= I Ry1 / 3 1/2
| I Ry1 '| = | I Ry1 | / 3 1/2 = | I FR | = | I FS |
The second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second overcurrent relay 50 2 with voltage suppression is an R-phase short-circuit current I FR and a T-phase short-circuit current I. This is a vector difference from FT, and the amplitude of the second short-circuit current I Ry2 is 3 1/2 times the amplitude of the R-phase short-circuit current I FR (T-phase short-circuit current I FT ) (see FIG. 8D). ).
I Ry2 = I FR −I FT
| I Ry2 | = | I FR −I FT | = 3 1/2 × | I FR | = 3 1/2 × | I FT |
Thus, the amplitude of the second short-circuit current I Ry2 is 3 1/2 times the amplitude of the R-phase short-circuit current I FR (T-phase short-circuit current I FT ). The relay 50 2 calculates the second corrected short-circuit current I Ry2 ′ by multiplying the second short-circuit current I Ry2 by 1/3 1/2 as shown by the following equation.
I Ry2 '= I Ry2 / 3 1/2
| I Ry2 '| = | I Ry2 | / 3 1/2 = | I FR | = | I FT |

また、第1および第2の電圧抑制付過電流継電器501,502は、短絡事故が発生したと判定すると、上述したようにして、事故様相の判定の結果に応じて抑制電圧VRyを算出する。 When the first and second overcurrent relays with voltage suppression 50 1 and 50 2 determine that a short-circuit accident has occurred, the suppression voltage V Ry is set according to the determination result of the accident aspect as described above. calculate.

第1および第2の電圧抑制付過電流継電器501,502は、抑制電圧VRyに応じて電流整定値の倍率を規定する電圧抑制特性(図5参照)によって決定される電流整定値を第1および第2の補正短絡電流IRy1’,IRy2’の振幅が超えた場合には、第1乃至第3の遮断器21〜23を一括遮断する。 The first and second overcurrent relays 50 1 , 50 2 with voltage suppression have current settling values determined by voltage suppression characteristics (see FIG. 5) that define the magnification of the current settling value according to the suppression voltage V Ry . the first and second correction circuit current I Ry1 ', I Ry2' when the amplitude of is exceeded, the batch cut off the first to third circuit breaker 2 1 to 2 3.

以上の説明では、第1のクロス貫通変流器101には送配電線のR相およびS相をクロスさせて貫通させるとともに第2のクロス貫通変流器102には送配電線のR相およびT相をクロスさせて貫通させたが、第1および第2のクロス貫通変流器101,102にクロスさせて貫通させる送配電線の2相は他の組合せでもよい。 In the above description, the first cross through current transformer 10 1 second to cross through the current transformer 10 2 electric transmission causes penetrate by crossed R phase and the S-phase of the electric transmission on R Although the phase and the T phase are crossed and penetrated, the two phases of the transmission and distribution lines that are crossed and penetrated by the first and second cross through current transformers 10 1 and 10 2 may be other combinations.

また、上述した第4の事故様相判定方法においてR相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを反極性方向で2倍して合成するように事故様相判定用変圧器110の2次側を結線し、上述した第5の事故様相判定方法においてR相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを極性方向で2倍して合成するように事故様相判定用変圧器120の2次側を結線したが、R相の相電圧VRを極性方向または反極性方向でa倍して、S相の相電圧VSを極性方向または反極性方向でb倍して、T相の相電圧VTを極性方向または反極性方向でc倍して合成するように事故様相判定用変圧器の2次側を結線してもよい。この事故様相判定用変圧器から出力される合成電圧VaR+bS+cTは次式で表される。
aR+bS+cT=±aVR±bVS±cVT
Further, in the fourth accident mode determination method described above, the R-phase phase voltage V R is 2 in the polarity direction, the S-phase phase voltage V S is in the opposite polarity direction, and the T-phase phase voltage V T is 2 in the opposite polarity direction. The secondary side of the accident aspect determination transformer 110 is connected so as to be combined, and in the fifth accident aspect determination method described above, the phase voltage V R of the R phase is in the polarity direction and the phase voltage V of the S phase. the S in the opposite polarity direction, has been connected to the secondary side of the accident aspect determination transformer 120 to combine with double the polarity direction phase voltage V T of the T-phase, the phase voltage V R of the R-phase Multiply a in the polar or antipolar direction by a, multiply the S phase voltage V S by b in the polar or antipolar direction, and multiply the T phase voltage V T by c in the polar or antipolar direction The secondary side of the accident mode determination transformer may be connected so as to be combined. The composite voltage V aR + bS + cT output from this accident aspect determination transformer is expressed by the following equation.
V aR + bS + cT = ± aV R ± bV S ± cV T

以上では、送配電線において使用される電圧抑制付過電流継電器との組合せでクロス貫通変流器について説明したが、クロス貫通変流器は、送配電線以外の三相交流回路において使用されている電圧抑制付過電流継電器と組み合わせても、同様の効果を得ることができる。
また、クロス貫通変流器の環状鉄心には三相交流回路の任意の2相を逆向きに1回クロスさせて貫通させたが、三相交流回路の任意の2相が2回以上クロスしてクロス貫通変流器を貫通するように、三相交流回路の任意の2相をクロス貫通変流器の環状鉄心に同じ回数または異なる回数だけ巻いてもよい。
In the above, the cross-through current transformer has been described in combination with the overcurrent relay with voltage suppression used in the transmission / distribution line, but the cross-through current transformer is used in a three-phase AC circuit other than the transmission / distribution line. Similar effects can be obtained by combining with an overcurrent relay with voltage suppression.
In addition, any two phases of the three-phase AC circuit are crossed once in the opposite direction through the annular core of the cross-through current transformer, but any two phases of the three-phase AC circuit cross two or more times. Thus, any two phases of the three-phase AC circuit may be wound around the annular core of the cross-through current transformer the same number or different times so as to penetrate the cross-through current transformer.

本発明の第1の実施例による電圧抑制付過電流継電装置について説明するための図である。It is a figure for demonstrating the overcurrent relay apparatus with a voltage suppression by 1st Example of this invention. 短絡事故が発生していないときに図1に示したクロス貫通変流器10から電圧抑制付過電流継電器50に入力される負荷電流Iおよび図1に示した計器用変圧器6から電圧抑制付過電流継電器50に入力されるT相−R相の線間電圧VTRおよびR相の相電圧VRについて説明するための図である。The load current I input to the overcurrent relay 50 with voltage suppression from the cross-through current transformer 10 shown in FIG. 1 and the voltage suppression from the instrument transformer 6 shown in FIG. FIG. 5 is a diagram for explaining a T-phase-R phase line voltage V TR and an R-phase phase voltage V R input to the overcurrent relay 50. 短絡事故が発生したときに図1に示した計器用変圧器6から電圧抑制付過電流継電器50に入力されるT相−R相の線間電圧VTRおよびR相の相電圧VRについて説明するための図である。The T-phase to R-phase line voltage V TR and the R-phase phase voltage V R input to the overcurrent relay 50 with voltage suppression from the instrument transformer 6 shown in FIG. 1 when a short circuit accident occurs will be described. It is a figure for doing. 短絡事故が発生したときに図1に示したクロス貫通変流器10から電圧抑制付過電流継電器50に入力される短絡電流IRYについて説明するための図である。It is a figure for demonstrating the short circuit current IRY input into the overcurrent relay 50 with a voltage suppression from the cross penetration current transformer 10 shown in FIG. 1 when a short circuit accident generate | occur | produces. 電圧抑制特性の一例を示す図である。It is a figure which shows an example of a voltage suppression characteristic. 本発明の第2の実施例による電圧抑制付過電流継電装置について説明するための図である。It is a figure for demonstrating the overcurrent relay apparatus with a voltage suppression by the 2nd Example of this invention. 短絡事故が発生していないときに図6に示した第1および第2のクロス貫通変流器101,102から第1および第2の電圧抑制付過電流継電器501,502にそれぞれ入力される第1および第2の負荷電流I1,I2について説明するための図である。When the short circuit accident does not occur, the first and second cross-through current transformers 10 1 and 10 2 shown in FIG. 6 are changed from the first and second overcurrent relays 50 1 and 50 2 with voltage suppression, respectively. first and second load current I is input 1 is a diagram for explaining I 2. 短絡事故が発生したときに図6に示した第1および第2のクロス貫通変流器101,102から第1および第2の電圧抑制付過電流継電器501,502にそれぞれ入力される第1および第2の短絡電流IRy1,IRy2について説明するための図である。When a short circuit accident occurs, the first and second cross-through current transformers 10 1 and 10 2 shown in FIG. 6 are input to the first and second overcurrent relays 50 1 and 50 2 with voltage suppression, respectively. is a diagram for explaining a first and second short-circuit current I Ry1, I Ry2 that. 電圧抑制付過電流継電器を送配電線の各相に設置して短絡事故からの保護を図る従来方法を説明するための図である。It is a figure for demonstrating the conventional method which installs the overcurrent relay with a voltage suppression in each phase of a power transmission and distribution line, and protects from a short circuit accident. 末端回路の送配電線などで電圧抑制付過電流継電器を2相にだけ設置して短絡事故からの保護を図る従来方法を説明するための図である。It is a figure for demonstrating the conventional method which aims at the protection from a short circuit accident by installing the overcurrent relay with a voltage suppression only in two phases by the transmission / distribution line etc. of a terminal circuit. 第3の事故様相判定方法について説明するための図である。It is a figure for demonstrating the 3rd accident aspect determination method. 第4の事故様相判定方法において用いられる事故様相判定用変圧器110の構成を示す図である。It is a figure which shows the structure of the transformer 110 for an accident aspect determination used in the 4th accident aspect determination method. 第5の事故様相判定方法において用いられる事故様相判定用変圧器120の構成を示す図である。It is a figure which shows the structure of the transformer 120 for accident aspect determination used in the 5th accident aspect determination method.

符号の説明Explanation of symbols

1 電源
1〜23 第1乃至第3の遮断器
1〜33 第1乃至第3の変流器
1〜43 第1乃至第3の電圧抑制付過電流継電器
6 計器用変圧器
10 クロス貫通変流器
101,102 第1および第2のクロス貫通変流器
50 電圧抑制付過電流継電器
501,502 第1および第2の電圧抑制付過電流継電器
I,IR,IS,IT 負荷電流
I’ 補正負荷電流
1,I2 第1および第2の負荷電流
1’,I2’ 第1および第2の補正負荷電流
Ry,IFR,IFS,IFT 短絡電流
Ry’ 補正短絡電流
Ry1,IRy2 第1および第2の短絡電流
Ry1’,IRy2’ 第1および第2の補正短絡電流
R,VS,VT 相電圧
RS,VST,VTR 線間電圧
Ry 抑制電圧
R-S-2T,VR-S+2T,VaR+bS+cT 合成電圧
θ インピーダンス角
α,β 角度範囲
γ,δ 第1および第2の角度範囲
k1,k2 第1および第2の電圧値
1〜K8 第1乃至第8の合成電圧値
ε1〜ε8 第1乃至第8の合成電圧角度範囲
λ1〜λ8 第1乃至第8の短絡電流角度範囲
1 power 2 1 to 2 3 first to third circuit breaker 3 1 to 3 3 first to third current transformer 41 to 3 first to third voltage overcurrent relay 6 potential transformers with suppressed 10. Cross-through current transformers 10 1 , 10 2 First and second cross-through current transformers 50 Overcurrent relays with voltage suppression 50 1 , 50 2 First and second overcurrent relays with voltage suppression I, I R , I S , I T Load current I ′ Corrected load currents I 1 , I 2 First and second load currents I 1 ′, I 2 ′ First and second corrected load currents I Ry , I FR , I FS, I FT short-circuit current I Ry 'correction circuit current I Ry1, I Ry2 first and second short-circuit current I Ry1', I Ry2 'first and second correction circuit current V R, V S, V T phase Voltage V RS , V ST , V TR Line voltage V Ry Suppression voltage V RS-2T , V R-S + 2T , V aR + bS + cT Composite voltage θ Impedance angle α, β Angle range γ, δ First and Second angle Circumference k1, k2 first to the first and composite voltage angular range lambda 1 to [lambda] 8 of the second voltage value K 1 ~K 8 first to composite voltage value epsilon 1 ~Ipushiron 8 eighth first to eighth second 8 short-circuit current angle range

Claims (4)

短絡事故から三相交流回路を保護するための電圧抑制付過電流継電装置であって、
2次コイルを巻装した環状鉄心に前記三相交流回路の任意の2相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器(10;101)と、
該クロス貫通変流器から入力される短絡電流(IRy;IRy1)と前記三相交流回路の電圧情報とに基づいて短絡事故を検出すると、該三相交流回路の各相に設置された第1乃至第3の遮断器(21〜23)を一括遮断させる電圧抑制付過電流継電器(50;501)と、
を具備することを特徴とする、電圧抑制付過電流継電装置。
An overcurrent relay device with voltage suppression for protecting a three-phase AC circuit from a short circuit accident,
A cross-through current transformer (10; 10 1 ) in which an arbitrary two phases of the three-phase AC circuit are crossed in an opposite direction and at an arbitrary angle through an annular core around which a secondary coil is wound;
When a short circuit fault is detected based on the short circuit current (I Ry ; I Ry1 ) input from the cross-through current transformer and the voltage information of the three-phase AC circuit, it is installed in each phase of the three-phase AC circuit. An overcurrent relay with voltage suppression (50; 50 1 ) that collectively shuts off the first to third circuit breakers (2 1 to 2 3 );
An overcurrent relay device with voltage suppression, comprising:
前記三相交流回路の短絡事故の事故様相を判定する事故様相判定手段と、
該事故様相判定手段における事故様相の判定結果に応じて、前記クロス貫通変流器から入力される前記短絡電流に所定の倍数を掛けて補正短絡電流(IRy’;IRy1’)を算出する補正短絡電流算出手段と、
をさらに具備することを特徴とする、請求項1記載の電圧抑制付過電流継電装置。
Accident aspect determining means for determining the accident aspect of the short circuit accident of the three-phase AC circuit;
A corrected short-circuit current (I Ry '; I Ry1 ') is calculated by multiplying the short-circuit current input from the cross-through current transformer by a predetermined multiple according to the determination result of the accident aspect in the accident aspect determination means. Corrected short-circuit current calculating means;
The overcurrent relay device with voltage suppression according to claim 1, further comprising:
前記電圧抑制付過電流継電器が、
前記事故様相判定手段における事故様相の判定結果に応じて、前記三相交流回路の電圧情報を用いて抑制電圧(VRy)を算出し、
該算出した抑制電圧に応じて電流整定値を規定する電圧抑制特性によって決定される電流整定値を前記算出した補正短絡電流の振幅が超えた場合に、前記第1乃至第3の遮断器を一括遮断する、
ことを特徴とする、請求項2記載の電圧抑制付過電流継電装置。
The overcurrent relay with voltage suppression is
In accordance with the determination result of the accident aspect in the accident aspect determination means, the suppression voltage (V Ry ) is calculated using the voltage information of the three-phase AC circuit,
When the amplitude of the calculated corrected short-circuit current exceeds a current set value determined by a voltage suppression characteristic that defines a current set value according to the calculated suppressed voltage, the first to third circuit breakers are collectively connected. Cut off,
The overcurrent relay device with voltage suppression according to claim 2, wherein:
2次コイルを巻装した環状鉄心に前記三相交流回路の前記任意の2相のうちの1相と該任意の2相以外の他の1相とが逆向きにかつ任意の角度でクロスさせて貫通させた他のクロス貫通変流器(102)と、
前記第2のクロス貫通変流器から入力される他の短絡電流(IRy2)と前記三相交流回路の電圧情報とに基づいて短絡事故を検出すると、前記第1乃至第3の遮断器を一括遮断させる他の電圧抑制付過電流継電器(502)と、
をさらに具備することを特徴とする、請求項1乃至3いずれかに記載の電圧抑制付過電流継電装置。
One phase of the arbitrary two phases of the three-phase AC circuit and one other phase other than the arbitrary two phases are crossed in an opposite direction and at an arbitrary angle on an annular core around which a secondary coil is wound. Other cross-penetrating current transformer (10 2 )
When a short-circuit fault is detected based on another short-circuit current (I Ry2 ) input from the second cross-through current transformer and voltage information of the three-phase AC circuit, the first to third circuit breakers are Overcurrent relay with other voltage suppression (50 2 ) to be cut off at once,
The overcurrent relay device with voltage suppression according to any one of claims 1 to 3, further comprising:
JP2008163551A 2007-07-25 2008-06-23 Overcurrent relay apparatus with voltage suppression function Withdrawn JP2009050147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008163551A JP2009050147A (en) 2007-07-25 2008-06-23 Overcurrent relay apparatus with voltage suppression function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007192955 2007-07-25
JP2008163551A JP2009050147A (en) 2007-07-25 2008-06-23 Overcurrent relay apparatus with voltage suppression function

Publications (1)

Publication Number Publication Date
JP2009050147A true JP2009050147A (en) 2009-03-05

Family

ID=40501829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163551A Withdrawn JP2009050147A (en) 2007-07-25 2008-06-23 Overcurrent relay apparatus with voltage suppression function

Country Status (1)

Country Link
JP (1) JP2009050147A (en)

Similar Documents

Publication Publication Date Title
US7319576B2 (en) Apparatus and method for providing differential protection for a phase angle regulating transformer in a power system
CN1902798B (en) Method and device for fault detection in transformers or power lines
EP2680385B1 (en) Differential protection in electrical power networks
JP2009077562A (en) Two-phase bushing current transformer and protective relay device
US20090086388A1 (en) Control method for preventing malfunction of over current ground relay due to reverse power
JP2010127860A (en) Device and method for measuring leak current
JP2009198442A (en) Voltage abnormality detection device and voltage protection relay device
JP2012075250A (en) Insulation ground fault monitoring device with adoption lock
JP2009077563A (en) Three-phase bushing current transformer and protective relay device
JP2009050147A (en) Overcurrent relay apparatus with voltage suppression function
Das et al. 13.8-kV selective high-resistance grounding system for a geothermal generating plant—A case study
JP2009044954A (en) Cross-through current transformer and protective relay system
JP2010166778A (en) Directional protective relay device and directional power relay device
JP2010148269A (en) Protective relay system
Ciontea et al. A feeder protection method against the phase-phase fault using symmetrical components
JP2009295839A (en) Cross through current transformer, terminal block, and protective relay device
JP2009077564A (en) Three-phase bushing current transformer and protective relay device
JP2010273478A (en) Method and system for detection of line-to-ground fault in dc and ac circuit
JP2009033818A (en) Overcurrent relay device with voltage suppression
JP2009077560A (en) Two-phase bushing current transformer, voltage transformer for judging failure situation and protective relay device
Sidhu et al. A numerical technique based on symmetrical components for protecting three-winding transformers
JP2010166777A (en) Directional protective relay device and directional power relay device
JP2010166784A (en) Different-line different-phase cross through current transformer and line selecting relay device
JP2010166782A (en) Directional protective relay device and directional power relay device
JP2010166781A (en) Directional protective relay device and directional power relay device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906