JP2009295839A - Cross through current transformer, terminal block, and protective relay device - Google Patents

Cross through current transformer, terminal block, and protective relay device Download PDF

Info

Publication number
JP2009295839A
JP2009295839A JP2008148919A JP2008148919A JP2009295839A JP 2009295839 A JP2009295839 A JP 2009295839A JP 2008148919 A JP2008148919 A JP 2008148919A JP 2008148919 A JP2008148919 A JP 2008148919A JP 2009295839 A JP2009295839 A JP 2009295839A
Authority
JP
Japan
Prior art keywords
phase
circuit
short
accident
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008148919A
Other languages
Japanese (ja)
Inventor
Yoshiaki Date
義明 伊達
Masami Takenaka
正実 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2008148919A priority Critical patent/JP2009295839A/en
Publication of JP2009295839A publication Critical patent/JP2009295839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cross through current transformer, a terminal block, and a protective relay device which are capable of furthermore reducing the number of installed current transformers and short-circuit protection relays for protecting a three-phase alternating circuit from short-circuit faults. <P>SOLUTION: A cross through current transformer 10 includes first and second primary conductors 12<SB>1</SB>and 12<SB>2</SB>and a toroidal core 16 having a secondary coil 14 wound therearound, wherein the first primary conductor 12<SB>1</SB>pierces the toroidal core 16 in a direction from a first aperture surface of the toroidal core 16 to a second aperture surface of the toroidal core 16, and the second primary conductor 12<SB>2</SB>pierces the toroidal core 16 in a direction from the second aperture surface of the toroidal core 16 to the first aperture surface of the toroidal core 16. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、クロス貫通変流器、端子台および保護継電装置に関し、特に、短絡事故から三相交流回路を保護するための変流器および短絡保護継電器の設置台数を削減するのに好適なクロス貫通変流器、端子台および保護継電装置に関する。   The present invention relates to a cross-through current transformer, a terminal block, and a protective relay device, and is particularly suitable for reducing the number of installed current transformers and short-circuit protective relays for protecting a three-phase AC circuit from a short-circuit accident. The present invention relates to a cross-through current transformer, a terminal block, and a protective relay device.

従来、三相交流回路では、短絡事故から三相交流回路を保護するために、変流器(CT)および過電流継電器(OC)を相ごとに設置している(たとえば下記の特許文献1参照)。   Conventionally, in a three-phase AC circuit, a current transformer (CT) and an overcurrent relay (OC) are installed for each phase in order to protect the three-phase AC circuit from a short circuit accident (for example, see Patent Document 1 below). ).

図15に、このような変流器として使用されている貫通変流器510の一例を示す。
貫通変流器510は、筐体511と、両端が入力側一次端子513Iおよび出力側一次端子513Oにそれぞれ取り付けられた一次導体512と、二次コイル514と、筐体511の上面に取り付けられたかつ二次コイル514の両端がそれぞれ接続された2個の二次端子515と、二次コイル514が巻装された環状鉄心516と、環状鉄心516の外周面および両側面を囲むように筐体511内部に取り付けられたシールド517と、筐体511の底面に取り付けられた取付具518とを具備する。
ここで、入力側一次端子513Iおよび出力側一次端子513Oに送配電線の1相を接続し一次導体512を介して貫通変流器510の極性方向に貫通させるために、筐体511には一次導体512を筐体511の一方の側面(図15図示左側の側面)から筐体511の他方の側面(同図示右側の側面)まで貫通させるための貫通孔が形成されており、環状鉄心516は第1および第2の開口面が筐体511の両側面とそれぞれ対向するように筐体511内部に取り付けられている。
また、二次コイル514、環状鉄心516およびシールド517は、樹脂によってモールドされて筐体511内に収納されている。
FIG. 15 shows an example of a through current transformer 510 used as such a current transformer.
The through current transformer 510 is attached to the casing 511, the primary conductor 512 having both ends attached to the input-side primary terminal 513 I and the output-side primary terminal 513 O , the secondary coil 514, and the upper surface of the casing 511. Two secondary terminals 515 to which both ends of the secondary coil 514 are respectively connected, an annular core 516 around which the secondary coil 514 is wound, and an outer peripheral surface and both side surfaces of the annular core 516 are surrounded. A shield 517 attached to the inside of the housing 511 and an attachment 518 attached to the bottom surface of the housing 511 are provided.
Here, in order to connect one phase of the power transmission / distribution line to the input-side primary terminal 513 I and the output-side primary terminal 513 O and pass through the primary conductor 512 in the polarity direction of the through current transformer 510, Is formed with a through hole for allowing the primary conductor 512 to pass through from one side surface (the left side surface in FIG. 15) to the other side surface (the right side surface in the same figure) of the housing 511. Reference numeral 516 is attached to the inside of the housing 511 so that the first and second opening surfaces respectively face both side surfaces of the housing 511.
Further, the secondary coil 514, the annular iron core 516, and the shield 517 are molded with resin and housed in the housing 511.

また、末端回路の送配電線などでは、過電流継電器を相ごとに設置する代わりに、短絡電流が2相に流れることを利用して過電流継電器を2相にだけ設置することにより、設備コストの抑制を図っている。
たとえば、図16に示すように、送配電線のR相、S相およびT相のうちR相およびT相にそれぞれ設置された第1および第2の貫通変流器5101,5102に第1および第2の過電流継電器41,42をそれぞれ接続して、送配電線において短絡事故が発生したときには、以下に示すように、その事故様相に応じて送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を第1および第2の過電流継電器41,42で一括遮断している。
(1)R相−S相間の短絡事故の場合
送配電線のR相およびS相に短絡電流が流れるので、R相に設置された第1の貫通変流器5101から入力される短絡電流に基づいて第1の過電流継電器41が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(2)S相−T相間の短絡事故の場合
送配電線のS相およびT相に短絡電流が流れるので、T相に設置された第2の変流器5102から入力される短絡電流に基づいて第2の過電流継電器42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(3)T相−R相間の短絡事故の場合
送配電線のR相およびT相に短絡電流が流れるので、R相およびT相にそれぞれ設置された第1および第2の変流器5101,5102からそれぞれ入力される短絡電流に応じて第1および第2の過電流継電器41,42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
(4)R相−S相−T相間の短絡事故の場合
R相、S相およびT相に短絡電流が流れるので、R相およびT相にそれぞれ設置された第1および第2の変流器5101,5102からそれぞれ入力される短絡電流に基づいて第1および第2の過電流継電器41,42が動作して第1乃至第3の遮断器21〜23を一括遮断する。
特開平8−005659号公報
In addition, in the case of terminal circuit transmission and distribution lines, instead of installing an overcurrent relay for each phase, by installing the overcurrent relay only in two phases using the short circuit current flowing in two phases, the equipment cost We are trying to suppress this.
For example, as shown in FIG. 16, first and second through current transformers 510 1 and 510 2 respectively installed in the R phase and the T phase of the R phase, S phase, and T phase of the transmission and distribution lines When the first and second overcurrent relays 4 1 and 4 2 are connected to each other and a short-circuit accident occurs in the transmission / distribution line, the R-phase, S The first to third circuit breakers 2 1 to 2 3 installed in the phase and the T phase are collectively disconnected by the first and second overcurrent relays 4 1 and 4 2 , respectively.
(1) Since the R-phase and short-circuit current in the S phase when transmission and distribution lines of a short circuit of the R-phase -S phase flows, the short-circuit current which is input through the first through current transformer 510 1 installed in the R phase first overcurrent relay 4 1 collectively cut off the first to third circuit breaker 2 1 to 2 3 operates based on.
(2) In the case of a short circuit accident between the S phase and the T phase Since a short circuit current flows in the S phase and the T phase of the transmission and distribution line, the short circuit current input from the second current transformer 5102 installed in the T phase Based on this, the second overcurrent relay 4 2 operates to cut off the first to third circuit breakers 2 1 to 2 3 at once .
(3) In the case of a short-circuit accident between the T-phase and the R-phase Since a short-circuit current flows in the R-phase and T-phase of the transmission and distribution line, the first and second current transformers 510 1 installed in the R-phase and T-phase, respectively. , first and second overcurrent relay 4 1, 4 2 are collectively cut off the first to third circuit breaker 2 1 to 2 3 operates in response to the short-circuit current which is inputted from the 510 2.
(4) In the case of a short circuit accident between the R phase, the S phase, and the T phase Since a short circuit current flows in the R phase, the S phase, and the T phase, the first and second current transformers installed in the R phase and the T phase, respectively. The first and second overcurrent relays 4 1 and 4 2 operate based on the short-circuit currents input from 510 1 and 510 2 , respectively, and collectively cut off the first to third circuit breakers 2 1 to 2 3. .
JP-A-8-005659

しかしながら、1つの送配電線につき貫通変流器および過電流継電器を3台または2台ずつ設置しているため、以下に示すような問題があった。
(1)貫通変流器および過電流継電器の設置台数を更に少なくして設備コストの削減を図りたいという要請がある。
(2)過電流継電器の設置台数が2台である場合には、自回路の短絡事故からは三相交流回路を保護することはできるが、過電流継電器を設置していない相と他回路にまたがる短絡事故については検出することができないため、電源側の短絡保護継電器で三相交流回路を保護することになるので、停電の範囲が拡大する。
(3)過電流継電器の設置台数が2台である場合には、1台の過電流継電器が故障または点検により使用できなくなると、短絡事故から三相交流回路を保護することができなくなる。
However, since three or two through current transformers and two overcurrent relays are installed for each transmission / distribution line, there are the following problems.
(1) There is a demand to reduce the installation cost by further reducing the number of through current transformers and overcurrent relays installed.
(2) If the number of overcurrent relays is two, the three-phase AC circuit can be protected from a short circuit accident in its own circuit, but the phase where no overcurrent relay is installed and other circuits Moreover, since the short circuit accident which straddles cannot be detected, the short circuit protection relay on the power source side protects the three-phase AC circuit, thereby expanding the range of the power failure.
(3) When there are two overcurrent relays installed, if one overcurrent relay becomes unavailable due to failure or inspection, the three-phase AC circuit cannot be protected from a short circuit accident.

このような問題は、変圧器内部の短絡事故から三相交流回路を保護するための電流差動継電器、構内における短絡事故から三相交流回路を保護するための受電保護継電器または分割受電保護継電器として使用されている過電流継電器や、送配電線の電源端母線側および受電端母線側にそれぞれ設置されて使用されるパルス符号変調電流差動継電器(PCM電流差動継電器)などについても存在する。   Such a problem is a current differential relay for protecting the three-phase AC circuit from a short circuit accident inside the transformer, a power receiving protection relay or a split power receiving protective relay for protecting the three phase AC circuit from a short circuit accident in the premises. There are also overcurrent relays used, and pulse code modulation current differential relays (PCM current differential relays) installed and used on the power supply terminal bus side and the power reception terminal bus side of the transmission and distribution lines.

本発明の目的は、短絡事故から三相交流回路を保護するための変流器および短絡保護継電器の設置台数を更に削減することができるクロス貫通変流器、端子台および保護継電装置を提供することにある。   An object of the present invention is to provide a cross-through current transformer, a terminal block, and a protective relay device that can further reduce the number of installed current transformers and short-circuit protective relays for protecting a three-phase AC circuit from a short-circuit accident. There is to do.

本発明のクロス貫通変流器は、第1および第2の一次導体(121,122;221,222)と、二次コイル(14;24)が巻装された鉄心(16;26)とを具備し、前記第1の一次導体が、前記鉄心の第1の開口面から該鉄心の第2の開口面への方向に貫通されており、前記第2の一次導体が、前記鉄心の前記第2の開口面から該鉄心の前記第1の開口面への方向に貫通されていることを特徴とする。
本発明の端子台は、本発明のクロス貫通変流器の機能を内蔵した端子台(30)であって、前記第1の一次導体(321)の両端部が、前記端子台内部で第1の外側端子(41O1)および第2の内側端子(41I2)にそれぞれ接続されており、前記第2の一次導体(322)の両端部が、前記端子台内部で第2の外側端子(41O2)および第1の内側端子(41I1)にそれぞれ接続されており、前記二次コイル(34)が巻装された鉄心(36)が、前記第1および第2の一次導体が該鉄心をクロスして貫通するように、前記第1の外側および内側端子と前記第2の外側および内側端子との間の前記端子台内部に設けられており、前記二次コイルの両端がそれぞれ接続された2個の二次端子(35)が、前記第1および第2の内側端子の間に設けられていることを特徴とする。
本発明の保護継電装置は、短絡事故から三相交流回路を保護するための保護継電装置であって、本発明のクロス貫通変流器(10;20)または本発明の端子台に内蔵されたクロス貫通変流器と、該クロス貫通変流器から入力される短絡電流(IRy;IRy1,IRy2)に基づいて短絡事故を検出すると、前記三相交流回路の各相に設置された遮断器(21〜23)を一括遮断させる短絡保護継電器(4;41,42)とを具備することを特徴とする。
ここで、前記三相交流回路の3つの線間電圧(VRS,VST,VTR)、3つの相電圧(VR,VS,VT)または相・線間電圧に基づいて該三相交流回路の短絡事故の事故様相を判定する事故様相判定手段をさらに具備してもよい。
前記三相交流回路の1つの線間電圧(VRS,VST,VTR)および1つの相電圧(VR,VS,VT)の電圧値および位相に基づいて該三相交流回路の短絡事故の事故様相を判定する事故様相判定手段をさらに具備してもよい。
前記三相交流回路の1つの線間電圧(VRS,VST,VTR)の電圧値および位相と前記クロス貫通変流器から入力される短絡電流(IRy)の位相とに基づいて該三相交流回路の短絡事故の事故様相を判定する事故様相判定手段をさらに具備してもよい。
2次側が前記三相交流回路の第1の相電圧(VR)を極性方向で該三相交流回路の第2の相の相電圧(VS)を反極性方向で該三相交流回路の第3の相電圧(VT)を反極性方向で2倍して合成するように結線されている事故様相判定用変圧器(110)と、該事故様相判定用変圧器から入力される合成電圧(VR-S-2T)の電圧値および位相と前記クロス貫通変流器から入力される短絡電流の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定する事故様相判定手段とをさらに具備してもよい。
2次側が前記三相交流回路の第1の相電圧(VR)を極性方向で該三相交流回路の第2の相の相電圧(VS)を反極性方向で該三相交流回路の第3の相電圧(VT)を極性方向で2倍して合成するように結線されている事故様相判定用変圧器(120)と、該事故様相判定用変圧器から入力される合成電圧(VR-S+2T)の電圧値および位相と前記クロス貫通変流器から入力される短絡電流の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定する事故様相判定手段とをさらに具備してもよい。
The cross-through current transformer of the present invention has a first and second primary conductors (12 1 , 12 2 ; 22 1 , 22 2 ) and an iron core (16; wound around) a secondary coil (14; 24). 26), wherein the first primary conductor is penetrated in a direction from the first opening surface of the iron core to the second opening surface of the iron core, and the second primary conductor is The iron core is penetrated in a direction from the second opening surface of the iron core to the first opening surface of the iron core.
The terminal block of the present invention is a terminal block (30) incorporating the function of the cross-through current transformer of the present invention, and both end portions of the first primary conductor (32 1 ) are arranged inside the terminal block. 1 is connected to an outer terminal (41 O1 ) and a second inner terminal (41 I2 ), respectively, and both ends of the second primary conductor (32 2 ) are connected to the second outer terminal inside the terminal block. (41 O2 ) and the first inner terminal (41 I1 ), respectively, and the iron core (36) around which the secondary coil (34) is wound is connected to the first and second primary conductors. It is provided inside the terminal block between the first outer and inner terminals and the second outer and inner terminals so as to cross and penetrate the iron core, and both ends of the secondary coil are connected to each other. Two secondary terminals (35) formed between the first and second inner terminals It is provided in.
The protective relay device of the present invention is a protective relay device for protecting a three-phase AC circuit from a short circuit accident, and is built in the cross-through current transformer (10; 20) of the present invention or the terminal block of the present invention. and cross through current transformer is, short-circuit current which is input from the cross through current transformer; upon detecting a short circuit based on (I Ry I Ry1, I Ry2 ), installed to each phase of the three-phase AC circuit And a short-circuit protective relay (4; 4 1 , 4 2 ) for collectively breaking the circuit breakers (2 1 to 2 3 ).
Here, based on the three line voltages (V RS , V ST , V TR ), the three phase voltages (V R , V S , V T ) or the phase / line voltage of the three-phase AC circuit, You may further comprise the accident aspect determination means which determines the accident aspect of the short circuit accident of a phase alternating circuit.
Based on the voltage value and phase of one line voltage (V RS , V ST , V TR ) and one phase voltage (V R , V S , V T ) of the three-phase AC circuit, You may further provide the accident aspect determination means which determines the accident aspect of a short circuit accident.
Based on the voltage value and phase of one line voltage (V RS , V ST , V TR ) of the three-phase AC circuit and the phase of the short-circuit current (I Ry ) input from the cross-through current transformer, You may further comprise the accident aspect determination means which determines the accident aspect of the short circuit accident of a three-phase alternating current circuit.
The secondary side supplies the first phase voltage (V R ) of the three-phase AC circuit in the polarity direction and the second phase phase voltage (V S ) of the three-phase AC circuit in the opposite polarity direction. A fault phase determination transformer (110) wired to synthesize the third phase voltage (V T ) by doubling in the opposite polarity direction, and a composite voltage input from the fault mode determination transformer Accident aspect determining means for determining the accident aspect of the short-circuit accident of the three-phase AC circuit based on the voltage value and phase of (V RS-2T ) and the phase of the short-circuit current input from the cross-through current transformer. Furthermore, you may comprise.
The secondary side supplies the first phase voltage (V R ) of the three-phase AC circuit in the polarity direction and the second phase phase voltage (V S ) of the three-phase AC circuit in the opposite polarity direction. A fault phase determination transformer (120) wired to synthesize the third phase voltage (V T ) by doubling in the polarity direction, and a composite voltage ( An accident mode determination means for determining an accident mode of a short circuit accident of the three-phase AC circuit based on a voltage value and a phase of V R-S + 2T ) and a phase of a short circuit current input from the cross-through current transformer; May further be provided.

本発明のクロス貫通変流器、端子台および保護継電装置は、以下に示す効果を奏する。
(1)本発明のクロス貫通変流器または本発明の端子台を使用することにより、短絡事故から三相交流回路を保護するための変流器および短絡保護継電器の設置台数を更に削減して、設備コストの削減を図ることができる。
(2)クロス貫通変流器および短絡保護継電器を2台ずつ使用することにより、自回路および他回路にまたがる短絡事故であっても確実に検出することができるので、停電の範囲の拡大を防止することができる。
(3)クロス貫通変流器および短絡保護継電器を2台ずつ使用することにより、1台の短絡保護継電器が故障または点検によって使用できなくなっても、自回路の短絡事故は他の1台の短絡保護継電器でバックアップすることができるので、短絡事故から三相交流回路を保護することができる。
The cross through current transformer, the terminal block, and the protective relay device of the present invention have the following effects.
(1) By using the cross-through current transformer of the present invention or the terminal block of the present invention, the number of installed current transformers and short-circuit protection relays for protecting the three-phase AC circuit from a short-circuit accident can be further reduced. The equipment cost can be reduced.
(2) By using two cross-through current transformers and two short-circuit protection relays, it is possible to reliably detect a short-circuit accident that spans the local circuit and other circuits, thus preventing the expansion of the power failure range. can do.
(3) By using two cross-through current transformers and two short-circuit protective relays, even if one short-circuit protective relay cannot be used due to a failure or inspection, the short circuit accident of its own circuit will cause a short circuit of the other one. Since it can be backed up by a protective relay, the three-phase AC circuit can be protected from a short circuit accident.

上記の目的を、第1の一次導体を二次コイルが巻装された鉄心の第1の開口面から鉄心の第2の開口面への方向に貫通するとともに第2の一次導体を鉄心の第2の開口面から鉄心の第1の開口面への方向に貫通してクロス貫通変流器を構成することにより実現した。   For the above purpose, the first primary conductor is penetrated in the direction from the first opening surface of the iron core around which the secondary coil is wound to the second opening surface of the iron core, and the second primary conductor is passed through the first core conductor of the iron core. This was realized by constructing a cross-through current transformer by penetrating in the direction from the two opening surfaces to the first opening surface of the iron core.

以下、本発明のクロス貫通変流器、端子台および保護継電装置の実施例について図面を参照して説明する。
本発明の第1の実施例によるクロス貫通変流器10は、図1(a),(b)に示すように、筐体11と、両端が第1の入力側一次端子13I1および第1の出力側一次端子13O1に取り付けられた第1の一次導体121と、両端が第2の入力側一次端子13I2および第2の出力側一次端子13O2に取り付けられた第2の一次導体122と、二次コイル14と、筐体11の底部に取り付けられたかつ二次コイル14の両端がそれぞれ接続された2個の二次端子15と、二次コイル14が巻装された環状鉄心16と、環状鉄心16の外周面および両側面を囲むように筐体11内部に取り付けられたシールド(不図示)と、筐体11の底面に取り付けられた取付具18とを具備する。
Embodiments of the cross through current transformer, the terminal block, and the protective relay device of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1A and 1B, the cross through current transformer 10 according to the first embodiment of the present invention includes a housing 11 and first input side primary terminals 13 I1 and first ends at both ends. the first primary conductor 12 1, the second primary conductor at both ends is attached to the second input-side primary terminals 13 I2 and the second output-side primary terminals 13 O2 attached to the output side primary terminals 13 O1 of 12 2 , the secondary coil 14, two secondary terminals 15 attached to the bottom of the housing 11 and connected to both ends of the secondary coil 14, and a ring around which the secondary coil 14 is wound An iron core 16, a shield (not shown) attached to the inside of the housing 11 so as to surround the outer peripheral surface and both side surfaces of the annular iron core 16, and a fixture 18 attached to the bottom surface of the housing 11 are provided.

ここで、筐体11は、環状鉄心16を収容するための円筒部と、この円筒部の両側面に一体的に設けられた第1および第2の側面部とを備える。   Here, the housing 11 includes a cylindrical portion for housing the annular iron core 16 and first and second side portions provided integrally on both side surfaces of the cylindrical portion.

環状鉄心16は、第1および第2の開口面が筐体11の円筒部の両側面とそれぞれ互いに対向するように(すなわち、環状鉄心16は、第1の開口面が筐体11の第1の側面と平行になるとともに第2の開口面が筐体11の第2の側面と平行になるように)、筐体11の円筒部内に取り付けられている。   The annular core 16 has first and second opening surfaces that face each other on both side surfaces of the cylindrical portion of the casing 11 (that is, the annular core 16 has a first opening surface that is the first opening of the casing 11. And the second opening surface is parallel to the second side surface of the casing 11) and is attached to the cylindrical portion of the casing 11.

第1の入力側一次端子13I1は筐体11の第1の側面部の一方の端面(図1(a)図示左側の端面)に取り付けられており、第2の入力側一次端子13I2は筐体11の第2の側面部の一方の端面(同図図示左側の端面)に取り付けられている。また、第1の出力側一次端子13O2は筐体11の第2の側面部の他方の端面(同図図示右側の端面)に取り付けられており、第2の出力側一次端子13O2は筐体11の第1の側面部の他方の端面(同図図示右側の端面)に取り付けられている。 The first input-side primary terminal 13 I1 is attached to one end face (the end face on the left side in FIG. 1A) of the first side surface portion of the housing 11, and the second input-side primary terminal 13 I2 is The housing 11 is attached to one end surface (the end surface on the left side of the figure) of the second side surface portion. The first output-side primary terminal 13 O2 is attached to the other end surface (the end surface on the right side in the figure) of the second side surface portion of the housing 11, and the second output-side primary terminal 13 O2 is the housing. It is attached to the other end surface (the end surface on the right side of the figure) of the first side surface portion of the body 11.

第1の一次導体121はクロス貫通変流器10の極性方向(環状鉄心16の第1の開口面から環状鉄心16の第2の開口面への方向)に貫通されているが、第2の一次導体122はクロス貫通変流器10の反極性方向(環状鉄心16の第2の開口面から環状鉄心16の第1の開口面への方向)に貫通されている。
すなわち、第1の一次導体121と第2の一次導体122とが互いに接触することなく環状鉄心16をクロスして貫通するように、第1の一次導体121は、図1(b)に示すように、第1の入力側一次端子13I1側において上方に曲げられたのち水平になるように曲げられ、環状鉄心16の第1の開口面から第2の開口面に向けて貫通したのち、第1の出力側一次端子13O1側において下方に曲げられたのち水平になるように曲げられている。一方、第2の一次導体122は、第2の入力側一次端子13I2側において下方に曲げられたのち水平になるように曲げられ、環状鉄心16の第2の開口面から第1の開口面に向けて貫通したのち、第2の出力側一次端子13O2側において上方に曲げられたのち水平になるように曲げられている。
The first primary conductor 12 1 is through the polarity direction of the cross through current transformer 10 (first direction from the opening face to a second opening surface of the annular core 16 of the toroid 16), but the second primary conductor 12 and second is through the opposite polarity direction of the cross through current transformer 10 (the first direction to the opening surface of the annular core 16 from the second opening surface of the annular core 16).
In other words, so as to penetrate to cross the annular core 16 without first primary conductor 12 1 and the second primary conductor 12 2 are in contact with each other, the first primary conductor 12 1, and FIG. 1 (b) As shown in FIG. 2, the first input side primary terminal 13 I1 is bent upward and then bent so as to be horizontal, and penetrates from the first opening surface of the annular core 16 toward the second opening surface. After that, the first output side primary terminal 13 O1 side is bent downward and then bent horizontally. On the other hand, the second primary conductor 12 2 is bent so as to horizontally after bent downward in the second input-side primary terminals 13 I2 side, a first opening from the second opening surface of the annular core 16 After penetrating toward the surface, the second output side primary terminal 13 O2 is bent upward so as to be horizontal.

これにより、クロス貫通変流器10では、第1の一次導体121と第2の一次導体122とは環状鉄心16をクロスして貫通しているため、第1の一次導体121を流れる第1の電流i1によって二次コイル14に誘起される電流の極性と第2の一次導体122を流れる第2の電流i2によって二次コイル14に誘起される電流の極性とは逆になるので、第1の電流i1と第2の電流i2とのベクトル差(=i1−i2)に応じた電流が二次端子15から出力される。 As a result, in the cross through current transformer 10, the first primary conductor 12 1 and the second primary conductor 12 2 cross through the annular core 16 and pass through the first primary conductor 12 1 . The polarity of the current induced in the secondary coil 14 by the first current i 1 is opposite to the polarity of the current induced in the secondary coil 14 by the second current i 2 flowing through the second primary conductor 12 2. Therefore, a current corresponding to the vector difference (= i 1 −i 2 ) between the first current i 1 and the second current i 2 is output from the secondary terminal 15.

二次コイル14、環状鉄心16およびシールドは、樹脂によってモールドされて筐体11内に収納されている。   The secondary coil 14, the annular core 16 and the shield are molded with resin and housed in the housing 11.

次に、本発明の第2の実施例によるクロス貫通変流器20について、図2を参照して説明する。
本実施例によるクロス貫通変流器20は、低圧用変流器として使用するものであり、図2(a),(b)に示すように、矩形状の筐体20を具備する点と、筐体20の底面に矩形状の取付具28を具備する点とで、上述した第1の実施例によるクロス貫通変流器10と異なる。
Next, a cross through current transformer 20 according to a second embodiment of the present invention will be described with reference to FIG.
The cross through current transformer 20 according to the present embodiment is used as a low voltage current transformer, and includes a rectangular housing 20 as shown in FIGS. It differs from the cross through current transformer 10 according to the first embodiment described above in that a rectangular fixture 28 is provided on the bottom surface of the housing 20.

クロス貫通変流器20においても、第1の一次導体221と第2の一次導体222とは環状鉄心26をクロスして貫通しているため、第1の一次導体221を流れる第1の電流i1によって二次コイル24に誘起される電流の極性と第2の一次導体222を流れる第2の電流i2によって二次コイル24に誘起される電流の極性とは逆になるので、第1の電流i1と第2の電流i2とのベクトル差(=i1−i2)に応じた電流が二次端子25から出力される。 Also in the cross through current transformer 20, the first primary conductor 22 1 and the second primary conductor 22 2 cross the annular core 26 and pass through the first primary conductor 22 1 . The polarity of the current induced in the secondary coil 24 by the current i 1 is opposite to the polarity of the current induced in the secondary coil 24 by the second current i 2 flowing through the second primary conductor 22 2 . A current corresponding to the vector difference (= i 1 −i 2 ) between the first current i 1 and the second current i 2 is output from the secondary terminal 25.

なお、筐体の形態は、図1に示したような円筒部と第1および第2の側面部とを備える形態や図4に示したような矩形状の形態に限らず、高圧用の変流器として一般的に使用されているブッシング変流器の形態としてもよい。   The form of the casing is not limited to the form having the cylindrical part and the first and second side parts as shown in FIG. 1 and the rectangular form as shown in FIG. It may be in the form of a bushing current transformer that is generally used as a current transformer.

次に、本発明のクロス貫通変流器の機能を備えた本発明の一実施例による端子台30について、図3を参照して説明する。   Next, a terminal block 30 according to an embodiment of the present invention having the function of the cross through current transformer of the present invention will be described with reference to FIG.

端子台30では、図3に示すように、第1の一次導体321の両端部が端子台30内部で第1の外側端子41O1および第2の内側端子41I2にそれぞれ接続されているとともに第2の一次導体322の両端部が端子台30内部で第2の外側端子41O2および第1の内側端子41I1にそれぞれ接続されており、二次コイル34が巻装された環状鉄心36が、第1および第2の一次導体321,322が環状鉄心36をクロスして貫通するように、第1の外側および内側端子41O1,41I1と第2の外側および内側端子41O2,41I2との間の端子台30内部に設けられており、二次コイル34の両端がそれぞれ接続された2個の二次端子35が第1および第2の内側端子41I1,41I2の間に設けられている。
また、二次コイルが巻装された環状鉄心42が、第3の外側端子41O3と第3の内側端子41I3とを接続する導電板44が環状鉄心42を貫通するように、第3の外側端子41O3と第3の内側端子41I3との間の端子台30内部に設けられている。
さらに、環状鉄心42に巻装された二次コイルの両端がそれぞれ接続された2個の二次端子43が、第3の内側端子41I3付近に設けられている。
In the terminal block 30, as shown in FIG. 3, both ends of the first primary conductor 32 1 are respectively connected to the first outer terminal 41 O1 and the second inner terminal 41 I2 inside the terminal block 30. Both ends of the second primary conductor 32 2 are respectively connected to the second outer terminal 41 O2 and the first inner terminal 41 I1 inside the terminal block 30, and the annular core 36 around which the secondary coil 34 is wound. However, the first outer and inner terminals 41 O1 and 41 I1 and the second outer and inner terminals 41 O2 are arranged so that the first and second primary conductors 32 1 and 32 2 pass through the annular core 36. , 41 I2 are provided in the terminal block 30, and the two secondary terminals 35 to which both ends of the secondary coil 34 are respectively connected are the first and second inner terminals 41 I1 , 41 I2 . It is provided in between.
Further, the annular iron core 42 on which the secondary coil is wound is connected to the third iron terminal 42 so that the conductive plate 44 connecting the third outer terminal 41 O3 and the third inner terminal 41 I3 passes through the annular iron core 42. It is provided in the terminal block 30 between the outer terminal 41 O3 and the third inner terminal 41 I3 .
Furthermore, two secondary terminals 43 to which both ends of the secondary coil wound around the annular core 42 are connected are provided in the vicinity of the third inner terminal 41 I3 .

これにより、第1乃至第3の外側端子41O1〜41O3に第1の送配電線のR相、S相およびT相をそれぞれ接続するとともに第1乃至第3の内側端子41I1〜41I3に第1の送配電線のS相、R相およびT相をそれぞれ接続すれば、二次端子35に第1の送配電線のR相を流れる電流と第1の送配電線のS相を流れる電流とのベクトル差に応じた二次電流を得ることができるとともに、二次端子43に第1の送配電線のT相を流れる電流に応じた二次電流を得ることができる。
したがって、二次端子35に得られる二次電流と二次端子43に得られる二次電流とを短絡保護継電器に入力すれば、後述するような短絡事故から三相交流回路を保護する保護継電装置を構成することができる。
Accordingly, the first to third inner terminals 41 I1 to 41 I3 are connected to the first to third outer terminals 41 O1 to 41 O3 to connect the R phase, the S phase, and the T phase of the first transmission and distribution line, respectively. If the S phase, R phase, and T phase of the first transmission / distribution line are connected to the secondary terminal 35, the current flowing through the R phase of the first transmission / distribution line and the S phase of the first transmission / distribution line are connected to the secondary terminal 35, respectively. A secondary current corresponding to the vector difference from the flowing current can be obtained, and a secondary current corresponding to the current flowing through the T phase of the first transmission / distribution line can be obtained at the secondary terminal 43.
Therefore, if the secondary current obtained at the secondary terminal 35 and the secondary current obtained at the secondary terminal 43 are input to the short-circuit protection relay, the protective relay that protects the three-phase AC circuit from a short-circuit accident as described later. A device can be configured.

第2の送配電線のR相、S相およびT相についても、端子台30の第4乃至第6の外側端子41O4〜41O6と第4乃至第6の内側端子41I4〜41I6とについて同様に構成することにより、第4および第5の内側端子41I4,41I5の間に設けられた二次端子35に第2の送配電線のR相を流れる電流と第2の送配電線のS相を流れる電流とのベクトル差に応じた二次電流を得ることができるとともに、第6の内側端子41I6付近に設けられた二次端子43に第2の送配電線のT相を流れる電流に応じた二次電流を得ることができる。
したがって、二次端子35に得られる二次電流と二次端子43に得られる二次電流とを他の短絡保護継電器に入力すれば、後述するような短絡事故から三相交流回路を保護する他の保護継電装置を構成することができる。
For the R-phase, S-phase, and T-phase of the second power transmission and distribution line, the fourth to sixth outer terminals 41 O4 to 41 O6 and the fourth to sixth inner terminals 41 I4 to 41 I6 of the terminal block 30 Are configured in the same manner, the second terminal 35 provided between the fourth and fifth inner terminals 41 I4 and 41 I5 and the current flowing through the R-phase of the second transmission and distribution line and the second transmission and distribution A secondary current corresponding to the vector difference from the current flowing through the S phase of the electric wire can be obtained, and the T phase of the second transmission / distribution electric wire is connected to the secondary terminal 43 provided in the vicinity of the sixth inner terminal 41 I6. A secondary current corresponding to the current flowing through can be obtained.
Therefore, if the secondary current obtained at the secondary terminal 35 and the secondary current obtained at the secondary terminal 43 are input to another short-circuit protection relay, the three-phase AC circuit is protected from a short-circuit accident as described later. The protective relay device can be configured.

次に、本発明の第1の実施例による保護継電装置について、図4乃至図6を参照して説明する。
本実施例による保護継電装置は、図1に示したクロス貫通変流器10を1個用いて短絡事故から3相の送配電線(三相交流回路)を保護するためのものであり、図4に示すように、送配電線のR相およびS相がクロスするように貫通されたクロス貫通変流器10と、クロス貫通変流器10から入力される短絡電流IRyに基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する過電流継電器4とを具備する。
Next, a protective relay device according to a first embodiment of the present invention will be described with reference to FIGS.
The protective relay device according to the present embodiment is for protecting a three-phase power transmission / distribution line (three-phase AC circuit) from a short circuit accident by using one cross through current transformer 10 shown in FIG. As shown in FIG. 4, a cross-through current transformer 10 that is penetrated so that the R-phase and S-phase of the power transmission / distribution line cross each other and a short-circuit current I Ry that is input from the cross-through current transformer 10 are used. And an overcurrent relay 4 that collectively shuts off the first to third circuit breakers 2 1 to 2 3 installed in the R phase, S phase, and T phase of the transmission and distribution line when a short circuit accident of the distribution line is detected. To do.

ここで、クロス貫通変流器10には送配電線のR相およびS相が貫通されているため、短絡事故が発生していないときに送配電線のR相、S相およびT相に流れる負荷電流をIR,IS,ITで表すと、R相の負荷電流IRとS相の負荷電流ISとは図5(a)に示すように120°の位相差でクロス貫通変流器10の環状鉄心16(図1参照)を逆向きに貫通して流れる(すなわち、R相の負荷電流IRはクロス貫通変流器10を極性方向に貫通して流れ、S相の負荷電流ISはクロス貫通変流器10を反極性方向に貫通して流れる)。そのため、クロス貫通変流器10から過電流継電器4に入力される負荷電流I(R相の負荷電流IRとS相の負荷電流ISとのベクトル差)の振幅はR相の負荷電流IR(S相の負荷電流IS)の振幅の31/2倍となる。
I=IR−IS
|I|=|IR−IS|=31/2×|IR|=31/2×|IS
Here, since the R-phase and S-phase of the transmission / distribution line are passed through the cross-through current transformer 10, it flows in the R-phase, S-phase, and T-phase of the transmission / distribution line when no short circuit accident has occurred. When the load currents are represented by I R , I S , and I T , the R-phase load current I R and the S-phase load current I S are cross-through changed with a phase difference of 120 ° as shown in FIG. Flow through the annular iron core 16 (see FIG. 1) of the flow device 10 in the opposite direction (that is, the R-phase load current I R flows through the cross-through current transformer 10 in the polar direction, and the S-phase load). current I S flows through the cross through current transformer 10 in the opposite polarity direction). Therefore, the amplitude of the load current I (the vector difference between the R-phase load current I R and the S-phase load current I S ) input from the cross-through current transformer 10 to the overcurrent relay 4 is the R-phase load current I. It becomes 3 1/2 times the amplitude of R (S-phase load current I S ).
I = I R −I S
| I | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I S |

また、送配電線に短絡事故が発生したときに送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFTで表すと、クロス貫通変流器10から過電流継電器4に入力される短絡電流IRyは、短絡電流IFR,IFS,IFTのインピーダンス角をθとすると、事故様相に応じて以下のように表される。
(1)R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図4に破線の矢印で示すように送配電線のR相にR相の短絡電流IFRが内部方向に流れ、送配電線のS相にS相の短絡電流IFSが外部方向に流れるが、送配電線のT相にはT相の短絡電流IFTが流れない。
したがって、クロス貫通変流器10から過電流継電器4に入力される短絡電流IRyは、図4に実線の太矢印で示すようにR相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる(図6(a)参照。なお、図6においては、送配電線の内部方向に流れる短絡電流IFR,IFS,IFTは実線の矢印で、送配電線の外部方向に流れる短絡電流IFR,IFS,IFTは一点鎖線の矢印で示している。)。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=2×|IFR|=2×|IFS
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、送配電線のS相にS相の短絡電流IFSが内部方向に流れ、送配電線のT相にT相の短絡電流IFTが外部方向に流れるが、送配電線のR相にはR相の短絡電流IFRが流れない。
したがって、クロス貫通変流器10から過電流継電器4に入力される短絡電流IRyは、極性が負のS相の短絡電流−IFSとなり、短絡電流IRyの振幅はS相の短絡電流IFSの振幅となる(図6(b)参照)。
Ry=−IFS
|IRy|=|IFS
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、送配電線のT相にT相の短絡電流IFTが内部方向に流れ、送配電線のR相にR相の短絡電流IFRが外部方向に流れるが、送配電線のS相にはS相の短絡電流IFSが流れない。
したがって、クロス貫通変流器10から過電流継電器4に入力される短絡電流IRyはR相の短絡電流IFRとなり、短絡電流IRyの振幅はR相の短絡電流IFRの振幅となる(図6(c)参照)。
Ry=IFR
|IRy|=|IFR
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、送配電線のR相、S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120°で内部方向にそれぞれ流れる。
したがって、クロス貫通変流器10から過電流継電器4に入力される短絡電流IRyはR相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、短絡電流IRyの振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の31/2倍となる(図6(d)参照)。
Ry=IFR−IFS
|IRy|=|IFR−IFS|=31/2×|IFR|=31/2×|IFS
In addition, R-phase of the transmission and distribution lines when the short circuit in the electric transmission has occurred, the short-circuit current flowing in the S-phase and T-phase I FR, I FS, expressed in I FT, from the cross through the current transformer 10 over The short-circuit current I Ry input to the current relay 4 is expressed as follows according to the accident aspect, where θ is the impedance angle of the short-circuit currents I FR , I FS , and I FT .
(1) In the case of a short circuit accident between the R phase and the S phase When a short circuit accident occurs between the R phase and the S phase, the short circuit current I FR of the R phase is generated in the R phase of the power transmission and distribution line as shown by the dashed arrows in FIG. flow inside direction, but the short-circuit current I FS of S phase to the S phase of the transmission and distribution lines to flow to the outside direction, the T-phase of the transmission and distribution lines does not flow a short-circuit current I FT T-phase.
Therefore, the short-circuit current I Ry input from the cross-through current transformer 10 to the overcurrent relay 4 is represented by the R-phase short-circuit current I FR and the S-phase short-circuit current I FS as indicated by the solid line thick arrows in FIG. The amplitude of the short-circuit current I Ry is twice the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ) (see FIG. 6A). Short-circuit currents I FR , I FS , and I FT flowing in the inner direction of the transmission / distribution line are indicated by solid arrows, and short-circuit currents I FR , I FS , and I FT flowing in the outer direction of the transmission / distribution line are indicated by dashed-dotted arrows Yes.)
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 2 × | I FR | = 2 × | I FS |
(2) In the case of a short-circuit accident between the S phase and the T phase When a short circuit accident between the S phase and the T phase occurs, the S phase short circuit current I FS flows in the S phase of the transmission and distribution line in the internal direction, and the T of the transmission and distribution line Although the T-phase short-circuit current I FT flows outward in the phase, the R-phase short-circuit current I FR does not flow in the R-phase of the transmission and distribution line.
Therefore, the short-circuit current I Ry input from the cross-through current transformer 10 to the overcurrent relay 4 becomes the S-phase short-circuit current −I FS with a negative polarity, and the amplitude of the short-circuit current I Ry is the S-phase short-circuit current I. The amplitude is FS (see FIG. 6B).
I Ry = −I FS
| I Ry | = | I FS |
(3) In the case of a short circuit accident between the T phase and the R phase When a short circuit accident occurs between the T phase and the R phase, a T phase short circuit current I FT flows in the T phase of the transmission and distribution line, and the R of the transmission and distribution line. While the short-circuit current I FR of R-phase to phase flows to the outside direction, the S-phase of the transmission and distribution lines does not flow a short-circuit current I FS of S phase.
Accordingly, the short-circuit current I Ry input from the cross-through current transformer 10 to the overcurrent relay 4 becomes the R-phase short-circuit current I FR , and the amplitude of the short-circuit current I Ry becomes the amplitude of the R-phase short-circuit current I FR ( (Refer FIG.6 (c)).
I Ry = I FR
| I Ry | = | I FR |
(4) In the case of a short circuit accident between R phase, S phase, and T phase When a short circuit accident between R phase, S phase, and T phase occurs, short circuit current I of R phase to R phase, S phase, and T phase of the transmission and distribution line FR and S-phase short-circuit current I FS and T-phase short-circuit current I FT flow in the internal direction with a phase difference of 120 °.
Therefore, the short-circuit current I Ry input from the cross-through current transformer 10 to the overcurrent relay 4 is a vector difference between the R-phase short-circuit current I FR and the S-phase short-circuit current I FS, and the amplitude of the short-circuit current I Ry is This is 3 1/2 times the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ) (see FIG. 6D).
I Ry = I FR −I FS
| I Ry | = | I FR −I FS | = 3 1/2 × | I FR | = 3 1/2 × | I FS |

過電流継電器4は、短絡電流IRyの振幅が電流整定値を超えた場合には、送配電線に短絡事故が発生したと判定して、第1乃至第3の遮断器21〜23を一括遮断する。 When the amplitude of the short circuit current I Ry exceeds the current set value, the overcurrent relay 4 determines that a short circuit accident has occurred in the transmission and distribution lines, and the first to third circuit breakers 2 1 to 2 3. Block all at once.

このように、本発明のクロス貫通変流器を使用することにより、1個の変流器(クロス貫通変流器10)と1個の過電流継電器(過電流継電器4)とで短絡事故から3相の送配電線を保護することができる。   Thus, by using the cross-through current transformer of the present invention, it is possible to prevent one short-circuit accident with one current transformer (cross-through current transformer 10) and one overcurrent relay (overcurrent relay 4). Three-phase transmission and distribution lines can be protected.

なお、クロス貫通変流器10には送配電線のR相およびS相を貫通させたが、送配電線のS相およびT相を貫通させてもよいし、送配電線のR相およびT相を貫通させてもよい。   In addition, although the cross-phase current transformer 10 penetrated the R phase and S phase of the transmission / distribution line, the S phase and T phase of the transmission / distribution line may be penetrated, or the R phase and T of the transmission / distribution line The phase may be penetrated.

以上説明したように、本発明のクロス貫通変流器を用いることにより変流器および短絡保護継電器の設置台数を更に削減することができるが、上述したように短絡電流IRyの振幅が事故様相によって異なる。
すなわち、R相−S相間の短絡事故における短絡電流IRyの振幅は、S相−T相間の短絡事故およびT相−R相間の短絡事故における短絡電流IRyの振幅の2倍となり、また、負荷電流およびR相−S相−T相間の短絡事故における短絡電流IRyの振幅は、S相−T相間の短絡事故およびT相−R相間の短絡事故における短絡電流IRyの振幅の31/2倍となる。
そのため、短絡保護継電器の検出感度および動作時間をすべての事故様相に対して同じにすることができない。
As described above, by using the cross-through current transformer of the present invention, the number of installed current transformers and short-circuit protection relays can be further reduced. However, as described above, the amplitude of the short-circuit current I Ry is an accident aspect. It depends on.
That is, the amplitude of the short-circuit current IRy in the short-circuit accident between the R phase and the S-phase is twice the amplitude of the short-circuit current IRy in the short-circuit accident between the S-phase and the T-phase and the short-circuit accident between the T-phase and the R-phase. The amplitude of the short-circuit current I Ry in the short-circuit accident between the load current and the R phase-S phase-T phase is 3 1 of the amplitude of the short-circuit current I Ry in the short-circuit accident between the S phase and the T phase and the short circuit accident between the T phase and the R phase / 2 times.
Therefore, the detection sensitivity and operating time of the short circuit protection relay cannot be made the same for all accident aspects.

そこで、以下に示す第1乃至第5の事故様相判定方法のいずれかを用いて事故様相を判定し、クロス貫通変流器10から出力される短絡電流IRYを事故様相判定結果に応じて1倍、1/2倍または1/31/2倍とする演算処理部を、クロス貫通変流器10と短絡保護継電器との間または短絡保護継電器に設けてもよい。 Therefore, the accident aspect is determined using any one of the following first to fifth accident aspect determination methods, and the short-circuit current IRY output from the cross-through current transformer 10 is set to 1 according to the accident aspect determination result. You may provide the arithmetic processing part made to double, 1/2 times, or 1/3 1/2 times between the cross penetration current transformer 10 and the short circuit protection relay, or in the short circuit protection relay.

(第1の事故様相判定方法)
3つの線間電圧、3つの相電圧または相・線間電圧(相電圧と線間電圧との組合せ)に基づいて事故様相を判定する。
(First accident mode judgment method)
The accident aspect is determined based on the three line voltages, the three phase voltages, or the phase / line voltage (combination of the phase voltage and the line voltage).

表1に、3つの線間電圧に基づく事故様相判定条件を示す。なお、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された線間電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった線間電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。
Table 1 shows the accident condition determination conditions based on the three line voltages. In addition, ○ mark indicates the line voltage in which the voltage drop is detected based on the voltage information from the undervoltage relay installed on the bus, and the X mark is based on the voltage information from this undervoltage relay. The line voltage in which no voltage drop was detected is shown (the voltage drop detection sensitivity is about 75 to 80% of the rated voltage).

表2に、3つの相電圧に基づく事故様相判定条件を示す。なお、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された相電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった相電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。
Table 2 shows the accident condition determination conditions based on the three phase voltages. In addition, a circle indicates a phase voltage in which a voltage drop is detected based on voltage information from an undervoltage relay installed on the bus, and a cross indicates a voltage based on voltage information from the undervoltage relay. The phase voltage in which no decrease was detected is indicated (the voltage drop detection sensitivity is about 75 to 80% of the rated voltage).

表3に、相・線間電圧に基づく事故様相判定条件を示す。なお、○印は、母線に設置された不足電圧継電器からの電圧情報に基づいて電圧低下が検出された相電圧および線間電圧を示し、また、×印は、この不足電圧継電器からの電圧情報に基づいて電圧低下が検出されなかった相電圧および線間電圧を示す(電圧低下の検出感度は定格電圧の75〜80%程度とする。)。
Table 3 shows the accident condition judgment conditions based on the phase / line voltage. The circles indicate the phase voltage and line voltage at which a voltage drop is detected based on the voltage information from the undervoltage relay installed on the bus, and the x indicates voltage information from the undervoltage relay. The phase voltage and the line voltage in which no voltage drop was detected based on the above are shown (voltage drop detection sensitivity is about 75 to 80% of the rated voltage).

(第2の事故様相判定方法)
1つの線間電圧および1つの相電圧の電圧値および位相に基づいて事故様相を判定する。
(Second accident mode judgment method)
The accident aspect is determined based on the voltage value and phase of one line voltage and one phase voltage.

たとえば、T相−R相の線間電圧VTRの位相が210°でかつR相の相電圧VRの位相が0°であることを基準として(図5(b)参照)、送配電線のR相−S相間の短絡事故時のR相−S相の線間電圧VRSおよびS相−T相間の短絡事故時のS相−T相の線間電圧VSTを短絡事故検出感度の85Vとすると、T相−R相の線間電圧VTRが所定の第1の電圧値k1=85V以下であることを条件として短絡事故が発生したと判定するとともに、T相−R相の線間電圧VTRが所定の第2の電圧値k2=104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準として短絡事故時のT相−R相の線間電圧VTRの位相が所定の角度範囲α内だけ遅れているか進んでいること(5.95°≦α≦30°または−30°≦α≦−5.95°)を条件として短絡事故が発生したと判定する(以下の(1−1)式および(1−2)式参照)。
TR≦[{(110/31/2)×1.5}2+(85/2)21/2
≦(95.262+42.521/2
≦104.3(V) ・・・(1−1)
α≧30°−tan-1(42.5/95.26)
≧5.95(°) ・・・(1−2)
For example, on the basis of the phase of the T-phase to R-phase line voltage V TR being 210 ° and the phase of the R-phase voltage V R being 0 ° (see FIG. 5B), the transmission and distribution lines The R-phase-S phase line voltage V RS at the time of the short-circuit accident between the R-phase and S-phase and the S-phase-T-phase line voltage V ST at the time of the short-circuit accident between the S-phase and the T-phase 85V, it is determined that a short-circuit accident has occurred on the condition that the line voltage V TR between the T phase and the R phase is equal to or lower than a predetermined first voltage value k1 = 85 V, and the line between the T phase and the R phase The voltage V TR is equal to or lower than a predetermined second voltage value k2 = 104.3 V, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident is 210 ° as a reference. the T-phase -R phase of the phase of the line voltage V TR is advanced or delayed by a predetermined angular range α (5.95 ° ≦ α ≦ 30 ° or -30 ° α ≦ -5.95 °) determining a short-circuit failure condition has occurred (the following (1-1) and (1-2) refer to formula).
V TR ≦ [{(110/3 1/2 ) × 1.5} 2 + (85/2) 2 ] 1/2
≦ (95.26 2 +42.5 2 ) 1/2
≦ 104.3 (V) (1-1)
α ≧ 30 ° -tan −1 (42.5 / 95.26)
≧ 5.95 (°) (1-2)

また、以下のようにして事故様相を判定する。
(1)R相−S相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れている(+α)場合に、R相−S相間の短絡事故と判定する(図7(a)参照)。
(2)S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ進んでいる(−α)場合に、S相−T相間の短絡事故と判定する(図7(b)参照)。
(3)T相−R相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡事故前のR相の相電圧VRの位相=0°を基準としてR相の相電圧VRの位相が所定の他の角度範囲β(6.76°≦β≦60°、(1−3)式参照)内だけ進んでいる(−β)場合に、T相−R相間の短絡事故と判定する(図7(c)参照)。
β≧60°−tan-1[42.5/{110/(2×31/2)}]
≧6.76(°) ・・・(1−3)
(4)R相−S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡事故前のR相の相電圧VRの位相=0°を基準としてR相の相電圧VRの位相が他の角度範囲β内だけ遅れていたり進んでいたりしていない(すなわち、−6.76°よりも大きくて6.76°よりも小さい)ことを条件に、R相−S相−T相間の短絡事故と判定する(図7(d)参照)。
Moreover, the accident aspect is determined as follows.
(1) In the case of a short-circuit accident between the R phase and the S phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is delayed by the angle range α (+ α) with reference to the phase = 210 °, it is determined that the short-circuit accident occurs between the R phase and the S phase (FIG. 7 ( a)).
(2) In the case of a short circuit accident between the S phase and the T phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is advanced only within the angle range α (−α) with reference to the phase = 210 °, it is determined that there is a short circuit accident between the S phase and the T phase (FIG. 7). (See (b)).
(3) In the case of a short circuit accident between the T phase and the R phase The line voltage V TR between the T phase and the R phase is 85 V or less, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = The phase of the line voltage V TR between the T phase and the R phase is not delayed or advanced by an angle range α with respect to 210 ° (that is, greater than −5.95 ° and 5.95 °). And the phase of the R-phase phase voltage V R before the short circuit accident is 0 ° as a reference, and the phase of the R-phase phase voltage V R has a predetermined other angle range β (6.76 ° ≦ β ≦ 60 °, see (Equation 1-3)) (−β), it is determined that there is a short circuit accident between the T phase and the R phase (see FIG. 7C).
β ≧ 60 ° -tan −1 [42.5 / {110 / (2 × 3 1/2 )}]
≧ 6.76 (°) (1-3)
(4) In the case of a short circuit accident between R phase, S phase and T phase The line voltage V TR between T phase and R phase is 85V or less, and the line voltage V TR between T phase and R phase before the short circuit accident. The phase of the line voltage V TR between the T-phase and the R-phase is not delayed or advanced by the angle range α with respect to the phase of 210 = 210 ° (that is, greater than −5.95 ° and 5 .. is smaller than .95 °), and the phase of the R phase voltage V R before the short-circuit accident is 0 ° or the phase of the R phase voltage V R is delayed or advanced by another angle range β. It is determined that a short-circuit accident between the R-phase, the S-phase, and the T-phase is performed on the condition that it is not (ie, larger than −6.76 ° and smaller than 6.76 °) (FIG. 7D). reference).

なお、T相−R相の線間電圧VTRおよびR相の相電圧VRを用いたが、表4に丸印で示す電圧の組合せのいずれか1つを用いてもよい。ただし、上述した短絡事故発生判定条件および事故様相判定条件を電圧の組合せに応じて変更する必要がある。
Although the T-phase-R phase line voltage V TR and the R-phase phase voltage V R are used, any one of the voltage combinations indicated by circles in Table 4 may be used. However, it is necessary to change the short-circuit accident occurrence determination condition and the accident aspect determination condition described above according to the combination of voltages.

(第3の事故様相判定方法)
1つの線間電圧の電圧値および位相とクロス貫通変流器10から入力される短絡電流IRyの位相とに基づいて事故様相を判定する。
(Third accident mode determination method)
The accident aspect is determined based on the voltage value and phase of one line voltage and the phase of the short-circuit current I Ry input from the cross-through current transformer 10.

たとえば、T相−R相の線間電圧VTRの位相が210°であることを基準として、送配電線のR相−S相間の短絡事故時のR相−S相の線間電圧VRSおよびS相−T相間の短絡事故時のS相−T相の線間電圧VSTを短絡事故検出感度の85Vとすると、T相−R相の線間電圧VT Rが所定の第1の電圧値k1=85V以下であることを条件として短絡事故が発生したと判定するとともに、T相−R相の線間電圧VT Rが所定の第2の電圧値k2=104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準として短絡事故時のT相−R相の線間電圧VTRの位相が所定の角度範囲α内だけ遅れているか進んでいること(5.95°≦α≦30°または−30°≦α≦−5.95°)を条件として短絡事故が発生したと判定する((1−1)式および(1−2)式参照)。 For example, with reference to the phase of the T-phase to R-phase line voltage V TR being 210 °, the R-phase to S-phase line voltage V RS at the time of a short-circuit fault between the R-phase and S-phase of the transmission and distribution line and S phase -T When the line voltage V ST between phases S phase -T phase when a short circuit accident and 85V of short-circuit failure detection sensitivity, a first voltage line voltage V TR of the T-phase -R phase is given It is determined that a short-circuit accident has occurred on condition that the value k1 = 85 V or less, and the T-phase to R-phase line voltage V TR is a predetermined second voltage value k2 = 104.3 V or less, and The phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = 210 ° as a reference, the phase of the line voltage V TR between the T phase and the R phase at the time of the short circuit accident is delayed by a predetermined angle range α. A short-circuit accident occurs on the condition that it is moving or advanced (5.95 ° ≦ α ≦ 30 ° or −30 ° ≦ α ≦ −5.95 °) A constant ((1-1) see formula and (1-2) below).

また、以下のようにして事故様相を判定する。
(1)R相−S相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れている(+α)場合に、R相−S相間の短絡事故と判定する(図8(a)参照)。
(2)S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが104.3V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ進んでいる(−α)場合に、S相−T相間の短絡事故と判定する(図8(b)参照)。
(3)T相−R相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡電流IRyの位相が所定の第1の角度範囲γ(−150°≦γ≦−90°、γはインピーダンス角θ=75°としアーク抵抗などを考慮して決定する。)内にある場合に、T相−R相間の短絡事故と判定する(図8(c)参照)。
(4)R相−S相−T相間の短絡事故の場合
T相−R相の線間電圧VTRが85V以下であり、かつ、短絡事故前のT相−R相の線間電圧VTRの位相=210°を基準としてT相−R相の線間電圧VTRの位相が角度範囲α内だけ遅れていたり進んでいたりしておらず(すなわち、−5.95°よりも大きくて5.95°よりも小さく)、かつ、短絡電流IRyの位相が所定の第2の角度範囲δ(139.1°≦δ≦199.1°、δはインピーダンス角θ=75°としアーク抵抗などを考慮して決定する。)内にある場合に、R相−S相−T相間の短絡事故と判定する(図8(d)参照)。
Moreover, the accident aspect is determined as follows.
(1) In the case of a short-circuit accident between the R phase and the S phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is delayed by the angle range α (+ α) with reference to the phase = 210 °, it is determined that the short-circuit accident occurs between the R phase and the S phase (FIG. 8 ( a)).
(2) In the case of a short circuit accident between the S phase and the T phase The line voltage V TR between the T phase and the R phase is 104.3 V or less, and the line voltage V TR between the T phase and the R phase before the short circuit accident is When the phase of the line voltage V TR between the T phase and the R phase is advanced only within the angle range α (−α) with respect to the phase = 210 ° as a reference, it is determined that there is a short circuit accident between the S phase and the T phase (FIG. 8). (See (b)).
(3) In the case of a short circuit accident between the T phase and the R phase The line voltage V TR between the T phase and the R phase is 85 V or less, and the phase of the line voltage V TR between the T phase and the R phase before the short circuit accident = The phase of the line voltage V TR between the T phase and the R phase is not delayed or advanced by an angle range α with respect to 210 ° (that is, greater than −5.95 ° and 5.95 °). And the phase of the short-circuit current I Ry is determined in consideration of arc resistance and the like with a predetermined first angle range γ (−150 ° ≦ γ ≦ −90 °, γ is an impedance angle θ = 75 °) If it is within the range, it is determined that there is a short-circuit accident between the T phase and the R phase (see FIG. 8C).
(4) In the case of a short circuit accident between R phase, S phase and T phase The line voltage V TR between T phase and R phase is 85V or less, and the line voltage V TR between T phase and R phase before the short circuit accident. The phase of the line voltage V TR between the T-phase and the R-phase is not delayed or advanced by the angle range α with respect to the phase of 210 = 210 ° (that is, greater than −5.95 ° and 5 Less than .95 °) and the phase of the short-circuit current I Ry is a predetermined second angle range δ (139.1 ° ≦ δ ≦ 199.1 °, where δ is an impedance angle θ = 75 ° and arc resistance, etc. If it is within the range, it is determined that there is a short circuit accident between the R phase, the S phase, and the T phase (see FIG. 8D).

(第4の事故様相判定方法)
図9に示す事故様相判定用変圧器110を母線に設置し、事故様相判定用変圧器110から出力される合成電圧VR-S-2Tの電圧値および位相と短絡電流IRyの位相とに基づいて、以下のようにして事故様相を判定する。
ここで、事故様相判定用変圧器110の2次側は、R相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを反極性方向で2倍して合成するように結線されている。その結果、事故様相判定用変圧器110から出力される合成電圧VR-S-2Tは次式で表される。
R-S-2T=VR−VS−2VT
また、インピーダンス角θは通常75°であるが、短絡電流IRyの位相角は、アーク抵抗を考慮して、30°(−45°)から短絡事故時の最大角である90°(+15°)とする。
(Fourth accident mode determination method)
An accident aspect determination transformer 110 shown in FIG. 9 is installed in the bus, and based on the voltage value and phase of the composite voltage V RS-2T output from the accident aspect determination transformer 110 and the phase of the short-circuit current IRy. The accident aspect is judged as follows.
Here, the secondary side of the accident phase determination transformer 110 sets the phase voltage V R of the R phase in the polarity direction, the phase voltage V S of the S phase in the opposite polarity direction, and the phase voltage V T of the T phase in the opposite direction. The wires are wired so as to be doubled in the polarity direction. As a result, the composite voltage V RS-2T output from the accident aspect determination transformer 110 is expressed by the following equation.
V RS-2T = V R -V S -2V T
Further, although the impedance angle θ is usually 75 °, the phase angle of the short-circuit current I Ry takes into consideration the arc resistance, from 30 ° (−45 °) to 90 ° (+ 15 °) which is the maximum angle at the time of a short-circuit accident. ).

(1)R相−S相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第1の合成電圧値K1=100.1V以下であり((2−1)式参照)、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第1の合成電圧角度範囲ε1(7.10°(=X1)≦ε1≦40.9°(=X2)。(2−2)式および(2−3)式参照)内だけ遅れており(+ε1)、かつ、短絡電流IRyの位相が所定の第1の短絡電流角度範囲λ1(−19.1°≦λ1≦40.9°)内にある場合に、R相−S相間の短絡事故と判定する。
1=[(83.15)2+(72.01×85/110)21/2
=100.1(V) ・・・(2−1)
1=cos-1(83.15/110.0)−cos-1(83.15/100.05)
=7.10(°) ・・・(2−2)
2=60−19.1
=40.9(°) ・・・(2−3)
(2)S相−T相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第2の合成電圧値K2=107.6V以下であり((2−4)式参照)、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第2の合成電圧角度範囲ε2(4.12°(=X3)≦ε2≦19.1°(=X4)。(2−5)式および(2−6)式参照)内だけ進んでおり(−ε2)、かつ、短絡電流IRyの位相が所定の第2の短絡電流角度範囲λ2(19.1°≦λ2≦79.1°)内だけ進んでいる(−λ2)場合に、S相−T相間の短絡事故と判定する。
2=[(103.94)2+(36.01×85/110)21/2
=107.6(V) ・・・(2−4)
3=cos-1(103.94/110)−cos-1(103.94/107.60)
=4.12(°) ・・・(2−5)
4=19.1−0
=19.1(°) ・・・(2−6)
(3)T相−R相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第3の合成電圧値K3=86.0V以下であり((2−7)式参照)、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第3の合成電圧角度範囲ε3(3.09°(=X5)≦ε3≦79.1°(=X6)。(2−8)式および(2−9)式参照)内だけ進んでおり(−ε3)、かつ、短絡電流IRyの位相が所定の第3の短絡電流角度範囲λ3(40.9°≦λ3≦100.9°)内だけ遅れている(+λ3)場合に、T相−R相間の短絡事故と判定する。
3=[(20.79)2+(108.02×85/110)21/2
=86.0(V) ・・・(2−7)
5=cos-1(20.79/110)−cos-1(20.79/86.02)
=3.09(°) ・・・(2−8)
6=60+19.1
=79.1(°) ・・・(2−9)
(4)R相−S相−T相間の短絡事故の場合
合成電圧VR-S-2Tの電圧値が所定の第4の合成電圧値K4=85V(定格電圧の75〜80%)以下であり、かつ、正常時の合成電圧VR-S-2Tの位相が19.1°であることを基準として短絡事故時の合成電圧VR-S-2Tの位相が所定の第4の合成電圧角度範囲ε4(−3.09°(=−X5)≦ε4≦7.10°(=X1))内に入っており(すなわち、同位相であり)、かつ、短絡電流IRyの位相が所定の第4の短絡電流角度範囲λ4(−19.1°≦λ4≦40.9°)内にある場合に、R相−S相−T相間の短絡事故と判定する。
(1) In the case of a short-circuit accident between the R phase and the S phase The voltage value of the composite voltage V RS-2T is a predetermined first composite voltage value K 1 = 100.1 V or less (see equation (2-1)). In addition, the phase of the composite voltage V RS-2T at the time of the short-circuit accident is set to a predetermined first composite voltage angle range ε 1 (7 based on the fact that the phase of the composite voltage V RS-2T at the normal time is 19.1 °. .10 ° (= X 1 ) ≦ ε 1 ≦ 40.9 ° (= X 2 ) (Refer to equations (2-2) and (2-3)) (+ ε 1 ) and short circuit When the phase of the current I Ry is within a predetermined first short-circuit current angle range λ 1 (−19.1 ° ≦ λ 1 ≦ 40.9 °), it is determined that a short-circuit accident between the R phase and the S phase occurs.
K 1 = [(83.15) 2 + (72.01 × 85/110) 2 ] 1/2
= 100.1 (V) (2-1)
X 1 = cos -1 (83.15 / 110.0) -cos -1 (83.15 / 100.05)
= 7.10 (°) (2-2)
X 2 = 60-19.1
= 40.9 (°) (2-3)
(2) In the case of a short circuit accident between the S phase and the T phase The voltage value of the composite voltage V RS-2T is a predetermined second composite voltage value K 2 = 107.6 V or less (see the formula (2-4)), In addition, the phase of the composite voltage V RS-2T at the time of the short-circuit accident is determined to be a predetermined second composite voltage angle range ε 2 (4 based on the phase of the composite voltage V RS-2T at the normal time being 19.1 °. .12 ° (= X 3 ) ≦ ε 2 ≦ 19.1 ° (= X 4 ) (see formulas (2-5) and (2-6)) (−ε 2 ) When the phase of the short-circuit current I Ry is advanced only within a predetermined second short-circuit current angle range λ 2 (19.1 ° ≦ λ 2 ≦ 79.1 °) (−λ 2 ), between the S phase and the T phase Judged as a short circuit accident.
K 2 = [(103.94) 2 + (36.01 × 85/110) 2 ] 1/2
= 107.6 (V) (2-4)
X 3 = cos −1 (103.94 / 110) −cos −1 (103.94 / 107.60)
= 4.12 (°) (2-5)
X 4 = 19.1-0
= 19.1 (°) (2-6)
(3) In the case of a short-circuit accident between the T phase and the R phase The voltage value of the composite voltage V RS-2T is equal to or less than a predetermined third composite voltage value K 3 = 86.0 V (see formula (2-7)) Further, the phase of the composite voltage V RS-2T at the time of a short-circuit accident is determined to be a predetermined third composite voltage angle range ε 3 (3 based on the phase of the composite voltage V RS-2T at the normal time being 19.1 °. .09 ° (= X 5 ) ≦ ε 3 ≦ 79.1 ° (= X 6 ) (see formulas (2-8) and (2-9)) (−ε 3 ) When the phase of the short-circuit current I Ry is delayed by (+ λ 3 ) within a predetermined third short-circuit current angle range λ 3 (40.9 ° ≦ λ 3 ≦ 100.9 °), the phase between the T phase and the R phase Judged as a short circuit accident.
K 3 = [(20.79) 2 + (108.02 × 85/110) 2 ] 1/2
= 86.0 (V) (2-7)
X 5 = cos -1 (20.79 / 110) -cos -1 (20.79 / 86.02)
= 3.09 (°) (2-8)
X 6 = 60 + 19.1
= 79.1 (°) (2-9)
(4) In the case of a short-circuit accident between the R phase, the S phase, and the T phase The voltage value of the composite voltage V RS-2T is equal to or less than a predetermined fourth composite voltage value K 4 = 85 V (75 to 80% of the rated voltage). The phase of the composite voltage V RS-2T at the time of the short-circuit accident is a predetermined fourth composite voltage angle range ε 4 (wherein the phase of the composite voltage V RS-2T at the normal time is 19.1 °. −3.09 ° (= −X 5 ) ≦ ε 4 ≦ 7.10 ° (= X 1 )) (that is, the same phase), and the phase of the short-circuit current I Ry is predetermined. When the angle is within the fourth short-circuit current angle range λ 4 (−19.1 ° ≦ λ 4 ≦ 40.9 °), it is determined as a short-circuit accident between the R phase, the S phase, and the T phase.

(第5の事故様相判定方法)
図10に示す事故様相判定用変圧器120を母線に設置し、事故様相判定用変圧器120から出力される合成電圧VR-S+2Tの電圧値および位相と短絡電流IRyの位相とに基づいて、以下のようにして事故様相を判定する。
ここで、事故様相判定用変圧器120の2次側は、R相の相電圧VRを極性方向で、S相の相電圧VSを反極性方向で、T相の相電圧VTを極性方向で2倍して合成するように結線されている。その結果、事故様相判定用変圧器120から出力される合成電圧VR-S+2Tは次式で表される。
R-S+2T=VR−VS+2VT
また、インピーダンス角θは通常75°であるが、短絡電流IRyの位相角は、アーク抵抗を考慮して、30°(−45°)から短絡事故時の最大角である90°(+15°)とする。
(Fifth accident mode determination method)
10 is installed in the bus, and the voltage value and phase of the composite voltage V R-S + 2T output from the accident mode determination transformer 120 and the phase of the short-circuit current I Ry are set. Based on this, the accident aspect is determined as follows.
Here, the secondary side of the accident phase determination transformer 120 has the R-phase voltage V R in the polarity direction, the S-phase phase voltage V S in the opposite polarity direction, and the T-phase phase voltage V T in the polarity direction. They are wired so as to be doubled in the direction of synthesis. As a result, the composite voltage V R−S + 2T output from the accident aspect determination transformer 120 is expressed by the following equation.
V R−S + 2T = V R −V S + 2V T
Further, although the impedance angle θ is usually 75 °, the phase angle of the short-circuit current I Ry takes into consideration the arc resistance, from 30 ° (−45 °) to 90 ° (+ 15 °) which is the maximum angle at the time of a short-circuit accident. ).

(1)R相−S相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第5の合成電圧値K5=100.1V以下であり((3−1)式参照)、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第5の合成電圧角度範囲ε5(7.10°(=X7)≦ε5≦40.9°(=X8)。(3−2)式および(3−3)式参照)内だけ進んでおり(−ε5)、かつ、短絡電流IRyの位相が所定の第5の短絡電流角度範囲λ5(79.1°≦λ5≦139.1°)内だけ遅れている(+λ5)場合に、R相−S相間の短絡事故と判定する。
5=[(83.15)2+(72.01×85/110)21/2
=100.1(V) ・・・(3−1)
7=cos-1(83.15/110.0)−cos-1(83.15/110.05)
=7.10(°) ・・・(3−2)
8=280.9−240
=40.9(°) ・・・(3−3)
(2)S相−T相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第6の合成電圧値K6=86.0V以下であり((3−4)式参照)、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第6の合成電圧角度範囲ε6(3.09°(=X9)≦ε6≦79.1°(=X10)。(3−5)式および(3−6)式参照)内だけ遅れており(+ε6)、かつ、短絡電流IRyの位相が所定の第6の短絡電流角度範囲λ6(19.1°≦λ6≦79.1°)内だけ遅れている(+λ6)場合に、S相−T相間の短絡事故と判定する。
6=[(20.79)2+(108.02×85/110)21/2
=86.0(V) ・・・(3−4)
9=cos-1(20.79/110)−cos-1(20.79/86.02)
=3.09(°) ・・・(3−5)
10=360−280.9
=79.1(°) ・・・(3−6)
(3)T相−R相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第7の合成電圧値K7=107.6V以下であり((3−7)式参照)、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第7の合成電圧角度範囲ε7(4.12°(=X11)≦ε7≦19.1°(=X12)。(3−8)式および(3−9)式参照)内だけ遅れており(+ε7)、かつ、短絡電流IRyの位相が所定の第7の短絡電流角度範囲λ7(139.1°≦λ7≦199.1°)内だけ遅れている(+λ7)場合に、T相−R相間の短絡事故と判定する。
7=[103.942+(36.01×85/110)21/2
=107.6(V) ・・・(3−7)
11=cos-1(103.94/110)−cos-1(103.94/107.60)
=4.12(°) ・・・(3−8)
12=300−280.9
=19.1(°) ・・・(3−9)
(4)R相−S相−T相間の短絡事故の場合
合成電圧VR-S+2Tの電圧値が所定の第8の合成電圧値K8=85V(定格電圧の75〜80%)以下であり、かつ、正常時の合成電圧VR-S+2Tの位相が280.9°であることを基準として短絡事故時の合成電圧VR-S+2Tの位相が所定の第8の合成電圧角度範囲ε8(−7.10°(=−X7)≦ε8≦3.09°(=X9))内に入っており(すなわち、同位相であり)、かつ、短絡電流IRyの位相が所定の第8の短絡電流角度範囲λ8(79.1°≦λ8≦139.1°)内だけ遅れている(+λ8)場合に、R相−S相−T相間の短絡事故と判定する。
(1) In the case of a short-circuit accident between the R phase and the S phase The voltage value of the composite voltage V R-S + 2T is equal to or less than a predetermined fifth composite voltage value K 5 = 100.1 V (see equation (3-1)) ), And the phase of the composite voltage V R-S + 2T at the normal time is 280.9 °, and the phase of the composite voltage V R-S + 2T at the time of the short-circuit accident is a predetermined fifth composite voltage The angle range ε 5 (7.10 ° (= X 7 ) ≦ ε 5 ≦ 40.9 ° (= X 8 ), see (3-2) and (3-3))) (− ε 5 ) and the phase of the short-circuit current I Ry is delayed (+ λ 5 ) by a predetermined fifth short-circuit current angle range λ 5 (79.1 ° ≦ λ 5 ≦ 139.1 °) It is determined as a short-circuit accident between the R phase and the S phase.
K 5 = [(83.15) 2 + (72.01 × 85/110) 2 ] 1/2
= 100.1 (V) (3-1)
X 7 = cos -1 (83.15 / 110.0) -cos -1 (83.15 / 110.05)
= 7.10 (°) (3-2)
X 8 = 280.9-240
= 40.9 (°) (3-3)
(2) In the case of a short circuit accident between the S phase and the T phase The voltage value of the composite voltage V R-S + 2T is equal to or less than a predetermined sixth composite voltage value K 6 = 86.0 V (see formula (3-4)) ), And the phase of the composite voltage V R-S + 2T at the normal time is 280.9 ° as a reference, the phase of the composite voltage V R-S + 2T at the time of the short-circuit accident is a predetermined sixth composite voltage Angular range ε 6 (3.09 ° (= X 9 ) ≦ ε 6 ≦ 79.1 ° (= X 10 ) (see equations (3-5) and (3-6))) (+ ε 6 ) and the phase of the short-circuit current I Ry is delayed by (+ λ 6 ) within the predetermined sixth short-circuit current angle range λ 6 (19.1 ° ≦ λ 6 ≦ 79.1 °) It is determined as a short-circuit accident between phase T and phase T.
K 6 = [(20.79) 2 + (108.02 × 85/110) 2 ] 1/2
= 86.0 (V) (3-4)
X 9 = cos −1 (20.79 / 110) −cos −1 (20.79 / 86.02)
= 3.09 (°) (3-5)
X 10 = 360-280.9
= 79.1 (°) (3-6)
(3) In the case of a short-circuit accident between the T phase and the R phase The voltage value of the composite voltage V R-S + 2T is a predetermined seventh composite voltage value K 7 = 107.6 V or less (see equation (3-7)) ), And the phase of the composite voltage V R-S + 2T at the normal time is 280.9 ° as a reference, the phase of the composite voltage V R-S + 2T at the time of the short-circuit accident is a predetermined seventh composite voltage Angular range ε 7 (4.12 ° (= X 11 ) ≦ ε 7 ≦ 19.1 ° (= X 12 ) (see equations (3-8) and (3-9)) (+ ε 7 ) and the phase of the short-circuit current I Ry is delayed by (+ λ 7 ) within a predetermined seventh short-circuit current angle range λ 7 (139.1 ° ≦ λ 7 ≦ 199.1 °) Judged as a short-circuit accident between phase-R.
K 7 = [103.94 2 + (36.01 × 85/110) 2 ] 1/2
= 107.6 (V) (3-7)
X 11 = cos -1 (103.94 / 110) -cos -1 (103.94 / 107.60)
= 4.12 (°) (3-8)
X 12 = 300-280.9
= 19.1 (°) (3-9)
(4) In the case of a short-circuit accident between the R phase, the S phase, and the T phase, the voltage value of the composite voltage V R-S + 2T is equal to or less than a predetermined eighth composite voltage value K 8 = 85 V (75 to 80% of the rated voltage) And the phase of the composite voltage V R-S + 2T at the time of a short-circuit accident is a predetermined eighth composite on the basis that the phase of the composite voltage V R-S + 2T at a normal time is 280.9 ° It is within the voltage angle range ε 8 (−7.10 ° (= −X 7 ) ≦ ε 8 ≦ 3.09 ° (= X 9 )) (that is, in phase), and the short circuit current I When the phase of Ry is delayed by (+ λ 8 ) within a predetermined eighth short-circuit current angle range λ 8 (79.1 ° ≦ λ 8 ≦ 139.1 °) (between R phase, S phase, and T phase) Judged as a short circuit accident.

演算処理部は、事故様相判定結果がS相−T相間の短絡事故またはT相−R相間の短絡事故であることを示す場合には短絡電流IRYを1倍とし、事故様相判定結果がR相−S相間の短絡事故であることを示す場合には短絡電流IRYを1/2倍とし、事故様相判定結果がR相−S相−T相間の短絡事故であることを示す場合には短絡電流IRYを1/31/2倍とする。また、演算処理部は、負荷電流Iを1/31/2倍とする。 The arithmetic processing unit multiplies the short-circuit current I RY when the accident mode determination result indicates a short circuit accident between the S phase and the T phase or a short circuit accident between the T phase and the R phase, and the accident mode determination result is R To indicate a short-circuit accident between phase S and S-phase, halve the short-circuit current I RY and when the accident mode judgment result indicates a short-circuit accident between R phase, S phase and T phase Short circuit current I RY is set to 1/3 1/2 times. Further, the arithmetic processing unit sets the load current I to 1/3 1/2 times.

演算処理部は、図11に示すように、線間電圧、相電圧または相・線間電圧(相電圧と線間電圧との組合せ)に基づいて事故様相を判定する事故様相判定回路71と、クロス貫通変流器10から出力される短絡電流IRyを1倍する第1の振幅調整回路721と、短絡電流IRyを1/2倍する第2の振幅調整回路722と、負荷電流Iおよび短絡電流IRyを1/31/2倍する第3の振幅調整回路723と、事故様相判定回路71から入力されるスイッチ制御信号SSWに応じて基づいて第1乃至第3の振幅調整回路721〜723の出力信号のうちのいずれか1つを選択する選択スイッチ73とで構成してもよい。 As shown in FIG. 11, the arithmetic processing unit includes an accident aspect determination circuit 71 that determines an accident aspect based on a line voltage, a phase voltage, or a phase / line voltage (combination of a phase voltage and a line voltage); A first amplitude adjustment circuit 72 1 that multiplies the short-circuit current I Ry output from the cross-through current transformer 10, a second amplitude adjustment circuit 72 2 that doubles the short-circuit current I Ry , and a load current I and short-circuit current I Ry 1/3 1/2 multiplying third amplitude adjustment circuit 72 3, first to third, based in accordance with a switch control signal S SW input from accidents aspect determination circuit 71 of it may be constituted by a selection switch 73 for selecting one of the output signals of the amplitude adjusting circuit 72 1 to 72 3.

選択スイッチ73は、通常は、第3の振幅調整回路723の出力信号を選択するようにされている。これにより、短絡事故が発生していないときには、クロス貫通変流器10から出力される負荷電流Iは、第3の振幅調整回路723において1/31/2倍されたのちに、選択スイッチ73を介して短絡保護継電器に入力される。 The selection switch 73 normally selects the output signal of the third amplitude adjustment circuit 723. Thus, when the short circuit does not occur, the load current I output from the cross through the current transformer 10, after which is 1/3 1/2 In the third amplitude adjusting circuit 72 3, the selection switch 73 to the short-circuit protection relay.

事故様相判定回路71は、「R相−S相間の短絡事故である」と判定すると、第2の振幅調整回路722の出力信号を選択スイッチ73に選択させるスイッチ制御信号SSWを出力する。これにより、R相−S相間の短絡事故が発生したときには、クロス貫通変流器10から出力される短絡電流IRyは、第2の振幅調整回路722において1/2倍されたのちに、選択スイッチ73を介して短絡保護継電器に入力される。 If the accident aspect determination circuit 71 determines that “a short-circuit accident between the R phase and the S phase”, it outputs a switch control signal SSW that causes the selection switch 73 to select the output signal of the second amplitude adjustment circuit 722. Thus, when the short circuit of the R-phase -S phase occurs, the short-circuit current I Ry outputted from the cross through the current transformer 10, after which is half in the second amplitude adjusting circuit 72 2, The signal is input to the short-circuit protection relay through the selection switch 73.

また、事故様相判定回路71は、「S相−T相間の短絡事故である」または「T相−R相間の短絡事故である」と判定すると、第1の振幅調整回路721の出力信号を選択スイッチ73に選択させるスイッチ制御信号SSWを出力する。これにより、S相−T相間の短絡事故またはT相−R相間の短絡事故が発生したときには、クロス貫通変流器10から出力される短絡電流IRyは、第1の振幅調整回路721において1倍されたのちに、選択スイッチ73を介して短絡保護継電器に入力される。 Further, when the accident aspect determination circuit 71 determines that “a short circuit accident between the S phase and the T phase” or “a short circuit accident between the T phase and the R phase”, the output signal of the first amplitude adjustment circuit 72 1 is determined. A switch control signal SSW to be selected by the selection switch 73 is output. Thereby, when a short circuit accident between the S phase and the T phase or a short circuit accident between the T phase and the R phase occurs, the short circuit current I Ry output from the cross-through current transformer 10 is changed in the first amplitude adjustment circuit 72 1 . After being multiplied by 1, it is input to the short-circuit protection relay via the selection switch 73.

さらに、事故様相判定回路71は、「R相−S相−T相間の短絡事故である」と判定すると、第3の幅調整回路723の出力信号を選択スイッチ73に選択させるスイッチ制御信号SSWを出力する。これにより、R相−S相−T相間の短絡事故が発生した場合には、クロス貫通変流器10から出力される短絡電流IRyは、第3の振幅調整回路723において1/31/2倍されたのちに、選択スイッチ73を介して短絡保護継電器に入力される。 Further, when the accident aspect determination circuit 71 determines that “a short-circuit accident between the R phase, the S phase, and the T phase”, the switch control signal S that causes the selection switch 73 to select the output signal of the third width adjustment circuit 723. Outputs SW . As a result, when a short circuit accident between the R phase, the S phase, and the T phase occurs, the short circuit current I Ry output from the cross-through current transformer 10 is reduced to 1/3 1 in the third amplitude adjustment circuit 72 3 . / twice been then, is input to the short-circuit protection relay via the selection switch 73.

その結果、短絡電流IRyの振幅を事故様相によらず同じにすることができるので、短絡保護継電器の検出感度および動作時間を同じにすることができる。 As a result, since the amplitude of the short-circuit current I Ry can be made the same regardless of the accident aspect, the detection sensitivity and the operation time of the short-circuit protection relay can be made the same.

次に、本発明の第2の実施例による保護継電装置について、図12乃至図14を参照して説明する。
本実施例による保護継電装置は、図1に示したクロス貫通変流器10を2個(第1および第2のクロス貫通変流器101,102)用いて短絡事故から三相交流回路を保護するためのものであり、図12に示すように、送配電線のR相およびS相がクロスするように貫通された第1のクロス貫通変流器101と、送配電線のR相およびT相がクロスするように貫通された第2のクロス貫通変流器102と、第1のクロス貫通変流器101から入力される第1の短絡電流IRy1に基づいて送配電線の短絡事故を検出すると、送配電線のR相、S相およびT相にそれぞれ設置された第1乃至第3の遮断器21〜23を一括遮断する第1の過電流継電器41と、第2のクロス貫通変流器102から入力される第2の短絡電流IRy2に基づいて送配電線の短絡事故を検出すると、第1乃至第3の遮断器21〜23を一括遮断する第2の過電流継電器42とを具備する。
Next, a protective relay device according to a second embodiment of the present invention will be described with reference to FIGS.
The protective relay device according to this embodiment uses two cross-through current transformers 10 shown in FIG. 1 (first and second cross-through current transformers 10 1 , 10 2 ) to prevent a three-phase AC from a short-circuit accident. It is intended to protect the circuit, as shown in FIG. 12, R-phase and S-phase of the transmission and distribution lines are the first cross through current transformer 10 1 is penetrated to cross, the transmission and distribution lines The second cross-through current transformer 10 2 penetrated so that the R phase and the T phase cross each other, and the first short-circuit current I Ry1 input from the first cross-through current transformer 10 1. The first overcurrent relay 4 that collectively shuts off the first to third circuit breakers 2 1 to 2 3 installed in the R phase, S phase, and T phase of the transmission and distribution line when a short circuit accident of the distribution line is detected. 1 and, second second short-circuit current I Ry2 short of transmission and distribution lines on the basis of the input from the cross-through current transformer 10 2 Upon detection of a fault comprises a second overcurrent relay 4 2 for collectively blocking the first to third circuit breaker 2 1 to 2 3.

ここで、第1のクロス貫通変流器101には送配電線のR相およびS相が貫通されているため、短絡事故が発生していないときに送配電線のR相、S相およびT相に流れる負荷電流をIR,IS,ITで表すと、図13に示すようにR相の負荷電流IRとS相の負荷電流ISとが120°の位相差で第1のクロス貫通変流器101の環状鉄心(図1に示した環状鉄心16参照)を逆向きに貫通して流れる(すなわち、R相の負荷電流IRは第1のクロス貫通変流器101を極性方向に貫通して流れ、S相の負荷電流ISは第1のクロス貫通変流器101を反極性方向に貫通して流れる)。そのため、第1のクロス貫通変流器101から第1の過電流継電器41に入力される第1の負荷電流I1はR相の負荷電流IRとS相の負荷電流ISとのベクトル差となり、第1の負荷電流I1の振幅はR相の負荷電流IR(S相の負荷電流IS)の振幅の31/2倍となる
1=IR−IS
|I1|=|IR−IS|=31/2×|IR|=31/2×|IS
同様に、第2のクロス貫通変流器102には送配電線のR相およびT相が貫通されているため、図13に示すようにR相の負荷電流IRとT相の負荷電流ITとが120°の位相差で第2のクロス貫通変流器102の環状鉄心(図1に示した環状鉄心16参照)を逆向きに貫通して流れる(すなわち、R相の負荷電流IRは第2のクロス貫通変流器102を極性方向に貫通して流れ、T相の負荷電流ITは第2のクロス貫通変流器102を反極性方向に貫通して流れる)。そのため、第2のクロス貫通変流器102から第2の過電流継電器42に入力される第2の負荷電流I2はR相の負荷電流IRとT相の負荷電流ITとのベクトル差となり、第2の負荷電流I2の振幅はR相の負荷電流IR(T相の負荷電流IT)の振幅の31/2倍となる。
2=IR−IT
|I2|=|IR−IT|=31/2×|IR|=31/2×|IT
Here, since the first cross through the current transformer 10 1 extends through the R-phase and S-phase of the transmission and distribution lines, R-phase of the transmission and distribution lines when the short circuit does not occur, S-phase and When the load currents flowing in the T phase are represented by I R , I S , and I T , as shown in FIG. 13, the R phase load current I R and the S phase load current I S have a first phase difference of 120 °. flowing cross through current transformer 10 1 toroid (see toroids 16 shown in FIG. 1) through the opposite direction (i.e., the R-phase load current I R is the first cross through current transformer 10 flow through 1 to polarity direction, the load current I S of the S-phase flow through the first cross through current transformer 10 1 in the opposite polarity direction). Therefore, the first load current I 1 which is input from the first cross through current transformer 10 1 in the first overcurrent relay 4 1 of the load current I S of the load R-phase current I R and S-phase The first load current I 1 has an amplitude that is 3 1/2 times the amplitude of the R-phase load current I R (S-phase load current I S ). I 1 = I R −I S
| I 1 | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I S |
Similarly, since the second cross through current transformer 10 2 R-phase and T-phase of the transmission and distribution lines are through, the load current of the R-phase as shown in FIG. 13 I R and T phases of the load current and I T flows through the second cross through current transformer 10 2 toroid (see toroid 16 shown in FIG. 1) in the opposite direction with a phase difference of 120 ° (i.e., the R-phase load current I R is the load current I T of the second cross through current transformer 10 2 flows through the polarity direction, T phase flows through the second cross through current transformer 10 2 in the opposite polarity direction) . Therefore, the second load current I 2 from the second cross through current transformer 10 2 is inputted second overcurrent relay 4 2 of the load current I T of the load R-phase current I R and T phases As a result of the vector difference, the amplitude of the second load current I 2 is 3 1/2 times the amplitude of the R-phase load current I R (T-phase load current I T ).
I 2 = I R −I T
| I 2 | = | I R −I T | = 3 1/2 × | I R | = 3 1/2 × | I T |

また、送配電線において短絡事故が発生したときに送配電線のR相、S相およびT相に流れる送配電線のR相、S相およびT相に流れる短絡電流をIFR,IFS,IFTで表すと、第1および第2の短絡電流IRy1,IRy2は、短絡電流IFR,IFS,IFTのインピーダンス角をθとすると、事故様相に応じて以下のように表される。
(1)R相−S相間の短絡事故の場合
R相−S相間の短絡事故が発生すると、図12に破線の矢印で示すように送配電線のR相にR相の短絡電流IFRが内部方向に流れ、送配電線のS相にS相の短絡電流IFSが外部方向に流れるが、送配電線のT相にはT相の短絡電流IFTが流れない。
したがって、第1のクロス貫通変流器101から第1の過電流継電器41に入力される第1の短絡電流IRy1は、図12に太矢印の実線で示すようにR相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の2倍となる(図14(a)参照。なお、図14においては、送配電線の内部方向に流れる短絡電流IFR,IFS,IFTは実線の矢印で、送配電線の外部方向に流れる短絡電流IFR,IFS,IFTは一点鎖線の矢印で示している。)。
Ry1=IFR−IFS
|IRy1|=|IFR−IFS|=2×|IFR|=2×|IFS
また、第2のクロス貫通変流器102から第2の過電流継電器42に入力される第2の短絡電流IRy2は、図12に太矢印の破線で示すようにR相の短絡電流IFRとなり、第2の短絡電流IRy2の振幅はR相の短絡電流IFRの振幅となる(図14(a)参照)。
Ry2=IFR
|IRy2|=|IFR
(2)S相−T相間の短絡事故の場合
S相−T相間の短絡事故が発生すると、送配電線のS相にS相の短絡電流IFSが内部方向に流れ、送配電線のT相にT相の短絡電流IFTが外部方向に流れるが、送配電線のR相にはR相の短絡電流IFRが流れない。
したがって、第1のクロス貫通変流器101から第1の過電流継電器41に入力される第1の短絡電流IRy1は、極性が負のS相の短絡電流−IFSとなり、第1の短絡電流IRy1の振幅は、S相の短絡電流IFSの振幅となる(図14(b)参照)。
Ry1=−IFS
Ry1=IFS
|IRy1|=|IFS
また、第2のクロス貫通変流器102から第2の過電流継電器42に入力される第2の短絡電流IRy2は、極性が負のT相の短絡電流−IFTとなり、第2の短絡電流IRy2の振幅はT相の短絡電流IFTの振幅となる(図14(b)参照)。
Ry2=−IFT
|IRy2|=|IFT
(3)T相−R相間の短絡事故の場合
T相−R相間の短絡事故が発生すると、送配電線のT相にT相の短絡電流IFTが内部方向に流れ、送配電線のR相にR相の短絡電流IFRが外部方向に流れるが、送配電線のS相にはS相の短絡電流IFSが流れない。
したがって、第1のクロス貫通変流器101から第1の過電流継電器41に入力される第1の短絡電流IRy1はR相の短絡電流IFRとなり、第1の短絡電流IRy1の振幅はR相の短絡電流IFRの振幅となる(図14(c)参照)。
Ry1=IFR
|IRy1|=|IFR
また、第2のクロス貫通変流器102から第2の過電流継電器42に入力される第2の短絡電流IRy2はR相の短絡電流IFRとT相の短絡電流IFTとのベクトル差となり、第2の短絡電流IRy2の振幅はR相の短絡電流IFR(T相の短絡電流IFT)の振幅の2倍となる(図14(c)参照)。
Ry2=IFR−IFT
|IRy2|=|IFR−IFT|=2×|IFR|=2×|IFT
(4)R相−S相−T相間の短絡事故の場合
R相−S相−T相間の短絡事故が発生すると、送配電線のR相、S相およびT相にR相の短絡電流IFR、S相の短絡電流IFSおよびT相の短絡電流IFTが位相差120°で内部方向にそれぞれ流れる。
したがって、第1のクロス貫通変流器101から第1の過電流継電器41に入力される第1の短絡電流IRy1はR相の短絡電流IFRとS相の短絡電流IFSとのベクトル差となり、第1の短絡電流IRy1の振幅はR相の短絡電流IFR(S相の短絡電流IFS)の振幅の31/2倍となる(図14(d)参照)。
Ry1=IFR−IFS
|IRy1|=|IFR−IFS|=31/2×|IFR|=31/2×|IFS
また、第2のクロス貫通変流器102から第2の過電流継電器42に入力される第2の短絡電流IRy2はR相の短絡電流IFRとT相の短絡電流IFTとのベクトル差となり、第2の短絡電流IRy2の振幅はR相の短絡電流IFR(T相の短絡電流IFT)の振幅の31/2倍となる(図14(d)参照)。
Ry2=IFR−IFT
|IRy2|=|IFR−IFT|=31/2×|IFR|=31/2×|IFT
Also, R-phase of the transmission and distribution lines when the short circuit occurs in the transmission and distribution lines, the transmission and distribution lines flowing through the S-phase and T-phase R phase, S phase and the short-circuit current flowing through the T-phase I FR, I FS, expressed in I FT, first and second short-circuit current I Ry1, I Ry2 is short-circuit current I FR, I FS, when the impedance angle I FT theta, expressed as follows depending on the accident appearance The
(1) In the case of a short circuit accident between the R phase and the S phase When a short circuit accident between the R phase and the S phase occurs, the short circuit current I FR of the R phase is generated in the R phase of the transmission and distribution line as shown by the broken arrow in FIG. flow inside direction, but the short-circuit current I FS of S phase to the S phase of the transmission and distribution lines to flow to the outside direction, the T-phase of the transmission and distribution lines does not flow a short-circuit current I FT T-phase.
Accordingly, the first short-circuit current I Ry1 inputted from the first cross through current transformer 10 1 in the first overcurrent relay 4 1, short-circuit current of the R-phase as shown by the solid line of thick arrows in FIG. 12 The vector difference between I FR and the S-phase short-circuit current I FS, and the amplitude of the first short-circuit current I Ry1 is twice the amplitude of the R-phase short-circuit current I FR (S-phase short-circuit current I FS ) ( 14A, the short-circuit currents I FR , I FS , and I FT flowing in the inner direction of the transmission / distribution line are solid arrows and the short-circuit current I FR flowing in the outer direction of the transmission / distribution line in FIG. , I FS , and I FT are indicated by alternate long and short dashed arrows.)
I Ry1 = I FR -I FS
| I Ry1 | = | I FR −I FS | = 2 × | I FR | = 2 × | I FS |
Further, the second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second overcurrent relay 4 2 is an R-phase short-circuit current as shown by a broken line in FIG. I FR and the amplitude of the second short-circuit current I Ry2 is the amplitude of the R-phase short-circuit current I FR (see FIG. 14A).
I Ry2 = I FR
| I Ry2 | = | I FR
(2) In the case of a short-circuit accident between the S phase and the T phase When a short circuit accident between the S phase and the T phase occurs, the S phase short circuit current I FS flows in the S phase of the transmission and distribution line in the internal direction, and the T of the transmission and distribution line Although the T-phase short-circuit current I FT flows outward in the phase, the R-phase short-circuit current I FR does not flow in the R-phase of the transmission and distribution line.
Accordingly, the first short-circuit current I Ry1 inputted from the first cross through current transformer 10 1 in the first overcurrent relay 4 1, short-circuit current -I FS next polarity negative S phase, first The amplitude of the short-circuit current I Ry1 is the amplitude of the S-phase short-circuit current I FS (see FIG. 14B).
I Ry1 = −I FS
I Ry1 = I FS
| I Ry1 | = | I FS |
The second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second overcurrent relay 4 2 is a T-phase short-circuit current −I FT having a negative polarity, The amplitude of the short-circuit current I Ry2 is the amplitude of the T-phase short-circuit current I FT (see FIG. 14B).
I Ry2 = −I FT
| I Ry2 | = | I FT |
(3) In the case of a short circuit accident between the T phase and the R phase When a short circuit accident occurs between the T phase and the R phase, a T phase short circuit current I FT flows in the T phase of the transmission and distribution line, and the R of the transmission and distribution line. While the short-circuit current I FR of R-phase to phase flows to the outside direction, the S-phase of the transmission and distribution lines does not flow a short-circuit current I FS of S phase.
Accordingly, the first short-circuit current I Ry1 inputted from the first cross through current transformer 10 1 in the first overcurrent relay 4 1 short-circuit current I FR next to R-phase, the first short-circuit current I Ry1 The amplitude is the amplitude of the R-phase short-circuit current I FR (see FIG. 14C).
I Ry1 = I FR
| I Ry1 | = | I FR
The second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second overcurrent relay 4 2 is the difference between the R-phase short-circuit current I FR and the T-phase short-circuit current I FT . The vector difference results in the amplitude of the second short-circuit current I Ry2 being twice the amplitude of the R-phase short-circuit current I FR (T-phase short-circuit current I FT ) (see FIG. 14C).
I Ry2 = I FR −I FT
| I Ry2 | = | I FR −I FT | = 2 × | I FR | = 2 × | I FT |
(4) In the case of a short circuit accident between R phase, S phase, and T phase When a short circuit accident between R phase, S phase, and T phase occurs, short circuit current I of R phase to R phase, S phase, and T phase of the transmission and distribution line FR and S-phase short-circuit current I FS and T-phase short-circuit current I FT flow in the internal direction with a phase difference of 120 °.
Accordingly, the first short-circuit current I Ry1 inputted from the first cross through current transformer 10 1 in the first overcurrent relay 4 1 of the short-circuit current I FS of the short circuit current I FR and S phases of the R phase The amplitude of the first short circuit current I Ry1 is 3 1/2 times the amplitude of the R phase short circuit current I FR (S phase short circuit current I FS ) (see FIG. 14D).
I Ry1 = I FR -I FS
| I Ry1 | = | I FR −I FS | = 3 1/2 × | I FR | = 3 1/2 × | I FS |
The second short-circuit current I Ry2 input from the second cross-through current transformer 10 2 to the second overcurrent relay 4 2 is the difference between the R-phase short-circuit current I FR and the T-phase short-circuit current I FT . The vector difference results in the amplitude of the second short-circuit current I Ry2 being 3 1/2 times the amplitude of the R-phase short-circuit current I FR (T-phase short-circuit current I FT ) (see FIG. 14D).
I Ry2 = I FR −I FT
| I Ry2 | = | I FR −I FT | = 3 1/2 × | I FR | = 3 1/2 × | I FT |

第1の過電流継電器41は、第1の短絡電流IRy1の振幅が電流整定値を超えた場合には、送配電線に短絡事故が発生したと判定して、第1乃至第3の遮断器21〜23を一括遮断する。
また、第2の過電流継電器42は、第2の短絡電流IRy2の振幅が電流整定値を超えた場合には、送配電線に短絡事故が発生したと判定して、第1乃至第3の遮断器21〜23を一括遮断する。
First overcurrent relay 4 1, when the amplitude of the first short-circuit current I Ry1 exceeds the current setting value, it is determined that the short-circuit failure occurs in the transmission and distribution lines, the first to third Break breakers 2 1 to 2 3 at once .
The second overcurrent relay 4 2, when the amplitude of the second short-circuit current I Ry2 exceeds the current setting value, it is determined that the short-circuit failure occurs in the transmission and distribution lines, first to The circuit breakers 2 1 to 2 3 of 3 are collectively shut off.

このように、本発明のクロス貫通変流器を使用することにより、2個の変流器(第1および第2のクロス貫通変流器101,102)と2個の過電流継電器(第1および第2の過電流継電器41,42)とで短絡事故から3相の送配電線を保護することができる。 In this way, by using the cross-through current transformer of the present invention, two current transformers (first and second cross-through current transformers 10 1 and 10 2 ) and two overcurrent relays ( The first and second overcurrent relays 4 1 and 4 2 ) can protect the three-phase transmission and distribution lines from a short circuit accident.

なお、第1のクロス貫通変流器101には送配電線のR相およびS相を貫通させるとともに第2のクロス貫通変流器102には送配電線のR相およびT相を貫通させたが、第1および第2のクロス貫通変流器101,102に貫通させる送配電線の2相は他の組合せでもよい。 The through a first cross through the current transformer 10 1 with passing the R-phase and S-phase of the transmission and distribution lines second cross through current transformer 10 to the second transmission and distribution lines R-phase and T-phase However, the two phases of the power transmission / distribution wires passing through the first and second cross through current transformers 10 1 , 10 2 may be other combinations.

以上説明したように、本実施例による保護継電装置では、本発明のクロス貫通変流器を2個(第1および第2のクロス貫通変流器101,102)を用いることにより、変流器および短絡保護継電器の設置台数を更に削減することができるが、第1および第2の短絡電流IRy1,IRy2の振幅が事故様相によって異なる。
すなわち、R相−S相間の短絡事故における第1の短絡電流IRy1の振幅は、S相−T相間の短絡事故およびT相−R相間の短絡事故における第1の短絡電流IRy1の振幅の2倍となり、R相−S相−T相間の短絡事故における第1の短絡電流IRy1の振幅は、S相−T相間の短絡事故およびT相−R相間の短絡事故における第1の短絡電流IRy1の振幅の31/2倍となる。
また、T相−R相間の短絡事故における第2の短絡電流IRy2の振幅は、R相−S相間の短絡事故およびS相−T相間の短絡事故における第2の短絡電流IRy2の振幅の2倍となり、R相−S相−T相間の短絡事故における第2の短絡電流IRy2の振幅は、R相−S相間の短絡事故およびS相−T相間の短絡事故における第2の短絡電流IRy2の振幅の31/2倍となる。
そのため、短絡保護継電器の検出感度および動作時間をすべての事故様相に対して同じにすることができない。
As described above, in the protective relay device according to the present embodiment, by using two cross-through current transformers of the present invention (first and second cross-through current transformers 10 1 and 10 2 ), can further reduce the number of installed current transformer and short-circuit protection relay, but the amplitude of the first and second short-circuit current I Ry1, I Ry2 differs depending accident aspects.
That is, the amplitude of the first short-circuit current I Ry1 in the short-circuit accident between the R phase and the S-phase is the amplitude of the first short-circuit current I Ry1 in the short-circuit accident between the S phase and the T phase and the short circuit accident between the T phase and the R phase. The amplitude of the first short-circuit current I Ry1 in the short-circuit accident between the R phase, the S-phase, and the T-phase is doubled, and the amplitude of the first short-circuit current in the short-circuit accident between the S-phase and the T-phase and the short-circuit accident between the T-phase and the R-phase It becomes 3 1/2 times the amplitude of I Ry1 .
The amplitude of the second short circuit current I Ry2 in the short-circuit accident between the T phase and the R phase is the amplitude of the second short circuit current I Ry2 in the short circuit accident between the R phase and the S phase and the short circuit accident between the S phase and the T phase. The amplitude of the second short-circuit current I Ry2 in the short-circuit accident between the R phase, the S-phase, and the T-phase is doubled, and the amplitude of the second short-circuit current in the short-circuit accident between the R-phase and the S-phase It becomes 3 1/2 times the amplitude of I Ry2 .
Therefore, the detection sensitivity and operating time of the short circuit protection relay cannot be made the same for all accident aspects.

そこで、上述した第1乃至第5の事故様相判定方法のいずれかを用いて事故様相を判定し、第1のクロス貫通変流器101から出力される第1の短絡電流IRy1を事故様相判定結果に応じて1倍、1/2倍または1/31/2倍とする第1の演算処理部を第1のクロス貫通変流器101と短絡保護継電器(第1の過電流継電器41)との間または短絡保護継電器に設けるとともに、第2のクロス貫通変流器102から出力される第2の短絡電流IRy2を事故様相判定結果に応じて1倍、1/2倍または1/31/2倍とする第2の演算処理部を第2のクロス貫通変流器102と短絡保護継電器(第2の過電流継電器42)との間または短絡保護継電器に設けてもよい。 Therefore, to determine the accident appearance using any one of the first to fifth accident aspect determination method described above, the accident aspects the first short-circuit current I Ry1 output from the first cross through current transformer 10 1 1x according to the determination result, 1/2-fold or 1/3 1/2 the first first arithmetic processing unit of the cross through current transformer 10 1 and short-circuit protection relay for (first overcurrent relay 4 1 ) or a short-circuit protection relay, and the second short-circuit current I Ry2 output from the second cross-through current transformer 10 2 is 1 or 1/2 times depending on the accident mode judgment result Alternatively, a second arithmetic processing unit that is 1/3 1/2 times is provided between the second cross-through current transformer 10 2 and the short-circuit protection relay (second overcurrent relay 4 2 ) or in the short-circuit protection relay. May be.

たとえば、上述した第1の事故様相判定方法を用いる場合には、第1および第2の演算処理部は、表1に示した3つの線間電圧に基づく事故様相判定方法、表2に示した3つの相電圧に基づく事故様相判定方法、または、表3に示した相・線間電圧に基づく事故様相判定方法を用いて、短絡事故の事故様相を判定する。   For example, when the first accident aspect determination method described above is used, the first and second arithmetic processing units are shown in Table 2 as the accident aspect determination method based on the three line voltages shown in Table 1. The accident aspect of the short-circuit accident is determined using the accident aspect determination method based on the three phase voltages or the accident aspect determination method based on the phase / line voltage shown in Table 3.

第1の演算処理部は、事故様相判定結果がS相−T相間の短絡事故またはT相−R相間の短絡事故であることを示す場合には第1のクロス貫通変流器101から出力される第1の短絡電流IRy1を1倍とし、事故様相判定結果がR相−S相間の短絡事故であることを示す場合には第1の短絡電流IRy1を1/2倍とし、事故様相判定結果がR相−S相−T相間の短絡事故であることを示す場合には第1の短絡電流IRy1を1/31/2倍とする。また、第1の演算処理部は、第1の負荷電流I1を1/31/2倍とする。
第2の演算処理部は、事故様相判定結果がR相−S相間の短絡事故またはS相−T相間の短絡事故であることを示す場合には第2のクロス貫通変流器102から出力される第2の短絡電流IRy2を1倍とし、事故様相判定結果がT相−R相間の短絡事故であることを示す場合には第2の短絡電流IRy2を1/2倍とし、事故様相判定結果がR相−S相−T相間の短絡事故であることを示す場合には第2の短絡電流IRy2を1/31/2倍とする。また、第2の演算処理部は、第2の負荷電流I2を1/31/2倍とする。
First arithmetic processing unit, accident aspects determination result output from the first cross through the current transformer 10 1 to indicate that a short-circuit accident or T phase -R phase short fault of the S-phase -T phase The first short-circuit current I Ry1 to be multiplied by 1 and when the accident mode judgment result indicates a short-circuit accident between the R phase and the S phase, the first short-circuit current I Ry1 is halved and the accident When the result of the mode determination indicates that a short circuit accident between the R phase, the S phase, and the T phase, the first short circuit current I Ry1 is set to 1/3 1/2 times. Further, the first arithmetic processing unit sets the first load current I 1 to 1/3 1/2 times.
Second arithmetic processing unit, accident aspects determination result is output from the cross-through current transformer 10 of the second is to indicate that a short-circuit accident or S phase -T phase short fault of R-phase -S phase If the second short-circuit current I Ry2 is multiplied by 1 and the accident mode judgment result indicates a short-circuit accident between the T-phase and the R-phase, the second short-circuit current I Ry2 is halved and the accident In the case where the appearance determination result indicates a short circuit accident between the R phase, the S phase, and the T phase, the second short circuit current I Ry2 is set to 1/3 1/2 times. Further, the second arithmetic processing unit sets the second load current I 2 to 1/3 1/2 times.

第1の演算処理部は、図11に示した演算処理部と同様に、線間電圧、相電圧または相・線間電圧(相電圧と線間電圧との組合せ)に基づいて事故様相を判定する事故様相判定回路と、第1の短絡電流IRy1を1倍する第1の振幅調整回路と、第1の短絡電流IRy1を1/2倍する第2の振幅調整回路と、第1の負荷電流I1および第1の短絡電流IRy1を1/31/2倍する第3の振幅調整回路と、事故様相判定回路から入力されるスイッチ制御信号に応じて第1乃至第3の振幅調整回路の出力信号のうちのいずれか1つを選択する選択スイッチとで構成してもよい。 As in the case of the arithmetic processing unit shown in FIG. 11, the first arithmetic processing unit determines the accident aspect based on the line voltage, phase voltage, or phase / line voltage (combination of phase voltage and line voltage). and accidents aspects judging circuit, first amplitude adjustment circuit for multiplying the first short-circuit current I Ry1 1, and a second amplitude adjustment circuit for multiplying the first short-circuit current I Ry1 1/2, first A third amplitude adjusting circuit that multiplies the load current I 1 and the first short-circuit current I Ry1 by 1/3 1/2, and first to third amplitudes according to the switch control signal input from the accident mode determination circuit. You may comprise with the selection switch which selects any one of the output signals of an adjustment circuit.

選択スイッチは、通常は、第3の振幅調整回路の出力信号を選択するようにされている。これにより、短絡事故が発生していないときには、第1の負荷電流I1は、第3の振幅調整回路において1/31/2倍されたのちに、選択スイッチを介して短絡保護継電器(第1の過電流継電器41)に入力される。 The selection switch normally selects the output signal of the third amplitude adjustment circuit. Thus, when no short-circuit accident has occurred, the first load current I 1 is multiplied by 1/3 1/2 in the third amplitude adjustment circuit, and then the short-circuit protection relay (first 1 overcurrent relay 4 1 ).

事故様相判定回路は、「R相−S相間の短絡事故である」と判定すると、第2の振幅調整回路の出力信号を選択スイッチに選択させるスイッチ制御信号を出力する。これにより、R相−S相間の短絡事故が発生したときには、第1の短絡電流IRy1は、第2の振幅調整回路において1/2倍されたのちに、選択スイッチを介して短絡保護継電器に入力される。 When the accident aspect determination circuit determines that “a short-circuit accident between the R phase and the S phase”, it outputs a switch control signal that causes the selection switch to select the output signal of the second amplitude adjustment circuit. Thereby, when a short circuit accident between the R phase and the S phase occurs, the first short circuit current I Ry1 is halved in the second amplitude adjustment circuit, and then the short circuit protection relay via the selection switch. Entered.

また、事故様相判定回路は、「S相−T相間の短絡事故である」または「T相−R相間の短絡事故である」と判定すると、第1の振幅調整回路の出力信号を選択スイッチに選択させるスイッチ制御信号を出力する。これにより、S相−T相間の短絡事故またはT相−R相間の短絡事故が発生したときには、第1の短絡電流IRy1は、第1の振幅調整回路において1倍されたのちに、選択スイッチを介して短絡保護継電器に入力される。 Further, when the accident aspect determination circuit determines that “a short circuit accident between the S phase and the T phase” or “a short circuit accident between the T phase and the R phase” occurs, the output signal of the first amplitude adjustment circuit is used as a selection switch. A switch control signal to be selected is output. Thereby, when a short circuit accident between the S phase and the T phase or a short circuit accident between the T phase and the R phase occurs, the first short circuit current I Ry1 is multiplied by 1 in the first amplitude adjustment circuit, and then the selection switch Is input to the short-circuit protection relay.

さらに、事故様相判定回路は、「R相−S相−T相間の短絡事故である」と判定すると、第3の幅調整回路の出力信号を選択スイッチに選択させるスイッチ制御信号を出力する。これにより、R相−S相−T相間の短絡事故が発生したときには、第1の短絡電流IRy1は、第3の幅調整回路において1/31/2倍されたのちに、選択スイッチを介して短絡保護継電器に入力される。 Further, when the accident aspect determination circuit determines that “a short-circuit accident between the R phase, the S phase, and the T phase”, the switch outputs a switch control signal that causes the selection switch to select the output signal of the third width adjustment circuit. As a result, when a short circuit accident between the R phase, the S phase, and the T phase occurs, the first short circuit current I Ry1 is multiplied by 1/3 1/2 in the third width adjustment circuit, and then the selection switch is turned on. To the short circuit protection relay.

その結果、第1の短絡電流IRy1の振幅を事故様相によらず同じにすることができるので、短絡保護継電器の検出感度および動作時間を同じにすることができる。 As a result, since the amplitude of the first short-circuit current I Ry1 can be made the same regardless of the accident aspect, the detection sensitivity and the operation time of the short-circuit protection relay can be made the same.

同様に、第2の演算処理部は、線間電圧、相電圧または相・線間電圧(相電圧と線間電圧との組合せ)に基づいて事故様相を判定する事故様相判定回路と、第2の短絡電流IRy2を1倍する第1の振幅調整回路と、第2の短絡電流IRy2を1/2倍する第2の振幅調整回路と、第2の負荷電流I2および第2の短絡電流IRy2を1/31/2倍する第3の振幅調整回路と、事故様相判定回路から入力されるスイッチ制御信号に応じて第1乃至第3の振幅調整回路の出力信号のうちのいずれか1つを選択する選択スイッチとで構成してもよい。 Similarly, the second arithmetic processing unit includes an accident aspect determination circuit that determines an accident aspect based on a line voltage, a phase voltage, or a phase / line voltage (a combination of a phase voltage and a line voltage); A first amplitude adjusting circuit for multiplying the short-circuit current I Ry2 by 1, a second amplitude adjusting circuit for multiplying the second short-circuit current I Ry2 by 1/2, a second load current I 2 and a second short-circuit Any one of the third amplitude adjustment circuit for multiplying the current I Ry2 by 1/3 1/2 and the output signals of the first to third amplitude adjustment circuits according to the switch control signal input from the accident mode determination circuit You may comprise with the selection switch which selects any one.

選択スイッチは、通常は、第3の振幅調整回路の出力信号を選択するようにされている。これにより、短絡事故が発生していないときには、第2のクロス貫通変流器102から出力される第2の負荷電流I2は、第3の振幅調整回路において1/31/2倍されたのちに、選択スイッチを介して短絡保護継電器(第2の過電流継電器42)に入力される。 The selection switch normally selects the output signal of the third amplitude adjustment circuit. Thus, when the short circuit does not occur, the second load current I 2 that is output from the second cross through current transformer 10 2 is 1/3 1/2 In the third amplitude adjusting circuit Thereafter, the signal is input to the short-circuit protection relay (second overcurrent relay 4 2 ) via the selection switch.

事故様相判定回路は、「R相−S相間の短絡事故である」または「S相−T相間の短絡事故である」と判定すると、第1の振幅調整回路の出力信号を選択スイッチに選択させるスイッチ制御信号を出力する。これにより、R相−S相間の短絡事故またはS相−T相間の短絡事故が発生したときには、第2の短絡電流IRy2は、第1の振幅調整回路において1倍されたのちに、選択スイッチを介して短絡保護継電器に入力される。 When the accident aspect determination circuit determines that “a short circuit accident between the R phase and the S phase” or “a short circuit accident between the S phase and the T phase”, the selection switch selects the output signal of the first amplitude adjustment circuit. Outputs a switch control signal. Thus, when a short circuit accident between the R phase and the S phase or a short circuit accident between the S phase and the T phase occurs, the second short circuit current I Ry2 is multiplied by 1 in the first amplitude adjustment circuit, and then the selection switch Is input to the short-circuit protection relay.

また、事故様相判定回路は、「T相−R相間の短絡事故である」と判定すると、第2の振幅調整回路の出力信号を選択スイッチに選択させるスイッチ制御信号を出力する。これにより、T相−R相間の短絡事故の短絡事故が発生したときには、第2の短絡電流IRy2は、第2の振幅調整回路において1/2倍されたのちに、選択スイッチを介して短絡保護継電器に入力される。 In addition, when the accident aspect determination circuit determines that “a short-circuit accident between the T phase and the R phase”, it outputs a switch control signal that causes the selection switch to select the output signal of the second amplitude adjustment circuit. As a result, when a short circuit accident occurs between the T phase and the R phase, the second short circuit current I Ry2 is halved in the second amplitude adjustment circuit and then shorted via the selection switch. Input to protective relay.

さらに、事故様相判定回路は、「R相−S相−T相間の短絡事故である」と判定すると、第3の幅調整回路の出力信号を選択スイッチに選択させるスイッチ制御信号を出力する。これにより、R相−S相−T相間の短絡事故が発生したときには、第2の短絡電流IRy2は、第3の幅調整回路において1/31/2倍されたのちに、選択スイッチを介して短絡保護継電器に入力される。 Further, when the accident aspect determination circuit determines that “a short-circuit accident between the R phase, the S phase, and the T phase”, the switch outputs a switch control signal that causes the selection switch to select the output signal of the third width adjustment circuit. As a result, when a short circuit accident between the R phase, the S phase, and the T phase occurs, the second short circuit current I Ry2 is multiplied by 1/3 1/2 in the third width adjustment circuit, and then the selection switch is turned on. To the short circuit protection relay.

その結果、第2の短絡電流IRy2の振幅を事故様相によらず同じにすることができるので、短絡保護継電器の検出感度および動作時間を同じにすることができる。 As a result, since the amplitude of the second short-circuit current I Ry2 can be made the same regardless of the accident aspect, the detection sensitivity and the operation time of the short-circuit protection relay can be made the same.

本実施例による保護継電器では、送配電線につきクロス貫通変流器および短絡保護継電器を2台ずつ使用することにより、自回路および他回路にまたがる短絡事故であっても確実に検出することができるとともに、1台の短絡保護継電器が故障または点検によって使用できなくなっても、自回路の短絡事故は他の1台の短絡保護継電器でバックアップすることができる。   In the protective relay according to the present embodiment, by using two cross-through current transformers and two short-circuit protective relays for each transmission / distribution line, it is possible to reliably detect even a short-circuit accident spanning the own circuit and other circuits. At the same time, even if one short circuit protection relay cannot be used due to failure or inspection, the short circuit accident of its own circuit can be backed up by another one short circuit protection relay.

以上では、送配電線において使用される短絡保護継電器との組合せで本発明のクロス貫通変流器について説明したが、本発明のクロス貫通変流器は、たとえばロボットの手足を駆動するための三相モータ(三相負荷)に電力を供給する三相交流回路において使用されている短絡保護装置と組み合わせても、同様の効果を得ることができる。   In the above, the cross-through current transformer of the present invention has been described in combination with the short-circuit protection relay used in the transmission / distribution line. The same effect can be obtained by combining with a short-circuit protection device used in a three-phase AC circuit that supplies power to a phase motor (three-phase load).

また、保護継電装置として、短絡事故から三相交流回路を保護するための過電流継電器を具備したものについて説明したが、変圧器内部の短絡事故から三相交流回路を保護するための電流差動継電器、構内における短絡事故から三相交流回路を保護するための受電保護継電器または分割受電保護継電器として使用されている過電流継電器や、送配電線の電源端母線側および受電端母線側にそれぞれ設置されて使用されるパルス符号変調電流差動継電器(PCM電流差動継電器)などを具備するものであっても、本発明のクロス貫通変流器と組み合わせることにより、同様の効果を得ることができる。   In addition, as a protective relay device, what has been provided with an overcurrent relay to protect the three-phase AC circuit from a short-circuit accident, the current difference to protect the three-phase AC circuit from a short-circuit accident inside the transformer Active relays, overcurrent relays that are used as power protection protection relays or split power reception protection relays to protect three-phase AC circuits from short-circuit accidents on the premises, power supply bus side and power reception side bus side Even if it is equipped with a pulse code modulation current differential relay (PCM current differential relay) that is installed and used, the same effect can be obtained by combining with the cross-through current transformer of the present invention. it can.

さらに、クロス貫通変流器の環状鉄心には三相交流回路の任意の2相を逆向きに1回クロスさせて貫通させたが、三相交流回路の任意の2相が2回以上クロスしてクロス貫通変流器を貫通するように、三相交流回路の任意の2相をクロス貫通変流器の環状鉄心に同じ回数または異なる回数だけ巻いてもよい。この場合には、一次導体として、絶縁ケーブルなどのように曲げ易いものを使用してもよい。   In addition, any two phases of the three-phase AC circuit were crossed once in the opposite direction through the annular core of the cross-through current transformer, but any two phases of the three-phase AC circuit crossed two or more times. Thus, any two phases of the three-phase AC circuit may be wound around the annular core of the cross-through current transformer the same number or different times so as to penetrate the cross-through current transformer. In this case, the primary conductor may be easily bent such as an insulated cable.

さらに、環状鉄心を用いてクロス貫通変流器を構成したが、カットコアや積鉄心などを用いてクロス貫通変流器を構成してもよい。   Furthermore, although the cross penetration current transformer was comprised using the annular iron core, you may comprise a cross penetration current transformer using a cut core, a stacked iron core, etc. FIG.

本発明の第1の実施例によるクロス貫通変流器10の構成を示す図であり、(a)は上面図、(b)は正面図である。It is a figure which shows the structure of the cross penetration current transformer 10 by 1st Example of this invention, (a) is a top view, (b) is a front view. 本発明の第2の実施例によるクロス貫通変流器20の構成を示す図であり、(a)は上面図、(b)は正面図である。It is a figure which shows the structure of the cross penetration current transformer 20 by the 2nd Example of this invention, (a) is a top view, (b) is a front view. 本発明のクロス貫通変流器の機能を備えた本発明の一実施例による端子台30の構成を示す図である。It is a figure which shows the structure of the terminal block 30 by one Example of this invention provided with the function of the cross penetration current transformer of this invention. 本発明の第1の実施例による保護継電装置について説明するための図である。It is a figure for demonstrating the protection relay apparatus by 1st Example of this invention. 短絡事故が発生していないときの負荷電流IとT相−R相の線間電圧VTRおよびR相の相電圧VRとについて説明するための図である。It is a diagram for explaining the load current I and the T-phase -R phase phase voltage V R of the line voltage V TR and R-phase when a short circuit does not occur. 短絡事故が発生したときに図4に示したクロス貫通変流器10から過電流継電器4に入力される短絡電流IRyについて説明するための図である。It is a figure for demonstrating short circuit current IRy inputted into overcurrent relay 4 from cross penetration current transformer 10 shown in Drawing 4 when a short circuit accident occurs. 第2の事故様相判定方法について説明するための図である。It is a figure for demonstrating the 2nd accident aspect determination method. 第3の事故様相判定方法について説明するための図である。It is a figure for demonstrating the 3rd accident aspect determination method. 第4の事故様相判定方法において用いられる事故様相判定用変圧器110の構成を示す図である。It is a figure which shows the structure of the transformer 110 for an accident aspect determination used in the 4th accident aspect determination method. 第5の事故様相判定方法において用いられる事故様相判定用変圧器120の構成を示す図である。It is a figure which shows the structure of the transformer 120 for accident aspect determination used in the 5th accident aspect determination method. 図4に示した過電流継電器4などの検出感度および動作時間を同じにするための演算処理部の一構成例を示す図である。It is a figure which shows the example of 1 structure of the arithmetic processing part for making detection sensitivity and operation time of the overcurrent relay 4 etc. shown in FIG. 4 the same. 本発明の第2の実施例による保護継電装置について説明するための図である。It is a figure for demonstrating the protective relay apparatus by the 2nd Example of this invention. 短絡事故が発生していないときの負荷電流Iについて説明するための図である。It is a figure for demonstrating the load current I when the short circuit accident has not occurred. 短絡事故が発生したときに図12に示した第1および第2のクロス貫通変流器101,102から第1および第2の過電流継電器41,42にそれぞれ入力される第1および第2の短絡電流IRy1,IRy2について説明するための図である。The first and second cross-current transformers 10 1 and 10 2 shown in FIG. 12 and the first and second overcurrent relays 4 1 and 4 2 are respectively input to the first and second overcurrent relays 4 1 and 4 2 when a short circuit accident occurs. and second short-circuit current I Ry1, is a diagram for explaining I Ry2. 短絡事故から三相交流回路を保護するための変流器として使用されている貫通変流器の一例の構成を示す図である。It is a figure which shows the structure of an example of the through current transformer used as a current transformer for protecting a three-phase alternating current circuit from a short circuit accident. 末端回路の送配電線などで過電流継電器を2相にだけ設置して短絡事故からの保護を図る従来方法を説明するための図である。It is a figure for demonstrating the conventional method which protects from a short circuit accident by installing an overcurrent relay only in two phases by the transmission / distribution line etc. of a terminal circuit.

符号の説明Explanation of symbols

1 電源
1〜23 第1乃至第3の遮断器
4,41,42 第1および第2の過電流継電器
10,20 クロス貫通変流器
101,102 第1および第2のクロス貫通変流器
11,21,511 筐体
121,122,221,222,321,322 第1および第2の一次導体
13I1,13I2,23I1,23I2 第1および第2の入力側一次端子
13O1,13O2,23O1,23O2 第1および第2の出力側一次端子
14,24,514 二次コイル
15,25,35,43,515 二次端子
16,26,36,42,516 環状鉄心
18,28,518 取付具
30 端子台
41O1〜41O6 第1乃至第6の外側端子
41I1〜41I6 第1乃至第6の内側端子
44 導電板
71 事故様相判定回路
721〜723 第1乃至第3の振幅調整回路
73 選択スイッチ
110,120 事故様相判定用変圧器
510 貫通変流器
5101,5102 第1および第2の貫通変流器
512 一次導体
513I 入力側一次端子
513O 出力側一次端子
517 シールド
1,i2 第1および第2の電流
Ry,IFR,IFS,IFT 短絡電流
Ry1,IRy2 第1および第2の短絡電流
I,IR,IS,IT 負荷電流
1,I2 第1および第2の負荷電流
R,VS,VT 相電圧
RS,VST,VTR 線間電圧
R-S-2T,VR-S+2T 合成電圧
SW スイッチ制御信号
θ インピーダンス角
α,β 角度範囲
γ,δ 第1および第2の角度範囲
1〜K8 第1乃至第8の合成電圧値
ε1〜ε8 第1乃至第8の合成電圧角度範囲
λ1〜λ8 第1乃至第8の短絡電流角度範囲
1 power 2 1 to 2 3 of the first to the third circuit breakers 4,4 1, 4 2 of the first and second overcurrent relay 10, 20 cross through the current transformer 10 1, 10 2 first and second Cross-through current transformers 11, 21, 511 housings 12 1 , 12 2 , 22 1 , 22 2 , 32 1 , 32 2 first and second primary conductors 13 I1 , 13 I2 , 23 I1 , 23 I2 first And second input-side primary terminals 13 O1 , 13 O2 , 23 O1 , 23 O2 First and second output-side primary terminals 14, 24, 514 Secondary coils 15, 25, 35, 43, 515 Secondary terminal 16 , 26, 36, 42, 516 annular core 18, 28, 518 fixture 30 terminal block 41 O1 to 41 O6 first to sixth outer terminals 41 I1 to 41 I6 first to sixth inner terminals 44 conductive plate 71 accident aspects judging circuit 72 1 to 72 3 first to third amplitude adjusting circuit 73 selectively switches 110,120 accidents aspect determination transformer 510 through current transformer 510 1, 510 2 first and second through current transformer 512 primary conductor 513 I input side primary terminals 513 O output side primary terminals 517 shields i 1, i 2 the first and second current I Ry, I FR, I FS , I FT short-circuit current I Ry1, I Ry2 first and second short-circuit current I, I R, I S, I T load current I 1, I 2 First and second load currents V R , V S , V T phase voltages V RS , V ST , V TR line voltage V RS-2T , V R-S + 2T composite voltage S SW switch control signal θ impedance Angle α, β Angle range γ, δ First and second angle ranges K 1 to K 8 First to eighth combined voltage values ε 1 to ε 8 First to eighth combined voltage angle ranges λ 1 to λ 8 1st to 8th short-circuit current angle range

Claims (8)

第1および第2の一次導体(121,122;221,222)と、
二次コイル(14;24)が巻装された鉄心(16;26)とを具備し、
前記第1の一次導体が、前記鉄心の第1の開口面から該鉄心の第2の開口面への方向に貫通されており、
前記第2の一次導体が、前記鉄心の前記第2の開口面から該鉄心の前記第1の開口面への方向に貫通されている、
ことを特徴とする、クロス貫通変流器。
First and second primary conductors (12 1 , 12 2 ; 22 1 , 22 2 );
An iron core (16; 26) around which a secondary coil (14; 24) is wound;
The first primary conductor is penetrated in a direction from the first opening surface of the iron core to the second opening surface of the iron core;
The second primary conductor is penetrated in a direction from the second opening surface of the iron core to the first opening surface of the iron core;
A cross through current transformer characterized by that.
請求項1記載のクロス貫通変流器の機能を内蔵した端子台(30)であって、
前記第1の一次導体(321)の両端部が、前記端子台内部で第1の外側端子(41O1)および第2の内側端子(41I2)にそれぞれ接続されており、
前記第2の一次導体(322)の両端部が、前記端子台内部で第2の外側端子(41O2)および第1の内側端子(41I1)にそれぞれ接続されており、
前記二次コイル(34)が巻装された鉄心(36)が、前記第1および第2の一次導体が該鉄心をクロスして貫通するように、前記第1の外側および内側端子と前記第2の外側および内側端子との間の前記端子台内部に設けられており、
前記二次コイルの両端がそれぞれ接続された2個の二次端子(35)が、前記第1および第2の内側端子の間に設けられている、
ことを特徴とする、端子台。
A terminal block (30) incorporating the function of the cross-through current transformer according to claim 1,
Both ends of the first primary conductor (32 1 ) are respectively connected to the first outer terminal (41 O1 ) and the second inner terminal (41 I2 ) inside the terminal block,
Both ends of the second primary conductor (32 2 ) are respectively connected to the second outer terminal (41 O2 ) and the first inner terminal (41 I1 ) inside the terminal block,
The iron core (36) around which the secondary coil (34) is wound has the first outer and inner terminals and the first terminal so that the first and second primary conductors pass through the iron core. Provided inside the terminal block between the outer and inner terminals of the two,
Two secondary terminals (35) to which both ends of the secondary coil are respectively connected are provided between the first and second inner terminals,
A terminal block characterized by that.
短絡事故から三相交流回路を保護するための保護継電装置であって、
請求項1または2記載のクロス貫通変流器(10;20)と、
該クロス貫通変流器から入力される短絡電流(IRy;IRy1,IRy2)に基づいて短絡事故を検出すると、前記三相交流回路の各相に設置された遮断器(21〜23)を一括遮断させる短絡保護継電器(4;41,42)と、
を具備することを特徴とする、保護継電装置。
A protective relay device for protecting a three-phase AC circuit from a short circuit accident,
Cross-through current transformer (10; 20) according to claim 1 or 2,
The cross through the short-circuit current which is input from the current transformer (I Ry; I Ry1, I Ry2) detects a short circuit on the basis of the three-phase circuit breaker installed in each phase of the AC circuit (2 1 to 2 3 ) Short-circuit protective relay (4; 4 1 , 4 2 ) that shuts off all at once ,
A protective relay device comprising:
前記三相交流回路の3つの線間電圧(VRS,VST,VTR)、3つの相電圧(VR,VS,VT)または相・線間電圧に基づいて該三相交流回路の短絡事故の事故様相を判定する事故様相判定手段をさらに具備することを特徴とする、請求項3記載の保護継電装置。 The three-phase AC circuit based on the three line voltages (V RS , V ST , V TR ), the three phase voltages (V R , V S , V T ) or the phase / line voltage of the three-phase AC circuit. 4. The protective relay device according to claim 3, further comprising an accident mode determination means for determining an accident mode of the short circuit accident. 前記三相交流回路の1つの線間電圧(VRS,VST,VTR)および1つの相電圧(VR,VS,VT)の電圧値および位相に基づいて該三相交流回路の短絡事故の事故様相を判定する事故様相判定手段をさらに具備することを特徴とする、請求項3記載の保護継電装置。 Based on the voltage value and phase of one line voltage (V RS , V ST , V TR ) and one phase voltage (V R , V S , V T ) of the three-phase AC circuit, The protective relay device according to claim 3, further comprising an accident mode determination unit that determines an accident mode of a short circuit accident. 前記三相交流回路の1つの線間電圧(VRS,VST,VTR)の電圧値および位相と前記クロス貫通変流器から入力される短絡電流(IRy)の位相とに基づいて該三相交流回路の短絡事故の事故様相を判定する事故様相判定手段をさらに具備することを特徴とする、請求項3記載の保護継電装置。 Based on the voltage value and phase of one line voltage (V RS , V ST , V TR ) of the three-phase AC circuit and the phase of the short-circuit current (I Ry ) input from the cross-through current transformer, 4. The protective relay device according to claim 3, further comprising an accident mode determination means for determining an accident mode of a short circuit accident of a three-phase AC circuit. 2次側が前記三相交流回路の第1の相電圧(VR)を極性方向で該三相交流回路の第2の相の相電圧(VS)を反極性方向で該三相交流回路の第3の相電圧(VT)を反極性方向で2倍して合成するように結線されている事故様相判定用変圧器(110)と、
該事故様相判定用変圧器から入力される合成電圧(VR-S-2T)の電圧値および位相と前記クロス貫通変流器から入力される短絡電流の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定する事故様相判定手段と、
をさらに具備することを特徴とする、請求項3記載の保護継電装置。
The secondary side supplies the first phase voltage (V R ) of the three-phase AC circuit in the polarity direction and the second phase phase voltage (V S ) of the three-phase AC circuit in the opposite polarity direction. A fault phase determination transformer (110) wired to synthesize the third phase voltage (V T ) by doubling in the opposite polarity direction;
The three-phase AC circuit is short-circuited based on the voltage value and phase of the composite voltage (V RS-2T ) input from the fault-mode determination transformer and the phase of the short-circuit current input from the cross-through current transformer. Accident aspect judging means for judging the accident aspect of the accident,
The protective relay device according to claim 3, further comprising:
2次側が前記三相交流回路の第1の相電圧(VR)を極性方向で該三相交流回路の第2の相の相電圧(VS)を反極性方向で該三相交流回路の第3の相電圧(VT)を極性方向で2倍して合成するように結線されている事故様相判定用変圧器(120)と、
該事故様相判定用変圧器から入力される合成電圧(VR-S+2T)の電圧値および位相と前記クロス貫通変流器から入力される短絡電流の位相とに基づいて前記三相交流回路の短絡事故の事故様相を判定する事故様相判定手段と、
をさらに具備することを特徴とする、請求項3記載の保護継電装置。
The secondary side supplies the first phase voltage (V R ) of the three-phase AC circuit in the polarity direction and the second phase phase voltage (V S ) of the three-phase AC circuit in the opposite polarity direction. An accident mode determination transformer (120) wired to synthesize the third phase voltage (V T ) by doubling in the polarity direction;
The three-phase AC circuit is based on the voltage value and phase of the composite voltage (V R-S + 2T ) input from the fault condition judging transformer and the phase of the short-circuit current input from the cross-through current transformer. Accident aspect judging means for judging the accident aspect of the short circuit accident,
The protective relay device according to claim 3, further comprising:
JP2008148919A 2008-06-06 2008-06-06 Cross through current transformer, terminal block, and protective relay device Pending JP2009295839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148919A JP2009295839A (en) 2008-06-06 2008-06-06 Cross through current transformer, terminal block, and protective relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148919A JP2009295839A (en) 2008-06-06 2008-06-06 Cross through current transformer, terminal block, and protective relay device

Publications (1)

Publication Number Publication Date
JP2009295839A true JP2009295839A (en) 2009-12-17

Family

ID=41543752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148919A Pending JP2009295839A (en) 2008-06-06 2008-06-06 Cross through current transformer, terminal block, and protective relay device

Country Status (1)

Country Link
JP (1) JP2009295839A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353180A (en) * 2015-12-28 2016-02-24 武汉磐电科技有限公司 Strong current generator with multiple uniformly distributed conductors
WO2019100996A1 (en) * 2017-11-25 2019-05-31 华为技术有限公司 Current transformer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119918U (en) * 1974-03-15 1975-09-30
JPS6441120U (en) * 1987-09-05 1989-03-13
JPH02107975A (en) * 1988-10-14 1990-04-19 Matsushita Electric Ind Co Ltd Detecting device of three-phase current
JPH0467791A (en) * 1990-07-05 1992-03-03 Matsushita Electric Ind Co Ltd Motor driver
JPH04309204A (en) * 1991-04-08 1992-10-30 Mitsubishi Electric Corp Through type current transformer
JPH06289089A (en) * 1993-03-30 1994-10-18 Kinkei Syst:Kk Fault-state specifying apparatus for power system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119918U (en) * 1974-03-15 1975-09-30
JPS6441120U (en) * 1987-09-05 1989-03-13
JPH02107975A (en) * 1988-10-14 1990-04-19 Matsushita Electric Ind Co Ltd Detecting device of three-phase current
JPH0467791A (en) * 1990-07-05 1992-03-03 Matsushita Electric Ind Co Ltd Motor driver
JPH04309204A (en) * 1991-04-08 1992-10-30 Mitsubishi Electric Corp Through type current transformer
JPH06289089A (en) * 1993-03-30 1994-10-18 Kinkei Syst:Kk Fault-state specifying apparatus for power system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353180A (en) * 2015-12-28 2016-02-24 武汉磐电科技有限公司 Strong current generator with multiple uniformly distributed conductors
WO2019100996A1 (en) * 2017-11-25 2019-05-31 华为技术有限公司 Current transformer
CN111771250A (en) * 2017-11-25 2020-10-13 华为技术有限公司 Current transformer
CN111771250B (en) * 2017-11-25 2022-08-26 华为技术有限公司 Current transformer
US11742139B2 (en) 2017-11-25 2023-08-29 Huawei Technologies Co., Ltd. Current transformer

Similar Documents

Publication Publication Date Title
EP2963670A1 (en) Neutral pole current transformer module for circuit breaker and neutral pole current detecting apparatus for circuit breaker
EP1929602B1 (en) Method and system for fault detection in electrical power devices
Basha et al. Practical EHV reactor protection
EP1873883B2 (en) Distance protection relay and method
JP2009077562A (en) Two-phase bushing current transformer and protective relay device
JP2012075250A (en) Insulation ground fault monitoring device with adoption lock
JP2009295839A (en) Cross through current transformer, terminal block, and protective relay device
JP2009198442A (en) Voltage abnormality detection device and voltage protection relay device
KR20020041973A (en) Breaker for a leakage of electrocity
JP2009044954A (en) Cross-through current transformer and protective relay system
JP2010148269A (en) Protective relay system
RU2422965C1 (en) Method to protect furnace transformer with phases arranged at lower voltage side such as group of separate conductors
JP2009027825A (en) Protective relay device
JP2001320828A (en) Ground relay with failed-area determining function
JP2009077563A (en) Three-phase bushing current transformer and protective relay device
JP2010166784A (en) Different-line different-phase cross through current transformer and line selecting relay device
KR102411894B1 (en) Insulation separation type mechanical latch monitoring protection device of secondary commercial circuit of current transformer for switchgear
JP5072085B2 (en) Device for detecting resistance ground fault current
JP7505686B2 (en) Apparatus, method and power distribution system for preventing electric shock and fire during electric leakage and earth faults
JP6729483B2 (en) Ratio differential relay
Cook et al. SDG&E Relay Standards–Updating Tertiary Bus and Reactor Protection
JP2009077564A (en) Three-phase bushing current transformer and protective relay device
JP2009050147A (en) Overcurrent relay apparatus with voltage suppression function
JP2009077560A (en) Two-phase bushing current transformer, voltage transformer for judging failure situation and protective relay device
Lakkaraju Protection of a 138/34.5 kv transformer using SEL 387-6 relay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130515