JP2009229211A - Leakage current measuring device and its measuring method - Google Patents

Leakage current measuring device and its measuring method Download PDF

Info

Publication number
JP2009229211A
JP2009229211A JP2008074307A JP2008074307A JP2009229211A JP 2009229211 A JP2009229211 A JP 2009229211A JP 2008074307 A JP2008074307 A JP 2008074307A JP 2008074307 A JP2008074307 A JP 2008074307A JP 2009229211 A JP2009229211 A JP 2009229211A
Authority
JP
Japan
Prior art keywords
value
phase
leakage current
ground
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008074307A
Other languages
Japanese (ja)
Inventor
Ryoichi Yano
良一 矢野
Katsuji Takeya
勝次 武谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SBC CO Ltd
Original Assignee
SBC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SBC CO Ltd filed Critical SBC CO Ltd
Priority to JP2008074307A priority Critical patent/JP2009229211A/en
Publication of JP2009229211A publication Critical patent/JP2009229211A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To measure a total value Igr of leakage current which passes through a distribution wire where power is supplied from a 400 V class star distribution power source and a ground insulation resistance of a load facility connected to the distribution wire. <P>SOLUTION: Signal processing is performed for any one of one-phase ground voltages of Er, Es, Et among three-phase ground voltages inputted from the star distribution power source 1 and a zero-phase current I<SB>0</SB>detected from the distribution wire 4 by a zero-phase transformer 9, and any one of the one-phase ground voltages Er, Es, Et is inputted. A signal processing part 14 performs signal processing by measuring the phase difference between the input voltage and zero-phase current I<SB>0</SB>. The phase angle of the zero-phase current I<SB>0</SB>obtained by the signal processing part 14 with respect to the input voltage is computed. With it and the value of the zero-phase current I<SB>0</SB>, an effective component A and a reactive component B with respect to the input voltage are computed. From these effective values, the total leakage current value Igr of each phase except one sound phase which passes through a ground leakage resistance 7 and its reliability are computed. The maximum value and the minimum value of the leakage current Igr computed by a computing part 15 and further the leakage current value Igr are displayed on a display part 16. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電源から給電が行われる電路やこの電源に接続された電気機器の電圧印加部分から接地部分へ流れる漏洩電流を測定する電路及び電気機器における漏れ電流測定装置及びその測定方法に関する。   The present invention relates to an electric circuit for supplying power from a power source, an electric circuit for measuring a leakage current flowing from a voltage application portion of an electric device connected to the power source to a ground portion, a leakage current measuring device in the electric device, and a measuring method thereof.

電気の利用は、便利な反面、適切な管理や使用を誤れば、大変危険な側面も兼ね備えており、電気火災や感電事故等の重大な事故を引き起こす可能性も少なくない。例えば、その重大事故の原因の一つとして、電路や電気機器の絶縁不良がある。電路及び電気機器の絶縁状態を調べる方法として、被測定電路及び電気機器を停電させて、絶縁抵抗計で測定する方法が従来の標準であった。   The use of electricity is convenient, but if it is not properly managed and used, it also has very dangerous aspects, and there are many possibilities of causing serious accidents such as electric fires and electric shocks. For example, one of the causes of the serious accident is an insulation failure of an electric circuit or an electric device. As a method of examining the insulation state of the electric circuit and the electric device, a method of measuring the electric circuit and electric device to be measured with a power failure and measuring with an insulation resistance meter has been a conventional standard.

近年のように、停電が許されない配電線や連続操業の工場等には適用が制限される等の欠点がある。つまり、現在の社会状況では、コンピュータが社会の各方面に利用され、インテリジェントビルの普及拡大及び工場のFA(ファクトリー・オートメーション)化により、24時間連続稼動するシステムが構築されており、絶縁状態を調べるために、一時的に停電状態にすることができない状況となっている。   As in recent years, there are drawbacks such as restrictions on application to distribution lines where continuous power failure is not permitted, continuous operation factories, and the like. In other words, in the current social situation, computers are used in various areas of society, and a system that operates continuously for 24 hours has been constructed by the spread of intelligent buildings and factory automation (FA). In order to investigate, it is in a situation where it cannot temporarily be brought into a power failure state.

したがって、現在では、このような高度情報化による社会の無停電化の要請から、電路及び電気機器の絶縁不良管理が停電を伴う絶縁抵抗計による方法から、電気を切ることなく測定できる漏れ電流測定方法が用いられるようになっている。そして、漏電遮断器や漏電火災警報機等により漏洩電流を測定して絶縁状態を管理する通電中の予防策は、種々提案されている。   Therefore, at present, due to the demand for uninterruptible society due to such advanced informationization, leakage current measurement that can measure without insulation failure from the method of insulation resistance meter with electric power failure management of insulation failure of electric circuits and electrical equipment. A method is being used. And various preventive measures during energization in which the leakage current is measured by an earth leakage breaker, an earth leakage fire alarm, or the like and the insulation state is managed have been proposed.

その一例として、200V三相3線のうちの1線を接地する配電方式の測定方法がある。この測定方法は、電路及び電気機器の電圧印加部分から接地部分への漏れ電流、すなわち、零相電流Iを検知し、この零相電流Iと線間電圧との間の位相差とに基づいて、絶縁不良の目安となる電路及び電気機器の電圧印加部分と接地部分間の絶縁抵抗を通じて流れる漏れ電流を算出するようにしたものである。 As an example, there is a power distribution measurement method in which one of 200 V three-phase three wires is grounded. This measurement method detects a leakage current from the voltage application part to the grounding part of the electric circuit and electrical equipment, that is, a zero-phase current I 0 , and determines a phase difference between the zero-phase current I 0 and the line voltage. Based on this, the leakage current flowing through the insulation resistance between the voltage application portion and the grounding portion of the electric circuit and the electric equipment, which is a measure of insulation failure, is calculated.

この方法は、近年大口需要家で採用が増加し、かつ、海外の配電方式の標準となっている変圧器の低圧側三相巻線を星形に結線した電源から給電される400V級三相4線式又は三相3線式配電方式(以下星形配電方式という)の電線路及び機器の絶縁測定には適用できない。別な方法で、配電系統に低周波低電圧を印加して漏れ電流の測定を行うようにした計測器があるが、この装置は重量が大きくコストも高いものとなっている。   This method has been increasingly adopted by large-scale customers in recent years, and 400V class three-phase power is supplied from a power source in which the low-voltage three-phase winding of a transformer, which has become the standard for overseas power distribution systems, is connected in a star shape. It cannot be applied to insulation measurements on 4-wire or three-phase, three-wire distribution systems (hereinafter referred to as star distribution systems) electrical lines and equipment. Another method is to measure the leakage current by applying a low frequency low voltage to the power distribution system, but this device is heavy and expensive.

また、星形配電方式では、接地線や4本又は3本の配電線を一括して零相変流器によって零相電流Iを測定し、この値を絶縁抵抗を通じて流れる漏れ電流の値として絶縁を監視する方法が行われている。この方法は、電路や電気機器の電圧印加部分と接地部分との間に存在する対地静電容量の値が三相とも同じ(この状態をバランス状態という。)で、ある一相だけ漏れ電流が存在する際には正常な値を示す。しかし、上記対地静電容量の値が三相の各相で異なっているか、あるいは三相のうち一相が異なっている場合(この状態をアンバランス状態という。)や、漏れ電流が二相又は二相間のいわゆる線間に接続される電機機器の巻線や電気回路の内部で発生した場合には正確な測定ができない。 Also, in the star distribution system, the zero-phase current I 0 is measured by a zero-phase current transformer with a ground wire or four or three distribution lines at once, and this value is taken as the value of the leakage current flowing through the insulation resistance. A method of monitoring insulation has been implemented. In this method, the value of the ground capacitance existing between the voltage application part and the grounding part of the electric circuit or electrical equipment is the same for all three phases (this state is called a balanced state), and the leakage current is limited to one phase. When present, it shows a normal value. However, when the ground capacitance value is different for each of the three phases, or when one of the three phases is different (this state is called an unbalanced state), the leakage current is two-phase or Accurate measurement cannot be performed when it occurs inside a winding or an electric circuit of an electric equipment connected between so-called lines between two phases.

星形配電方式は、線間電圧が約480Vから380Vの間で、配電容量及び規模も大きいので、測定現場で電圧のかかった電線の端子を計器に接続する際に感電や誤接続による事故を発生させる危険度も大きい。また、計器には接地線も接続する必要があり、測定現場によっては接地箇所の発見が困難で、測定そのものが不能になる。   The star-type power distribution system has a line voltage between about 480V and 380V and a large distribution capacity and scale. The degree of danger to be generated is also great. In addition, it is necessary to connect a grounding wire to the instrument, and it is difficult to find the grounding location depending on the measurement site, and the measurement itself becomes impossible.

なお、この種の漏洩電流計測装置の先行技術文献として以下のものがある。
特開平3−179271号公報 特開2002−125313号公報 特開2007−318840号公報
As prior art documents of this type of leakage current measuring apparatus, there are the following.
JP-A-3-179271 JP 2002-125313 A JP 2007-318840 A

本発明は、星形配電方式を採用した給電線やそれに接続される電気機器等の負荷設備の対地絶縁抵抗を通じて流れる漏れ電流を、通電状態のまま安全に、しかも対地静電容量の値が三相の各相で異なっているか、あるいは三相のうち一相が異なっているアンバランス状態でも、誤差を少なく検出することができる漏れ電流測定装置及びその測定方法の提供を目的とする。   In the present invention, leakage current flowing through the ground insulation resistance of a load facility such as a power supply line adopting a star-shaped power distribution system or an electric device connected to the power supply line is safely kept in an energized state, and the value of the ground capacitance is three. It is an object of the present invention to provide a leakage current measuring device and a measuring method thereof that can detect an error even in an unbalanced state where each phase is different or one of three phases is different.

本発明に係る漏れ電流測定装置は、上述の課題を解決するため、電圧測定手段が星形配電方式の電源の各相のうちのある一相の対地電圧を入力して測定し、零相電流測定手段が上記電源から給電線や、この給電線に接続された電気機器等の負荷設備を通じて流れる対地漏洩電流である零相電流Iを測定し、信号処理手段が零相電流測定手段により測定した零相電流Iから、上記電圧測定手段により測定した星形配電方式の電源が入力された対地電圧と同相方向の成分である有効成分及び有効成分と90度の位相差の無効成分を算出し、演算手段が信号処理手段により算出された零相電流Iの入力電圧に対する有効成分及び無効成分、それに零相電流Iの値と電圧測定手段により入力された電圧若しくは設定された電圧の値から給電線やこの給電配電線に接続された電気機器に対地絶縁抵抗を通じて流れる漏れ電流を演算し、演算手段が零相電流Iの値及び漏れ電流の値とから、給電線や電気機器等の負荷設備の電圧印加部分と接地部分との間に存在する対地静電容量の値が三相の各相で異なっているか、あるいは三相のうち一相が異なっているようなアンバランス状態に起因する漏れ電流が各相の対地絶縁抵抗に流れる漏れ電流の合計値Igrに与える影響の度合いを演算する。 In order to solve the above-described problem, the leakage current measuring apparatus according to the present invention is configured to input a voltage to the ground voltage of one phase of each phase of the power source of the star distribution system and measure the zero-phase current. The measuring means measures the zero-phase current I 0 , which is a ground leakage current flowing from the power source through the power supply line and the load equipment such as electric equipment connected to the power supply line, and the signal processing means measures by the zero-phase current measuring means Based on the zero-phase current I 0 , the effective component which is the component in the same phase direction as the ground voltage input by the star distribution power source measured by the voltage measuring means, and the invalid component of the phase difference of 90 degrees are calculated. and, calculating means of the signal active ingredients and reactive components with respect to the input voltage of the zero-phase current I 0 which is calculated by the processing means, it zero-phase current I 0 to the value of the voltage input by the voltage measuring means or set voltage Feed from value The leakage current that flows through the ground insulation resistance to the wire and the electrical equipment connected to this feeder distribution line is calculated, and the calculation means calculates the load of the feeder line, electrical equipment, etc. from the value of the zero-phase current I 0 and the leakage current value. This is due to the unbalanced state where the value of the ground capacitance existing between the voltage application part and the grounding part of the equipment is different in each of the three phases or one of the three phases is different. The degree of influence of the leakage current on the total value Igr of the leakage current flowing through the ground insulation resistance of each phase is calculated.

本発明に係る漏れ電流測定方法は、上記課題を解決するために、電圧測定工程において星形配電方式の電源のうちの一相の対地電圧を入力して測定し、零相電流測定工程において上記電源から給電線やこの給電線に接続された電気機器等の負荷設備を通じて流れる対地漏洩電流である零相電流Iを測定し、信号処理工程において零相電流測定工程で測定した零相電流Iから、上記電圧測定工程で測定した星形配電方式の電源が入力された対地電圧と同相方向の成分である有効成分及び有効成分と90度の位相差の無効成分を算出し、演算工程において上記信号処理工程で算出された零相電流Iの入力電圧に対する有効成分及び無効成分、それに零相電流Iの値と上記電圧測定工程で入力された電圧若しくは設定された電圧の値から給電線やこの給電線に接続された電気機器等の負荷設備に対地絶縁抵抗を通じて流れる漏れ電流を演算し、演算工程において零相電流Iの値及び漏れ電流の値とから、給電線や電気機器等の負荷設備の電圧印加部分と接地部分との間に存在する対地静電容量の値が三相の各相で異なっているか、あるいは三相のうち一相が異なっているようなアンバランス状態に起因する漏れ電流が各相の対地絶縁抵抗に流れる漏れ電流の合計値Igrに与える影響の度合いを演算する。 In order to solve the above problems, the leakage current measuring method according to the present invention inputs and measures one-phase ground voltage of the star-type power distribution system power supply in the voltage measuring step, and the zero-phase current measuring step above A zero-phase current I 0 that is a ground leakage current that flows from a power source through a power supply line and a load facility such as an electric device connected to the power supply line is measured, and the zero-phase current I measured in the zero-phase current measurement step in the signal processing step. From 0 , the effective component which is a component in the same phase direction as the ground voltage to which the power supply of the star distribution system measured in the voltage measurement step is input, and the invalid component of the phase difference of 90 degrees are calculated. From the effective component and the ineffective component with respect to the input voltage of the zero-phase current I 0 calculated in the signal processing step, and the value of the zero-phase current I 0 and the voltage input in the voltage measurement step or the set voltage value The leakage current flowing through the ground insulation resistance to the power supply line and the load equipment such as electric equipment connected to the power supply line is calculated, and the value of the zero-phase current I 0 and the value of the leakage current are calculated in the calculation process. Unbalance in which the value of the ground capacitance existing between the voltage application part and the grounding part of load equipment such as equipment is different in each of the three phases, or one of the three phases is different. The degree of influence of the leakage current due to the state on the total value Igr of the leakage current flowing through the ground insulation resistance of each phase is calculated.

ところで、本発明が適用される漏れ電流測定装置及び方法が適用される星形配電方式の電源に接続される三相の配電線である給電線及びこれに接続される負荷設備としての電気機器の電源端子の対地電圧は、120度の位相差で大きさが等しい三相電圧である。   By the way, a power supply line that is a three-phase distribution line connected to a power supply of a star distribution system to which a leakage current measuring apparatus and method to which the present invention is applied is applied, and an electric device as a load facility connected to the power supply line. The ground voltage of the power supply terminal is a three-phase voltage having the same magnitude with a phase difference of 120 degrees.

そして、変圧器の低圧側三相巻線を星形に結線した星形配電電源を用いた400V級三相3線式配電系統は、大きな工場やプラント設備の電気機器への電力供給に用いられ、電圧が加わる部分とそれを覆って接地された金属部分又は地面との間に存在する対地静電容量は三相各相に対して通常ほとんど同じ値、つまりバランス状態である。   And the 400V class three-phase three-wire distribution system using a star-shaped distribution power source in which the low-voltage three-phase windings of the transformer are connected in a star shape is used to supply power to electrical equipment in large factories and plant facilities. The ground capacitance existing between the part to which the voltage is applied and the metal part or ground grounded over the part is usually almost the same value for each of the three phases, that is, in a balanced state.

しかし、星形配電方式の電源に接続される負荷設備としての電気機器に、溶接用変圧器等の単相大容量負荷を含む場合、又は照明負荷等の単相、動力負荷等の三相兼用の400V級三相3線式配電系統場合には、電路や電気機器の電圧印加部分と接地部分との間に存在する対地静電容量の値が三相の各相で異なっているか、あるいは三相のうち一相が異なっているようなアンバランス状態に起因する漏れ電流の対地絶縁抵抗を通じて流れる各相の漏れ電流の合計の値に与える影響の度合いを考慮する必要がある。   However, if the electrical equipment as the load equipment connected to the power supply of the star distribution system includes a single-phase large-capacity load such as a welding transformer, or a single-phase such as a lighting load, or a three-phase such as a power load In the case of 400V class three-phase three-wire distribution system, the value of the ground capacitance existing between the voltage application part and the ground part of the electric circuit or electrical equipment is different in each of the three phases, or three It is necessary to consider the degree of the influence of the leakage current due to the unbalanced state in which one phase is different among the phases on the total value of the leakage current of each phase flowing through the ground insulation resistance.

ところで、星形配電方式の電源から供給される電圧をバランス状態の対地静電容量に印加すると、各相の対地静電容量を流れる電流は大きさが同じで位相差が120度ずつ異なり、三相分を合計した電流値は0になるが、上述したようなアンバランス状態では三相分を合成した対地静電容量の電流値はアンバランスの程度が大きければ大きな値を示す。   By the way, when the voltage supplied from the power supply of the star distribution system is applied to the grounded electrostatic capacitance in a balanced state, the current flowing through the grounding electrostatic capacitance of each phase is the same and the phase difference is different by 120 degrees. The total current value of the phases is 0, but in the unbalanced state as described above, the current value of the ground capacitance synthesized from the three phases is large if the degree of unbalance is large.

星形配電方式の電源に接続される給電線である三相配電線及びこれに接続される負荷設備としての電気機器等に絶縁劣化が発生し、対地絶縁抵抗を通じて流れる漏れ電流が発生すると、この電流と前述の対地静電容量を流れる電流との合成値が漏れ電流として測定される。しかし、上述したようなアンバランス状態では、対地静電容量を流れる電流の合成値が存在し、この電流が対地絶縁抵抗を通じて流れる漏れ電流に合流して零相電流Iになる。従って、この合成値電流分が各相の合計の漏れ電流Igrを測定する際の測定誤差となり、しかも、各相の合計の漏れ電流Igrの測定の際に、上記合成値電流分がどの程度漏れ電流Igrの測定値に含まれているかを測定する必要がある。 If insulation deterioration occurs in the three-phase distribution line that is the power supply line connected to the power supply of the star distribution system and the electrical equipment as the load equipment connected to this, this leakage current flows through the ground insulation resistance. And a combined value of the current flowing through the above-described ground capacitance is measured as a leakage current. However, in the unbalanced state as described above, there is a composite value of the current flowing through the ground capacitance, and this current merges with the leakage current flowing through the ground insulation resistance to become the zero-phase current I 0 . Therefore, this combined value current becomes a measurement error when measuring the total leakage current Igr of each phase, and furthermore, how much the combined value current leaks when measuring the total leakage current Igr of each phase. It is necessary to measure whether it is included in the measured value of the current Igr.

さらに、配電線やこれに接続される負荷設備等の絶縁劣化に起因することなく、アンバランス状態に起因する合成値電流を含む漏れ電流の値を基準に動作電流値を設定するような漏れ電流検出装置にあっては、上述したようなアンバランス状態では、装置の誤動作の原因になってしまう。   In addition, the leakage current that sets the operating current value based on the leakage current value including the combined current caused by the unbalanced state without causing the insulation deterioration of the distribution line or the load equipment connected to the distribution line. In the detection device, in the unbalanced state as described above, the device malfunctions.

また、星形配電方式の電源電圧に含まれる電源周波数の3倍及びその倍数の周波数を持つ高調波電圧に対して、各相の対地静電容量を流れる電流は、大きさが同じで位相差が360度若しくはその倍数になり、三相分の合計電流値は各相電流値の和になり、対地絶縁抵抗を通じて流れる漏れ電流の数値に合算される。そこで、本発明に係る漏れ電流測定装置では、電源周波数を超える周波数成分を除去する零相電流測定手段を備え、漏洩電流定方法ではそれを除去する零相電流測定工程を備える。   In addition, the current flowing through the ground capacitance of each phase is the same in magnitude and phase difference with respect to the harmonic voltage having three times the power frequency included in the power voltage of the star distribution system and its multiple frequency. 360 degrees or a multiple thereof, the total current value for the three phases is the sum of the current values for each phase, and is added to the value of the leakage current flowing through the ground insulation resistance. Therefore, the leakage current measuring apparatus according to the present invention includes zero phase current measuring means for removing frequency components exceeding the power supply frequency, and the leakage current determining method includes a zero phase current measuring step for removing it.

ところで、星形配電方式を採用した電源においては、配電用三相変圧器の低圧側星形巻線の中性点は接地され、三相端子R、S、Tには接地電位である中性点に対して、大きさが等しく、位相が120度ずつ異なる三相対地電圧E、E、Eが発生している。 By the way, in the power supply employing the star-shaped power distribution system, the neutral point of the low-voltage side star winding of the three-phase transformer for power distribution is grounded, and the three-phase terminals R, S, and T are neutral at the ground potential. Three relative ground voltages E R , E S , and E T having the same magnitude and different phases by 120 degrees with respect to the point are generated.

そして、三相対地電圧E、E、E中の一相の対地電圧Eを測定するため、配電用三相変圧器の低圧側星形巻線に電圧を入力するとき、この電圧を基準電圧Eとすると、各相の対地電圧E、E、Eはベクトル記号法で次の式によって示される。 Then, the three-phase voltage to ground E R, E S, to measure the ground voltage E R of one phase in E T, when entering the voltage on the low voltage side star windings of three-phase transformer for power distribution, this voltage Is a reference voltage E, the ground voltages E R , E S , and E T of each phase are expressed by the following equations in the vector symbol method.

=E ・・・(1)
=−0.5E−j0.5/√3E ・・・(2)
=−0.5E+j0.5/√3E ・・・(3)
そして、星形配電方式におけるR相、S相、T相の各相と接地部分との間に対地絶縁抵抗r、r、r及び対地静電容量C、C、Cが存在するとき、対地絶縁抵抗r、r、rを流れる漏洩電流をg、g、gとし、対地静電容量C、C、Cを流れる漏れ電流をIR,IS,ITとすると、対地絶縁抵抗r、r、rを流れる漏れ電流g、g、gは、下記の式(4)〜式(6)により示され、対地静電容量C、C、Cを流れる漏れ電流IR,IS,ITは、下記の式(7)〜式(9)により示される。
E R = E (1)
E S = −0.5E−j 0.5 / √3E (2)
E T = −0.5E + j0.5 / √3E (3)
In addition, the ground insulation resistances r R , r S , r T and the ground capacitances C R , C S , C T are between the R phase, S phase, T phase and the ground portion in the star distribution system. When present, let leakage currents flowing through the ground insulation resistances r R , r S , and r T be g R , g S , and g T, and let leakage currents flowing through the ground capacitances C R , C S , and C T be IR, IS , IT, leakage currents g R , g S , and g T flowing through the ground insulation resistances r R , r S , and r T are expressed by the following formulas (4) to (6), and the ground capacitance C Leakage currents IR, IS, and IT flowing through R 1 , C S , and C T are expressed by the following formulas (7) to (9).

=E/r=E/r ・・・(4)
=E/r=(−0.5E−j0.5√3E)/r ・・・(5)
=E/r=(−0.5E−j0.5√3E)/r ・・・(6)
IR=jωC=jωCE ・・・(7)
IS=jωC=jωC(−0.5E−j0.5√3E) ・・・(8)
IT=jωC=jωC(−0.5E−j0.5√3E) ・・・(9)
そして、対地漏洩電流である零相電流Iの、入力された対地電圧Eと同位相方向の成分である有効成分をA、対地電圧Eから90度進んだ位相方向の成分である無効成分をBとしたとき、式(4)から式(9)の関係から零相電流Iと、上記有効成分Aと、上記無効成分Bは、次の式(10)〜式(12)ように表される。
g R = E R / r R = E / r R (4)
g S = E S / r S = (− 0.5E−j0.5√3E) / r S (5)
g T = E T / r T = (− 0.5E−j0.5√3E) / r T (6)
IR = jωC R E R = jωC R E (7)
IS = jωC S E S = jωC S (-0.5E-j0.5√3E) ··· (8)
IT = jωC T E T = jωC T (-0.5E-j0.5√3E) ··· (9)
Then, a ground leakage current of the zero-phase current I 0, an input ground voltage E R and the active ingredient is the same phase direction component A, disables a 90 ° phase leading direction component from the ground voltage E R When the component is B, the zero-phase current I 0 , the effective component A, and the reactive component B are expressed by the following equations (10) to (12) from the relationship of the equations (4) to (9). It is expressed in

=g+g+g+IR+IS+IT=A+jB ・・・(10)
A=g−0.5g−0.5g+0.5√3(IS−IT) ・・・(11)
B=0.5√3(g−g )+IR−0.5IS−0.5IT ・・・(12)
また、零相電流Iと、入力された対地電圧Eとの位相角をθとすると、上記有効成分Aは下記の式(13)により示され、上記無効成分Bは下記の式(14)により示すことができる。
I 0 = g R + g S + g T + IR + IS + IT = A + jB ··· (10)
A = g R −0.5 g S −0.5 g T + 0.5√3 (IS-IT) (11)
B = 0.5√3 (g T −g S ) + IR−0.5IS−0.5IT (12)
Also, the zero-phase current I 0, when the phase angle between the ground voltage E R input and theta, the active ingredient A being represented by formula (13) below, the reactive component B is below formula (14 ).

A=Iラcosθ ・・・(13)
B=Iラsinθ ・・・(14)
これら有効成分A及び無効成分Bの値は、本発明に係る漏れ電流測定装置においては、電圧測定手段により測定した一相又は二相、若しくは三相の対地電圧と、零相電流測定手段により測定した零相電流との間の位相差を算出する信号処理手段から出力され、漏れ電流測定方法においては、信号処理工程において出力される。
A = I 0 La cos θ (13)
B = I 0 lasin θ (14)
The values of the effective component A and the reactive component B are measured by the one-phase, two-phase, or three-phase ground voltages measured by the voltage measuring unit and the zero-phase current measuring unit in the leakage current measuring apparatus according to the present invention. The signal processing means for calculating the phase difference between the zero-phase current and the zero-phase current is output in the signal processing step in the leakage current measuring method.

上記式(11)、(12)から以下の計算を行い、その結果を下記の式(15)〜(17)に示すようにU,V,Wと置く。   The following calculations are performed from the above equations (11) and (12), and the results are set as U, V, and W as shown in the following equations (15) to (17).

−g +(IR+IS−2IT)/√3=A+B/√3 =U ・・・(15)
−g +(IS+IT−2IR)/√3=−2B/√3 =V ・・・(16)
−g +(2IS−IT−IR)/√3=A−B/√3=W ・・・(17)
上述の式(11)、(12)で、有効成分A及び無効成分Bは正負の値となり、式(15)、(16)、(17)からU,V,Wも正負の値になり、アンバランスの程度が小さいばあい、式(15)、(16)、(17)の括弧の中のIR,IS,ITの関係式の値は小さく、この値を無視すれば、U,V,Wの値が正か負かによって、対地絶縁抵抗r、r、rを流れる漏れ電流g、g、gの値の大小関係を知ることができる。
g R -g S + (IR + IS-2IT) / √3 = A + B / √3 = U ··· (15)
g S −g T + (IS + IT−2IR) / √3 = −2B / √3 = V (16)
g R -g T + (2IS-IT-IR) / √3 = A−B / √3 = W (17)
In the above equations (11) and (12), the effective component A and the ineffective component B are positive and negative values, and U, V, and W are also positive and negative values from the equations (15), (16), and (17). When the degree of imbalance is small, the values of the relational expressions of IR, IS, IT in parentheses in the equations (15), (16), (17) are small. If this value is ignored, U, V, Depending on whether the value of W is positive or negative, the magnitude relationship of the values of the leakage currents g R , g S , and g T flowing through the ground insulation resistances r R , r S , and r T can be known.

星形配電方式の配電系統では絶縁不良の際、一相単独か二相又は線間の負荷設備から故障電流である漏れ電流Igrが流れ、他の相は健全な場合がほとんどである。仮に三相全部が絶縁不良を発生させた場合には、短絡事故によるものが殆どで、過電流保護装置が動作する。過電流でなくても三相にそれぞれ発生した漏れ電流Igr同士が打ち消しあって正常な測定値が得られない。 In the distribution system of the star distribution system, in the case of insulation failure, the leakage current Igr 0 that is a fault current flows from the load equipment between one phase alone, two phases, or between lines, and the other phases are mostly healthy. If all three phases cause insulation failure, most are due to a short circuit accident and the overcurrent protection device operates. Even if it is not an overcurrent, the leakage currents Igr 0 generated in the three phases cancel each other, and a normal measurement value cannot be obtained.

このような配電系統の性質から、三相に発生する漏れ電流Igrの合計値Igrは、漏れ電流Igrの最小値を0レベルとして、下記の式(18)に示すようになる。 The nature of such power distribution system, the total value Igr leakage current Igr 0 generated in three phases, the minimum value of the leakage current Igr 0 0 level, as shown in the following equation (18).

合計値Igr=最大Igr値+中間Igr値 ・・・(18)
この式(18)より、下記の関係が得られる。
Total value Igr = maximum Igr 0 value + intermediate Igr 0 value (18)
From this equation (18), the following relationship is obtained.

U,Vが共に正又は一方が0のとき、g=0であり、漏れ電流Igrの合計値Igrは下記の式(19)により示される。 When both U and V are positive or one is 0, g T = 0, and the total value Igr of the leakage current Igr 0 is expressed by the following equation (19).

合計値Igr=V+W ・・・(19)
U,Vが共に負又は一方が0のとき、g=0であり、合計値Igrは下記の式(20)により示される。
Total value Igr = V + W (19)
When both U and V are negative or one is 0, g R = 0, and the total value Igr is expressed by the following equation (20).

合計値Igr=−U−W ・・・(20)
Uが正でVが負又はいずれか一方が0のとき、g=0であり、合計値Igrは下記の式(21)により示される。
Total value Igr = −U−W (20)
When U is positive and V is negative or any one is 0, g S = 0, and the total value Igr is expressed by the following equation (21).

合計値Igr=U−V ・・・(21)
Uが負でVが正又はいずれか一方が0で、Wが正又は0のとき、g=0であり、合計値Igrは下記の式(22)により示される。
Total value Igr = U−V (21)
When U is negative and V is positive or one of them is 0 and W is positive or 0, g T = 0 and the total value Igr is expressed by the following equation (22).

合計値Igr=V+W ・・・(22)
Uが負でVが正又はいずれか一方が0で、Wが負のとき、g=0であり、合計値Igrは下記の式(23)により示される。
Total value Igr = V + W (22)
When U is negative and V is positive or either one is 0 and W is negative, g R = 0, and the total value Igr is expressed by the following equation (23).

合計値Igr値=−U−W ・・・(23)
星形配電方式の配電系統に発生する漏れ電流を測定する際、三相の対地電圧のいずれの相を入力するかは不明で、位相角θは0度から360度の範囲でばらつく。前述した式(13)、(14)に用いられる位相角θの値は、0度から120度の範囲とするため、測定された位相角θが0度から120度の範囲にあるときはそのままθの値とし、測定された位相角θが120度から240度の範囲にあるときには、θの値は、下記の式(24)に示すようになる。
Total value Igr value = −U−W (23)
When measuring the leakage current generated in the star-type power distribution system, it is unknown which phase of the three-phase ground voltage is input, and the phase angle θ varies in the range of 0 to 360 degrees. Since the value of the phase angle θ used in the above-described equations (13) and (14) is in the range of 0 degree to 120 degrees, when the measured phase angle θ is in the range of 0 degree to 120 degrees, it remains as it is. When the value of θ is set and the measured phase angle θ is in the range of 120 degrees to 240 degrees, the value of θ is as shown in the following equation (24).

θ=測定された位相角−120度 ・・・(24)
また、測定された位相角θが240度から360度の範囲にあるときには、θの値は、下記の式(25)に示すようになる。
θ = measured phase angle−120 degrees (24)
When the measured phase angle θ is in the range of 240 degrees to 360 degrees, the value of θ is as shown in the following equation (25).

θ=測定された位相角−240度 ・・・(25)
上記式(24)、(25)は、座標変換の式、すなわち、入力相を、R相からS相、R相からT相へ切り換えたものと等価になる。以上のようにして得られたθの値を前述した式(13)、(14)に代入して有効成分A及び無効成分Bを求める。
θ = measured phase angle−240 degrees (25)
The above formulas (24) and (25) are equivalent to the coordinate transformation formula, that is, the input phase is switched from the R phase to the S phase and from the R phase to the T phase. The effective component A and the ineffective component B are obtained by substituting the value of θ obtained as described above into the equations (13) and (14) described above.

上述したようにして得られたθの値及び対地漏洩電流である零相電流Iの値を下記の式(26)に代入することにより、各相に発生する漏れ電流Igrの合計値Igrを求めることができる。 By substituting the value of θ obtained as described above and the value of the zero-phase current I 0 , which is a ground leakage current, into the following equation (26), the total value Igr 0 of the leakage current Igr 0 generated in each phase Can be requested.

合計値Igr=2Iラcos(θ−60度) ・・・(26)
そして、対地静電容量の値が三相の各相で異なっているか、あるいは三相のうち一相が異なっているアンバランス状態の場合、前述の式(19)、(20)、(21)に、 前述の式(15)、(16)、(17)を代入すると、以下に示す三相に発生する漏れ電流Igrの合計値Igrの関係式(27)、(28)、(29)が得られる。
Total value Igr = 2I 0 La cos (θ−60 degrees) (26)
In the case of an unbalanced state in which the value of the ground capacitance is different in each of the three phases or one of the three phases is different, the above-described equations (19), (20), (21) Substituting the above formulas (15), (16), and (17) for the relational expressions (27), (28), (29) of the total value Igr of the leakage current Igr 0 generated in the following three phases: Is obtained.

=0、Igr=V+W=g+g+√3(IS−IR) ・・・(27)
=0、Igr=−U−W=g+g+√3(IT−IS) ・・・(28)
=0、Igr=U−V=g+g+√3(IR−IT) ・・・(29)
また、I =A+Bとなる。この式に前述した式(11)、(12)を代入し、且つ対地絶縁抵抗r、r、rを流れる漏洩電流g、g、g、対地静電容量C、C、Cを流れる漏洩電流IR,IS,ITの組み合わせを考慮すると、下記に示すような零相電流Iの関係式(30)、(31)、(32)、(33)が得られる。

=0、I =(g〜g+g+d+√3{g(IS−IT)+g(IT−IR)} ・・・(30)
=0、I =(g〜g+g+d+√3{g(IT−IR)+g(IR-−IS)} ・・・(31)
=0、I =(g〜g+g+d+√3{g(IR−IS)+g(IS−IT)} ・・・(32)
なお、ここで、dは、対地静電容量C、C、Cを流れる漏洩電流IR,IS,ITの最大電流値と最小電流値との差であり、dには、下記の式(33)に示すような関係がある。
g T = 0, Igr = V + W = g S + g R + √3 (IS-IR) (27)
g R = 0, Igr = −U−W = g T + g S + √3 (IT−IS) (28)
g S = 0, Igr = U−V = g R + g T + √3 (IR−IT) (29)
Further, I 0 2 = A 2 + B 2 . Equation previously described Equation (11), (12) by substituting, and ground insulation resistance r R, r S, leakage currents g R flowing r T, g S, g T , capacitance to ground C R, C S, leakage current IR flowing in the C T, iS, considering the combination of iT, relation of the zero-phase current I 0 as shown in the following (30), (31), (32), is (33) is obtained .

g T = 0, I 0 2 = (g R to g S ) 2 + g R g S + d 2 + √3 {g R (IS−IT) + g S (IT−IR)} (30)
g R = 0, I 0 2 = (g S to g T ) 2 + g S g T + d 2 + √3 {g S (IT−IR) + g T (IR−−IS)} (31)
g S = 0, I 0 2 = (g T to g R ) 2 + g T g R + d 2 + √3 {g T (IR−IS) + g R (IS−IT)} (32)
In this case, d is the difference in capacitance to ground C R, C S, the leakage current IR flowing in the C T, IS, and the maximum current value and minimum current value of IT, the d 2, the following There is a relationship as shown in Expression (33).

=IR(IR−IS)+IS(IS−IT)+IT(IT−IR) ・・・(33)
本発明に係る漏れ電流測定装置及び測定方法において表示される対地漏洩電流の値は、前述した式(27)、(28)、(29)で示されるように、二相地絡電流の合計値、又は二相のうちの一相の値が0のときは一相地絡電流値を表示するため、零相電流Iの電流値より大きな値を示す。
d 2 = IR (IR−IS) + IS (IS−IT) + IT (IT−IR) (33)
The value of the ground leakage current displayed in the leakage current measuring apparatus and the measuring method according to the present invention is the total value of the two-phase ground fault currents as shown in the above-described equations (27), (28), and (29). Or, when the value of one of the two phases is 0, the value of the one-phase ground fault current is displayed, and thus a value larger than the current value of the zero-phase current I 0 is shown.

また、上述したようなアンバランス状態で各相の対地静電容量C、C、Cを流れる漏洩電流IR,IS,ITの最大電流値と最小電流値との差をdとすると、上記式(33)の右辺の値は、通常の配電系統の場合には、ほぼdになり、このdの値がアンバランス状態の大きさを表すアンバランス差電流値である。 Further, the capacitance to ground of each phase in the unbalanced state as described above C R, C S, the leakage current IR flowing in the C T, IS, when the difference between the maximum current value and minimum current value IT is d, The value on the right side of the equation (33) is approximately d 2 in the case of a normal power distribution system, and the value of d is an unbalanced difference current value representing the magnitude of the unbalanced state.

よって、上述の対地漏洩電流Igrの関係式(27)、(28)、(29)及び零相電流Iの関係式(30)、(31)、(32) 、(33)から、地絡電流が発生した相やその大きさ、アンバランスの大きさと各相毎の地絡電流分布等によって計測される零相電流I及び対地漏洩電流Igrの値が大きく変化することがわかる。 Therefore, ground leakage current Igr of the above relationship (27), (28), (29) and zero-phase current I 0 of the equation (30), from (31), (32), (33), ground It can be seen that the values of the zero-phase current I 0 and the ground leakage current Igr, which are measured based on the phase in which the current is generated, its magnitude, the imbalance, the ground fault current distribution for each phase, etc., vary greatly.

上述した漏れ電流Igrの合計値Igrの関係式(27)、(28)、(29)から配電系統がバランス状態であれば、これら式中の√3以下の値が0になり、Igr測定値は二相の対地漏洩電流Igrの合計値を指示するが、アンバランス状態であれば、二相の漏れ電流Igrの合計値と、対地静電容量C、C、Cを流れる漏れ電流IR,IS,ITの最大電流値と最小電流値との差dの√3倍の値とを加えた値を表示する。ここで、対地絶縁抵抗r、r、rを流れる漏れ電流g、g、gの値が0のときは、上述した零相電流Iの関係式(31)、(32)、(33)、(34)から、零相電流Iの測定値は、対地静電容量C、C、Cを流れる漏れ電流IR,IS,ITの最大電流値と最小電流値との差であるアンバランス差電流値dを示し、上述した漏れ電流Igrの合計値Igrの式(27)、(28)、(29)から、漏れ電流Igrの合計値Igrの測定値はアンバランス差電流値dの√3倍の値を示す。 If the distribution system is in a balanced state from the relational expressions (27), (28), (29) of the total value Igr of the leakage current Igr 0 described above, the value of √3 or less in these expressions becomes 0, and Igr measurement The value indicates the total value of the two-phase ground leakage current Igr. If the value is unbalanced, the total value of the two-phase leakage current Igr 0 and the ground capacitances C R , C S and C T flow. A value obtained by adding a value √3 times the difference d between the maximum current value and the minimum current value of the leakage currents IR, IS, and IT is displayed. Here, when the leakage currents g R , g S , and g T flowing through the ground insulation resistances r R , r S , and r T are 0 , the relational expressions (31), (32 ), (33), (from 34), the measured value of the zero-phase current I 0, the capacitance to ground C R, C S, the leakage current IR flowing in the C T, iS, the maximum current value and minimum current value IT And the measured value of the total value Igr of the leakage current Igr 0 from the equations (27), (28) and (29) of the total value Igr of the leakage current Igr 0 described above. Indicates a value of √3 times the unbalance difference current value d.

また、対地絶縁抵抗r、r、rを流れる漏れ電流g、g、gの値が0で、上述のアンバランス差電流値dの値が大きいときは、表示された漏れ電流Igrの合計値Igrは故障電流である対地絶縁抵抗rを流れる漏れ電流Igrの値より極端に大きな値となり、表示された漏れ電流Igrの合計値Igrの値によって作動させる接地継電器の誤動作の大きな原因となる。さらに、接地状態を零相電流Iの値で検知するように構成された漏電遮断器でも上述のアンバランス差電流値dが大きいときは誤動作の原因となる。 Further, when the leakage currents g R , g S , and g T flowing through the ground insulation resistances r R , r S , and r T are 0 and the above-mentioned unbalance difference current value d is large, the displayed leakage The total value Igr 0 of the current Igr 0 is extremely larger than the value of the leakage current Igr 0 flowing through the ground insulation resistance r, which is the fault current, and the ground relay operated by the displayed value of the total value Igr 0 of the leakage current Igr 0 This will cause a major malfunction. Further, even in the earth leakage breaker configured to detect the ground state by the value of the zero-phase current I 0 , if the above-mentioned unbalance difference current value d is large, it causes a malfunction.

そこで、本発明に係る漏れ電流測定装置及び測定方法は、上述した各式の関係を利用し、対地静電容量の値が三相の各相で異なっているか、あるいは三相のうち一相が異なっているようなアンバランス状態や配電系統の故障の程度など、配電系統の状態を明らかにして、計測値の信頼性を格段に向上させようとするもので、この目的を実現するため、本発明においては、下記の式に示すとおりの判別式及び判別指数Mを用いる。   Therefore, the leakage current measuring device and the measuring method according to the present invention use the relationship of the above-described formulas, and the value of the ground capacitance is different in each of the three phases, or one of the three phases is It aims to improve the reliability of measured values by clarifying the status of the power distribution system, such as the different unbalanced status and the degree of failure of the power distribution system. In the invention, a discriminant and a discriminant index M as shown in the following formula are used.

(測定値Igr)/(測定値I)=M ・・・(34)
上記判別式(34)により得られる判別指数Mの値に基づいて配電系統の故障状態、上述したアンバランス状態に起因する測定値Igrの偏りの状態の概略を知ることができる。
(Measured value Igr) / (Measured value I 0 ) = M (34)
Based on the value of the discriminant index M obtained by the discriminant equation (34), it is possible to know the outline of the distribution system failure state and the measured value Igr bias state caused by the above-mentioned unbalanced state.

まず、判別式(34)の判別指数Mが1に近いときは、各相の対地静電容量が同一に近く、三相のうちのいずれか一相の対地絶縁抵抗に漏れ電流Igrが流れており、この漏れ電流の合計値Igrに、各相の対地静電容量が同一でない場合に発生する漏れ電流Igrの値が漏れ電流の合計値Igrに与える影響が殆どないと判断して、漏れ電流Igrの合計値の値Igrを、これに近い値、又は前記漏れ電流の合計値Igrに近い値に上限値又は下限値を付した値とする。 First, when the discriminant index M in the discriminant (34) is close to 1, the ground capacitance of each phase is close to the same, and the leakage current Igr 0 flows through the ground insulation resistance of any one of the three phases. in which, the total value Igr of the leakage current, it is determined that there is little influence on the total value Igr leakage current Igr 0 value leakage current of each phase of the earth capacitance is generated if not the same, The value Igr of the total value of the leakage current Igr 0 is set to a value close to this or a value close to the total value Igr of the leakage current plus an upper limit value or a lower limit value.

また、判別式(34)の判別指数Mの値が2に近いときは、各相の対地静電容量が同一に近く、三相のうちのいずれか二相の対地絶縁抵抗にほぼ同じ値の漏れ電流Igrが流れており、この漏れ電流Igrの合計値Igrに、各相の対地静電容量が同一でない場合に発生する漏れ電流Igrの値が漏れ電流の合計値Igrに与える影響が殆どないと判断して、漏れ電流の合計値Igrの値を、これに近い値、又は漏れ電流の合計値Igrに近い値に上限値又は下限値を付した値とする。 Further, when the value of the discriminant index M of the discriminant (34) is close to 2, the ground capacitance of each phase is close to the same, and the ground insulation resistance of any two of the three phases is almost the same value. and leakage current Igr 0 flow, impact on the total value Igr of the leakage current Igr 0, the sum Igr leakage current Igr 0 value leakage current of each phase of the earth capacitance is generated if not identical Therefore, the value of the total leakage current value Igr is set to a value close to this or a value close to the total leakage current value Igr and an upper limit value or a lower limit value.

さらに、判別式(34)の判別指数Mが√3に近いとき、各相の対地静電容量が同一でなく、且つ各相の対地絶縁抵抗に漏れ電流Igrが殆ど流れていなく、漏れ電流の合計値Igrは、各相の対地静電容量が同一でない場合に発生する漏れ電流Igrの影響値である零相電流Iの測定値の√3倍の値でほぼ占有されていると判断して、漏れ電流の合計値Igrを、0に近い値、又は0に近い値に上限値又は下限値を付した値とする。このときの零相電流Iの値が、上述したアンバランス差電流値dの値と一致するので、配電系統のアンバランスの程度も測定でき、計測回数のうち故障回数を除いた殆どの回数がこの状態で、実際よりはるかに大きいIgr値を表示していた不具合を考えると、測定の信頼性を著しく高めたことになる。 Further, when the discriminant index M of the discriminant (34) is close to √3, the ground capacitance of each phase is not the same, and the leakage current Igr 0 hardly flows through the ground insulation resistance of each phase. The total value Igr is substantially occupied by a value of √3 times the measured value of the zero-phase current I 0 , which is an influence value of the leakage current Igr 0 that occurs when the ground capacitance of each phase is not the same. The total value Igr of the leakage current is determined to be a value close to 0 or a value close to 0 with an upper limit value or a lower limit value. Since the value of the zero-phase current I 0 at this time coincides with the above-described value of the unbalance difference current value d, the degree of unbalance of the distribution system can be measured, and most of the number of measurements excluding the number of failures. In this state, however, considering the problem of displaying an Igr value much larger than the actual value, the reliability of the measurement is significantly improved.

さらにまた、判別式(34)の判別指数Mが2に近い値と√3に近い値との間のとき、√3に近い値と1に近い値との間のときには、各相の対地静電容量は同一でなく、且つ対地絶縁抵抗に漏れ電流Igrが流れているので、この漏れ電流の合計値Igrには、各相の対地静電容量が同一でない場合に発生する漏れ電流Igrの値を含んでいると判断して、漏れ電流の合計値Igrを、これに近い値とし、又は上記合計値の値に、判別式(34)の値または零相電流Iの値に応じた上限値又は下限値を付した値とする。 Furthermore, when the discriminant index M of the discriminant (34) is between a value close to 2 and a value close to √3, and between a value close to √3 and a value close to 1, the ground static of each phase capacity is not the same, and since the current Igr 0 leaks to ground insulation resistance is flowing, the total value Igr of the leakage current, the leakage current Igr 0 which occurs when each phase of the capacitance to ground is not the same it is determined to contain a value, the total value Igr leakage current, and a value close thereto, or the value of the total value, depending on the value of the value or zero-phase current I 0 of the discriminant equation (34) It is a value with an upper limit or lower limit added.

本発明においては、これらの値を各相の対地絶縁抵抗に流れる各相の漏れ電流Igrの合計値Igrとすることで、全体として測定の信頼性を著しく高めることができる。 In the present invention, by the sum Igr leakage current Igr 0 of each phase flowing through these values to each phase of the ground insulation resistance, it can significantly increase the reliability of the overall measurement.

ところで、本発明に係る漏れ電流の測定装置及び測定方法が適用される星形配電方式の配電系統が正常に動作しているときには、漏れ電流の合計値Igrの値は小さく、且つ通常の400V系統の対地静電容量のアンバランスの度合いは小さい。そこで、この状態を判定するため、対地漏洩電流である零相電流Iの三相対地電圧に対する無効成分を用いる。すなわち、零相電流測定手段によって測定された対地漏洩電流である零相電流Iと、入力されたある相の対地電圧との間の位相角θとによって、前述した式(14)より算出したBの値をBR、上記式(14)のθを(θ+120度)とおいて算出したBの値をBS、上記式(14)のθを(θ+120度)とおいて算出したBの値をBTとしたとき、前述した式(12)を参照して、上記BR,BS,BTは、下記の式(35)、(36)、(37)で表される。 By the way, when the distribution system of the star distribution system to which the leakage current measuring apparatus and measuring method according to the present invention is operating normally, the total value Igr of the leakage current is small and the normal 400V system. The degree of unbalance of the ground capacitance is small. Therefore, in order to determine this state, an ineffective component with respect to the three relative ground voltages of the zero-phase current I 0 which is a ground leakage current is used. That is, it is calculated from the above-described equation (14) by the phase angle θ 0 between the zero-phase current I 0 that is the ground leakage current measured by the zero-phase current measuring means and the ground voltage of a certain phase that is input. The calculated B value is BR, the θ value in the above equation (14) is calculated as (θ 0 +120 degrees), the B value is calculated as BS, and the θ value in the above expression (14) is calculated as (θ 0 +120 degrees). When the value of B is BT, the BR, BS, and BT are expressed by the following equations (35), (36), and (37) with reference to the equation (12) described above.

BR=0.5√3(g−g )+IR−0.5IS−0.5IT ・・・(35)
BS=0.5√3(g−g )+IS−0.5IT−0.5IR ・・・(36)
BT=0.5√3(g−g )+IT−0.5IR−0.5IS ・・・(37)
上記式(35)、(36)、(37)で、各相の対地静電容量がバランスしているときは、これら各式の右辺の+以降の値はほぼ0で、各式の右辺の+以前の値もほぼ0であり、合計であるBR,BS,BTの値もほぼ0になる。また、このバランス状態において、各相の対地絶縁抵抗r、r、rに流れる漏れ電流g、g、gの一相分又は二相分が存在するとき、漏れ電流g、g、gが存在する相のBの値だけ大きくなる。この結果から、Bの値から配電系統のバランス状態を知ることができる。
BR = 0.5√3 (g T −g S ) + IR−0.5IS−0.5IT (35)
BS = 0.5√3 (g R −g T ) + IS−0.5IT−0.5IR (36)
BT = 0.5√3 (g S −g R ) + IT−0.5IR−0.5IS (37)
In the above formulas (35), (36), and (37), when the ground capacitance of each phase is balanced, the value after + on the right side of each formula is almost 0, and the right side of each formula is The value before + is also almost 0, and the values of BR, BS, and BT, which are the sum, are also almost 0. Further, in this balance state, when the phases of the ground insulation resistance r R, r S, leakage current g R flowing through the r T, g S, is one phase or two phases of g T exists, leakage currents g R , G S and g T are increased by the value of B in the phase in which they exist. From this result, the balance state of the distribution system can be known from the value of B.

本発明によれば、星形電源で給電される配電線や電気機器を稼動状態のままで、安全に、手間が少なく、対地静電容量が三相において不揃いな状態にあるアンバランス状態の給電系統でも、一相だけでなく二相分合計の漏洩電流の値を、精度よく測定できるので、絶縁劣化の程度を、誤動作を最小にして常時監視ができ、絶縁劣化が進行して発生する地絡故障を未然に防止することができる。また、設備全体の信頼性を著しく向上させることができる。さらに、法律で要求されている定期点検作業でも、停電させて、結線を開放し、その後再結線等を行う手間と時間を節約し、さらに、費用の大幅な節減も可能になる。   According to the present invention, power supply in an unbalanced state in which distribution lines and electrical equipment fed by a star-shaped power supply remain in an operating state, is safe, requires less effort, and ground capacitance is uneven in three phases. Even in the system, the value of the leakage current of not only one phase but also the total of two phases can be measured with high accuracy, so the degree of insulation deterioration can be monitored constantly with minimum malfunction, and the place where insulation deterioration progresses It is possible to prevent a fault from occurring. Moreover, the reliability of the whole equipment can be remarkably improved. Furthermore, even in the periodic inspection work required by law, it is possible to save power and time for power disconnection, release the connection, and then perform reconnection, etc., and further reduce the cost.

以下、本発明を適用した配電線又はこれに接続される負荷設備としての電気機器における漏洩電流の測定を行う漏れ電流測定装置及び測定方法の実施の形態について図面を参照しながら説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a leakage current measuring device and a measuring method for measuring a leakage current in a distribution line to which the present invention is applied or an electric device as a load facility connected thereto will be described with reference to the drawings.

図1は、変圧器の低圧側三相巻線を星形に結線した星形配電電源に接続される三相配電線及びこれに接続される電気機器又はいずれか一方の漏洩電流Igrの測定に本発明を適用したときの一実施の形態を示すものであって、商用周波数である配電用三相電源1は、変圧器の低圧側三相巻線を星形に結線し、その中性点は接地線8を経由してG点で接地され、図2の電圧ベクトル図に示すように、中性点である接地相Nに対し、大きさが等しく、位相角が120度ずつ異なる三相対地電圧E、E、Eを発生し、これら電圧E、E、Eを三相端子R,S,Tに印加している。三相端子R,S,T及び接地相Nに接続される配電線4,4,4及び接地線4を通じて配電線4,4,4に接続される三相負荷及び配電線4,4,4の各々と接地線4との間に接続される単相負荷から構成される負荷設備5に電力を供給している。 FIG. 1 is a diagram for measuring a leakage current Igr of a three-phase distribution line connected to a star-shaped distribution power source in which a low-voltage three-phase winding of a transformer is connected in a star shape and / or an electric device connected thereto. 1 shows an embodiment when the invention is applied, and a power distribution three-phase power source 1 which is a commercial frequency connects a low-voltage three-phase winding of a transformer in a star shape, and its neutral point is As shown in the voltage vector diagram of FIG. 2, the ground is connected to the point G via the grounding wire 8, and the three relative grounds having the same magnitude and different phase angles by 120 degrees with respect to the ground phase N as the neutral point. Voltages E R , E S and E T are generated, and these voltages E R , E S and E T are applied to the three-phase terminals R, S and T. Three-phase load and are connected three-phase terminals R, S, a T, and the distribution lines 4 R connected to the ground phase N, 4 S, 4 T and the distribution lines 4 R through ground line 4 N, 4 S, 4 T Electric power is supplied to the load equipment 5 composed of a single-phase load connected between each of the distribution lines 4 R , 4 S , 4 T and the ground line 4 N.

なお、本発明は、単相負荷を三相の配電線4,4,4間に接続し、接地線4を欠く三相3線式の配電方式にも適用でき、三相4線式の配電方式に適用した場合と同様の作用効果が実現される。 The present invention can also be applied to a three-phase three-wire distribution system in which a single-phase load is connected between three-phase distribution lines 4 R , 4 S , 4 T and lacks a ground wire 4 N. The same effect as when applied to a wire-type power distribution system is realized.

そして、図1に示す配電系統において、配電線4及び負荷設備5の電圧が印加されている部分と接地部分との間に対地静電容量6及び対地絶縁抵抗7が存在する。そして、電圧が印加されている部分と接地部分との間に対地静電容量6の値が三相の各相で異なっているか、あるいは三相のうち一相が異なっているアンバランスな状態では、各相の対地静電容量6には漏れ電流IR、IS、ITが各相R,S,Tから接地部分へ流れ、対地絶縁抵抗7には漏れ電流g、 g、 gが各相R,S,Tから接地部分へ流れている。 In the distribution system shown in FIG. 1, a ground capacitance 6 and a ground insulation resistance 7 exist between the portion to which the voltage of the distribution line 4 and the load facility 5 is applied and the ground portion. In the unbalanced state in which the value of the ground capacitance 6 is different between the three phases, or the one of the three phases is different between the portion to which the voltage is applied and the ground portion. In addition, leakage currents IR, IS, IT flow from the respective phases R, S, T to the ground portion in the ground capacitance 6 of each phase, and leakage currents g R , g S , g T each flow in the ground insulation resistance 7. The phases R, S, T flow to the grounded part.

そして、本発明に係る漏れ電流測定装置は、図1に示すように、いずれか一の配電線4,4,4を外側から挟むように構成された電極3を経由して三相のうちの一相の電圧が入力される計測器17を備える。この漏れ電流測定装置を用いて配電線4,4,4及び負荷設備5の漏れ電流g、 g、 gを測定するには、いずれか一の配電線4,4,4を外側から挟むように構成された電極3を経由して三相のうちの一相の電圧を計測器17に入力する。 As shown in FIG. 1, the leakage current measuring apparatus according to the present invention has a three-phase structure via an electrode 3 configured to sandwich one of the distribution lines 4 R , 4 S , 4 T from the outside. Is provided with a measuring instrument 17 to which a one-phase voltage is input. In order to measure the leakage currents g R , g S , and g T of the distribution lines 4 R , 4 S , 4 T and the load facility 5 using this leakage current measuring device, any one of the distribution lines 4 R , 4 S , 4T, the voltage of one phase of the three phases is input to the measuring instrument 17 via the electrode 3 configured to sandwich the T from the outside.

この計測器17は、入力された星形配電電源1の対地電圧Eと、零相変流器9が配電線4,4,4及び接地線4から検出した零相電流Iとを信号処理し、対地電圧Eと零相電流Iとの位相差を計測し信号処理する信号処理部14と、この信号処理部14で信号処理されて得られた零相電流Iの実効値、対地電圧Eと零相電流Iとの位相差に基いて、各相の対地絶縁抵抗r、r、rを経由して流れる漏れ電流g、 g、 gの合計値Igr及びその信頼範囲を演算する演算部15を備える。 This measuring instrument 17 includes the input ground voltage E R of the star distribution power source 1 and the zero phase current I detected by the zero phase current transformer 9 from the distribution lines 4 R , 4 S , 4 T and the ground line 4 N. 0 and to the signal processing, ground voltage E R and a signal processing unit 14 for measuring and signal processing the phase difference between the zero-phase current I 0, the zero-phase current I obtained to signal processing by the signal processing unit 14 the effective value of 0, based on the phase difference between the ground voltage E R and the zero-phase current I 0, each phase of the ground insulation resistance r R, r S, leakage current flows through the r T g R, g S, It comprises a calculation unit 15 for calculating a total value Igr and confidence range of g T.

さらに、本発明に係る漏れ電流測定装置は、演算部15によって演算された漏れ電流g、 g、 gの合計値Igr及びその信頼範囲、さらに零相電流Iの値を表示する表示部16を備えている。 Furthermore, the leakage current measuring apparatus according to the present invention displays the total value Igr of the leakage currents g R , g S , and g T calculated by the calculation unit 15 and its reliability range, and further displays the value of the zero-phase current I 0. A portion 16 is provided.

すなわち、本発明に係る漏れ電流測定装置を構成する計測器17は、信号処理部14を備え、その信号処理部14には、星形配電電源1に入力された対地電圧Eが入力される。さらに、信号処理部14には、零相変流器9によって検出された零相電流Iが入力する。そして、信号処理部14は、対地電圧Eと零相電流Iとの位相差を計測する信号処理を行う。また、計測器17は、演算部15を備え、この演算部15は、信号処理部14からの信号処理によって得られた零相電流Iの実効値、対地電圧Eと零相電流Iとの位相差に基いて、前述した対地絶縁抵抗7を経由して各相R,S,Tに流れる漏れ電流g、 g、 gの合計値Igr及びその信頼範囲を演算する。表示部16は、演算部15によって演算された上記合計値Igr及びその信頼範囲を表示する。 That is, the instrument 17 constituting the leakage current measurement apparatus according to the present invention, a signal processing section 14, the the signal processing section 14, the ground voltage E R inputted to star distribution source 1 is input . Further, the zero-phase current I 0 detected by the zero-phase current transformer 9 is input to the signal processing unit 14. The signal processing unit 14 performs signal processing to measure the phase difference between the ground voltage E R and the zero-phase current I 0. Also, the instrument 17 includes an arithmetic unit 15, the arithmetic unit 15, the effective value of the zero-phase current I 0 obtained by the signal processing from the signal processing unit 14, the ground voltage E R and the zero-phase current I 0 The total value Igr of the leakage currents g R , g S , and g T flowing through the phases R, S, and T via the ground insulation resistance 7 described above and the reliability range thereof are calculated. The display unit 16 displays the total value Igr calculated by the calculation unit 15 and its confidence range.

次に、本発明に係る漏れ電流測定装置を星形配電電源1を備えた変電室に適用した実施の形態を図3を参照して説明する。   Next, an embodiment in which the leakage current measuring apparatus according to the present invention is applied to a transformer room equipped with a star-shaped distribution power supply 1 will be described with reference to FIG.

図3に示す実施の形態は、漏れ電流測定装置が固定方式であるため、前述した実施の形態のように、測定用電圧としての対地電圧Eを非接触電極3を介して計測器17に入力することに代え、R相及び接地線8を計測器17の信号処理部14に直接接続して入力する。そして、零相変流器9によって接地線8を流れる零相電流Iを検出する。 Embodiment shown in FIG. 3, the leakage current measurement device is a fixed type, as in the embodiments described above, the ground voltage E R as measuring voltage to the measuring instrument 17 via the contactless electrode 3 Instead of inputting, the R phase and the ground wire 8 are directly connected to the signal processing unit 14 of the measuring instrument 17 and input. The zero-phase current transformer 9 detects a zero-phase current I 0 flowing through the ground line 8.

また、本発明に係る漏れ電流測定装置を、配電方式が図1に示すような三相4線方式、又は三相3線方式であって、配電線4の途中に設けた配電室に据え付けて使用するときには、上述した図1に示す例に用いた3線を一括してクランプする零相変流器9を用いて、接地線8をクランプし、接地線8を流れる零相電流Iを検出する。零相変流器9により検出された零相電流Iは、計測器17の信号処理部14に入力される。このとき、例えば、測定用電圧としての対地電圧Eは、計測器17の信号処理部14に直接接続されたR相から入力される。この例においても、信号処理部14は、直接接続されたR相から入力される対地電圧Eと、零相変流器9により検出した零相電流Iとを信号処理し、対地電圧Eと零相電流Iとの位相差を計測し信号処理し演算部15に出力する。この演算部15は、信号処理部14で信号処理されて得られた零相電流Iの実効値、対地電圧Eと零相電流Iとの位相差に基いて、各相の対地漏洩抵抗r、r、rを経由して流れる漏れ電流g、 g、 gの合計値Igr及びその信頼範囲を演算することは前述の実施の形態と同様である。 Further, the leakage current measuring apparatus according to the present invention is installed in a distribution room provided in the middle of the distribution line 4 in which the distribution system is a three-phase four-wire system as shown in FIG. When used, the ground wire 8 is clamped using the zero-phase current transformer 9 that collectively clamps the three wires used in the example shown in FIG. 1 described above, and the zero-phase current I 0 flowing through the ground wire 8 is To detect. The zero-phase current I 0 detected by the zero-phase current transformer 9 is input to the signal processing unit 14 of the measuring instrument 17. In this case, for example, ground voltage E R as the measuring voltage is input directly connected R-phase to the signal processing section 14 of the instrument 17. Also in this example, the signal processing unit 14 performs signal processing on the ground voltage E R inputted from the directly connected R phase and the zero phase current I 0 detected by the zero phase current transformer 9, and the ground voltage E The phase difference between R and the zero-phase current I 0 is measured, signal-processed, and output to the calculation unit 15. The calculation unit 15, signal processing is the effective value of the zero-phase current I 0 obtained by the signal processing section 14, based on the phase difference between the ground voltage E R and the zero-phase current I 0, each phase of the ground leakage The calculation of the total value Igr of the leakage currents g R , g S , and g T flowing through the resistors r R , r S , and r T and its reliability range is the same as in the above-described embodiment.

また、図3に示す実施に形態では、配電線4,4,4の途中に遮断器19が設けられ、計測器17の演算部15において所定の値より大きな漏れ電流g、 g、 gの合計値Igrが計測されたときには、演算部15より遮断器19を遮断する遮断信号を出力し、この遮断器19を遮断することによって配電線4を速やかに遮断することができ、過大な漏れ電流による事故を未然に防止できる。さらに、演算部15に、音又は光などの警報を発する警報器18を接続し、演算部15において所定の値より大きな漏れ電流g、 g、 gの合計値Igrが計測されたときには、演算部15より警報器18を動作させる信号を出力し、警報器18を動作させて異常があることを速やかに告知することができ、過大な漏れ電流による事故を未然に防止できる。 In the embodiment shown in FIG. 3, a circuit breaker 19 is provided in the middle of the distribution lines 4 R , 4 S , 4 T , and the leakage current g R , g greater than a predetermined value in the calculation unit 15 of the measuring instrument 17. When the total value Igr of S and g T is measured, a shut-off signal for shutting off the circuit breaker 19 is output from the arithmetic unit 15, and the distribution line 4 can be shut off quickly by shutting off the circuit breaker 19. Accidents due to excessive leakage current can be prevented in advance. Furthermore, when an alarm device 18 that emits an alarm such as sound or light is connected to the calculation unit 15 and the total value Igr of the leakage currents g R , g S , and g T larger than a predetermined value is measured in the calculation unit 15 Then, a signal for operating the alarm device 18 is output from the arithmetic unit 15, and the alarm device 18 is operated to promptly notify that there is an abnormality, thereby preventing an accident due to an excessive leakage current.

ところで、本発明に係る漏れ電流測定装置において測定される各相の対地漏洩抵抗r、r、rを経由して流れる漏れ電流g、 g、 gの合計値Igrと、測定用電圧として計測器17の信号処理部14に入力される対地電圧Eとの関係は、図4のベクトル図で表される。計測器17に入力される対地電圧が3つの相のいずれか一相の対地電圧に該当するため、漏洩電流Iの入力電圧に対する位相角θは0度から360度間変化する可能性がある。 By the way, the total value Igr of the leakage currents g R , g S , and g T flowing through the ground leakage resistances r R , r S , and r T of each phase measured in the leakage current measuring device according to the present invention, and the measurement the relationship between the ground voltage E R of the use voltage is input to the signal processing section 14 of the instrument 17 is represented by the vector diagram of FIG. Since the ground voltage input to the measuring instrument 17 corresponds to the ground voltage of any one of the three phases, the phase angle θ with respect to the input voltage of the leakage current I 0 may vary between 0 degrees and 360 degrees. .

図4に示すベクトル図から、前述した式(13)、(14)に示される零相電流Iと、零相電流Iの入力された対地電圧Eと同位相方向の成分である有効成分A及び対地電圧Eから90度進んだ位相方向の成分である無効成分Bとの関係が分かり、零相電流Iの有成分A及び無効成分Bの数値は、正の値、0、負の値になる。 Figure from the vector diagram shown in 4, the aforementioned equations (13), (14) and the zero-phase current I 0 shown in, enable a component of the input ground voltage E R in phase with the direction of the zero-phase current I 0 understand the relationship between the reactive component B as the component a and phase component in the direction of advanced 90 degrees from the ground voltage E R, value of chromatic component a and reactive component B of the zero-phase current I 0 is a positive value, 0, Negative value.

次に、本発明に係る漏れ電流測定装置を構成する計測器17の信号処理部14の詳細について図5を参照して説明する。   Next, details of the signal processing unit 14 of the measuring instrument 17 constituting the leakage current measuring apparatus according to the present invention will be described with reference to FIG.

図5は、信号処理部14の具体的構成を示すブロック回路図である。信号処理部14は、図5に示すように、零相電流Iを検出するI検出器20と、第1の増幅器21と、第1のフィルタ22と、第1の実効値変換器23と、位相差計測器24と、電圧検出器31と、第2の増幅器32と、第2のフィルタ33と、第2の実効値変換器34とを備える。 FIG. 5 is a block circuit diagram showing a specific configuration of the signal processing unit 14. As shown in FIG. 5, the signal processing unit 14 includes an I 0 detector 20 that detects a zero-phase current I 0 , a first amplifier 21, a first filter 22, and a first effective value converter 23. A phase difference measuring device 24, a voltage detector 31, a second amplifier 32, a second filter 33, and a second effective value converter 34.

検出器20は、配電線4及び負荷設備5の漏洩電流の合計である零相電流Iを零相変流器9を通じて取り込む。第1の増幅器21は、I検出器20が検出した零相電流Iを適量まで増幅する。第1のフィルタ22は、第1の増幅器21で増幅した零相電流Iの電源電圧の周波数を超える周波数を減衰させる。第1の実効値変換器23は、第1のフィルタ22でフィルタリングされた零相電流Iの交流電流波形を両波整流して実効値に比例したアナログ値に変換し、演算部15へ出力する。 The I 0 detector 20 takes in a zero phase current I 0 which is the sum of the leakage currents of the distribution line 4 and the load facility 5 through the zero phase current transformer 9. The first amplifier 21 amplifies the zero-phase current I 0 detected by the I 0 detector 20 to an appropriate amount. The first filter 22 attenuates the frequency exceeding the frequency of the power supply voltage of the zero-phase current I 0 amplified by the first amplifier 21. The first effective value converter 23 rectifies the alternating current waveform of the zero-phase current I 0 filtered by the first filter 22 to convert it into an analog value proportional to the effective value, and outputs it to the arithmetic unit 15. To do.

位相差計測器24は、上記零相電流Iと、星形配電電源1の三相対地電圧のうちの1つである、ここでは入力されたR相の電圧Eの間の位相角θを計測する。 The phase difference measuring device 24 calculates a phase angle θ between the zero-phase current I 0 and one of the three relative ground voltages of the star-shaped distribution power supply 1, which is an R-phase voltage E input here. measure.

上記零相電流Iは、第1のフイルタ22を経由することにより、また、入力された電圧Eは第2のフイルタ33を経由することによって電源周波数を超える周波数の減衰処理が施され、零相電流I及び入力電圧Eの波形は、図6及び図7に示すような電源周波数の正弦波形となる。 The zero-phase current I 0 is attenuated at a frequency exceeding the power source frequency by passing through the first filter 22 and the input voltage E is passed through the second filter 33, and the zero-phase current I 0 is zero. The waveforms of the phase current I 0 and the input voltage E are sinusoidal waveforms of the power supply frequency as shown in FIGS.

そして、零相電流I及び入力電圧Eの波形は、両者の位相差θが180度以下のときには、図6に示すように、零相電流Iは入力電圧Eより遅れたようになっている。しかし、信号処理部14に対する電圧入力は三相中の任意の相で入力されるため、入力相対地電圧と零相電流Iが不明であるため、その位相差θは0度から360度まで変化する。零相電流I及び入力電圧Eの波形が大きさ零点を通過したいわゆるゼロクロッシングした時点から定量のパルス波形I及びEは、両者の位相差θが0〜180度の範囲にあるときには、図6に示すように出力され、両者の位相差θが180〜360度の範囲にある場合には図7に示すように出力する。 The waveforms of the zero-phase current I 0 and the input voltage E are such that when the phase difference θ between them is 180 degrees or less, the zero-phase current I 0 is delayed from the input voltage E as shown in FIG. Yes. However, since the voltage input to the signal processing unit 14 is input in any phase among the three phases, the input relative ground voltage and the zero-phase current I 0 are unknown, so that the phase difference θ is 0 ° to 360 °. Change. When the waveform of the zero-phase current I 0 and the input voltage E passes through the zero point of the so-called zero crossing, the fixed pulse waveforms I W and E W have a phase difference θ between 0 and 180 degrees. 6, when the phase difference θ between the two is in the range of 180 to 360 degrees, the output is as shown in FIG. 7.

そして、零相電流Iは入力電圧Eの位相差θが0〜180度の範囲にある図6に示す場合では、入力電圧Eがゼロクロッシングした直後の電圧電流の値が正負又は負正いずれかの関係であるかにより、半波パルスIの立ち上がり又は立ち下がりを判定し、位相差パルス(E〜I)の面積S又はパルス幅を示す時限t、半波パルスIの面積S又は時限tを演算部14へ入力し、下記の式(35)又は式(36)に示す演算処理を行う。 In the case shown in FIG. 6 where the phase difference θ of the input voltage E is in the range of 0 to 180 degrees, the zero-phase current I 0 is positive or negative or negative or positive immediately after the input voltage E is zero-crossed. The rising or falling edge of the half-wave pulse I W is determined depending on whether or not the relationship is, the time period t 1 indicating the area S 1 or the pulse width of the phase difference pulse (E W to I W ), the half-wave pulse I W of the area S 2 or timed t 2 input to the arithmetic unit 14 performs arithmetic processing shown in the following equation (35) or formula (36).

位相差θ=180S/S ・・・(35)
位相差θ=180t/t ・・・(36)
また、零相電流Iは入力電圧Eの位相差θが180〜360度の範囲にある図7に示す場合では、入力電圧Eがゼロクロッシングした直後の電圧電流の値が正正又は負負の関係であることによって、半波パルスIの立ち上がり又は立ち下がりを判定し、位相差パルス(I〜E)の面積S又はパルス幅を示す時限t、半波パルスIの面積S又はパルス幅を示す時限tを演算部14へ入力し、下記の式(37)又は式(38)に示す演算処理を行う。
Phase difference θ = 180 S 1 / S 2 (35)
Phase difference θ = 180 t 1 / t 2 (36)
Further, in the case shown in FIG. 7 where the phase difference θ of the input voltage E is in the range of 180 to 360 degrees, the zero-phase current I 0 is positive or negative when the input voltage E is zero-crossed. Therefore, the rising or falling edge of the half-wave pulse I W is determined, the time period t 3 indicating the area S 3 or the pulse width of the phase difference pulse (I W to E W ), the half-wave pulse I W The time period t 2 indicating the area S 2 or the pulse width is input to the calculation unit 14, and the calculation process shown in the following Expression (37) or Expression (38) is performed.

位相差θ=360−180S/S ・・・(37)
位相差θ=360−180t/t ・・・(38)
そして、電圧検出器31は、星形配電電源1の相電圧である対地電圧を取り込む。第2の増幅器32は、電圧検出器31が検出した対地電圧である入力電圧を適量まで増幅又は減衰する。第2のフィルタ33は、第2の増幅器32で増幅又は減衰された入力電圧の電源電圧周波数を超える周波数を減衰させる。第2の実効値変換器34は、第2のフィルタ33でフィルタリングされた上記入力電圧を両波整流して実効値に比例したアナログ値に変換し、演算部15へ出力する。
Phase difference θ = 360−180S 3 / S 2 (37)
Phase difference θ = 360−180t 3 / t 2 (38)
And the voltage detector 31 takes in the ground voltage which is a phase voltage of the star-shaped distribution power supply 1. FIG. The second amplifier 32 amplifies or attenuates the input voltage, which is the ground voltage detected by the voltage detector 31, to an appropriate amount. The second filter 33 attenuates the frequency exceeding the power supply voltage frequency of the input voltage amplified or attenuated by the second amplifier 32. The second effective value converter 34 performs both-wave rectification on the input voltage filtered by the second filter 33 to convert the input voltage into an analog value proportional to the effective value, and outputs the analog value to the calculation unit 15.

演算部15では、位相差計測器24から出力された位相差パルス(E〜I)の面積Sの面積S、半波パルスIの面積S、位相差パルス(I〜E)の面積S又は位相差パルス(E〜I)のパルス幅を示す時限t、半波パルスIのパルス幅を示す時限t、位相差パルス(I〜E)のパルス幅を示す時限tの値を前述の位相差θを算定する式(35)〜(38)に従って求められた位相差θ、第1及び第2の実効値変換器23,34から出力された零相電流I、順次出力された入力電圧の値又は予め設定された電圧の値及びそれら電圧電流間の位相差θ等から、前述した各式にしたがって各相の対地漏洩抵抗r、r、rを経由して流れる漏れ電流g、 g、 gの合計値Igrを演算し、その値を算出する。 The arithmetic unit 15, the area S 1 of the area S 1 of the output from the phase difference measurement unit 24 phase difference pulse (E W ~I W), the area S 2 of the half-wave pulses I W, the phase difference pulse (I W ~ E w ) area S 3 or time interval t 1 indicating the pulse width of the phase difference pulse (E W to I W ), time interval t 2 indicating the pulse width of the half-wave pulse I W , and phase difference pulse (I W to E W). ) Of the time interval t 3 indicating the pulse width of the phase difference θ calculated from the above-described equations (35) to (38) for calculating the phase difference θ, and the first and second effective value converters 23 and 34. From the output zero-phase current I 0 , the sequentially output input voltage value or the preset voltage value, the phase difference θ between these voltage currents, etc., the ground leakage resistance r of each phase according to the above-described equations Total value of leakage currents g R , g S , and g T flowing through R 1 , r S , and r T Igr is calculated and its value is calculated.

このように、星形配電方式で、図1又は図3に示すように構成された漏れ電流測定装置によれば、通電状態のまま配電線及びその負荷設備の絶縁抵抗を通じて流れる健全相一相を除く各相に流れる漏れ電流の合計値Igrを測定したり、配電系統のアンバランス状態の程度も把握することができ、これを漏れ電流の合計値Igrの最大最小範囲として表示することもできる。   Thus, according to the leakage current measuring apparatus configured as shown in FIG. 1 or FIG. 3 with the star-shaped power distribution system, the healthy phase and one phase flowing through the insulation resistance of the distribution line and its load equipment in the energized state. It is possible to measure the total value Igr of the leakage currents flowing through the respective phases, and to grasp the degree of the unbalanced state of the distribution system, and to display this as the maximum and minimum range of the total value Igr of the leakage current.

従って、本発明に係る漏れ電流測定装置は、三相3線方式、又は三相4線方式の配電方式において、電路や電気機器の電圧印加部分と接地部分との間に存在する対地静電容量の値が三相の各相で異なっていたり、三相のうち一相が異なっているアンバランス状態や、漏れ電流Igrが二相又は二相間のいわゆる線間に接続される電機機器の巻線や電機回路の内部で発生した場合に適用して、各相対地漏洩抵抗r、r、rを経由して流れる漏洩電流の正確な測定を行うことができる。 Therefore, the leakage current measuring apparatus according to the present invention is a three-phase three-wire system or a three-phase four-wire power distribution system, and a ground capacitance existing between a voltage application portion and a ground portion of an electric circuit or electrical equipment. Windings of electrical equipment in which the value of is different in each of the three phases, or one of the three phases is different, or the leakage current Igr is connected between two phases or so-called lines between two phases In addition, the present invention can be applied to the case where it occurs inside an electric circuit, and the leakage current flowing through the relative ground leakage resistances r R , r S , r T can be accurately measured.

図1及び図3を参照して説明した本発明に係る漏れ電流測定装置は、前述したように、本発明の漏れ電流測定方法を実行している。すなわち、計測器17は、星形配電方式電源1のある一相の対地電圧を入力して入力電圧の測定工程を実行する。また、零相変流器9は、上記電源1から流出する対地漏洩電流である零相電流Iを測定する零相電流測定工程を実行する。そして、計測器17の信号処理部14は、入力電圧の測定工程により、入力された電圧と零相変流器9が測定した零相電流Iの位相を比較して位相差パルス(E〜I)の面積Sと位相差パルス(I〜E)の面積Sと零相電流Iの半周期パルスの面積Sを算出する。 As described above, the leakage current measuring apparatus according to the present invention described with reference to FIGS. 1 and 3 executes the leakage current measuring method according to the present invention. That is, the measuring instrument 17 inputs a one-phase ground voltage of the star-type power distribution system power supply 1 and executes an input voltage measurement process. The zero-phase current transformer 9 executes a zero-phase current measuring step for measuring a zero-phase current I 0 that is a ground leakage current flowing out from the power source 1. Then, the signal processing unit 14 of the measuring instrument 17 compares the phase of the zero-phase current I 0 measured by the zero-phase current transformer 9 with the phase difference pulse (E W in the input voltage measurement step). ˜I W ) area S 1 , phase difference pulse (I W ˜E W ) area S 3, and zero-phase current I 0 half-cycle pulse area S 2 are calculated.

また、演算部15は、信号処理部14が信号処理工程を実行して算出した位相差パルス(E〜I)の面積Sと位相差パルス(I〜E)の面積Sと零相電流Iの半周期パルスの面積Sとから位相角θを算出し、この位相角θと零相電流Iと入力されたある一相の対地電圧とから、各相に発生する対地漏洩抵抗r、r、rに流れる漏れ電流Igrの合計値Igr及びその範囲を演算する演算工程を実行する。 The arithmetic unit 15, the area S 3 of the areas S 1 and the phase difference pulse signal processing unit 14 is calculated by executing the signal processing step phase difference pulse (E W ~I W) (I W ~E W) When calculating the phase angle θ from the zero-phase current half-cycle pulses of the area S 2 Metropolitan of I 0, and a ground voltage of the phase angle θ and is one phase input and zero-phase current I 0, occurs each phase The calculation step of calculating the total value Igr of the leakage current Igr 0 flowing through the ground leakage resistances r R , r S , r T and the range thereof is executed.

さらに、演算工程では、ここで得られた値を配電線4や負荷設備5としての電気機器の対地絶縁抵抗を通じて流れる漏れ電流の合計の値Igrとして表示する。さらにまた、演算工程では、漏れ電流の合計の値Igrが所定の値より大きくなったことが測定されたとき、演算部15に接続した警報器18により、異常があったことを音や光等により告知する。また、遮断器19を備える装置においては、配電線4を遮断する。このような異常の告知又は配電線の遮断により過大な漏れ電流による事故を未然に防止している。   Further, in the calculation step, the value obtained here is displayed as the total value Igr of the leakage current flowing through the ground insulation resistance of the electrical equipment as the distribution line 4 or the load facility 5. Furthermore, in the calculation step, when it is measured that the total value Igr of the leakage current is larger than a predetermined value, the alarm device 18 connected to the calculation unit 15 indicates that there is an abnormality such as sound or light. To announce. Moreover, in the apparatus provided with the circuit breaker 19, the distribution line 4 is interrupted | blocked. An accident caused by an excessive leakage current is prevented in advance by notifying such abnormality or cutting off the distribution line.

配電系統や電気機器においては、電気災害の予防の観点から絶縁測定が要求されている。従来、このような絶縁測定は、電源からの給電を停電して行っていたが、近年は停電が制限され、特に400V級星形配電系統で配電している大工場では自動機械その他の機械設備に多数使用され、その停止は生産の停止につながる。本発明は、これまでの装置では行い得なかった配電線や、配電線に接続された電気機器などの負荷設備を停電させることなく、漏れ電流を精度よく測定することを可能とし、連続的な監視による予防保全の実施も可能とする。   In distribution systems and electrical equipment, insulation measurement is required from the viewpoint of preventing electrical disasters. Conventionally, such insulation measurement has been performed with the power supply from the power outage, but in recent years the power outage is limited, especially in large factories where power is distributed by 400V class star distribution system. Many of them are used in the production process, and their stop will lead to production stop. The present invention makes it possible to accurately measure the leakage current without causing a power failure in a load line such as a distribution line or an electric device connected to the distribution line, which could not be performed by a conventional apparatus, and continuously. It is also possible to implement preventive maintenance through monitoring.

この400V級星形配電系統は、国際標準の方式であり、国内でも自動車関連産業や大形ビル等、電力使用量が大きな需要家での実用件数は年々増加しており、且つこれらの設備に対する信頼性確保の要求もレベルアップし、これらの分野において広く用いることが可能である。   This 400V-class star distribution system is an international standard system, and the number of practical applications in the automobile-related industry and large-sized buildings such as large buildings is increasing year by year. The requirement for ensuring reliability is also improved, and it can be widely used in these fields.

三相星形電源で配電される配電線、この配電線に接続された負荷設備の漏洩電流Igrの測定に本発明に係る漏れ電流測定装置を適用した構成例を示す概略系統図である。It is a schematic system diagram which shows the structural example which applied the leakage current measuring apparatus which concerns on this invention to the measurement of the leakage current Igr of the distribution line distributed by a three-phase star-shaped power supply, and the load installation connected to this distribution line. 星形電源系統の対地電圧E、E、Eの関係を示すベクトル図である。Voltage to ground of the star power supply system E R, E S, is a vector diagram showing the relationship between E T. 本発明に係る漏れ電流測定装置を変電室等に据え付け固定して使用するときの構成を示す概略系統図である。It is a schematic system diagram showing a configuration when the leakage current measuring apparatus according to the present invention is installed and fixed in a substation room or the like. 零相電流I、入力電圧E、位相角θ、零相電流Iの有効成分A、零相電流Iの無効成分Bの関係を示すベクトル図である。Zero-phase current I 0, the input voltage E R, the phase angle theta, the active ingredient A of the zero-phase current I 0, is a vector diagram showing the relationship between the reactive component B of the zero-phase current I 0. 本発明に係る漏れ電流測定装置を構成する信号処理部の詳細を示すブロック図である。It is a block diagram which shows the detail of the signal processing part which comprises the leakage current measuring apparatus which concerns on this invention. 入力電圧Eと零相電流Iの波形の位相関係を表す図で位相差θが0〜180度の範囲ある場合を示す。The figure showing the phase relationship between the waveform of the input voltage E and the zero-phase current I 0 shows a case where the phase difference θ is in the range of 0 to 180 degrees. 入力電圧Eと零相電流Iの波形の位相関係を表す図で位相差θが180〜360度の範囲にある場合を示す。The figure showing the phase relationship between the waveform of the input voltage E and the zero-phase current I 0 shows a case where the phase difference θ is in the range of 180 to 360 degrees.

符号の説明Explanation of symbols

1 星形配電電源、3 電極、4 配電線、5 負荷設備、6 対地静電容量、7 対地漏洩抵抗、8 接地線 9 零相変流器、14 信号処理部、15 演算部、16 表示部、17 計測器、18 警報機 19 遮断器   1 Star Distribution Power Supply, 3 Electrodes, 4 Distribution Lines, 5 Load Equipment, 6 Ground Capacitance, 7 Ground Leakage Resistance, 8 Ground Line 9 Zero Phase Current Transformer, 14 Signal Processing Unit, 15 Calculation Unit, 16 Display Unit , 17 Measuring instrument, 18 Alarm 19 Circuit breaker

Claims (10)

変圧器の低圧側三相巻線を星形に結線した電源から給電される三相4線式又は三相3線式配電方式の三相のうちの一相又は二相、若しくは三相の対地電圧を測定する電圧測定手段と、
上記星形電源から給電される給電線及び負荷設備又はそのいずれか一方を通じて流れる対地漏洩電流である零相電流を測定する零相電流測定手段と、
上記電圧測定手段により測定した一相又は二相、若しくは三相の対地電圧と、上記零相電流測定手段により測定した零相電流との間の位相差を算出する信号処理手段と、
上記信号処理手段により算出した位相差と、上記電圧測定手段によって測定された電圧と、上記零相電流測定手段によって測定された零相電流との値から、上記給電線及び負荷設備又はそのいずれか一方の対地絶縁抵抗に流れる各相の漏れ電流の合計値を演算する手段と、
上記給電線及び負荷設備又はそのいずれか一方の各相の対地静電容量が同一でないときに、上記対地絶縁抵抗に流れる各相の漏れ電流の合計値に合算される、上記各相の対地静電容量が同一でないときに発生する漏れ電流の値が上記合計値に与える影響の程度を演算する手段と
を備えることを特徴とする漏れ電流測定装置。
One-phase or two-phase of the three-phase four-wire system or the three-phase three-wire power distribution system that is fed from the power source that connects the transformer's low-voltage three-phase windings in a star shape, or the three-phase ground Voltage measuring means for measuring the voltage;
Zero-phase current measuring means for measuring a zero-phase current that is a ground leakage current flowing through the feeder line and / or load facility fed from the star-shaped power source, or any one of them,
Signal processing means for calculating a phase difference between the one-phase or two-phase or three-phase ground voltage measured by the voltage measuring means and the zero-phase current measured by the zero-phase current measuring means;
From the values of the phase difference calculated by the signal processing means, the voltage measured by the voltage measuring means, and the zero phase current measured by the zero phase current measuring means, the feed line and / or the load equipment Means for calculating a total value of leakage currents of the respective phases flowing through one ground insulation resistance;
When the ground capacitance of each phase of the feed line and / or the load facility is not the same, the ground static of each phase is added to the total leakage current of each phase flowing through the ground insulation resistance. A leakage current measuring device comprising: means for calculating a degree of influence of a leakage current value generated when the electric capacities are not the same on the total value.
上記対地漏洩電流である零相電流の、三相対地電圧のうちの一相の入力電圧と同位相方向の成分の正又は負の測定値をA、上記三相対地電圧うちの測定値Aを測定した同じ相の入力電圧と直角方向の成分の正又は負の測定値をBとしたとき、下記の式(1)〜式(3)にそれぞれ測定値を代入して各式により値U,V,Wを求め、
U=A+B/√3 ・・・(1)
V=−2B/√3 ・・・(2)
W=A−B/√3 ・・・(3)
上記式(1)の値U及び上記式(2)の値Vが共に正又はいずれか一方が正で他方が0のとき、各相の漏れ電流の合計値を、上記式(2)の値Vと、上記式(3)の値Wとの合計値とし、
上記式(1)の値U及び上記式(2)の値Vが共に負又はいずれか一方が負で他方が0のとき、各相の漏れ電流の合計値を、上記式(1)の値Uの正負を逆にした値U’と、上記式(3)の値Wの正負を逆にした値W’との合計値とし、
上記式(1)の値Uが正、上記式(2)の値Vが負のとき、各相の漏れ電流の合計値を、上記式(1)の値Uと、上記式(2)の値Vの正負を逆にした値V’との合計値とし、
上記式(1)の値Uが負、上記式(2)の値Vが正で、且つ上記式(3)の値Wが正のとき 各相の漏洩電流の合計値を、上記式(2)の値Vと、上記式(3)の値Wとの合計値とし、
上記式(1)の値Uが負、上記式(2)の値Vが正で且つ上記式(3)の値Wが負のとき、各相の漏れ電流の合計値を、上記式(1)の値Uの正負を逆にした値U’と上記式(3)の値Wの正負を逆にした値W’との合計値とし、
上記各合計値を各相の対地絶縁抵抗に流れる漏れ電流の合計値とすることを特徴とする請求項1記載の漏れ電流測定装置。
The positive or negative measured value of the component in the same phase direction as the input voltage of one phase of the three relative ground voltages of the zero phase current which is the ground leakage current is A, and the measured value A of the three relative ground voltages is A When the positive or negative measured value of the component in the direction perpendicular to the measured input voltage of the same phase is B, the measured values are substituted into the following formulas (1) to (3), and the values U, Find V, W,
U = A + B / √3 (1)
V = -2B / √3 (2)
W = A−B / √3 (3)
When the value U of the above formula (1) and the value V of the above formula (2) are both positive or one of them is positive and the other is 0, the total value of the leakage current of each phase is calculated as the value of the above formula (2). V and the total value of the value W of the above formula (3),
When the value U of the above equation (1) and the value V of the above equation (2) are both negative or one of them is negative and the other is 0, the total value of the leakage currents of the respective phases is calculated as the value of the above equation (1). The sum of a value U ′ obtained by reversing the sign of U and a value W ′ obtained by reversing the sign of the value W in the above formula (3),
When the value U of the above equation (1) is positive and the value V of the above equation (2) is negative, the total leakage current of each phase is expressed by the value U of the above equation (1) and the above equation (2). The total value with the value V ′ obtained by reversing the sign of the value V,
When the value U of the above equation (1) is negative, the value V of the above equation (2) is positive, and the value W of the above equation (3) is positive, the total value of the leakage current of each phase is expressed by the above equation (2 ) Value V and the value W of equation (3) above,
When the value U of the above equation (1) is negative, the value V of the above equation (2) is positive, and the value W of the above equation (3) is negative, the total leakage current value of each phase is expressed by the above equation (1). ) And the value U ′ obtained by reversing the sign of the value U and the value W ′ obtained by reversing the sign W of the value W in the above formula (3),
2. The leakage current measuring apparatus according to claim 1, wherein each of the total values is a total value of leakage currents flowing through the ground insulation resistance of each phase.
上記零相電流測定手段によって測定される上記対地漏洩電流である零相電流と、三相対地電圧のうちの一相の入力電圧との間の、測定された位相角が0度以上120度未満のときは、上記測定された位相角の値をそのまま位相角θの値とし、上記測定された位相角が120度以上240度未満のときは上記測定された位相角の値から120度を減じた値を位相角θの値とし、上記測定された位相角が240度以上360度未満のとき上記測定された位相角の値から240度を減じた値を位相角θの値とし、対地漏洩電流である零相電流の値をIとしたとき、下記の式(4)に代入して値Dを求め、
D=2I×cos(θ−60度) ・・・(4)
上記式(4)で得た値Dを各相の対地絶縁抵抗に流れる漏れ電流の合計値とすることを特徴とする請求項1記載の漏れ電流測定装置。
The phase angle measured between the zero-phase current, which is the ground leakage current measured by the zero-phase current measuring means, and the input voltage of one phase of the three relative ground voltages is 0 degree or more and less than 120 degrees In this case, the value of the measured phase angle is used as it is as the value of the phase angle θ, and when the measured phase angle is 120 degrees or more and less than 240 degrees, 120 degrees is subtracted from the measured phase angle value. When the measured phase angle is not less than 240 degrees and less than 360 degrees, the value obtained by subtracting 240 degrees from the measured phase angle value is the value of the phase angle θ. When the value of the zero-phase current, which is the current, is I 0 , the value D is obtained by substituting into the following equation (4),
D = 2I 0 × cos (θ−60 degrees) (4)
2. The leakage current measuring apparatus according to claim 1, wherein the value D obtained by the equation (4) is a total value of leakage currents flowing through the ground insulation resistance of each phase.
上記対地漏洩電流である零相電流と、三相対地電圧のうちの一相の入力電圧との間の、測定された位相角をθとするとき、各相の無効成分BR,BS,BTは、下記の式(5)、(6)、(7)によって示され、下記の式(5)、(6)、(7)で算出された上記無効成分BR,BS,BTの値が全て0に近いときには、各相の対地静電容量の値がほぼ等しく、対地絶縁抵抗に流れる漏れ電流の値は0に近いと判定し、且つ上記無効成分BR,BS,BTの値の絶対値のうちの最大の値を上記対地絶縁抵抗に流れる漏れ電流の値の近似値とすることを特徴とする請求項1記載の漏れ電流測定装置。
BR=Iラsinθ ・・・(5)
BS=Iラsin(θ+120度) ・・・(6)
BT=Iラsin(θ+240度) ・・・(7)
When the measured phase angle between the zero-phase current that is the ground leakage current and the input voltage of one phase of the three relative ground voltages is θ 0 , the reactive components BR, BS, BT of each phase Is represented by the following equations (5), (6), (7), and all the values of the invalid components BR, BS, BT calculated by the following equations (5), (6), (7) are: When it is close to 0, the value of the ground capacitance of each phase is substantially equal, the value of the leakage current flowing through the ground insulation resistance is determined to be close to 0, and the absolute values of the values of the ineffective components BR, BS, BT are 2. The leakage current measuring apparatus according to claim 1, wherein the maximum value is an approximate value of the value of the leakage current flowing through the ground insulation resistance.
BR = I 0 lasin θ 0 (5)
BS = I 0 lasin (θ 0 +120 degrees) (6)
BT = I 0 rasin (θ 0 +240 degrees) (7)
上記対地漏洩電流である零相電流の、三相対地電圧のうちの一相の入力電圧と同位相方向の成分の正又は負の測定値をA、上記三相対地電圧うちの測定値Aを測定した同じ相の入力電圧と直角方向の成分の正又は負の測定値をBとしたとき、下記の式(8)〜式(10)にそれぞれ測定値を代入して各式により値U,V,Wを求め、
U=A+B/√3 ・・・(8)
V=−2B/√3 ・・・(9)
W=A−B/√3 ・・・(10)
上記式(8)の値U及び上記式(9)の値Vが共に正又はいずれか一方が正で他方が0のとき、各相の漏れ電流の合計値を、上記式(9)の値Vと、上記式(10)の値Wとの合計値とし、
上記式(8)の値U及び上記式(9)の値Vが共に負又はいずれか一方が負で他方が0のとき、各相の漏れ電流の合計値を、上記式(8)の値Uの正負を逆にした値U’と、上記式(10)の値Wの正負を逆にした値W’との合計値とし、
上記式(8)の値Uが正、上記式(9)の値Vが負のとき、各相の漏れ電流の合計値を、上記式(8)の値Uと、上記式(9)の値Vの正負を逆にした値V’との合計値とし、
上記式(8)の値Uが負、上記式(9)の値Vが正で、且つ上記式(10)の値Wが正のとき 各相の漏洩電流の合計値を、上記式(9)の値Vのと、上記式(10)の値Wとの合計値とし、
上記式(8)の値Uが負、上記式(9)の値Vが正で且つ上記式(10)の値Wが負のとき、各相の漏れ電流の合計値を、上記式(8)の値Uの正負を逆にした値U’と上記式(10)の値Wの正負を逆にした値W’との合計値とし、
上記各合計値を各相の対地絶縁抵抗に流れる漏れ電流の合計値をIgrとし、対地漏洩電流である零相電流の測定値をIとしたとき、下記の式(11)にそれぞれの値を代入して値Mを求め
M=Igr/I ・・・(11)
上記式(11)の値Mが1に近いとき、上記漏れ電流の合計値Igrに近い値、又は上記漏れ電流の合計値Igrに近い値に上限値又は下限値を付した値とし、
上記式(11)の値Mが2に近いとき、上記漏れ電流の合計値Igrに近い値、又は上記漏れ電流の合計値Igrに近い値に上限値又は下限値を付した値とし、
上記式(11)の値Mが√3に近いとき、上記漏れ電流の合計値Igrとして0に近い値、又は0に近い値に上限値又は下限値を付した値とし、
上記式(11)の値Mが2に近い値と√3に近い値との間のとき、√3に近い値と1に近い値との間のとき、上記漏れ電流の合計値Igrに近い値、又は上記漏れ電流の合計値Igrに、上記式(11)の値M、又は上記零相電流の測定値Iの値に応じた上限値又は下限値を付した値とし、
上記各値を各相の対地絶縁抵抗に流れる漏れ電流の合計値Igrとすることを特徴とする請求項1記載の漏れ電流測定装置。
The positive or negative measured value of the component in the same phase direction as the input voltage of one phase of the three relative ground voltages of the zero phase current which is the ground leakage current is A, and the measured value A of the three relative ground voltages is A When the positive or negative measured value of the component in the direction perpendicular to the measured input voltage of the same phase is B, the measured values are substituted into the following formulas (8) to (10), and the values U, Find V, W,
U = A + B / √3 (8)
V = -2B / √3 (9)
W = A−B / √3 (10)
When the value U of the above equation (8) and the value V of the above equation (9) are both positive or one of them is positive and the other is 0, the total value of the leakage current of each phase is calculated as the value of the above equation (9). V and the total value of the value W of the above formula (10),
When the value U of the above equation (8) and the value V of the above equation (9) are both negative or one of them is negative and the other is 0, the total value of the leakage currents of the respective phases is calculated as the value of the above equation (8). The sum of a value U ′ obtained by reversing the sign of U and a value W ′ obtained by reversing the sign of the value W in the above formula (10),
When the value U of the above equation (8) is positive and the value V of the above equation (9) is negative, the total leakage current of each phase is expressed by the value U of the above equation (8) and the above equation (9). The total value with the value V ′ obtained by reversing the sign of the value V,
When the value U of the above equation (8) is negative, the value V of the above equation (9) is positive, and the value W of the above equation (10) is positive, the total value of the leakage current of each phase is expressed by the above equation (9 ) Value V and the value W of equation (10) above,
When the value U of the above equation (8) is negative, the value V of the above equation (9) is positive, and the value W of the above equation (10) is negative, the total value of the leakage current of each phase is expressed by the above equation (8). ) And the value U ′ obtained by reversing the sign of the value U and the value W ′ obtained by reversing the sign W of the value W in the above formula (10),
When the total value of the leakage current flowing through the ground insulation resistance of each phase is Igr and the measured value of the zero-phase current that is the ground leakage current is I 0 , To obtain a value M M = Igr / I 0 (11)
When the value M in the equation (11) is close to 1, the value is close to the total value Igr of the leakage current, or the value close to the total value Igr of the leakage current is added with an upper limit value or a lower limit value.
When the value M in the above formula (11) is close to 2, the value is close to the total value Igr of the leakage current, or the value close to the total value Igr of the leakage current is added with an upper limit value or a lower limit value.
When the value M of the formula (11) is close to √3, the total value Igr of the leakage current is a value close to 0, or a value close to 0 with an upper limit value or a lower limit value,
When the value M in the above equation (11) is between a value close to 2 and a value close to √3, and between a value close to √3 and a value close to 1, it is close to the total value Igr of the leakage current. The value or the total value Igr of the leakage current is a value obtained by attaching an upper limit value or a lower limit value according to the value M of the above formula (11) or the measured value I 0 of the zero-phase current,
2. The leakage current measuring apparatus according to claim 1, wherein each value is a total value Igr of leakage currents flowing through the ground insulation resistance of each phase.
上記演算手段によって演算された各相の対地絶縁抵抗に流れる漏れ電流の合計値Igrが所定の値を超えたときに警報を発する警報手段をさらに備えることを特徴とする請求項1〜5のいずれか1に記載の漏れ電流測定装置。   6. The alarm unit according to claim 1, further comprising an alarm unit that issues an alarm when a total value Igr of leakage currents flowing through the ground insulation resistance of each phase calculated by the arithmetic unit exceeds a predetermined value. The leakage current measuring device according to claim 1. 上記演算手段によって演算された各相の対地絶縁抵抗に流れる漏れ電流の合計値Igrが所定の値を超えたときに電路を遮断する遮断手段をさらに備えることを特徴とする請求項1〜6のいずれか1に記載の漏れ電流測定装置。   The circuit according to any one of claims 1 to 6, further comprising a blocking means for cutting off the electric circuit when the total value Igr of the leakage current flowing through the ground insulation resistance of each phase calculated by the calculation means exceeds a predetermined value. The leakage current measuring device according to any one of the above. 上記信号処理手段は、上記位相差を算出するとともに、上記星形電源の対地電圧値及び上記零相電流値を実効値に変換することを特徴とする請求項1記載の漏れ電流測定装置。   2. The leakage current measuring apparatus according to claim 1, wherein the signal processing means calculates the phase difference and converts the ground voltage value and the zero-phase current value of the star-shaped power source into effective values. 上記電圧測定手段は、測定される電圧が印加されている部分の絶縁物の表面に接触させた電極を通じて、上記電圧を測定装置に入力させる電圧測定手段を備えることを特徴とする請求項1記載の漏れ電流測定装置。   2. The voltage measuring means comprises voltage measuring means for inputting the voltage to a measuring device through an electrode brought into contact with the surface of an insulator to which a voltage to be measured is applied. Leakage current measuring device. 変圧器の低圧側三相巻線を星形に結線した電源から給電される三相4線式又は三相3線式配電方式の三相のうちの一相又は二相、若しくは三相の対地電圧を測定する電圧測定工程と、
上記星形電源から給電される給電線及び負荷設備又はそのいずれか一方を通じて流れる対地漏洩電流である零相電流を測定する零相電流測定工程と、
上記電圧測定工程により測定した一相又は二相、若しくは三相の対地電圧と、上記零相電流測定手段により測定した零相電流との間の位相差を算出する信号処理工程と、
上記信号処理工程により算出した位相差と、上記電圧測定手段によって測定された電圧と、上記零相電流測定手段によって測定された零相電流との値から、上記給電線及び負荷設備又はそのいずれか一方の対地絶縁抵抗に流れる各相の漏れ電流の合計値を演算する工程と、
上記給電線及び負荷設備又はそのいずれか一方の各相の対地静電容量が同一でないときに、上記対地絶縁抵抗に流れる各相の漏れ電流の合計値に合算される、上記各相の対地静電容量が同一でないときに発生する漏れ電流の値が上記合計値に与える影響の程度を演算する演算工程と
を備えることを特徴とする漏れ電流測定方法。
One-phase or two-phase of the three-phase four-wire system or the three-phase three-wire power distribution system that is fed from the power source that connects the transformer's low-voltage three-phase windings in a star shape, or the three-phase ground A voltage measurement process for measuring voltage;
A zero-phase current measurement step of measuring a zero-phase current that is a ground leakage current flowing through the power supply line and / or load facility fed from the star-shaped power source, or any one of them;
A signal processing step for calculating a phase difference between the one-phase or two-phase or three-phase ground voltage measured by the voltage measurement step and the zero-phase current measured by the zero-phase current measurement unit;
From the values of the phase difference calculated by the signal processing step, the voltage measured by the voltage measuring means, and the zero phase current measured by the zero phase current measuring means, the feeder line and / or the load equipment are either A step of calculating a total value of leakage currents of respective phases flowing through one ground insulation resistance;
When the ground capacitance of each phase of the feed line and / or the load facility is not the same, the ground static of each phase is added to the total leakage current of each phase flowing through the ground insulation resistance. A leakage current measuring method comprising: a calculation step of calculating a degree of influence of a leakage current value generated when the electric capacities are not the same on the total value.
JP2008074307A 2008-03-21 2008-03-21 Leakage current measuring device and its measuring method Pending JP2009229211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074307A JP2009229211A (en) 2008-03-21 2008-03-21 Leakage current measuring device and its measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074307A JP2009229211A (en) 2008-03-21 2008-03-21 Leakage current measuring device and its measuring method

Publications (1)

Publication Number Publication Date
JP2009229211A true JP2009229211A (en) 2009-10-08

Family

ID=41244789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074307A Pending JP2009229211A (en) 2008-03-21 2008-03-21 Leakage current measuring device and its measuring method

Country Status (1)

Country Link
JP (1) JP2009229211A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153913A (en) * 2010-01-27 2011-08-11 Patokkusu Japan Kk Leak current measuring device and measurement method in electric apparatus
JP2015064265A (en) * 2013-09-25 2015-04-09 株式会社関電工 Leakage monitoring device and method
WO2016203633A1 (en) * 2015-06-19 2016-12-22 三菱電機株式会社 Leak current detecting device
CN110402396A (en) * 2017-03-16 2019-11-01 头本頼数 Detect leakage current detection device, method and the program of leakage current

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153913A (en) * 2010-01-27 2011-08-11 Patokkusu Japan Kk Leak current measuring device and measurement method in electric apparatus
JP2015064265A (en) * 2013-09-25 2015-04-09 株式会社関電工 Leakage monitoring device and method
WO2016203633A1 (en) * 2015-06-19 2016-12-22 三菱電機株式会社 Leak current detecting device
JPWO2016203633A1 (en) * 2015-06-19 2017-09-14 三菱電機株式会社 Leakage current detector
CN110402396A (en) * 2017-03-16 2019-11-01 头本頼数 Detect leakage current detection device, method and the program of leakage current
EP3598153A4 (en) * 2017-03-16 2020-03-11 Yorikazu Kashiramoto Leakage current detection device, method, and program for detecting leakage current

Similar Documents

Publication Publication Date Title
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
JP2008164374A (en) Device and method for measuring leakage current
JP5544517B2 (en) Leakage current measuring device and measuring method in electrical equipment
JP2009145122A (en) Apparatus for measuring leakage current
KR100876651B1 (en) Method of leakage current break and measurement leakage current use phase calculation
JP2009058234A (en) Leak current measuring instrument and measuring method
JP2009115754A (en) Device and method for measuring leakage current in electric equipment
JP2007225625A (en) Leakage current interrupting device and method
JP2008164375A (en) Device and method for measuring leakage current in electric apparatus
KR20180020976A (en) Method and test device for testing wiring of transducers
JP5380702B2 (en) Leakage current measuring device and measuring method
JP6222722B2 (en) Power and leakage current measuring apparatus and measuring method thereof
JP5743296B1 (en) Leakage location exploration method and apparatus
WO2008069249A1 (en) Leakage current determining apparatus and leakage current determining method
JP5477020B2 (en) Leakage current measuring device and measuring method in electrical equipment
JP2009229211A (en) Leakage current measuring device and its measuring method
KR101238694B1 (en) Digtal relay being able to check and correct miss wiring and method thereof
JP2010060329A (en) Apparatus and method for measuring leakage current of electrical path and electric instrument
JP2023021267A (en) Detection device, method, and program
JP2009058235A (en) Leak current measuring instrument for electric path and electric apparatus, and its method
EP3232207A1 (en) Method and system for measuring imbalances in an electrical grid
JP2013118755A (en) Disconnection detector
Wei et al. Identifying ground-fault locations: Using adjustable speed drives in high-resistance grounded systems
KR101954924B1 (en) Uninterruptible insulation resistance measurement system and method
JPH11287836A (en) Compound measuring device of power supply circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120522