JP2010127860A - Device and method for measuring leak current - Google Patents

Device and method for measuring leak current Download PDF

Info

Publication number
JP2010127860A
JP2010127860A JP2008305377A JP2008305377A JP2010127860A JP 2010127860 A JP2010127860 A JP 2010127860A JP 2008305377 A JP2008305377 A JP 2008305377A JP 2008305377 A JP2008305377 A JP 2008305377A JP 2010127860 A JP2010127860 A JP 2010127860A
Authority
JP
Japan
Prior art keywords
phase
value
leakage current
ground
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008305377A
Other languages
Japanese (ja)
Other versions
JP5380702B2 (en
Inventor
Ryoichi Yano
良一 矢野
Tatsuhiko Komiya
龍彦 小宮
Seiji Hasegawa
誠二 長谷川
Katsuji Takeya
勝次 武谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PATOKKUSU JAPAN KK
Original Assignee
PATOKKUSU JAPAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PATOKKUSU JAPAN KK filed Critical PATOKKUSU JAPAN KK
Priority to JP2008305377A priority Critical patent/JP5380702B2/en
Publication of JP2010127860A publication Critical patent/JP2010127860A/en
Application granted granted Critical
Publication of JP5380702B2 publication Critical patent/JP5380702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and a method for measuring leak current, which can enhance reliability in measurement values of the leak current flowing through ground insulating resistance of a load system connected with power distribution line fed from 400 V class star-shaped distribution power source. <P>SOLUTION: The device includes a processing operation part 16, being equipped with a fundamental wave processor 3, which makes signal processing of voltage to ground of any one phase among three phases input from the star-shaped distribution power source 1, line voltage between any 2 lines among 3 lines, and zero phase current I<SB>0</SB>detected from the power distribution line 4 by a zero phase current transformer 9, and then measures phase difference between input voltage and the zero phase current I<SB>0</SB>to make signal processing, and an operation part 14. The operation part 14 calculates a phase angle θ to the input voltage of the zero phase current I<SB>0</SB>and computes both active and reactive elements to the input voltage from both the phase angle θ and value of the zero phase current I<SB>0</SB>. Thus the value of total leak current Igr for each phase excluding one sound phase and its reliability are calculated from the effective value of the computed elements. This value of leak current Igr and an imbalance differential current value derived from imbalance of ground capacitance are displayed on a display part 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電路及び電気機器の電圧印加部分から接地部分へ流れる漏洩電流を測定する漏洩電流測定装置及び測定方法に関する。   The present invention relates to a leakage current measuring apparatus and a measuring method for measuring a leakage current flowing from a voltage application portion to a ground portion of an electric circuit and an electric device.

従来、電路及び電気機器の絶縁状態を調べる方法として、被測定部分を停電させて、絶縁抵抗計で測定する方法が広く用いられている。このような方法は、停電が許されない配電線や連続操業の工場等に適用することができない。   2. Description of the Related Art Conventionally, as a method for examining the insulation state of an electric circuit and an electrical device, a method in which a part to be measured is cut off and measured with an insulation resistance meter has been widely used. Such a method cannot be applied to distribution lines where continuous blackouts are not allowed, continuous operation factories, and the like.

そこで、被測定電路や電気機器を停電させることなく、活線のまま電路及び電気機器の絶縁状態を調べる技術が提案され、用いられている。この種の技術として、零相変流器を用いて、電路及び電気機器の電圧印加部分から接地部分へ流れる電流である零相電流Iを検知するようにしたものがある。この零相変流器によって検出される零相電流Iは、電路及び電気機器の電圧印加部分と接地部分間の絶縁抵抗を介して流れる漏洩電流Igrと、この電圧印加部分と接地部分間に通常存在する対地静電容量を介して流れる漏洩電流Igcとのベクトル和で構成されている。 In view of this, a technique for examining the insulation state of the electric circuit and the electric device while maintaining the live line without causing a power failure of the electric circuit to be measured and the electric device has been proposed and used. As this type of technology, there is a technique in which a zero-phase current transformer is used to detect a zero-phase current I 0 , which is a current flowing from a voltage application portion of an electric circuit and electrical equipment to a ground portion. The zero-phase current I 0 detected by the zero-phase current transformer is a leakage current Igr that flows through an insulation resistance between the voltage application portion and the ground portion of the electric circuit and electrical equipment, and between the voltage application portion and the ground portion. It consists of a vector sum with a leakage current Igc that flows through a ground capacitance that normally exists.

ところで、現在一般に実用されている200V級三相3線のうちの1線が接地されている配電方式で実用化されている漏洩電流を測定する技術は、近年大口需要家で採用が増加し、かつ、海外の配電方式の標準となっている変圧器の低圧側三相巻線を星形に結線し、この星形に結線した三相巻線の中性点を接地した電源から給電が行われる400V級三相4線式又は三相3線式配電方式(以下、星形配電方式というの電線路及び機器の絶縁測定には適用できない。   By the way, a technique for measuring leakage current that is practically used in a power distribution system in which one of 200 V class three-phase three wires that are currently practically used is grounded has been increasingly adopted by large-scale customers in recent years. In addition, the low-voltage three-phase winding of the transformer, which is the standard for overseas power distribution systems, is connected in a star shape, and power is supplied from a power source grounded at the neutral point of the three-phase winding connected to this star shape. 400V class three-phase four-wire system or three-phase three-wire power distribution system (hereinafter referred to as a star-shaped power distribution system is not applicable to insulation measurement of electrical lines and equipment.

現在、星形配電方式では、接地線や4本又は3本の配電線を一括して零相変流器によって零相電流Iを測定し、この値を基に絶縁を監視する方法が広く行われている。 At present, in the star distribution system, there is a wide range of methods for measuring the zero-phase current I 0 with a zero-phase current transformer in a grounded wire or four or three distribution lines and monitoring the insulation based on this value. Has been done.

このとき、電路や電気機器の電圧印加部分と接地部分との間に存在する対地静電容量の値が三相とも同じ(この状態をバランス状態という。)場合には、各相の対地静電容量を通じて流れる漏洩電流Igcの3相分の合計値は0となり、したがって零相電流Iの値は、この配電系統のうちの1点で、対地絶縁抵抗を通じて地絡したときに流れる地絡電流の値を示す。 At this time, if the value of the ground capacitance existing between the voltage application portion and the ground portion of the electric circuit or electrical equipment is the same for all three phases (this state is called a balanced state), the ground electrostatic capacitance of each phase The total value of the three phases of the leakage current Igc flowing through the capacity is 0, and therefore the value of the zero-phase current I 0 is the ground fault current that flows when a ground fault occurs through the ground insulation resistance at one point in this distribution system. Indicates the value of.

ところで、星形配電方式は、大きさが等しく、位相差を120度とする三相対地電圧や三相線間電圧、それに単相線間電圧や単相対地電圧が配電線を介して電気機器等の三相及び単相負荷設備に印加されている。これらの配電線や負荷設備の対地静電容量の値は、三相の各相で異なるアンバランス状態となっている。現在の方式では、このアンバランス状態が漏洩電流Igrの測定値に及ぼす影響について明確にしたものはなく、漏洩電流Igrの測定値の信頼性を大きく低下させている。   By the way, the star-shaped power distribution system has three relative ground voltages and three-phase line voltages that are equal in magnitude and have a phase difference of 120 degrees, and single-phase line voltages and single relative ground voltages are transmitted via distribution lines. Applied to three-phase and single-phase load equipment. The values of the ground capacitance of these distribution lines and load facilities are in an unbalanced state that is different for each of the three phases. In the current system, there is no clarification about the influence of this unbalanced state on the measured value of the leakage current Igr, and the reliability of the measured value of the leakage current Igr is greatly reduced.

また、ある1相に対地絶縁抵抗に流れる漏洩電流Igrが存在するとき、三相の各相で対地静電容量の値を異にするアンバランスの度合い軽微であれば、漏洩電流Igrの値として零相電流Iの値を用いることができるが、例えば、同じ値の漏洩電流Igrが2つの相に発生したときには、2つの相の漏洩電流の位相が120度異なっているため、2倍の値を示さず、ベクトル合成された1相分の漏洩電流Igrの値しか示さない。また、この系統の負荷は、配電線の3〜4線間又は2線間にまたがって接続され、例えば2線間に接続された変圧器巻線の中央点が地絡したとき、漏洩電流Igrの値は、この中央点の対地電圧が三相端子の対地電圧の半分の値であるので、漏洩電流の値も、同一の対地漏洩抵抗を通じて三相端子で地絡した値の半分になり、その大きさで故障程度を判断する漏洩電流測定装置にあっては、対地漏洩抵抗に対して、絶縁状態が良いという評価をしたことになる。その結果、絶縁状態の判断を誤ることになり、絶縁に対する対策を怠れば重大故障に発展する可能性がある。 Further, when there is a leakage current Igr flowing through the ground insulation resistance in one phase, if the degree of unbalance that makes the ground capacitance value different in each of the three phases is small, the value of the leakage current Igr is The value of the zero-phase current I 0 can be used. For example, when the leakage current Igr having the same value is generated in two phases, the phase of the leakage current of the two phases is 120 degrees different, so that it is twice as large. No value is shown, and only the value of the leakage current Igr for one phase synthesized by the vector is shown. In addition, the load of this system is connected across 3 to 4 lines or 2 lines of the distribution line. For example, when the center point of the transformer winding connected between the 2 lines is grounded, the leakage current Igr Since the ground voltage at this center point is half the value of the ground voltage of the three-phase terminal, the value of the leakage current is also half of the value grounded at the three-phase terminal through the same ground leakage resistance, In the leakage current measuring device that determines the degree of failure based on the size, it is evaluated that the insulation state is good with respect to the ground leakage resistance. As a result, the determination of the insulation state is wrong, and failure to take measures against insulation can lead to a serious failure.

さらに、接地線を計器に接続して対地電圧を入力して絶縁状態を測定するような方式を採用した装置にあっては、測定場所で有効な接地点が存在しない場合には絶縁状態の測定そのものが不可能となる。   Furthermore, in the case of a device that employs a method that measures the insulation state by connecting a grounding wire to a meter and inputting a ground voltage, if there is no effective grounding point at the measurement location, measure the insulation state. It becomes impossible.

絶縁状態を測定する他の方法として、配電線に低周波の低電圧を供給して漏洩電流Igrを測定する方法ある。この方法は、全ての回路に適用可能ではあるが、設備が複雑であるうえ接地が必要であり、安価に提供することが困難である。   As another method of measuring the insulation state, there is a method of measuring the leakage current Igr by supplying a low frequency low voltage to the distribution line. Although this method can be applied to all circuits, it requires complicated grounding and grounding, and is difficult to provide at low cost.

なお、この種の漏洩電流計測の先行技術として、特開平3−179271号公報(特許文献1)や、特開2002−125313号公報(特許文献2)に記載されるものがある。
特開平3−179271号公報 特開2002−125313号公報
In addition, there exist some which are described in Unexamined-Japanese-Patent No. 3-179271 (patent document 1) and Unexamined-Japanese-Patent No. 2002-125313 (patent document 2) as a prior art of this kind of leakage current measurement.
JP-A-3-179271 JP 2002-125313 A

本発明は、星形配電方式を採用した配電系統において、三相の各相で対地静電容量の値を異にするアンバランスの程度が電路及び電気機器の電圧印加部分と接地部分間の絶縁抵抗を介して流れる漏洩電流Igrの測定値に及ぼす影響を明確にして、漏洩電流Igrの測定値の信頼度を向上させ、2相又は相間に発生した漏洩電流Igrの過小な計測値を、対地漏洩抵抗の値に相当する正常な値として計測し、測定の際に入力する電圧要素を三相対地電圧のうちの1相の対地電圧、又は3つの線間電圧のうちの1つの線間電圧のみとする漏洩電流測定装置及び測定方法を提供することを技術課題とする。   In the power distribution system adopting the star power distribution system, the degree of unbalance in which the value of the ground capacitance is different in each of the three phases is insulated between the voltage application part and the ground part of the electric circuit and electrical equipment. By clarifying the influence of the leakage current Igr flowing through the resistance on the measured value, the reliability of the measured value of the leakage current Igr is improved, and the measured value of the leakage current Igr generated between the two phases or between the two phases is reduced to the ground. Measured as a normal value corresponding to the value of leakage resistance, and the voltage element input at the time of measurement is one-phase ground voltage of three relative ground voltages or one line voltage of three line voltages It is an object of the present invention to provide a leakage current measuring device and a measuring method that are only available.

上述したような技術課題を解決するために提案される本発明は、変圧器の二次側巻線を星形に結線し、三相の電圧端子をR,S,Tとし、星形結線の接地された中性点をNとする電源から給電される三相4線式又は三相3線式の配電方式の電路及び電気機器の対地絶縁抵抗に起因する漏洩電流Igrを測定する漏洩電流測定装置において、上記二次側巻線の各端子R,S,T間に発生する線間電圧ESR,ETS,ERT及び上記二次側巻線の各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを測定する電圧検出手段と、三相の各配電線に流れる電流のベクトル和である零相電流Iを検出する零相電流検出手段と、上記電圧検出手段によって検出された上記電圧線間電圧ESR,ETS,ERT又は上記対地電圧E,E,Eのいずれかが入力され、上記入力されたいずれかの電圧線間電圧ESR,ETS,ERT又は対地電圧E,E,Eを基準電圧とし、この基準電圧と上記零相電流Iとの位相を比較する位相比較手段と、上記基準電圧に対して、上記零相電流Iを同相の有効成分Aと、これと直角の位相差を有する無効成分Bに分離した計測値を求め、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを基準電圧としたときに得られる上記零相電流Iの有効成分Aとこれと直角の位相差を有する無効成分Bとに基づいて、R相、S相、T相のうちの2相に発生する上記漏洩電流Igrの合計値、R相、S相、T相のうちの1相に発生する上記漏洩電流Igrの値、R相、S相、T相のうちの2相間若しくは3相間に接続される負荷の内部で発生する上記漏洩電流Igrの値を演算する演算手段とを備える。 The present invention proposed to solve the above technical problem is that the secondary side winding of the transformer is connected in a star shape, the three-phase voltage terminals are R, S, T, and the star connection Leakage current measurement to measure leakage current Igr caused by ground insulation resistance of three-phase four-wire system or three-phase three-wire distribution system and electric equipment fed from a power supply with N as grounded neutral point In the apparatus, the line voltages E SR , E TS , E RT generated between the terminals R, S, T of the secondary winding and the terminals R, S, T of the secondary winding and neutral Voltage detection means for measuring any of ground voltages E R , E S , E T generated between points N, and zero for detecting a zero-phase current I 0 that is a vector sum of currents flowing through the three-phase distribution lines Phase current detection means, and the voltage line voltage E SR , E TS , E RT detected by the voltage detection means or Any one of the ground voltages E R , E S , and E T is input, and any one of the input voltage line voltages E SR , E TS , E RT or the ground voltages E R , E S , E T is input. a reference voltage, a phase comparator for comparing the reference voltage and the phase of the zero-phase current I 0, with respect to the reference voltage, the zero-phase current I 0 and the active ingredient a-phase, which at right angles with A measurement value separated into an ineffective component B having a phase difference is obtained, and line voltages E SR , E TS , E RT generated between the terminals R, S, T or the terminals R, S, T and neutral The effective component A of the zero-phase current I 0 obtained when any one of the ground voltages E R , E S , and E T generated between the points N is used as a reference voltage, and the reactive component B having a phase difference orthogonal to the effective component A. Based on the above, the leakage current Igr generated in two of the R phase, S phase, and T phase The value of the leakage current Igr generated in one of the total value, R phase, S phase, and T phase, within the load connected between two or three phases of the R phase, S phase, and T phase Calculating means for calculating the value of the leakage current Igr generated.

そして、上記各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを基準電圧とするときの値をEとするとき、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかを基準電圧とするときには、この基準電圧の値を√3Eとして上記零相電流Iとの位相比較が行われ、上記漏洩電流Igrの演算が行われる。 Then, when the E value at the time of the ground voltage E R, E S, a reference voltage of either of E T generated between the respective terminals R, S, T and the neutral point N, each terminal R , S, T, when any of the line voltages E SR , E TS , E RT is used as a reference voltage, the value of this reference voltage is set to √3E and the phase comparison with the zero phase current I 0 is performed. The leakage current Igr is calculated.

ここで、上記演算手段は、より具体的には、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を、上記R,S,Tの各端子に接続される電路及び電気機器全体の対地絶縁抵抗に起因する漏洩電流Igrとして演算する。 Here, more specifically, the calculation means is expressed as follows when any one of the line voltages E SR , E TS , E RT generated between the terminals R, S, T is used as a reference voltage. An electric circuit and an electric device connected to the R, S, and T terminals with the maximum value among the value of (B−√3A), the value of equation (B + √3A), and the value of equation (−2B) Calculated as the leakage current Igr caused by the overall ground insulation resistance.

また、上記演算手段は、上記各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを基準電圧としたとき、式(A−√3B)の値、式(A+√3B)の値、式(−2A)の値のうちの最大の値を、上記R,S,Tの各端子に接続される電路及び電気機器全体の対地絶縁抵抗に起因する漏洩電流Igrとして演算する。 Further, the arithmetic means uses the equation (A−√3B) when any one of the ground voltages E R , E S , E T generated between the terminals R, S, T and the neutral point N is used as a reference voltage. ), The value of the formula (A + √3B), and the maximum value of the value of the formula (−2A) are the ground insulation resistance of the electric circuit connected to the R, S, and T terminals and the entire electrical equipment. As a leakage current Igr caused by

さらに、上記演算手段は、上記漏洩電流Igrに含まれる上記R,S,Tの各端子に接続される上記電路及び電気機器又はそのいずれか一方の各相の対地静電容量の値の不一致に起因する電流値を(−2I)から(2I)の間の値として演算する。 Further, the calculation means may be configured to detect a mismatch in ground capacitance values of the electric circuit and / or electric device connected to the R, S, and T terminals included in the leakage current Igr. The resulting current value is calculated as a value between (-2I 0 ) and (2I 0 ).

本発明に係る漏洩電流測定装置は、表示手段を備え、上記演算手段によって演算された結果を上記表示手段に表示して告知することが望ましい。   The leakage current measuring apparatus according to the present invention preferably includes display means and displays the result calculated by the calculation means on the display means for notification.

さらに、本発明に係る漏洩電流測定装置は、警報手段を備え、上記演算手段において求められる上記漏洩電流Igrの値が所定の値を超えたときに上記警報手段より警報を発することにより、漏洩電流Igrの値が所定の値を超えたことを告知することができる。   Furthermore, the leakage current measuring apparatus according to the present invention includes an alarm unit, and when the value of the leakage current Igr obtained by the calculation unit exceeds a predetermined value, an alarm is issued from the alarm unit, whereby the leakage current It can be notified that the value of Igr has exceeded a predetermined value.

さらにまた、本発明に係る漏洩電流測定装置は、さらに遮断手段を備えることにより、上記演算手段において求められる上記漏洩電流Igrの値が所定の値を超えたときに上記遮断手段により電路を遮断することを可能とする。   Furthermore, the leakage current measuring apparatus according to the present invention further includes a breaking means, and when the value of the leakage current Igr calculated by the computing means exceeds a predetermined value, the breaking circuit cuts off the electric circuit. Make it possible.

また、本発明は、変圧器の二次側巻線を星形に結線し、三相の電圧端子をR,S,Tとし、星形結線の接地された中性点をNとする電源から給電される三相4線式又は三相3線式の配電方式の電路及び電気機器の対地絶縁抵抗に起因する漏洩電流Igrを測定する漏洩電流の測定方法において、上記二次側巻線の各端子R,S,T間に発生する線間電圧ESR,ETS,ERT及び上記二次側巻線の各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを測定する電圧検出工程と、三相の各配電線に流れる電流のベクトル和である零相電流Iを検出する零相電流検出工程と、上記電圧検出工程によって検出された上記線間電圧ESR,ETS,ERT又は上記対地電圧E,E,Eのいずれかが入力され、上記入力されたいずれかの線間電圧ESR,ETS,ERT又は対地電圧E,E,Eを基準電圧とし、この基準電圧と上記零相電流Iとの位相を比較する位相比較工程と、上記基準電圧に対して、上記零相電流Iを同相の有効成分Aと、これと直角の位相差を有する無効成分Bに分離した計測値を求め、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを基準電圧としたときに得られる上記零相電流Iの有効成分Aとこれと直角の位相差を有する無効成分Bとに基づいて、R相、S相、T相のうちの2相に発生する上記漏洩電流Igrの合計値、R相、S相、T相のうちの1相に発生する上記漏洩電流Igrの値、R相、S相、T相のうちの2相間若しくは3相間に接続される負荷の内部で発生する上記漏洩電流Igrの値を演算する演算工程とを備える。 The present invention also provides a power supply in which the secondary winding of the transformer is connected in a star shape, the three-phase voltage terminals are R, S, T, and the neutral point of the star connection is N. In the leakage current measuring method for measuring the leakage current Igr caused by the ground insulation resistance of the three-phase four-wire system or the three-phase three-wire distribution system and the electrical equipment to be fed, Line voltages E SR , E TS , E RT generated between the terminals R, S, T, and ground voltages E R , generated between the terminals R, S, T of the secondary winding and the neutral point N, A voltage detection step for measuring either E S or E T , a zero-phase current detection step for detecting a zero-phase current I 0 that is a vector sum of currents flowing through the three-phase distribution lines, and the voltage detection step It detected the line voltage E SR, E TS, E RT or above ground voltages E R, E S, either E T Is input, the input or line voltage E SR, and E TS, E RT or ground voltage E R, E S, the reference voltage E T, the phase between the reference voltage and the zero-phase current I 0 A phase comparison step that compares the zero-phase current I 0 with respect to the reference voltage, and a measurement value obtained by separating the zero-phase current I 0 into an in-phase active component A and an ineffective component B having a phase difference perpendicular thereto, The line voltages E SR , E TS , E RT generated between the terminals R, S, T, or the ground voltages E R , E S , E T generated between the terminals R, S, T and the neutral point N Based on the effective component A of the zero-phase current I 0 obtained when either one is used as a reference voltage and the reactive component B having a phase difference perpendicular thereto, two of the R phase, S phase, and T phase are used. The total value of the leakage current Igr generated in the phase, the phase generated in one of the R phase, S phase, and T phase A calculation step of calculating the value of the leakage current Igr and the value of the leakage current Igr generated in the load connected between two or three phases of the R phase, S phase, and T phase.

そして、上記各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを基準電圧とするときの値をEとするとき、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかを基準電圧とするときには、この基準電圧の値を√3Eとして上記零相電流Iとの位相比較が行われ、上記漏洩電流Igrの演算が行われる。 Then, when the E value at the time of the ground voltage E R, E S, a reference voltage of either of E T generated between the respective terminals R, S, T and the neutral point N, each terminal R , S, T, when any of the line voltages E SR , E TS , E RT is used as a reference voltage, the value of this reference voltage is set to √3E and the phase comparison with the zero phase current I 0 is performed. The leakage current Igr is calculated.

ここで、上記演算手段は、より具体的には、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を、上記R,S,Tの各端子に接続される電路及び電気機器全体の対地絶縁抵抗に起因する漏洩電流Igrとして演算する。 Here, more specifically, the calculation means is expressed as follows when any one of the line voltages E SR , E TS , E RT generated between the terminals R, S, T is used as a reference voltage. An electric circuit and an electric device connected to the R, S, and T terminals with the maximum value among the value of (B−√3A), the value of equation (B + √3A), and the value of equation (−2B) Calculated as the leakage current Igr caused by the overall ground insulation resistance.

また、演算工程は、上記各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを基準電圧としたとき、式(A−√3B)の値、式(A+√3B)の値、式(−2A)の値のうちの最大の値を、上記R,S,Tの各端子に接続される電路及び電気機器全体の対地絶縁抵抗に起因する漏洩電流Igrとして演算する。 Further, the calculation step is performed by using the formula (A−√3B) when any one of the ground voltages E R , E S , and E T generated between the terminals R, S, T and the neutral point N is a reference voltage. , The value of the formula (A + √3B), and the value of the formula (−2A) are set to the ground insulation resistance of the electric circuit connected to each of the R, S, and T terminals and the entire electrical equipment. Calculated as the resulting leakage current Igr.

上述したように、本発明は、変圧器の二次側巻線の3端子R,S,Tが、接地極Gに接続されている2次側巻線の中性点Nに対して三相対地電圧を発生する星形配電方式において、従来過小な値として測定されていた、2相間若しくは3相間に接続される負荷の内部の漏電故障の際発生する地絡電流の測定値を、電路及び電気機器の対地絶縁抵抗に起因する漏洩電流Igrの値に相当した値として測定するので、高い信頼性をもって対地絶縁抵抗に起因する漏洩電流Igrを測定できる。   As described above, in the present invention, the three terminals R, S, and T of the secondary winding of the transformer are three-relative to the neutral point N of the secondary winding connected to the ground pole G. In the star distribution system that generates earth voltage, the measured value of the ground fault current that has been measured in the case of an earth leakage failure inside the load connected between two or three phases, which was conventionally measured as an excessively small value, Since the measurement is performed as a value corresponding to the value of the leakage current Igr caused by the ground insulation resistance of the electric device, the leakage current Igr caused by the ground insulation resistance can be measured with high reliability.

特に、本発明を、配電線に接続される負荷設備に漏電故障が生じたような場合に、大きな事故を誘発する危険性が大きい400V級の高電圧の配電系統に用いられる星形配電方式に適用することにより、漏電事故を高い信頼性をもって防止することが可能となる。   In particular, the present invention is applied to a star-shaped power distribution system used in a high-voltage distribution system of 400 V class that has a high risk of causing a serious accident when a leakage failure occurs in a load facility connected to a distribution line. By applying it, it is possible to prevent a leakage accident with high reliability.

また、本発明は、変圧器の二次側巻線の3端子R,S,Tが、接地極Gに接続されている2次側巻線の中性点Nに対して三相対地電圧を発生する星形配電方式において、電路及び電気機器の対地絶縁抵抗に起因する漏洩電流Igrを測定する際、電圧入力のための接地端子を必要としない線間電圧を入力しても漏洩電流Igrの測定が可能であるので、確実な接地端子が欠如している配電系統の末端部分でも確実な計測が可能である。   Further, according to the present invention, the three terminals R, S, and T of the secondary winding of the transformer have three relative ground voltages with respect to the neutral point N of the secondary winding connected to the ground pole G. When measuring the leakage current Igr due to the earth insulation resistance of electric circuits and electrical equipment in the generated star distribution system, the leakage current Igr is not affected even if a line voltage that does not require a ground terminal for voltage input is input. Since measurement is possible, reliable measurement is possible even at the end of the distribution system lacking a reliable ground terminal.

さらに、従来用いられ、あるいは提案されている漏洩電流Igrを検出して電路を遮断する遮断装置においては、電路や電気機器の電圧印加部分と接地部分との間に存在する対地静電容量の値を三相間で異にするアンバランスに起因する零相電流Iの増加を見込んで、零相電流Iを検知して動作する漏電遮断器の故障動作電流を過大な値に設定していたが、本発明においては、上述したようなアンバランス状態が計測結果に及ぼす影響の程度を数値で示すことが可能となり、故障動作電流値設定時に、この数値を反映させた調整を行うことで、故障動作電流を過大な値に設定することなく漏電遮断機を動作させることができるので、より安全に、系統や負荷の保護が可能になり、不測の停電事故を少なくすることができる。 Furthermore, in a conventionally used or proposed interrupting device that detects a leakage current Igr and interrupts the electric circuit, the value of the ground capacitance existing between the voltage application part and the ground part of the electric circuit or electrical equipment In anticipation of an increase in the zero-phase current I 0 due to an imbalance that varies among the three phases, the fault operating current of the earth leakage breaker that operates by detecting the zero-phase current I 0 was set to an excessive value However, in the present invention, it becomes possible to indicate the degree of the influence of the unbalanced state as described above on the measurement result by a numerical value, and by performing adjustment that reflects this numerical value when setting the failure operation current value, Since the earth leakage breaker can be operated without setting the fault operating current to an excessive value, the system and load can be protected more safely, and unexpected power outage accidents can be reduced.

さらにまた、本発明は、演算手段によって演算された結果を表示手段に表示するようにしているので、配電系統の状態を常時監視することができる。   Furthermore, according to the present invention, since the result calculated by the calculation means is displayed on the display means, the state of the distribution system can be constantly monitored.

さらにまた、本発明は、警報手段を備えることにより、漏洩電流Igrが異常状態になったことを音などの警報により告知することができるので、事故を未然に防止することができる。   Furthermore, according to the present invention, since the alarm means is provided, the fact that the leakage current Igr is in an abnormal state can be notified by an alarm such as a sound, so that an accident can be prevented.

以下、本発明を適用した漏洩電流測定装置及びその測定方法の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of a leakage current measuring apparatus and a measuring method to which the present invention is applied will be described with reference to the drawings.

図1は、変圧器の低圧側三相巻線を星形に結線した星形配電方式を採用した配電系統に、本発明に係る漏洩電流測定装置を適用した一例を示す概略系統図である。なお、星形配電方式は、変圧器の低圧側の三相巻線を星形に結線した電源から給電される400V級の三相3線方式、若しくは図1に示すように、星形巻線の中性点に接続されて接地された中性線を含む三相4線方式がある。   FIG. 1 is a schematic system diagram showing an example in which the leakage current measuring apparatus according to the present invention is applied to a power distribution system employing a star power distribution system in which low-voltage three-phase windings of a transformer are connected in a star shape. Note that the star-shaped power distribution system is a 400V class three-phase three-wire system that is fed from a power source in which the three-phase winding on the low voltage side of the transformer is connected in a star shape, or a star-shaped winding as shown in FIG. There is a three-phase four-wire system that includes a neutral wire that is connected to a neutral point and grounded.

本発明に係る漏洩電流測定装置は、この星形の三相3線若しくは三相4線の配電方式を採用した配電系統の電路及び電気機器の対地絶縁抵抗に起因する漏洩電流Igrを測定する。   The leakage current measuring apparatus according to the present invention measures the leakage current Igr caused by the electric circuit of the distribution system adopting this star-shaped three-phase three-wire or three-phase four-wire distribution system and the ground insulation resistance of the electrical equipment.

本発明に係る漏洩電流測定装置が適用される三相3線若しくは三相4線の星形の配電方式を採用した配電系統は、図1に示すように、配電用の三相変圧器の低圧側に星形に結線された巻線1を備える。この星形巻線1は、三相の接続線である配電線4を介して負荷設備5に接続されている。   A distribution system employing a three-phase three-wire or three-phase four-wire star distribution system to which the leakage current measuring apparatus according to the present invention is applied, as shown in FIG. 1, is a low voltage of a three-phase transformer for distribution. A winding 1 connected in a star shape is provided on the side. The star winding 1 is connected to a load facility 5 via a distribution line 4 which is a three-phase connection line.

この星形巻線1をさらに具体的に説明すると、星形巻線1は、星形を構成するように結線された3つの巻線1a,1b,1cを有し、これらの巻線1a,1b,1cの一方の端子である三相端子R,S,Tのそれぞれに三相の配電線4,4,4を接続し、各巻線1a,1b,1cの他端を共通に結合して中性点Nとしている、この中性点Nは、接地線8を介して接地極Gに接続されている。なお、三相4線式の配電系統にあっては、中性点Nには、さらに配電線としての中性線4が接続されている。 The star winding 1 will be described more specifically. The star winding 1 has three windings 1a, 1b, and 1c connected so as to form a star shape. Three-phase distribution lines 4 R , 4 S , 4 T are connected to the three-phase terminals R, S, T, which are one of the terminals 1b, 1c, and the other ends of the windings 1a, 1b, 1c are shared. The neutral point N is combined to form a neutral point N. The neutral point N is connected to the ground electrode G via the ground line 8. Incidentally, in the power distribution system of the three-phase four-wire, the neutral point N, and is further connected to the neutral wire 4 N as the distribution line.

そして、星形巻線1を構成する3つの巻線1a,1b,1cの一方の端子である三相端子R,S,Tの間には、図1に示すように三相の線間電圧ESR,ETS,ERTが発生している。また、これらの巻線1a,1b,1cの他端を結合した接地点である中性点Nから三相の各端子R,S,Tに対する間には三相の対地電圧E,E,Eが発生している。三相の各端子R,S,T間に発生する線間電圧ESR,ETS,ERT及び中性点Nから三相の各端子R,S,Tに対し発生する三相の対地電圧E,E,Eは、各配電線4,4,4及び中性線4を介して、負荷設備5に印可される。なお、中性線4と各配電線4,4,4との間には対地電圧E,E,Eが印可され、線間電圧ESR,ETS,ERTが例えば440Vのとき、対地電圧E,E,Eは、その√3分の1の254Vで、照明や家庭内で使用可能な電圧とされている。そのため、三相4線式配電方式は、三相動力負荷や照明などの単相負荷が混在する配電系統を用いる需要家や海外で広く普及している。 Between the three-phase terminals R, S, and T, which are one of the three windings 1a, 1b, and 1c constituting the star-shaped winding 1, there are three-phase line voltages as shown in FIG. ESR , ETS , and ERT are generated. Between the neutral point N, which is the ground point where the other ends of the windings 1a, 1b, and 1c are coupled to the three-phase terminals R, S, and T, three-phase ground voltages E R and E S are provided. , E T are generated. Line voltages E SR , E TS , E RT generated between the three-phase terminals R, S, T, and three-phase ground voltages generated from the neutral point N to the three-phase terminals R, S, T E R , E S , and E T are applied to the load facility 5 through the distribution lines 4 R , 4 S , 4 T and the neutral line 4 N. The ground voltages E R , E S , and E T are applied between the neutral wire 4 N and the distribution lines 4 R , 4 S , and 4 T, and the line voltages E SR , E TS , and E RT are applied. For example, when the voltage is 440 V, the ground voltages E R , E S , and E T are 254V that is √ of √3, and are voltages that can be used in lighting or in the home. For this reason, the three-phase four-wire distribution system is widely spread in consumers and overseas using a distribution system in which single-phase loads such as three-phase power loads and lighting are mixed.

また、三相の配電線4,4,4及びそれらに接続された負荷設備5には対地静電容量C,C,Cが存在する。具体的には、三相のうちの端子Rと負荷設備5とを接続する配電線4及び負荷設備5のR相には対地静電容量Cが存在し、これらの静電容量C,C,Cには、常時、対地電流IgcR,IgcS,IgcTが流れている。また、三相の配電線4,4,4及びそれらに接続された負荷設備5には対地漏洩抵抗rR,rS,rTが生ずることがある。これら対地漏洩抵抗rR,rS,rTには、漏洩電流IgrR,IgrS,IgrTが流れる。なお、中性線4にも対地静電容量は存在するが、対地電圧がほぼ0であるため、対地漏洩電流は省略する。 Further, the three-phase distribution lines 4 R , 4 S , 4 T and the load equipment 5 connected thereto have ground capacitances C R , C S , C T. Specifically, there is the earth capacitance C R is the R-phase distribution line 4 R and load equipment 5 connecting the terminal R of the three-phase and load facility 5, these electrostatic capacitance C R , C S , and C T always carry ground currents IgcR, IgcS, and IgcT. Also, ground leakage resistances rR, rS, rT may occur in the three-phase distribution lines 4 R , 4 S , 4 T and the load equipment 5 connected to them. Leakage currents IgrR, IgrS, and IgrT flow through these ground leakage resistances rR, rS, and rT. The neutral line 4 N also has a ground capacitance, but the ground voltage is almost zero, so the ground leakage current is omitted.

上述したような星形の三相3線若しくは三相4線の配電方式を採用した配電系統の電路及び電気機器の対地絶縁抵抗に起因する漏洩電流Igrを測定する本発明に係る漏洩電流測定装置は、基本波処理部3、演算部14、表示部15を備えた処理演算部16を備える。そして、三相3線式の配電方式を採用した配電系統に発生する漏洩電流Igrを測定する場合には、処理演算部16を構成する基本波処理部3に、各配電線4,4,4に流れる電流のベクトル和である零相電流Iが、これを検出する零相変流器9を介して入力される。そして、三相4線式の配電方式を採用した配電系統に発生する漏洩電流Igrを測定する場合には、処理演算部16を構成する基本波処理部3に、各配電線4,4,4及び中性線4に流れる電流のベクトル和である零相電流Iが、これを検出する零相変流器9を介して入力される。 Leakage current measuring apparatus according to the present invention for measuring the leakage current Igr caused by the insulation resistance of the electrical circuit of the power distribution system and the electric equipment adopting the star-shaped three-phase three-wire or three-phase four-wire distribution system as described above Includes a processing calculation unit 16 including a fundamental wave processing unit 3, a calculation unit 14, and a display unit 15. Then, in the case of measuring the leakage current Igr occurring distribution system employing the power distribution system of the three-phase three-wire system, the fundamental wave processing unit 3 of the processing operation unit 16, the distribution line 4 R, 4 S , 4 T is input through a zero-phase current transformer 9 that detects the zero-phase current I 0 , which is the vector sum of the currents flowing through T. Then, in the case of measuring the leakage current Igr occurring distribution system employing the power distribution system of the three-phase four-wire system, the fundamental wave processing unit 3 of the processing operation unit 16, the distribution line 4 R, 4 S , 4 T and the neutral line 4 N are input through a zero-phase current transformer 9 that detects the zero-phase current I 0 , which is the vector sum of the currents flowing through the neutral line 4 N.

さらに、配電線4及び負荷設備5に生じた対地静電容量Cを流れる対地電流IgcR、配電線4及び負荷設備5に生じた対地静電容量Cを流れる対地電流IgcS、配電線4及び負荷設備5に生じた対地静電容量Cを流れる対地電流IgcT、配電線4及び負荷設備5に生じた対地漏洩抵抗rRを流れる漏洩電流IgrR,配電線4及び負荷設備5に生じた対地漏洩抵抗rSを流れる漏洩電流IgrS、配電線4及び負荷設備5に生じた対地漏洩抵抗rTを流れる漏洩電流IgrTの各電流のベクトル和である零相電流Iが接地線8を経由して三相巻線の中性点Nに帰還されるとともに零相変流器9を介して基本波処理部3に入力される。 Furthermore, ground current IgcR flowing earth capacitance C R generated in distribution lines 4 R and load equipment 5, flows through the earth capacitance C S generated in the distribution lines 4 S and load equipment 5 ground current IgcS, distribution lines 4 T and load equipment 5 to the resulting ground electrostatic capacitance C T through the ground current IGCT, distribution lines 4 R and load equipment 5 to the resulting leakage current IgrR flowing to ground leakage resistance rR, distribution lines 4 S and load equipment 5 leakage current flows to ground leakage resistance rS generated in IGRS, distribution lines 4 T and load equipment zero phase is the vector sum of the currents in the leakage current IgrT flowing to ground leakage resistance rT generated in 5 current I 0 is the ground line 8 And is fed back to the neutral point N of the three-phase winding and is input to the fundamental wave processing unit 3 via the zero-phase current transformer 9.

ここで、星形結線された三相3線又は三相4線式の配電方式を採用した配電系統で発生する対地絶縁抵抗に起因する漏洩電流Igrの測定方法及びその原理、さらに上記対地絶縁抵抗に起因する漏洩電流Igrの測定値に含まれる、三相R,S,Tの各相の対地静電容量C,C,Cの値の不一致に起因する電流値を測定する測定方法及びその原理について説明する。 Here, a measuring method and principle of leakage current Igr caused by ground insulation resistance generated in a distribution system adopting a star-connected three-phase three-wire or three-phase four-wire distribution system, and the above-mentioned ground insulation resistance Measuring method for measuring current value caused by mismatch of ground capacitance C R , C S , C T of each phase of three phases R, S, T included in measured value of leakage current Igr caused by And the principle will be described.

図1に示すように変圧器の低圧側三相巻線を星形に結線した三相3線又は三相4線の配電方式を用いた配電系統図において、各端子R,S,T間に発生する線間電圧ESR,ETS,ERTと、各端子R,S,Tから星形巻線の接地点である中性点Nに対して発生する対地電圧E,E,Eは、ベクトルで図2のように示すことができる。 As shown in FIG. 1, in a distribution system diagram using a three-phase three-wire or three-phase four-wire power distribution system in which a low-voltage three-phase winding of a transformer is connected in a star shape, between terminals R, S, and T. The generated line voltages E SR , E TS , E RT and the ground voltages E R , E S , E generated from the terminals R, S, T to the neutral point N which is the ground point of the star winding. T can be expressed as a vector as shown in FIG.

ここで、漏洩電流Igr等を測定する際、漏洩電流測定装置に入力する測定の基準になる基準電圧Eは、図3に示すように、横軸である実数軸上で基準ベクトルとして表される。   Here, when measuring the leakage current Igr and the like, the reference voltage E, which is a measurement reference input to the leakage current measuring device, is expressed as a reference vector on the real axis, which is the horizontal axis, as shown in FIG. .

ところで、星形結線された三相3線又は三相4線の配電方式においては、各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかの値をEとするとき、各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかの値は√3Eとなる。 By the way, in the three-phase three-wire or three-phase four-wire distribution system connected in a star shape, any of the ground voltages E R , E S , E T generated between the terminals R, S, T and the neutral point N When that value is E, any one of the line voltages E SR , E TS , and E RT generated between the terminals R, S, and T is √3E.

そこで、端子Sと端子Rとの間に発生する線間電圧ESRを基準電圧とするとき、その値は対地電圧E,E,Eの値Eに対し√3Eとして示され、対地電圧E,E,Eは下記の式(1)〜(3)のようにベクトル記号法により示すことができる。 Therefore, when the reference voltage line voltage E SR generated between the terminal S and the terminal R, the value is indicated ground voltage E R, E S, to the value E of E T as √3E, ground The voltages E R , E S , and E T can be expressed by a vector symbol method as in the following formulas (1) to (3).

=0.5√3E−j0.5E ・・・(1)
=−0.5√3E−j0.5E ・・・(2)
=jE ・・・(3)
そして、R相の配電線4及び負荷設備5に生じた対地静電容量Cを流れる対地電流IgcR、S相の配電線4及び負荷設備5に生じた対地静電容量Cを流れる対地電流IgcS、T相の配電線4及び負荷設備5に生じた対地静電容量Cを流れる対地電流IgcTは、2π×商用周波数(50Hz又は60Hz)を角周波数ωとすると、下記の式(4)〜(6)で示すことができる。
E R = 0.5√3E−j0.5E (1)
E S = −0.5√3E−j0.5E (2)
E T = jE (3)
The ground current IgcR flowing earth capacitance C R generated in distribution lines 4 R and load equipment 5 of R-phase, flows through the earth capacitance C S generated in the distribution lines 4 S and load equipment 5 of the S-phase The ground current IgcT, the ground current IgcT flowing through the ground capacitance C T generated in the T-phase distribution line 4 T and the load facility 5 is expressed by the following formula, where 2π × commercial frequency (50 Hz or 60 Hz) is an angular frequency ω: (4) to (6).

IgcR=jωC=0.5ωCE+j0.5√3ωCE ・・・(4)
IgcS=jωC=0.5ωCE−j0.5√3ωCE ・・・(5)
IgcT=jωC=−ωCE ・・・(6)
また、端子Rに接続されたR相の配電線4及び負荷設備5、S相の配電線4及び負荷設備5、T相の配電線4及び負荷設備5にそれぞれ対地漏洩抵抗rR,rS,rTが存在するとすれば、対地漏洩抵抗rR,rS,rT中を流れる漏洩電流IgrR,IgrS,IgrTは、下記の式(7)〜(9)で示すことができる。
IgcR = jωC R E R = 0.5ωC R E + j0.5√3ωC R E (4)
IgcS = jωC S E S = 0.5ωC S E-j0.5√3ωC S E ··· (5)
IgcT = jωC T E T = -ωC T E ··· (6)
Also, distribution lines 4 R of the connected R-phase terminal R and the load equipment 5, S-phase distribution line 4 S and load equipment 5, T-phase distribution line 4 T and load equipment 5 each ground leakage resistance rR, If rS and rT exist, the leakage currents IgrR, IgrS, and IgrT flowing through the ground leakage resistances rR, rS, and rT can be expressed by the following equations (7) to (9).

IgrR=E/rR=0.5√3E/rR−j0.5E/rR ・・・(7)
IgrS=E/rS=−0.5√3E/rS−j0.5E/rS ・・・(8)
IgrT=E/rT=jE/rT ・・・(9)
巻線1の中性点Nと接地極Gとの間を接続する接地線8に流れる電流である零相電流Iは、R,S,Tの各相の配電線4,4,4に流れる電流、さらに、三相4線式にあっては中性点Nに接続される中性線4に流れる電流をも加えた電流のベクトル和、つまり上記式(4)〜(6)及び式(7)〜(9)を加えたものであり、下記の式(10)で表すことができる。
={0.5√3(1/rR−1/rS)+0.5ωC+0.5ωC−ωC}E+
j{1/rT−0.5/rR−0.5/rS+0.5√3(ωC−ωC)}E
・・・(10)
ここで、漏洩電流Igrを測定する際、この漏洩電流測定装置に入力される線間電圧ESR,ETS,ERT中のいずれかを基準電圧√3Eとするとき、上記式(10)で表される零相電流Iと、基準電圧√3Eと同位相の零相電流Iの有効成分Aと、基準電圧√3Eより90度位相が進んだ零相電流Iの無効成分Bの関係は図3のベクトル図のように表される。
IgrR = E R /rR=0.5√3E/rR−j0.5E/rR (7)
IgrS = E S /rS=-0.5√3E/rS-j0.5E/rS ··· (8 )
IgrT = E T / rT = jE / rT (9)
The zero-phase current I 0, which is a current flowing in the ground line 8 connecting the neutral point N of the winding 1 and the ground pole G, is distributed in the R, S, T phase distribution lines 4 R , 4 S , 4 T , and in the case of a three-phase four-wire system, a vector sum of currents including the current flowing through the neutral line 4 N connected to the neutral point N, that is, the above formulas (4) to ( 6) and formulas (7) to (9) are added, and can be represented by the following formula (10).
I 0 = {0.5√3 (1 / rR−1 / rS) + 0.5ωC R + 0.5ωC S −ωC T } E +
j {1 / rT−0.5 / rR−0.5 / rS + 0.5√3 (ωC R −ωC S )} E
... (10)
Here, when measuring the leakage current Igr, when any one of the line voltages E SR , E TS , and E RT inputted to the leakage current measuring device is set to the reference voltage √3E, the above equation (10) The zero-phase current I 0 represented, the effective component A of the zero-phase current I 0 in phase with the reference voltage √3E, and the reactive component B of the zero-phase current I 0 advanced by 90 degrees from the reference voltage √3E The relationship is represented as the vector diagram of FIG.

ここで、EωCはR相の対地静電容量Cの中を流れる漏洩電流IgcRであり、EωC及びEωCはS相及びT相の対地静電容量C,Cの中を流れる漏洩電流IgcS,IgcTであり、E/rR,E/rS,E/rTは、それぞれ対地漏洩抵抗rR,rS,rT中を流れる漏洩電流IgrR,IgrS,IgrTとなるので、基準電圧として入力された例えば線間電圧ESRと同位相の零相電流Iの有効成分Aは、図3に示すベクトル図のI及び上記式(10)の実数部分であるので、下記の式(11)により示すことができる。
A=0.5√3(IgrR−IgrS)+0.5IgcR+0.5IgcS−IgcT
・・・(11)
上記基準電圧として入力された線間電圧ESRから90度位相が進んだ零相電流Iの無効成分Bは、ベクトル図である図3のI及び式(10)の虚数部分であるので、下記の式(12)により示すことができる。
B=IgrT−0.5IgrR−0.5IgrS+0.5√3(IgcR−IgcS )
・・・(12)
ここで、零相電流Iと、基準電圧√3Eとの間の位相角をθとすると、図3から分かるように、上記有効成分AはIcosθで表され、上記無効成分BはIsinθで表される。
Here, IomegaC R is leakage current IgcR flowing through the earth capacitance C R of the R-phase, IomegaC S and IomegaC T is the earth capacitance C S of the S-phase and T-phase, flowing in the C T Leakage currents IgcS and IgcT, and E / rR, E / rS, and E / rT are leakage currents IgrR, IgrS, and IgrT flowing through the ground leakage resistances rR, rS, and rT, respectively, and are thus input as reference voltages. for example the active ingredient a of the line voltage E SR in phase of the zero-phase current I 0, so is the real part of I 0 and the equation of the vector diagram shown in FIG. 3 (10), by the following equation (11) Can show.
A = 0.5√3 (IgrR−IgrS) + 0.5IgcR + 0.5IgcS−IgcT
(11)
Since the invalid component B of the zero-phase current I 0 whose phase is advanced by 90 degrees from the line voltage E SR input as the reference voltage is the imaginary part of I 0 in FIG. 3 which is a vector diagram and Expression (10). , Can be expressed by the following formula (12).
B = IgrT−0.5IgrR−0.5IgrS + 0.5√3 (IgcR−IgcS)
(12)
Here, if the phase angle between the zero-phase current I 0 and the reference voltage √3E is θ, the effective component A is represented by I 0 cos θ, and the ineffective component B is I It is represented by 0 sin θ.

ところで、零相電流Iの有効成分A、無効成分Bの値を実際に測定して求めるにあたっては、処理演算部16の基本処理部3へ入力される基準電圧√3Eと零相電流Iの波形から、後述する図5に示すように、基準電圧√3Eと零相電流Iとの間の位相の遅れを測定し、演算部14で零相電流Iを基準電圧√3Eと同位相の有効成分Aと基準電圧√3Eより90度位相が進んだ無効成分Bとに分解して出力する。すなわち、演算部14は、基準電圧√3Eと零相電流Iとの位相角θに基づいて、上記有効成分Aと無効成分Bとを検出する。 Meanwhile, the active ingredient A of the zero-phase current I 0, when the determined by measuring the value of the reactive component B actually, the reference voltage √3E and the zero-phase current inputted to the basic processing unit 3 of the processing operation section 16 I 0 5, the phase lag between the reference voltage √3E and the zero-phase current I 0 is measured, and the zero-phase current I 0 is made the same as the reference voltage √3E by the calculation unit 14 as shown in FIG. The output is decomposed into an effective component A of phase and an ineffective component B whose phase is advanced by 90 degrees from the reference voltage √3E. That is, the calculation unit 14 detects the effective component A and the ineffective component B based on the phase angle θ between the reference voltage √3E and the zero-phase current I 0 .

次に、
X=B−√3A ・・・(13)
Y=B+√3A ・・・(14)
Z=−2B ・・・(15)
とおき、上記式(13)〜(15)に上記式(11)、(12)のA,Bを代入すると次の式(16)〜(18)が得られる。
next,
X = B−√3A (13)
Y = B + √3A (14)
Z = -2B (15)
Then, substituting A and B in the above equations (11) and (12) into the above equations (13) to (15), the following equations (16) to (18) are obtained.

X=IgrT+IgrS−2IgrR+√3(IgcT−IgcS )・・・(16)
Y=IgrR+IgrT−2IgrS+√3(IgcR−IgcT )・・・(17)
Z=IgrS+IgrR−2IgrT+√3(IgcS−IgcR )・・・(18)
ここで、三相の配電方式においては、三相の各相に同時に漏洩電流Igrは流れないものとすれば、上記式(16)の−2IgrR、式(17)の−2IgrS、式(18)の−2IgrT部分は抹消され、且つ、IgcR,IgcS,IgcTの値が等しいバランス状態のときは、X、Y、Zの値は、1相に漏洩電流Igrが流れた場合のIgrの測定値、又は2相に漏洩電流Igrが流れた場合の2相分合計の漏洩電流Igrの値を示す。
X = IgrT + IgrS−2IgrR + √3 (IgcT−IgcS) (16)
Y = IgrR + IgrT−2IgrS + √3 (IgcR−IgcT) (17)
Z = IgrS + IgrR−2IgrT + √3 (IgcS−IgcR) (18)
Here, in the three-phase power distribution system, assuming that the leakage current Igr does not flow simultaneously in each of the three phases, −2IgrR in the above equation (16), −2IgrS in the equation (17), and the equation (18). -2IgrT part of E.c. is erased, and when the values of IgcR, IgcS, and IgcT are in a balanced state, the values of X, Y, and Z are measured values of Igr when the leakage current Igr flows in one phase, Or the value of the leakage current Igr of the two phases total when the leakage current Igr flows in two phases is shown.

従って、上記式(13)〜(15)で示されるX、Y、Zの値のうちの最大の値が1相の漏洩電流Igrの測定値又は2相の漏洩電流Igrの合計の測定値、さらには後で説明する線間負荷中に発生した対地漏洩抵抗に相当する対地漏洩電流Igrの測定値として出力される。   Therefore, the maximum value among the values of X, Y, and Z expressed by the above formulas (13) to (15) is the measured value of the one-phase leakage current Igr or the total measured value of the two-phase leakage current Igr, Further, it is output as a measured value of the ground leakage current Igr corresponding to the ground leakage resistance generated during the line load described later.

以上式(1)〜(18)を含んだ部分の説明では、端子Sと端子Rとの間に発生する線間電圧ESRを基準電圧としていたが、他の線間電圧ETS,ERTを基準電圧としても、上述の式(13)〜(15)は全く同様に適用が可能で、式(16)〜(18)のX、Y、Zとその右辺の式との組み合わせが入れ替わるだけであり、それらの最大の値を漏洩電流Igrの測定値とする漏洩電流Igrの値は同じ値であるので、三相線間電圧のいずれの相の電圧を入力しても同じ測定結果が得られ、測定の際の入力電圧の選定間違いが発生することはない。 In the above description of formula (1) portion which includes to (18), although the line voltage E SR generated between the terminal S and the terminal R was a reference voltage, the other line voltage E TS, E RT The above formulas (13) to (15) can be applied in the same manner even if the reference voltage is used as the reference voltage, and only the combinations of X, Y, Z in the formulas (16) to (18) and the formulas on the right side thereof are interchanged. Since the leakage current Igr is the same value with the maximum value as the measurement value of the leakage current Igr, the same measurement result can be obtained regardless of which phase voltage of the three-phase line voltage is input. Therefore, the selection error of the input voltage at the time of measurement does not occur.

前述の式(16)〜(18)からは、漏洩電流Igrの測定値は、配電線又はその接続端子で1相又は2相が地絡したときの測定値を表しているが、線間にまたがる負荷中で発生したときも対地漏洩電流Igrの測定には同じ式(16)〜(18)が適用可能であることを以下に説明する。   From the above-mentioned formulas (16) to (18), the measured value of the leakage current Igr represents the measured value when one phase or two phases are grounded in the distribution line or its connection terminal. It will be described below that the same equations (16) to (18) can be applied to the measurement of the ground leakage current Igr even when it occurs in a load that straddles.

例えば、二次側巻線を星形に結線した星形結線変圧器の二次側巻線の接地された中性点Nに対して対地電圧がEであるR相とS相の2線間に接続された負荷変圧器コイルの中央点である線間負荷中央点Mが漏洩抵抗rを通じて地絡したとき、この線間負荷中央点Mの接地点Nに対する対地電圧ENMの大きさは、図2のベクトル図から明らかなように0.5Eであり、対地漏洩電流は0.5E/rとなり、零相電流Iの値を漏洩電流Igrの値とする従来の漏洩電流の計測器はこの値を計測する。 For example, between the R-phase and S-phase two wires having a ground voltage of E with respect to the grounded neutral point N of the secondary winding of the star connection transformer in which the secondary winding is connected in a star shape When the line load center point M which is the center point of the load transformer coil connected to the ground is grounded through the leakage resistance r, the magnitude of the ground voltage E NM with respect to the ground point N of the line load center point M is As is apparent from the vector diagram of FIG. 2, the leakage current to ground is 0.5 E / r, and the conventional leakage current measuring device in which the value of the zero-phase current I 0 is the leakage current Igr is as follows: Measure this value.

しかるに、上記地絡が線間負荷中央点Mでなく、対地電圧がEである端子R又はS付近で発生すると対地漏洩電流はE/rとなり、同じ漏洩抵抗rに対して、線間負荷中央点Mでの地絡による対地漏洩電流の測定値はこの値の半分となってしまう。そこで、漏電故障の程度を定格電圧時の対地漏洩電流値で評価するような漏洩電流測定装置にあっては、故障の程度を過小評価することになってしまう。その結果、適確に漏電故障を発見することが困難となり、漏洩電流の測定を行いながら漏電による事故を発見できなくなる虞がある。   However, if the ground fault occurs not at the line load center point M but near the terminal R or S where the ground voltage is E, the ground leakage current becomes E / r, and the line load center becomes equal to the same leakage resistance r. The measured value of the ground leakage current due to the ground fault at the point M is half of this value. Therefore, in a leakage current measuring apparatus that evaluates the degree of electric leakage failure with the ground leakage current value at the rated voltage, the degree of failure is underestimated. As a result, it is difficult to accurately find a leakage fault, and it may not be possible to find an accident due to leakage while measuring leakage current.

本発明は上述のような過小な値を示す漏洩電流Igrの測定値でなく、対地電圧Eを対地漏洩抵抗rの値で除して得られる漏洩電流Igrの測定値は、2相が地絡したときは2倍の測定値を示すことを上述した式(1)〜(15)を使用し検証する。なお、二次側巻線の端子Rと端子Sとの間に発生する線間電圧ESRの値は、対地電圧の値をEとしたとき√3Eとなり、三相の配電線4,4,4及びそれらに接続された負荷設備5に存在するそれぞれの対地静電容量C,C,Cは等しいものとして検証する。 In the present invention, the measured value of the leakage current Igr obtained by dividing the ground voltage E by the value of the ground leakage resistance r is not the measured value of the leakage current Igr that shows an excessively small value as described above. It is verified by using the above-described equations (1) to (15) that the measured value is doubled. The value of the line voltage E SR generated between the terminal R and the terminal S of the secondary winding becomes √3E when the value of the ground voltage is E, the three-phase distribution line 4 R, 4 Each ground capacitance C R , C S , C T existing in S 1 , 4 T and the load facility 5 connected thereto is verified as being equal.

まず、線間負荷中央点Mのみに対地漏洩抵抗rが存在する場合は、線間負荷中央点Mの接地点Nに対する対地電圧ENMは−j0.5Eとなるので、線間負荷中央点Mから対地漏洩抵抗rを通過する対地漏洩電流INMは、−j0.5E/r,IgrR,IgrS,IgrTがすべて0であり、対地電流IgcR,IgcS,IgcTの値は全て等しくなる。これを前述の式(10)〜(12)に代入すると、Aは0、Bは−0.5E/rとなる。このA、Bを前述の式(13)〜(15)に代入すると、X、Yは共に−0.5E/rとなり、ZはE/rとなり、X,Y,Zの値の最大値E/rが漏洩電流Igrの測定値、つまり定格電圧時の対地漏洩電流値として表示される。本発明に係る漏洩電流測定装置においては、対地漏洩電流値の表示は、処理演算部16の表示部15で行われる。 First, when the ground leakage resistance r exists only at the line load center point M, the ground voltage E NM with respect to the grounding point N of the line load center point M is −j0.5E. ground leakage current I NM passing through ground leakage resistance r from, -j0.5E / r, IgrR, a IGRS, IGRT all 0, all ground current IGCR, IgcS, the value of IgcT equal. If this is substituted into the above-mentioned formulas (10) to (12), A becomes 0 and B becomes -0.5 E / r. Substituting these A and B into the aforementioned equations (13) to (15), X and Y are both -0.5 E / r, Z is E / r, and the maximum value E of X, Y, and Z is E. / R is displayed as a measured value of the leakage current Igr, that is, a ground leakage current value at the rated voltage. In the leakage current measuring apparatus according to the present invention, the ground leakage current value is displayed on the display unit 15 of the processing calculation unit 16.

次に、R相及びS相に対地漏洩抵抗rが存在する場合には、Aは0となり、Bは−E/rとなる。このA及びBを式(13)〜(15)に代入すると、X及びYは共に−E/rとなり、Zは2E/rとなり、X,Y,Zの値の最大値2E/rがR相とS相の合計漏洩電流Igrの測定値として表示される。この表示も、処理演算部16の表示部15で行われる。   Next, when the ground leakage resistance r exists in the R phase and the S phase, A is 0 and B is -E / r. When A and B are substituted into equations (13) to (15), X and Y are both -E / r, Z is 2E / r, and the maximum value 2E / r of X, Y, and Z is R It is displayed as a measured value of the total leakage current Igr of the phase and S phase. This display is also performed on the display unit 15 of the processing calculation unit 16.

次に、前述の式(16)〜(18)のX,Y,Zの右辺の√3以下の値は、バランス状態のときは、IgcR,IgcS,IgcTが等しいため0となり、X,Y,Zのうちの最大値が前述したIgr測定値となるが、アンバランス状態では対地電流IgcR,IgcS,IgcTの値が等しくないため、それらの差の値の√3倍の値が、アンバランス状態に起因する値として漏洩電流Igrの測定値に含まれる。以下、上記アンバランス状態に起因する値を零相電流Iの値から求める。 Next, the value of √3 or less on the right side of X, Y, and Z in the above-described equations (16) to (18) becomes 0 because IgcR, IgcS, and IgcT are equal in the balanced state, and X, Y, The maximum value of Z is the above-mentioned Igr measurement value, but since the values of the ground currents IgcR, IgcS, and IgcT are not equal in the unbalanced state, the value of √3 times the difference between them is the unbalanced state. Is included in the measured value of leakage current Igr. Hereinafter, the value resulting from the unbalanced state is obtained from the value of the zero-phase current I 0 .

零相電流Iの値は、前記式(11)、(12)のA,Bの値から、下記の式(19)により示すことができる。 The value of the zero phase current I 0 can be expressed by the following equation (19) from the values of A and B in the equations (11) and (12).

=A+B
=IgrR(IgrR−IgrS)+IgrS(IgrS−IgrT)+IgrT(IgrT−IgrR)+(IgcR+√3IgrT)(IgcR−IgcS)+(IgcS+√3IgrR)(IgcS−IgcT)+(IgcT+√3IgrS)(IgcT−IgcR) ・・・・・(19)
この式(19)で、漏洩電流IgrR,IgrS,IgrTの値を0とおくと、零相電流Iの値は下記の式(20)に示すようになる。
I 0 2 = A 2 + B 2
= IgrR (IgrR-IgrS) + IgrS (IgrS-IgrT) + IgrT (IgrT-IgrR) + (IgcR + √3IgrT) (IgcR−IgcS) + (IgcS + √3IgrR) (IgcS + IgT) (IgC + IgT) (IgC + IgT) IgcR) (19)
In this equation (19), when the leakage currents IgrR, IgrS, and IgrT are set to 0, the value of the zero-phase current I 0 is as shown in the following equation (20).

=IgcR(IgcR−IgcS)+IgcS(IgcS−IgcT)+IgcT(IgcT−IgcR) ・・・・・(20)
ここで、零相電流Iの最小値を求めるため、上記式(20)中のIgcRを変数として微分し0とおくと、下記の式(21)の条件を得る。
I 0 2 = IgcR (IgcR−IgcS) + IgcS (IgcS−IgcT) + IgcT (IgcT−IgcR) (20)
Here, in order to obtain the minimum value of the zero-phase current I 0 , if the IgcR in the equation (20) is differentiated as a variable and set to 0, the condition of the following equation (21) is obtained.

IgcR=0.5(IgcS+IgcT) ・・・(21)
次に、上記式(21)を上記式(20)に代入すると、零相電流Iの最小値として下記の式(22)を得る。
IgcR = 0.5 (IgcS + IgcT) (21)
Next, when the formula (21) is substituted into the formula (20), the following formula (22) is obtained as the minimum value of the zero-phase current I 0 .

=(√3/2)(IgcT−IgcS) ・・・(22)
そして、上記式(22)の結果を式(16)に代入すると、下記の式(23)を得る。
I 0 = (√3 / 2) (IgcT−IgcS) (22)
Then, substituting the result of equation (22) into equation (16) yields the following equation (23).

X=IgrT+IgrS−2IgrR+2I ・・・(23)
漏洩電流Igrは、三相同時に流れることはないので、上記式(23)中の(−2IgrR)を抹消し、IgcS,IgcTを変数として零相電流Iの最小の値を計算し、その結果を前記式(16)〜(18)に代入すると下記の式(24)〜(26)を得る。
X = IgrT + IgrS−2IgrR + 2I 0 (23)
Leakage current Igr is no current flows three phases at the same time, it deletes the formula (23) in its (-2IgrR), IgcS, calculates the minimum value of the zero-phase current I 0 to IgcT as a variable, as a result Is substituted into the equations (16) to (18), the following equations (24) to (26) are obtained.

X=IgrT+IgrS±2I・・・(24)
Y=IgrR+IgrT±2I・・・(25)
Z=IgrS+IgrR±2I・・・(26)
式(24)〜(26)から、X、Y、Zの最大値である漏洩電流Igrの測定値の中に、上述したように三相R,S,Tの各相に発生するの対地静電容量C,C,Cの値が異なるアンバランス状態にあるとき、漏洩電流Igrの測定値に影響を及ぼす値である±2Iを含む。
X = IgrT + IgrS ± 2I 0 (24)
Y = IgrR + IgrT ± 2I 0 (25)
Z = IgrS + IgrR ± 2I 0 (26)
From the equations (24) to (26), the static electricity generated in each of the three-phase R, S, and T phases as described above in the measured value of the leakage current Igr that is the maximum value of X, Y, and Z. When the values of the capacitances C R , C S , and C T are in different unbalanced states, ± 2I 0 that is a value that affects the measured value of the leakage current Igr is included.

なお、上記式(24)〜(26)中の2Iの値は、零相電流Iが最小条件で求めた値であるが、他の条件では2倍より小さな値、例えば、対地電流IgcS,IgcTが共に0のときには√3倍を示すので、最大の値の2倍が限界の値となる。 Note that the value of 2I 0 in the above formulas (24) to (26) is a value that the zero-phase current I 0 is obtained under the minimum condition, but under other conditions, a value that is smaller than twice, for example, the ground current IgcS , IgcT is 0, it indicates √3 times, so twice the maximum value is the limit value.

また、零相電流Iの値は、基本的な測定値であるので、±2Iの値で、漏洩電流Igrの測定値を修正することができるが、零相電流Iの値が過大なときはアンバランスの度合いも過大であり、漏洩電流Igrの測定値の信頼性は低下する。 Since the value of the zero-phase current I 0 is a basic measurement value, the measurement value of the leakage current Igr can be corrected with a value of ± 2I 0 , but the value of the zero-phase current I 0 is excessive. In such a case, the degree of imbalance is excessive, and the reliability of the measured value of the leakage current Igr is lowered.

上述の式(1)〜(26)を用いた説明は、二次側巻線の各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかを基準電圧として入力した場合について説明したが、接地点である中性点Nに対して発生する対地電圧E,E,Eを基準電圧として入力した場合にも、同じ理論で同じ結果を得ることができる。例えば、基準電圧Eとして入力された対地電圧Eと同位相の零相電流I有効成分Aは下記の式(27)により示すことができる。 In the explanation using the above-mentioned formulas (1) to (26), any one of the line voltages E SR , E TS , E RT generated between the terminals R, S, T of the secondary winding is used as the reference voltage. However, when the ground voltages E R , E S , and E T generated with respect to the neutral point N that is the grounding point are input as reference voltages, the same results can be obtained with the same theory. Can do. For example, ground voltage E R and the zero-phase current I 0 active ingredients A S of the same phase input as a reference voltage E can show by the following equation (27).

=IgrR−0.5IgrS−0.5IgrT+0.5√3(IgcS−IgcT )
・・・(27)
上記基準電圧Eから90度位相が進んだ零相電流Iの無効成分Bは、下記の式(28)により示すことができる。
=0.5√3(IgrT−IgrS)+IgcR−0.5IgcS−0.5IgcT
・・・(28)
また、
=A−√3B ・・・(29)
=A+√3B ・・・(30)
=−2A ・・・(31)
とおき、上記式(29)〜(31)に前記式(27)、(28)のA,Bを代入すると下記の式(32)〜(34)が得られる。
A S = IgrR−0.5IgrS−0.5IgrT + 0.5√3 (IgcS−IgcT)
... (27)
The reactive component B S of the zero-phase current I 0 whose phase has advanced by 90 degrees from the reference voltage E can be expressed by the following equation (28).
B S = 0.5√3 (IgrT−IgrS) + IgcR−0.5IgcS−0.5IgcT
... (28)
Also,
X S = A S −√3B S (29)
Y S = A S + √3B S (30)
Z S = -2A S (31)
Then, the following formulas (32) to (34) are obtained by substituting A S and B S of the formulas (27) and (28) into the formulas (29) to (31).

=IgrR+IgrS−2IgrT+√3(IgcS−IgcR)・・・(32)
=IgrR+IgrT−2IgrS+√3(IgcR−IgcT)・・・(33)
=IgrS+IgrT−2IgrR+√3(IgcT−IgcS)・・・(34)
上記式(32)〜(34)で示されるX、Y、Zの値のうちの最大の値が、1相又は2相の合計、又は線間負荷中に発生し対地漏洩抵抗に相当する対地漏洩電流Igrの測定値となるが、式(32)〜(34)の右辺は、X、Y、Zを表す式(16)〜(18)の右辺のいずれかと一致しており、それらのうちの最大の値を漏洩電流Igrの値とするので、両者の漏洩電流Igrの値は同じものとなる。
X S = IgrR + IgrS−2IgrT + √3 (IgcS−IgcR) (32)
Y S = IgrR + IgrT−2IgrS + √3 (IgcR−IgcT) (33)
Z S = IgrS + IgrT−2IgrR + √3 (IgcT−IgcS) (34)
The maximum value among the values of X S , Y S , and Z S represented by the above formulas (32) to (34) is generated during the sum of one phase or two phases, or during line load, resulting in ground leakage resistance. The corresponding measured value of the ground leakage current Igr is equal to one of the right sides of the equations (16) to (18) representing X, Y, and Z. Since the maximum value among them is the value of the leakage current Igr, the value of the leakage current Igr is the same.

次に、図1に示す処理演算部16を構成する基本波処理部3の具体的な構成について、図4を参照して説明する。この基本波処理部3は、電圧検出器21と、第1の増幅器22と、第1のローパスフィルタ(LPF)23と、第1の実効値変換器28と、零相電流(I)検出器24と、第2の増幅器25と、第2のローパスフィルタ(LPF)26と、第2の実効値変換器29と、位相差計測器27とを備える。 Next, a specific configuration of the fundamental wave processing unit 3 configuring the processing calculation unit 16 illustrated in FIG. 1 will be described with reference to FIG. The fundamental wave processing unit 3 includes a voltage detector 21, a first amplifier 22, a first low-pass filter (LPF) 23, a first effective value converter 28, and a zero-phase current (I 0 ) detection. 24, a second amplifier 25, a second low-pass filter (LPF) 26, a second effective value converter 29, and a phase difference measuring device 27.

図4において、電圧検出器21には、R,S,Tの各相の各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれか、又は変圧器巻線の各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかが基準電圧として入力される。ここで、対地電圧E,E,Eのいずれかを基準電圧とするときの値をEとするとき、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかを基準電圧とするときの値は√3Eとされる。 In FIG. 4, the voltage detector 21 includes any of line voltages E SR , E TS , E RT generated between the terminals R, S, T of each phase of R, S, T, or a transformer winding. Any of the ground voltages E R , E S and E T generated between the terminals R, S and T of the line and the neutral point N is input as a reference voltage. Here, when a value when any one of the ground voltages E R , E S , and E T is used as a reference voltage is E, the line voltages E SR and E TS generated between the terminals R, S, and T are described above. , the value when the reference voltage of either of the E RT is a √3E.

なお、図1に示す系統図においては、線間電圧ESRが入力されている。そして、第1の増幅器22は電圧検出器21の検出感度に応じて、電圧検出器21から出力される基準電圧を適切な値になるまで増幅する。第1のローパスフィルタ23は、基準電圧として入力される電圧の周波数である基本波周波数を超える周波数成分を減衰させて基準電圧基本波周波数波形を取り出す。 In the system diagram shown in FIG. 1, a line voltage ESR is input. Then, the first amplifier 22 amplifies the reference voltage output from the voltage detector 21 according to the detection sensitivity of the voltage detector 21 until it reaches an appropriate value. The first low-pass filter 23 attenuates a frequency component that exceeds the fundamental frequency, which is the frequency of the voltage input as the reference voltage, and extracts a reference voltage fundamental frequency waveform.

そして、零相電流検出器24には、三相3線式の配電方式にあっては、R,S,Tの各相の配電線4,4,4に流れる電流のベクトル和である零相電流Iが入力される。また、三相4線式の配電方式にあっては、R,S,T及び接地相であるN相の各相の配電線4,4,4及び中性線4の4線に流れる電流のベクトル和である零相電流Iが入力される。第2の増幅器25は、零相電流検出器24の検出感度に応じて、零相電流検出器24から出力される零相電流Iを適切な値になるまで増幅する。第2のローパスフィルタ26は、零相電流Iの基本波周波数を超える周波数成分を減衰させて基本波周波数波形を取り出す。 The zero-phase current detector 24 is a vector sum of currents flowing through the distribution lines 4 R , 4 S , and 4 T of the R, S, and T phases in the three-phase three-wire distribution system. A certain zero-phase current I 0 is input. In addition, in the three-phase four-wire distribution system, four wires of R, S, T and N-phase distribution wires 4 R , 4 S , 4 T and neutral wire 4 N are grounded phases. A zero-phase current I 0, which is a vector sum of currents flowing through, is input. The second amplifier 25 amplifies the zero phase current I 0 output from the zero phase current detector 24 according to the detection sensitivity of the zero phase current detector 24 until it reaches an appropriate value. The second low-pass filter 26 extracts a fundamental frequency waveform by attenuating frequency components exceeding the fundamental frequency of the zero-phase current I 0 .

そして、位相差計測器27は、基準電圧として入力された各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれか、三相変圧器の巻線1a,1b,1cの接地点である中性点Nに対して発生する対地電圧E,E,Eのいずれかと、零相電流Iとの位相差を計測する。ここで基準電圧Eとして入力された各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかと、三相変圧器の巻線1a,1b,1cの接地点である中性点Nに対して発生する対地電圧E,E,Eのいずれかと、零相電流Iとの位相差を図5に示す。基本波処理部3において、第1のローパスフィルタ23は出力された基準電圧Eの波形と、第2のローパスフィルタ26から出力された零相電流Iの波形を、例えばオペアンプゼロクロッシング回路に入力すると、それらの出力波形は、図5に示すように、基準電圧Eに対してはEで示すようになり、零相電流Iに対してはIで示すようになる。基準電圧E及び零相電流Iの出力波形の波高値を一致させて、出力波形EとIの差を求める。その差の絶対波形は、図5に示す|E−I|波形になる。図5に示す|E−I|波形及びI波形の突出部分の面積をそれぞれS,Sとすれば、Sは基準電圧Eと零相電流Iとの位相差角θに比例し、Sは位相差180度に比例する。このS,Sに比例した電圧は、演算部14に出力される。 Then, the phase difference measuring device 27 is one of the line voltages E SR , E TS , E RT generated between the terminals R, S, T inputted as the reference voltage, the winding 1a of the three-phase transformer, The phase difference between any one of the ground voltages E R , E S and E T generated with respect to the neutral point N which is the ground point of 1b and 1c and the zero-phase current I 0 is measured. Here, any of the line voltages E SR , E TS , E RT generated between the terminals R, S, T inputted as the reference voltage E, and the ground point of the windings 1a, 1b, 1c of the three-phase transformer FIG. 5 shows the phase difference between any one of the ground voltages E R , E S , E T generated with respect to the neutral point N and the zero-phase current I 0 . In the fundamental wave processing unit 3, the first low-pass filter 23 inputs the waveform of the output reference voltage E and the waveform of the zero-phase current I 0 output from the second low-pass filter 26 to, for example, an operational amplifier zero crossing circuit. Then, their output waveform, as shown in FIG. 5, is as shown in E Z is the reference voltage E, is shown in I Z for zero-phase current I 0. The peak values of the output waveforms of the reference voltage E and the zero-phase current I 0 are matched to obtain the difference between the output waveforms E Z and I Z. The absolute waveform of the difference is the | E Z -I Z | waveform shown in FIG. If the areas of the protruding portions of the | E Z −I Z | waveform and the I Z waveform shown in FIG. 5 are respectively S 1 and S 2 , S 1 is the phase difference angle θ between the reference voltage E and the zero-phase current I 0. proportional to, S 2 is proportional to the phase difference of 180 degrees. The voltage proportional to S 1 and S 2 is output to the calculation unit 14.

そして、第1の実効値変換器28は、基準電圧Eの基本周波数波形を両波整流して実効値に比例したアナログ値に変換し、演算部14に入力する。第2の実効値変換器29は、零相電流Iの基本周波数波形を両波整流して実効値に比例したアナログ値に変換して演算部14に入力する。 Then, the first effective value converter 28 rectifies the fundamental frequency waveform of the reference voltage E into both waves, converts it to an analog value proportional to the effective value, and inputs it to the calculation unit 14. The second effective value converter 29 rectifies the fundamental frequency waveform of the zero-phase current I 0 into both waves, converts it to an analog value proportional to the effective value, and inputs the analog value to the computing unit 14.

そして、演算部14は、位相差計測器27が計測した基準電圧Eと零相電流Iとの位相差角θを用いて、零相電流Iを基準電圧Eと同位相の有効成分Aと、基準電圧Eより90度位相が進んだ無効成分Bとに分解して出力する。 Then, the calculation unit 14 uses the phase difference angle θ between the reference voltage E measured by the phase difference measuring instrument 27 and the zero-phase current I 0 to convert the zero-phase current I 0 into an active component A having the same phase as the reference voltage E. And the ineffective component B whose phase is advanced by 90 degrees from the reference voltage E.

なお、位相差計測器27が検出する基準電圧Eと零相電流Iとの位相差角θは、次の式(35)から算出される。 The phase difference angle θ between the reference voltage E detected by the phase difference measuring instrument 27 and the zero-phase current I 0 is calculated from the following equation (35).

θ=(180S)/S ・・・(35)
ここで、演算部14は、Icosθの値を零相電流Iの有効成分Aの値として、Isinθの値を零相電流Iの無効成分Bの値として演算し出力する。これら零相電流Iと、零相電流Iの有効成分A及び無効成分Bの関係は、前述したように、図3のベクトル図に示すように表される。
θ = (180S 1 ) / S 2 (35)
Here, the calculation unit 14 calculates and outputs the value of I 0 cos θ as the value of the effective component A of the zero-phase current I 0 and the value of I 0 sin θ as the value of the invalid component B of the zero-phase current I 0 . These zero-phase current I 0, the relationship of the active ingredient A and reactive component B of the zero-phase current I 0, as described above, is expressed as shown in the vector diagram of FIG.

そして、演算部14において、上述したような演算処理が行われ、R,S,T相の対地漏洩抵抗rR,rS,rTが1相又は2相、あるいは2相間にまたがる負荷の中に存在しているとき、それらの中に流れる電流値又は2相分の合計電流値を漏洩電流Igrの値として測定し、その値を必要に応じて表示部15に表示させる。さらに、演算部14は、R,S,T相の対地漏洩抵抗rR,rS,rTの中に流れる電流値に含まれる、対地静電容量C,C,Cのアンバランスに起因するアンバランス差電流値を演算して測定し、この値を必要に応じて表示部15に表示させる。 Then, the arithmetic processing unit 14 performs the arithmetic processing as described above, and the ground leakage resistances rR, rS, rT of the R, S, and T phases are present in a load that spans one phase, two phases, or two phases. The current value flowing in them or the total current value for two phases is measured as the value of the leakage current Igr, and the value is displayed on the display unit 15 as necessary. Further, the calculation unit 14 is caused by the unbalance of the ground capacitances C R , C S , and C T included in the current values flowing in the ground leakage resistances rR, rS, and rT of the R, S, and T phases. An unbalance difference current value is calculated and measured, and this value is displayed on the display unit 15 as necessary.

本発明に係る漏洩電流測定装置及びこの測定装置を用いた測定方法においては、前述した零相電流Iの有効成分Aと無効成分Bを上述した式(13)〜(15)又は式(29)〜(31)に代入する演算処理を演算部14により行うことにより、R,S,Tの各相の対地漏洩抵抗rR,rS,rTが1相又は2相、あるいは2相間にまたがる負荷の中に存在しているとき、それらの中に流れる電流値又は2相分の合計電流値の値の測定が実現される。また、前述の零相電流Iの値の±2倍の値を、対地漏洩抵抗rR,rS,rT中を流れる電流値に含まれる、対地静電容量C,C,Cのアンバランスに起因する、アンバランス差電流値の測定が実現される。 In the leakage current measuring apparatus and the measuring method using this measuring apparatus according to the present invention, the effective component A and the ineffective component B of the above-described zero-phase current I 0 are expressed by the above-described equations (13) to (15) or (29 ) To (31) are performed by the calculation unit 14 so that the ground leakage resistances rR, rS, rT of each phase of R, S, T are 1 phase, 2 phases, or a load that spans between 2 phases. When present, measurement of the value of the current flowing through them or the total current value for two phases is realized. In addition, the value of ± 2 times the value of the above-described zero-phase current I 0 is set to the value of the ground capacitance C R , C S , C T included in the current value flowing through the ground leakage resistances rR, rS, rT. Measurement of the unbalance difference current value due to the balance is realized.

また、本発明に係る漏洩電流測定装置は、図6に示すように、配電線4の途中に遮断器19を設け、演算部14の演算の結果により、遮断器の遮断動作を制御する構成としてもよい。本発明に係る漏洩電流測定装置は、演算部14により演算されて測定された対地漏洩抵抗rR,rS,rTの中を流れる漏洩電流Igrの測定結果を制御信号とし、この制御信号に基づいて配電線4の途中に設けた遮断器19を動作させることにより、配電線4及び負荷設備5を電源供給部から遮断する。   In addition, as shown in FIG. 6, the leakage current measuring apparatus according to the present invention is provided with a circuit breaker 19 in the middle of the distribution line 4 and controls the circuit breaker operation according to the calculation result of the calculation unit 14. Also good. The leakage current measuring apparatus according to the present invention uses, as a control signal, the measurement result of the leakage current Igr flowing through the ground leakage resistances rR, rS, rT calculated and measured by the calculation unit 14, and is distributed based on this control signal. By operating the circuit breaker 19 provided in the middle of the electric wire 4, the distribution line 4 and the load facility 5 are interrupted from the power supply unit.

本発明に係る漏洩電流測定装置においては、上述のようにさらに遮断器19を設けることにより、漏洩電流Igrの検出と共に、漏洩電流Igrが所定の値を超えたとき配電線4及び負荷設備5を電源供給部から遮断するようにすることができるので、三相3線又は三相4線の配電回路及びこの配電回路に接続された負荷設備を絶縁不良に伴う重大事故から守ることができる。   In the leakage current measuring apparatus according to the present invention, by providing the circuit breaker 19 as described above, the distribution line 4 and the load facility 5 are connected together with detection of the leakage current Igr when the leakage current Igr exceeds a predetermined value. Since the power supply unit can be cut off, the three-phase three-wire or three-phase four-wire power distribution circuit and the load equipment connected to the power distribution circuit can be protected from a serious accident due to poor insulation.

さらに、本発明に係る漏洩電流測定装置では、演算部14の演算の結果により、対地絶縁抵抗に起因する漏洩電流Igrの値が所定の値より大きくなったことが判定された場合には、その判定信号を制御信号として、音や発光等の警報装置18を動作させ、音や発光等を用いて警報を発するようにしてもよい。このような警報装置18を設けることにより、漏電に起因する事故を確実に防止することができる。なお、この警報装置18は、図6に示すように、演算部14の判定信号を制御信号として動作されるものであるので、演算部14からの判定信号が入力されるように、この演算部14に接続される。   Furthermore, in the leakage current measuring apparatus according to the present invention, when it is determined that the value of the leakage current Igr caused by the ground insulation resistance is larger than a predetermined value based on the calculation result of the calculation unit 14, The alarm device 18 such as sound or light emission may be operated using the determination signal as a control signal, and an alarm may be issued using sound or light emission. By providing such an alarm device 18, it is possible to reliably prevent an accident due to electric leakage. As shown in FIG. 6, the alarm device 18 is operated using the determination signal of the calculation unit 14 as a control signal. Therefore, the calculation unit 14 is input so that the determination signal from the calculation unit 14 is input. 14.

本発明に係る漏洩電流測定装置及び測定方法は、国際標準方式として広く世界の配電系統において採用されている400V級星形配電方式を採用した配電系統や電気機器における絶縁測定に用いられる。   The leakage current measuring apparatus and measuring method according to the present invention are used for insulation measurement in distribution systems and electrical equipment adopting the 400 V class star distribution system widely adopted in the world distribution system as an international standard system.

三相星形電源で配電される配電線、この配電線に接続された負荷設備の漏洩電流Igrの測定に本発明に係る漏洩電流測定装置を適用した構成例を示す概略系統図である。It is a schematic system diagram which shows the structural example which applied the leakage current measuring apparatus which concerns on this invention to the measurement of the leakage current Igr of the distribution line distributed by a three-phase star-shaped power supply, and this load distribution line. 星形電源系統の対地電圧対地電圧E,E,E、線間電圧ESR,ETS,ERT及び負荷中央点Mの接地点Nに対する対地電圧ENMの関係を示すベクトル図である。FIG. 5 is a vector diagram showing the relationship of the ground voltage E NM to the ground point N of the ground voltage N R , E S , E T , line voltages E SR , E TS , E RT and the load center point M of the star power system is there. 零相電流I、基準電圧として入力される対地電圧E又は線間電圧ESR、位相角θ、零相電流Iの有効成分A、零相電流Iの無効成分Bの関係を示すベクトル図である。Shows zero-phase current I 0, ground voltages E R or the line voltage is input as a reference voltage E SR, phase angle theta, the active ingredient A of the zero-phase current I 0, the zero-phase current I 0 the relation reactive component B It is a vector diagram. 本発明に係る漏洩電流測定装置を構成する信号処理部の詳細を示すブロック図である。It is a block diagram which shows the detail of the signal processing part which comprises the leakage current measuring apparatus which concerns on this invention. 位相差がθの入力電圧Eと零相電流Iの波形と、位相判定のためのゼロクロッシング回路の出力波形の関係を示す。The relationship between the waveform of the input voltage E and the zero-phase current I 0 having a phase difference of θ and the output waveform of the zero-crossing circuit for phase determination is shown. 本発明に係る漏洩電流測定装置に遮断器及び警報装置を配置した配置構成の一例を示すブロック回路図である。It is a block circuit diagram which shows an example of the arrangement configuration which has arrange | positioned the circuit breaker and the alarm device in the leakage current measuring apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 星形配電電源、3 基本波処理部、4,4,4 配電線、4 中性線、5 負荷設備、8 接地線 9 零相変流器、14 演算部、15 表示部、16 処理演算部、18 警報装置、19 遮断器、C,C,C 対地静電容量、rR,rS,rT 対地漏洩抵抗 1 Star Distribution Power Supply, 3 Fundamental Wave Processing Unit, 4 R , 4 S , 4 T Distribution Line, 4 N Neutral Line, 5 Load Equipment, 8 Grounding Line 9 Zero Phase Current Transformer, 14 Arithmetic Unit, 15 Display Unit , 16 processing computation section, 18 alarm device, 19 breaker, C R, C S, C T capacitance to ground, rR, rS, rT ground leakage resistance

Claims (12)

変圧器の二次側巻線を星形に結線し、三相の電圧端子をR,S,Tとし、星形結線の接地された中性点をNとする電源から給電される三相4線式又は三相3線式の配電方式の電路及び電気機器の対地絶縁抵抗に起因する漏洩電流Igrを測定する漏洩電流測定装置において、
上記二次側巻線の各端子R,S,T間に発生する線間電圧ESR,ETS,ERT及び上記二次側巻線の各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを測定する電圧検出手段と、
三相の各配電線に流れる電流のベクトル和である零相電流Iを検出する零相電流検出手段と、
上記電圧検出手段によって検出された上記電圧線間電圧ESR,ETS,ERT又は上記対地電圧E,E,Eのいずれかが入力され、上記入力されたいずれかの電圧線間電圧ESR,ETS,ERT又は対地電圧E,E,Eを基準電圧とし、この基準電圧と上記零相電流Iとの位相を比較する位相比較手段と、
上記基準電圧に対して、上記零相電流Iを同相の有効成分Aと、これと直角の位相差を有する無効成分Bに分離した計測値を求め、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを基準電圧としたときに得られる上記零相電流Iの有効成分Aとこれと直角の位相差を有する無効成分Bとに基づいて、R相、S相、T相のうちの2相に発生する上記漏洩電流Igrの合計値、R相、S相、T相のうちの1相に発生する上記漏洩電流Igrの値、R相、S相、T相のうちの2相間若しくは3相間に接続される負荷の内部で発生する上記漏洩電流Igrの値を演算する演算手段と
を備えることを特徴とする漏洩電流測定装置。
Three-phase 4 fed from a power source with the secondary winding of the transformer connected in a star shape, the three-phase voltage terminals R, S, T, and the neutral point grounded in the star connection N In the leakage current measuring device for measuring the leakage current Igr caused by the ground insulation resistance of the electric circuit and the electrical equipment of the wire type or the three-phase three-wire type distribution system,
The line voltages E SR , E TS , E RT generated between the terminals R, S, T of the secondary winding and between the terminals R, S, T of the secondary winding and the neutral point N Voltage detecting means for measuring any of ground voltages E R , E S , E T generated in
Zero-phase current detection means for detecting a zero-phase current I 0 that is a vector sum of currents flowing through the three-phase distribution lines;
Any of the voltage line voltages E SR , E TS , E RT or the ground voltages E R , E S , E T detected by the voltage detection means is input, and any of the input voltage lines Phase comparison means for comparing voltages E SR , E TS , E RT or ground voltages E R , E S , E T with a reference voltage and comparing the phase of this reference voltage with the zero phase current I 0 ;
With respect to the reference voltage, a measurement value obtained by separating the zero-phase current I 0 into an in-phase active component A and an ineffective component B having a phase difference perpendicular to the same is obtained, and between the terminals R, S, T line voltage E SR generated, E TS, E RT or above the terminals R, S, ground voltages E R generated between T and the neutral point N, E S, when a reference voltage of either of the E T The leakage current Igr generated in two phases of the R phase, the S phase, and the T phase based on the effective component A of the zero phase current I 0 obtained in FIG. Of the leakage current Igr generated in one of R phase, S phase, and T phase, the load connected between two or three phases of R phase, S phase, and T phase A leakage current measuring apparatus comprising: a calculation means for calculating the value of the leakage current Igr generated in
上記各端子R,S,Tと中性点Nとの間に発生する対地電圧E,E,Eのいずれかを基準電圧とするときの値をEとするとき、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかを基準電圧とするときには、この基準電圧の値を√3Eとして上記零相電流Iとの位相比較が行われ、上記漏洩電流Igrの演算が行われることを特徴とする請求項1記載の漏洩電流測定装置。 When the E value at the time of the ground voltage E R, E S, a reference voltage of either of E T generated between each terminal R, S, T and the neutral point N, each terminal R , S, T, when any of the line voltages E SR , E TS , E RT is used as a reference voltage, the value of this reference voltage is set to √3E and the phase comparison with the zero phase current I 0 is performed. 2. The leakage current measuring apparatus according to claim 1, wherein the leakage current Igr is calculated. 上記演算手段は、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を、上記R,S,Tの各端子に接続される電路及び電気機器全体の対地絶縁抵抗に起因する漏洩電流Igrとして演算することを特徴とする請求項1又は2に記載の漏洩電流測定装置。 The arithmetic means has the value of the equation (B−√3A) when any of the line voltages E SR , E TS , E RT generated between the terminals R, S, T is used as a reference voltage, The maximum value among the values of the formula (B + √3A) and the formula (−2B) is the leakage caused by the ground insulation resistance of the electric circuit connected to each terminal of the R, S, and T and the entire electrical equipment. The leakage current measuring device according to claim 1, wherein the leakage current measuring device is calculated as a current Igr. 上記演算手段は、上記各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを基準電圧としたとき、式(A−√3B)の値、式(A+√3B)の値、式(−2A)の値のうちの最大の値を、上記R,S,Tの各端子に接続される電路及び電気機器全体の対地絶縁抵抗に起因する漏洩電流Igrとして演算することを特徴とする請求項1又は2に記載の漏洩電流測定装置。 The calculating means, when the respective terminals R, S, ground voltages E R generated between T and the neutral point N, E S, one of E T as a reference voltage, wherein the (A-√3B) Value, the value of the formula (A + √3B), and the maximum value of the value of the formula (−2A) are caused by the ground insulation resistance of the electric circuit connected to the R, S, and T terminals and the entire electrical equipment. The leakage current measuring apparatus according to claim 1, wherein the leakage current is calculated as a leakage current Igr. 上記演算手段は、上記漏洩電流Igrに含まれる上記R,S,Tの各端子に接続される上記電路及び電気機器又はそのいずれか一方の各相の対地静電容量の値の不一致に起因する電流値を(−2I)から(2I)の間の値として演算することを特徴とする請求項3又は4に記載の漏洩電流測定装置。 The arithmetic means is caused by a mismatch in the value of the ground capacitance of the electric circuit and / or electric device connected to each terminal of the R, S, T included in the leakage current Igr, or each phase of one of them. The leakage current measuring device according to claim 3 or 4, wherein the current value is calculated as a value between (-2I 0 ) and (2I 0 ). 当該漏洩電流測定装置は、さらに表示手段を備え、上記演算手段によって演算された結果が上記表示手段に表示されることを特徴とする請求項1〜5のいずれか1に記載の漏洩電流測定装置。   The leakage current measuring device according to claim 1, further comprising a display unit, wherein a result calculated by the calculating unit is displayed on the display unit. . 当該漏洩電流測定装置は、さらに警報手段を備え、上記演算手段において求められる上記漏洩電流Igrの値が所定の値を超えたときに上記警報手段より警報を発することを特徴とする請求項1〜5のいずれか1に記載の漏洩電流測定装置。   The leakage current measuring device further comprises an alarm means, and issues an alarm from the alarm means when the value of the leakage current Igr required by the arithmetic means exceeds a predetermined value. 5. The leakage current measuring device according to any one of 5 above. 当該漏洩電流測定装置は、さらに遮断手段を備え、上記演算手段において求められる上記漏洩電流Igrの値が所定の値を超えたときに上記遮断手段により電路を遮断することを特徴とする請求項1〜7のいずれか1に記載の漏洩電流測定装置。   2. The leakage current measuring apparatus further comprises a breaking means, and the electric circuit is cut off by the breaking means when a value of the leakage current Igr obtained by the computing means exceeds a predetermined value. The leakage current measuring device according to any one of? 7. 変圧器の二次側巻線を星形に結線し、三相の電圧端子をR,S,Tとし、星形結線の接地された中性点をNとする電源から給電される三相4線式又は三相3線式の配電方式の電路及び電気機器の対地絶縁抵抗に起因する漏洩電流Igrを測定する漏洩電流の測定方法において、
上記二次側巻線の各端子R,S,T間に発生する線間電圧ESR,ETS,ERT及び上記二次側巻線の各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを測定する電圧検出工程と、
三相の各配電線に流れる電流のベクトル和である零相電流Iを検出する零相電流検出工程と、
上記電圧検出工程によって検出された上記線間電圧ESR,ETS,ERT又は上記対地電圧E,E,Eのいずれかが入力され、上記入力されたいずれかの線間電圧ESR,ETS,ERT又は対地電圧E,E,Eを基準電圧とし、この基準電圧と上記零相電流Iとの位相を比較する位相比較工程と、
上記基準電圧に対して、上記零相電流Iを同相の有効成分Aと、これと直角の位相差を有する無効成分Bに分離した計測値を求め、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記各端子R,S,Tと中性点N間に発生する対地電圧E,E,Eのいずれかを基準電圧としたときに得られる上記零相電流Iの有効成分Aとこれと直角の位相差を有する無効成分Bとに基づいて、R相、S相、T相のうちの2相に発生する上記漏洩電流Igrの合計値、R相、S相、T相のうちの1相に発生する上記漏洩電流Igrの値、R相、S相、T相のうちの2相間若しくは3相間に接続される負荷の内部で発生する上記漏洩電流Igrの値を演算する演算工程と
を備えることを特徴とする漏洩電流の測定方法。
Three-phase 4 fed from a power source with the secondary winding of the transformer connected in a star shape, the three-phase voltage terminals R, S, T, and the neutral point grounded in the star connection N In the leakage current measuring method for measuring the leakage current Igr caused by the ground insulation resistance of the electric circuit and the electrical equipment of the wire type or the three-phase three-wire type distribution system,
The line voltages E SR , E TS , E RT generated between the terminals R, S, T of the secondary winding and between the terminals R, S, T of the secondary winding and the neutral point N A voltage detection step of measuring any of ground voltages E R , E S , E T generated in
A zero-phase current detection step of detecting a zero-phase current I 0 which is a vector sum of currents flowing through the three-phase distribution lines;
Any of the line voltages E SR , E TS , E RT or the ground voltages E R , E S , E T detected by the voltage detection step is input, and any of the input line voltages E A phase comparison step of comparing SR , E TS , E RT or ground voltages E R , E S , E T with a reference voltage and comparing the phase of this reference voltage with the zero phase current I 0 ;
With respect to the reference voltage, a measurement value obtained by separating the zero-phase current I 0 into an in-phase active component A and an ineffective component B having a phase difference perpendicular to the same is obtained, and between the terminals R, S, T line voltage E SR generated, E TS, E RT or above the terminals R, S, ground voltages E R generated between T and the neutral point N, E S, when a reference voltage of either of the E T The leakage current Igr generated in two phases of the R phase, the S phase, and the T phase based on the effective component A of the zero phase current I 0 obtained in FIG. Of the leakage current Igr generated in one of R phase, S phase, and T phase, the load connected between two or three phases of R phase, S phase, and T phase A method for measuring leakage current, comprising: a calculation step of calculating a value of the leakage current Igr generated in .
上記各端子R,S,Tと中性点Nとの間に発生する対地電圧E,E,Eのいずれかを基準電圧とするときの値をEとするとき、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかを基準電圧とするときには、この基準電圧の値を√3Eとして上記零相電流Iとの位相比較が行われ、上記漏洩電流Igrの演算が行われることを特徴とする請求項9記載の漏洩電流の測定方法。 When the E value at the time of the ground voltage E R, E S, a reference voltage of either of E T generated between each terminal R, S, T and the neutral point N, each terminal R , S, T, when any of the line voltages E SR , E TS , E RT is used as a reference voltage, the value of this reference voltage is set to √3E and the phase comparison with the zero phase current I 0 is performed. 10. The method for measuring leakage current according to claim 9, wherein the leakage current Igr is calculated. 上記演算工程は、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を、上記R,S,Tの各端子に接続される電路及び電気機器全体の対地絶縁抵抗に起因する漏洩電流Igrとして演算することを特徴とする請求項9又は10に記載の漏洩電流の測定方法。 In the calculation step, when any one of the line voltages E SR , E TS , and E RT generated between the terminals R, S, and T is used as a reference voltage, the value of the formula (B−√3A), The maximum value among the values of the formula (B + √3A) and the formula (−2B) is the leakage caused by the ground insulation resistance of the electric circuit connected to each terminal of the R, S, and T and the entire electrical equipment. The leakage current measuring method according to claim 9 or 10, wherein the leakage current is calculated as a current Igr. 上記演算工程は、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を、上記R,S,Tの各端子に接続される電路及び電気機器全体の対地絶縁抵抗に起因する漏洩電流Igrとして演算することを特徴とする請求項9又は10に記載の漏洩電流の測定方法。 In the calculation step, when any one of the line voltages E SR , E TS , and E RT generated between the terminals R, S, and T is used as a reference voltage, the value of the formula (B−√3A), The maximum value among the values of the formula (B + √3A) and the formula (−2B) is the leakage caused by the ground insulation resistance of the electric circuit connected to each terminal of the R, S, and T and the entire electrical equipment. The leakage current measuring method according to claim 9 or 10, wherein the leakage current is calculated as a current Igr.
JP2008305377A 2008-11-28 2008-11-28 Leakage current measuring device and measuring method Expired - Fee Related JP5380702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008305377A JP5380702B2 (en) 2008-11-28 2008-11-28 Leakage current measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008305377A JP5380702B2 (en) 2008-11-28 2008-11-28 Leakage current measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2010127860A true JP2010127860A (en) 2010-06-10
JP5380702B2 JP5380702B2 (en) 2014-01-08

Family

ID=42328360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008305377A Expired - Fee Related JP5380702B2 (en) 2008-11-28 2008-11-28 Leakage current measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP5380702B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170961A (en) * 2012-02-22 2013-09-02 Sanwa Technology Research Institute Apparatus and method for measuring power and leakage current
CN104237617A (en) * 2013-06-20 2014-12-24 国家电网公司 Electric leakage detection device
JP2015064265A (en) * 2013-09-25 2015-04-09 株式会社関電工 Leakage monitoring device and method
CN110402396A (en) * 2017-03-16 2019-11-01 头本頼数 Detect leakage current detection device, method and the program of leakage current
CN110470941A (en) * 2019-09-16 2019-11-19 威胜集团有限公司 Creepage detection method, device, equipment and the storage medium of alternating current
CN111934280A (en) * 2020-09-09 2020-11-13 南方电网数字电网研究院有限公司 Electric leakage fault detection method and device, storage medium and power distribution gateway
WO2021012639A1 (en) * 2019-07-22 2021-01-28 国网湖北省电力有限公司电力科学研究院 Insulation diagnosis and positioning method for insulated tube-type bus bar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919046A (en) * 1995-04-28 1997-01-17 Mitsubishi Electric Corp Insulation-degradation diagnostic apparatus
JP2004012147A (en) * 2002-06-03 2004-01-15 Kawamura Electric Inc Insulation monitoring device and insulation monitoring method
JP2005140532A (en) * 2003-11-04 2005-06-02 Toyoji Ahei Device and method for calculating phase angle, device and method for detecting leakage current
JP2008145155A (en) * 2006-12-07 2008-06-26 Daiichi Electronics:Kk Apparatus for detecting resistance component current of zero-phase current and leakage monitoring apparats
JP2008164374A (en) * 2006-12-27 2008-07-17 Sbc Co Ltd Device and method for measuring leakage current

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919046A (en) * 1995-04-28 1997-01-17 Mitsubishi Electric Corp Insulation-degradation diagnostic apparatus
JP2004012147A (en) * 2002-06-03 2004-01-15 Kawamura Electric Inc Insulation monitoring device and insulation monitoring method
JP2005140532A (en) * 2003-11-04 2005-06-02 Toyoji Ahei Device and method for calculating phase angle, device and method for detecting leakage current
JP2008145155A (en) * 2006-12-07 2008-06-26 Daiichi Electronics:Kk Apparatus for detecting resistance component current of zero-phase current and leakage monitoring apparats
JP2008164374A (en) * 2006-12-27 2008-07-17 Sbc Co Ltd Device and method for measuring leakage current

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170961A (en) * 2012-02-22 2013-09-02 Sanwa Technology Research Institute Apparatus and method for measuring power and leakage current
CN104237617A (en) * 2013-06-20 2014-12-24 国家电网公司 Electric leakage detection device
JP2015064265A (en) * 2013-09-25 2015-04-09 株式会社関電工 Leakage monitoring device and method
CN110402396A (en) * 2017-03-16 2019-11-01 头本頼数 Detect leakage current detection device, method and the program of leakage current
EP3598153A4 (en) * 2017-03-16 2020-03-11 Yorikazu Kashiramoto Leakage current detection device, method, and program for detecting leakage current
WO2021012639A1 (en) * 2019-07-22 2021-01-28 国网湖北省电力有限公司电力科学研究院 Insulation diagnosis and positioning method for insulated tube-type bus bar
CN110470941A (en) * 2019-09-16 2019-11-19 威胜集团有限公司 Creepage detection method, device, equipment and the storage medium of alternating current
CN110470941B (en) * 2019-09-16 2021-10-08 威胜集团有限公司 Method, device and equipment for detecting leakage current of alternating current and storage medium
CN111934280A (en) * 2020-09-09 2020-11-13 南方电网数字电网研究院有限公司 Electric leakage fault detection method and device, storage medium and power distribution gateway

Also Published As

Publication number Publication date
JP5380702B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5544517B2 (en) Leakage current measuring device and measuring method in electrical equipment
JP5380702B2 (en) Leakage current measuring device and measuring method
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
US8866487B2 (en) Directional fault sectionalizing system
KR102050255B1 (en) Method and test device for testing wiring of transducers
JP2008164374A (en) Device and method for measuring leakage current
JP2009058234A (en) Leak current measuring instrument and measuring method
KR20080093169A (en) Method of leakage current break and measurement leakage current use phase calculation
WO2018167909A1 (en) Leakage current detection device, method, and program for detecting leakage current
JP5477020B2 (en) Leakage current measuring device and measuring method in electrical equipment
JP7509385B2 (en) DETECTION APPARATUS, METHOD, AND PROGRAM
JP2009145122A (en) Apparatus for measuring leakage current
WO2008069249A1 (en) Leakage current determining apparatus and leakage current determining method
Calero Rebirth of negative-sequence quantities in protective relaying with microprocessor-based relays
CN106257294A (en) For the method and apparatus detecting the fault in electrical network
JP2010060329A (en) Apparatus and method for measuring leakage current of electrical path and electric instrument
JP2009058235A (en) Leak current measuring instrument for electric path and electric apparatus, and its method
JP2017194465A (en) Monitoring device
KR20160008857A (en) Hybrid transformer
JP2009229211A (en) Leakage current measuring device and its measuring method
JP6704368B2 (en) Insulation monitoring device, method and program
RU2484570C2 (en) Method for determination of damaged feeder on bus section of three-phase grid with insulated neutral in case of single phase earth faults
JPH11287836A (en) Compound measuring device of power supply circuit
Shen et al. Grounding transformer application, modeling, and simulation
JP5903143B1 (en) Disconnection detection apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Ref document number: 5380702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees