JP2011153913A - Leak current measuring device and measurement method in electric apparatus - Google Patents

Leak current measuring device and measurement method in electric apparatus Download PDF

Info

Publication number
JP2011153913A
JP2011153913A JP2010015544A JP2010015544A JP2011153913A JP 2011153913 A JP2011153913 A JP 2011153913A JP 2010015544 A JP2010015544 A JP 2010015544A JP 2010015544 A JP2010015544 A JP 2010015544A JP 2011153913 A JP2011153913 A JP 2011153913A
Authority
JP
Japan
Prior art keywords
phase
power supply
value
leakage current
switching power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010015544A
Other languages
Japanese (ja)
Other versions
JP5477020B2 (en
Inventor
Katsuji Takeya
勝次 武谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PATOKKUSU JAPAN KK
Original Assignee
PATOKKUSU JAPAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PATOKKUSU JAPAN KK filed Critical PATOKKUSU JAPAN KK
Priority to JP2010015544A priority Critical patent/JP5477020B2/en
Publication of JP2011153913A publication Critical patent/JP2011153913A/en
Application granted granted Critical
Publication of JP5477020B2 publication Critical patent/JP5477020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely detect a leak current Igr flowing through a switching power supply and insulation resistance between a voltage application part of a load device connected to the switching power supply to a grounding part. <P>SOLUTION: A processing calculation part 16 is equipped with: a signal processing part 3; and a calculation part 14. The signal processing part 3 performs signal processing of one of line voltages E<SB>VU</SB>, E<SB>WV</SB>, E<SB>UW</SB>generated between power supply outputs U, V, W of a switching power supply or one of line voltages E<SB>SR</SB>, E<SB>TS</SB>, E<SB>RT</SB>of a distribution power supply or a line voltage of single-phase distribution line, and a zero-phase current I<SB>0</SB>detected by a zero-phase current transformer 9 as a vector sum of currents flowing from the distribution power supply to a load device 5 through the switching power supply, and also performs the signal processing by measuring a phase difference between an input voltage and the zero-phase current I<SB>0</SB>. The calculation part 14 calculates a phase angle θ relative to the input voltage of the zero-phase current I<SB>0</SB>, calculates active and reactive components A and B to the input voltage on the basis of the phase angle θ and the value of the zero-phase current I<SB>0</SB>, and calculates the value of the leak current Igr of the sum of respective phases excluding the sound one phase flowing through the ground leak resistances ru, rv, rw on the basis of the effective value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、配電電源に接続されるインバータなどのスイッチング電源及びこのスイッチング電源に接続される負荷装置の電圧印加部分から接地部分へ流れる漏洩電流を測定する漏洩電流測定装置及び測定方法に関する。   The present invention relates to a switching power supply such as an inverter connected to a distribution power supply and a leakage current measuring apparatus and a measuring method for measuring a leakage current flowing from a voltage application portion to a ground portion of a load device connected to the switching power supply.

従来、電路及び電気機器の絶縁状態を調べる方法として、被測定部分を停電させて、絶縁抵抗計で測定する方法が広く用いられている。このような方法は、停電が許されない配電線や連続操業の工場等に適用することができない。   2. Description of the Related Art Conventionally, as a method for examining the insulation state of an electric circuit and an electrical device, a method in which a part to be measured is cut off and measured with an insulation resistance meter has been widely used. Such a method cannot be applied to distribution lines where continuous blackouts are not allowed, continuous operation factories, and the like.

特に、インバータなどのスイッチング電源で駆動される電動機、蛍光灯等の負荷装置における漏洩電流の測定については、電子素子で構成されるインバータなどのスイッチング電源を絶縁抵抗測定時に印加される高電圧から保護するため負荷装置のみを切り離して測定する必要があり、停電手続きや、その結線の開放、再接続などに多くの手間と時間とを必要としている。これにより、連続操業の工場等ではラインの停止時間が制限されるので、絶縁抵抗計の適用が制限される等の問題点がある。   In particular, when measuring leakage current in load devices such as electric motors and fluorescent lamps driven by switching power supplies such as inverters, switching power supplies such as inverters composed of electronic elements are protected from high voltages applied during insulation resistance measurement. Therefore, it is necessary to measure only the load device, and much time and effort are required for the power failure procedure, the opening of the connection, and the reconnection. As a result, the line stop time is limited in a continuous operation factory or the like, and there is a problem that application of the insulation resistance meter is limited.

そこで、電源に接続された負荷装置を停電させることなく、活線のまま電路及び負荷装置の絶縁状態を調べる技術が提案され、用いられている。この種の技術として、零相変流器を用いて、電路及び負荷装置の電圧印加部分から接地部分へ流れる電流である零相電流I0を検知するようにしたものがある。この零相変流器によって検出される零相電流I0は、電路及び負荷装置の電圧印加部分と接地部分間の絶縁抵抗を介して流れる漏洩電流Igrと、この電圧印加部分と接地部分間に通常存在する対地静電容量を介して流れる漏洩電流Igcとのベクトル和で構成されている。 Therefore, a technique for examining the insulation state of the electric circuit and the load device without changing the power supply connected to the power source without causing a power failure has been proposed and used. As this type of technology, there is a technique in which a zero-phase current transformer is used to detect a zero-phase current I 0 that is a current flowing from the voltage application portion of the electric circuit and the load device to the ground portion. The zero-phase current I 0 detected by the zero-phase current transformer is a leakage current Igr that flows through an insulation resistance between the voltage application portion and the ground portion of the circuit and load device, and between the voltage application portion and the ground portion. It consists of a vector sum with a leakage current Igc that flows through a ground capacitance that normally exists.

これらの技術のうち、現在実用化されている200V級三相3線のうちの1線が接地されている配電方式で実用化されている漏洩電流Igrを測定する技術は、一般の配電系統の計測は可能であるがスイッチング電源及びその負荷装置内の計測は不可能とされている。また、零相電流I0のみを検出する方式は、電圧印加部分と接地部分間に通常存在する対地静電容量を介して流れる漏洩電流Igcが大きい場合には実際のIgrの値に対して過大な測定値を示す。 Among these technologies, the technology for measuring the leakage current Igr that has been put into practical use in the power distribution system in which one of the 200 V class three-phase three wires currently in practical use is grounded is a common power distribution system. Although measurement is possible, measurement in a switching power supply and its load device is impossible. Further, the method of detecting only the zero-phase current I 0 is excessive with respect to the actual value of Igr when the leakage current Igc that flows through the ground capacitance that normally exists between the voltage application portion and the ground portion is large. The measured value is shown.

これは、インバータなどのスイッチング電源で駆動される負荷装置にあっては、その機器に印加される電圧及びその周波数が変化し、三相配電変圧器の配電電源側の3組の巻線を三角形又は2組の巻き線をV形に結線しその巻き線の端又は中点を接地した、各配電線の対地電圧が等しくない三相配電線又は単相配電線に接続されるスイッチング電源が出力する対地電圧は、前記変化周波数の電圧のほか、各配電線の対地電圧が等しくない状態が原因となって発生する配電線の周波数の電圧や高調波成分の電圧を含む複雑な電圧波形となり、この対地電圧に起因する零相電流I0は複雑な波形になる。また、これらスイッチング電源や負荷装置の対地絶縁抵抗を流れる漏洩電流Igrは、例えば生産現場に多数使用されるロボットや専用機の電動機は比較的容量が小さいので、数mA以下である場合が多く、スイッチング電源やその負荷装置の漏洩電流の計測を困難なものにしている。 This is because in a load device driven by a switching power supply such as an inverter, the voltage applied to the device and its frequency change, and three sets of windings on the distribution power supply side of the three-phase distribution transformer are triangular. Or, two sets of windings are connected in a V shape and the ends or middle points of the windings are grounded, and the ground voltage of each distribution line is not equal. In addition to the voltage of the change frequency, the voltage becomes a complex voltage waveform including the voltage of the distribution line frequency and the harmonic component voltage generated due to the state where the ground voltage of each distribution line is not equal. The zero-phase current I 0 resulting from the voltage has a complicated waveform. In addition, the leakage current Igr flowing through the ground insulation resistance of these switching power supplies and load devices is often less than several mA because, for example, many robots and dedicated motors used in production sites have relatively small capacities. It makes measurement of leakage current of switching power supply and its load device difficult.

また、絶縁状態を測定する他の方法として、配電線に低周波の低電圧を供給して漏洩電流Igrを測定する方法がある。この方法も、供給された低周波の低電圧がスイッチング電源の整流部分で吸収されてしまい、スイッチング電源やその負荷装置の計測はできない。   As another method of measuring the insulation state, there is a method of measuring the leakage current Igr by supplying a low voltage with a low frequency to the distribution line. Also in this method, the supplied low frequency low voltage is absorbed by the rectification portion of the switching power supply, and the switching power supply and its load device cannot be measured.

なお、この種の漏洩電流計測の先行技術として、特開平3−179271号公報(特許文献1)や、特開2002−125313号公報(特許文献2)に記載されるものがある。   In addition, there exist some which are described in Unexamined-Japanese-Patent No. 3-179271 (patent document 1) and Unexamined-Japanese-Patent No. 2002-125313 (patent document 2) as a prior art of this kind of leakage current measurement.

特開平3−179271号公報JP-A-3-179271 特開2002−125313号公報JP 2002-125313 A

本発明は、変圧器の二次側巻線を星形に結線した配電電源に接続されるインバータなどのスイッチング電源及びスイッチング電源から給電される負荷装置の電圧印加部分から接地部分へ対地絶縁抵抗を通じて流れる漏洩電流Igrを運転状態のままで検出することができる漏洩電流測定装置及びその測定方法を提供することを目的とする。   The present invention provides a switching power source such as an inverter connected to a distribution power source in which a secondary winding of a transformer is connected in a star shape and a load device fed from the switching power source to a grounding portion through a ground insulation resistance. It is an object of the present invention to provide a leakage current measuring device and a method for measuring the leakage current that can detect a flowing leakage current Igr in an operating state.

ところで、スイッチング電源は、負荷装置を動作させるための、変化する電圧及び周波数(以下運転周波数と称する)を発生する。前記スイッチング電源の端子間の線間電圧は、ほぼ正弦波形であるが、対地電圧は多くの高調波を含み、特にスイッチング電源に電力を供給する配電線の対地電圧が不同である、例えば中性点と三相端子のいずれかから給電される単相2線配電線に接続されるスイッチング電源の対地電圧には運転周波数の電圧に加え配電電源周波数(以下商用周波数と称する)の電圧及び高調波電圧も含んでおり、これらの対地電圧に起因する対地漏洩電流I0の波形も複雑な形状を示し、従来の方法では、スイッチング電源及び負荷装置の電圧印加部分と接地部分間の絶縁抵抗を介して流れる漏洩電流Igrの測定は不可能であるとされている。 By the way, the switching power supply generates a changing voltage and frequency (hereinafter referred to as an operation frequency) for operating the load device. The line voltage between the terminals of the switching power supply is substantially sinusoidal, but the ground voltage includes many harmonics, and in particular, the ground voltage of the distribution line supplying power to the switching power supply is not the same, for example, neutral The voltage to the ground of the switching power supply connected to the single-phase two-wire distribution line fed from either the point or the three-phase terminal includes the voltage of the distribution power supply frequency (hereinafter referred to as the commercial frequency) and harmonics in addition to the voltage of the operating frequency The voltage of the ground leakage current I 0 caused by these ground voltages also shows a complicated shape. In the conventional method, the switching power supply and the load device are connected via the insulation resistance between the voltage application portion and the ground portion. It is considered impossible to measure the leakage current Igr that flows through.

そこで、本発明の技術課題は、この複雑な種々な電圧及び漏洩電流I0の挙動を明確にし、その測定装置及び測定方法を具体化させ実用化することにある。 Therefore, the technical problem of the present invention is to clarify the behaviors of these complicated various voltages and leakage currents I 0 , and to make the measuring apparatus and measuring method concrete and put them into practical use.

また、本発明の技術課題は、測定のための電圧要素の入力において、スイッチング電源が出力する高調波を多く含む各相の対地電圧を順次開閉器で切替えて入力する煩雑な方式を採用することなく、スイッチング電源の入力側又は出力側の、波形が殆ど正弦波に近い線間電圧のうちの1つの線間電圧のみを入力する方式を採用し、配電電源からスイッチング電源及びその負荷装置、接地線を貫流する漏洩電流を、その貫流するいずれの部分でも計測が可能な漏洩電流測定装置及び測定方法を提供することにある。   In addition, the technical problem of the present invention is to adopt a complicated method in which the ground voltage of each phase including a large amount of harmonics output from the switching power source is sequentially switched and input by a switch when inputting voltage elements for measurement. Adopting a method of inputting only one line voltage of the line voltage on the input side or output side of the switching power supply whose waveform is almost sine wave, from the distribution power supply to the switching power supply and its load device, grounding It is an object of the present invention to provide a leakage current measuring device and a measuring method capable of measuring a leakage current flowing through a wire at any portion flowing through the wire.

さらに具体的に本発明の技術課題を説明すると、三相で対地電圧が等しく、対地静電容量が等しい三相配電線に接続される従来用いられている漏電遮断器等の漏洩電流測定装置では、その負荷装置のある1相のみに、対地絶縁抵抗に流れる漏洩電流Igrが存在するとき、漏洩電流Igrの値として零相電流I0の値を用いることができるが、例えば、同じ値の漏洩電流Igrが2つの相に発生したときには、2つの相の漏洩電流の位相が120度異なっているため、2倍の値を示さず、ベクトル合成された1相分の漏洩電流Igrの値しか示さない。また、この電気系統に接続される電気機器が、3線間にまたがって接続され、例えば電動機の巻線の2相間の中央点が地絡したとき、この中央点の対地電圧が三相端子U,V,Wの対地電圧の半分の値となるので、漏洩電流Igrの値も同一の対地漏洩抵抗を通じて三相端子で地絡した値の半分になるため、その大きさで故障程度を判断する漏洩電流測定装置にあっては、対地漏洩抵抗に対して、絶縁状態が良いという評価をしたことになる。その結果、絶縁状態の判断を誤ることになり、絶縁に対する対策を怠れば重大故障に発展する可能性がある。 More specifically, the technical problem of the present invention will be described. In a leakage current measuring apparatus such as a leakage breaker conventionally used connected to a three-phase distribution line in which the ground voltage is equal in three phases and the ground capacitance is equal, When the leakage current Igr flowing through the ground insulation resistance exists only in one phase of the load device, the value of the zero-phase current I 0 can be used as the value of the leakage current Igr. When Igr is generated in two phases, the leakage currents of the two phases are 120 degrees different from each other, so the value is not doubled and only the value of the leakage current Igr for one phase synthesized by the vector is shown. . Also, when the electrical equipment connected to this electrical system is connected across three wires, for example, when the center point between the two phases of the winding of the motor is grounded, the ground voltage at this center point is the three-phase terminal U , V and W are half of the ground voltage, and the leakage current Igr is also half of the ground fault at the three-phase terminal through the same ground leakage resistance. In the leakage current measuring apparatus, it was evaluated that the insulation state was good against the ground leakage resistance. As a result, the determination of the insulation state is wrong, and failure to take measures against insulation can lead to a serious failure.

そこで、本発明の技術課題は、負荷装置の2相又は相間に発生した漏洩電流Igrの値を過小に評価している従来用いられている漏電遮断器等の漏洩電流測定装置が有する問題点を解決し、対地漏洩抵抗Igrの値を実体の値として正確に測定可能な漏洩電流測定装置及び測定方法を提供することにある。   Therefore, the technical problem of the present invention is that the leakage current measuring device such as a leakage breaker that has been used in the past, which underestimates the value of the leakage current Igr generated between the two phases of the load device or the phase, has a problem. It is an object of the present invention to provide a leakage current measuring apparatus and a measuring method capable of accurately measuring the value of ground leakage resistance Igr as an actual value.

上述したような技術課題を解決するために提案される本発明は、変圧器の二次側巻線を星形に結線し、三相の電圧端子をR,S,Tとし、星形結線の接地された中性点をNとする電源から給電される三相4線式又は三相3線式の配電線又は上記中性点Nと端子R,S,Tのいずれかから給電される単相2線配電線に接続されるスイッチング電源及び前記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrを測定する漏洩電流測定装置において、上記二次側巻線の各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は中性点Nと各端子R,S,T間に発生する単相電圧ER,ES,ET及び上記スイッチング電源の各出力端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを測定する電圧検出手段と、各配電線及びスイッチング電源と前記スイッチング電源に接続される負荷装置に流れる電流のベクトル和である零相電流I0を検出する零相電流検出手段と、上記電圧検出手段によって検出された上記線間電圧ESR,ETS,ERT又は単相電圧ER,ES,ET及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかが入力され、上記入力されたいずれかの線間電圧ESR,ETS,ERT又は単相電圧ER,ES,ET及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧とし、この基準電圧と上記零相電流I0との位相を比較する位相比較手段と、上記基準電圧に対して、上記零相電流I0を同相の有効成分Aと、これと直角の位相差を有する無効成分Bに分離した計測値を求め、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は単相電圧ER,ES,ET及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧としたときに得られる上記零相電流I0の有効成分Aとこれと直角の位相差を有する無効成分Bとに基づいて、U相、V相、W相のうちの2相に発生する上記漏洩電流Igrの合計値、U相、V相、W相のうちの1相に発生する上記漏洩電流Igrの値、U相、V相、W相のうちの2相間若しくは三相間に接続される負荷装置の内部で発生する上記漏洩電流Igrの値を演算する演算手段とを備える。 The present invention proposed to solve the above technical problem is that the secondary side winding of the transformer is connected in a star shape, the three-phase voltage terminals are R, S, T, and the star connection A three-phase four-wire system or a three-phase three-wire distribution line fed from a power source having a grounded neutral point N or a single unit fed from either the neutral point N and the terminals R, S, and T In the leakage current measuring device for measuring the leakage current Igr caused by the ground insulation resistance of the switching power supply connected to the phase 2-wire distribution line and the load device connected to the switching power supply, each terminal R of the secondary winding , S, T, line voltages E SR , E TS , E RT or neutral point N and single-phase voltages E R , E S , E T generated between the terminals R, S, T and the above switching each output terminal U of the power supply, V, line voltage generated between W E VU, E WV, voltage measure either E UW And detecting means, a zero-phase current detecting means for detecting a zero-phase current I 0 is the vector sum of the currents flowing through the distribution line and the load connected to the switching power supply and the switching power supply, detected by said voltage detecting means The line voltages E SR , E TS , E RT or the single-phase voltages E R , E S , E T and the line voltages E VU , E WV , E generated between the switching power supply terminals U, V, W Any one of UW is input, and any of the input line voltages E SR , E TS , E RT or single-phase voltages E R , E S , E T and between the switching power supply terminals U, V, W The phase comparison means for comparing any of the line voltages E VU , E WV , E UW generated at the reference voltage and comparing the phase of the reference voltage with the zero-phase current I 0 , The above zero-phase current I0 is calculated as follows: Reactive component B to determine the separate measured values, the respective terminals R, S, line voltage generated between T E SR, E TS, E RT or single-phase voltage E R, E S, E T and the switching to The effective component A of the zero-phase current I 0 obtained when any of the line voltages E VU , E WV , E UW generated between the power terminals U, V, W is used as a reference voltage and Based on the reactive component B having a phase difference, the total value of the leakage current Igr generated in two phases of the U phase, the V phase, and the W phase, and one phase of the U phase, the V phase, and the W phase Computation means for computing the value of the leakage current Igr generated and the value of the leakage current Igr generated inside the load device connected between two or three phases of the U phase, V phase and W phase. .

そして、上記スイッチング電源の出力上記各端子U,V,W間に発生する線間電圧EVU,EWV,EUW又は上記配電電源とスイッチング電源とを接続する三相給電線R、S、Tの線間電圧ESR,ETS,ERTのいずれか又は単相配電線の線間電圧を基準電圧とするときには、この基準電圧と上記零相電流I0との位相比較が行われ、上記漏洩電流Igrの演算が行われる。 The output of the switching power supply The line voltages E VU , E WV , E UW generated between the terminals U, V, W or the three-phase power supply lines R, S, T connecting the distribution power supply and the switching power supply When any one of the line voltages E SR , E TS , E RT or the line voltage of the single-phase distribution line is used as a reference voltage, a phase comparison between the reference voltage and the zero-phase current I 0 is performed, and the leakage Calculation of the current Igr is performed.

ここで、上記演算手段は、より具体的には、上記各端子U,V,W間に発生する線間電圧EVU,EWV,EUW又は上記各給電線R、S、Tの線間電圧ESR,ETS,ERTのいずれか又は単相配電線の線間電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値又は最大の値の倍数を、上記スイッチング電源を含む上記U,V,Wの各端子に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrとして演算する。 More specifically, the calculation means is more specifically a line voltage E VU , E WV , E UW generated between the terminals U, V, W or a line between the feed lines R, S, T. When one of the voltages E SR , E TS , E RT or the line voltage of the single-phase distribution line is used as a reference voltage, the value of the formula (B−√3A), the value of the formula (B + √3A), the formula (−2B ) Is calculated as the leakage current Igr caused by the ground insulation resistance of the load device connected to the U, V, and W terminals including the switching power supply. .

本発明に係る漏洩電流測定装置は、表示手段を備え、上記演算手段によって演算された結果を上記表示手段に表示して告知することが望ましい。   The leakage current measuring apparatus according to the present invention preferably includes display means and displays the result calculated by the calculation means on the display means for notification.

さらに、本発明に係る漏洩電流測定装置は、警報手段を備え、上記演算手段において求められる上記漏洩電流Igrの値が所定の値を超えたときに上記警報手段より警報を発することにより、漏洩電流Igrの値が所定の値を超えたことを告知することができる。   Furthermore, the leakage current measuring apparatus according to the present invention includes an alarm unit, and when the value of the leakage current Igr obtained by the calculation unit exceeds a predetermined value, an alarm is issued from the alarm unit, whereby the leakage current It can be notified that the value of Igr has exceeded a predetermined value.

さらにまた、本発明に係る漏洩電流測定装置は、さらに遮断手段を備えることにより、上記演算手段において求められる上記漏洩電流Igrの値が所定の値を超えたときに上記遮断手段により電路を遮断することを可能とする。   Furthermore, the leakage current measuring apparatus according to the present invention further includes a breaking means, and when the value of the leakage current Igr calculated by the computing means exceeds a predetermined value, the breaking circuit cuts off the electric circuit. Make it possible.

また、本発明は、変圧器の二次側巻線を星形に結線し、三相の電圧端子をR,S,Tとし、星形結線の接地された中性点をNとする電源から給電される三相4線式又は三相3線式の配電線又は上記中性点Nと端子R,S,Tのいずれかから給電される単相2線配電線に接続されるスイッチング電源及び前記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrを測定する漏洩電流測定方法において、上記二次側巻線の各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は中性点Nと各端子R,S,T間に発生する単相電圧ER,ES,ET及び上記スイッチング電源の各出力端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを検出する電圧検出工程と、各配電線及びスイッチング電源と前記スイッチング電源に接続される負荷装置に流れる電流のベクトル和である零相電流I0を検出する零相電流検出工程と、上記電圧検出手段によって検出された上記線間電圧ESR,ETS,ERT又は単相電圧ER,ES,ET及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかが入力され、上記入力されたいずれかの線間電圧ESR,ETS,ERT又は単相電圧ER,ES,ET及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧とし、この基準電圧と上記零相電流I0との位相を比較する位相比較工程と、上記基準電圧に対して、上記零相電流I0を同相の有効成分Aと、これと直角の位相差を有する無効成分Bに分離した計測値を求め、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は単相電圧ER,ES,ET及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧としたときに得られる上記零相電流I0の有効成分Aとこれと直角の位相差を有する無効成分Bとに基づいて、U相、V相、W相のうちの2相に発生する上記漏洩電流Igrの合計値、U相、V相、W相のうちの1相に発生する上記漏洩電流Igrの値、U相、V相、W相のうちの2相間若しくは三相間に接続される負荷装置の内部で発生する上記漏洩電流Igrの値を演算する演算工程とを備える。 The present invention also provides a power supply in which the secondary winding of the transformer is connected in a star shape, the three-phase voltage terminals are R, S, T, and the neutral point of the star connection is N. A switching power supply connected to a three-phase four-wire distribution line or a three-phase three-wire distribution line to be fed or a single-phase two-line distribution line fed from one of the neutral points N and terminals R, S, and T In the leakage current measuring method for measuring the leakage current Igr caused by the ground insulation resistance of the load device connected to the switching power supply, a line voltage E generated between the terminals R, S, and T of the secondary winding is described. SR , E TS , E RT or neutral point N and the single-phase voltages E R , E S , E T generated between the terminals R, S, T and the output terminals U, V, W of the switching power supply line voltage E VU generated, E WV, a voltage detection step for detecting either the E UW, and the distribution line and the switching power supply Serial switching and zero-phase current detection step power is the connection for detecting a zero-phase current I 0 is the vector sum of the currents flowing through the load device, the voltage detected by the detecting means the above line voltage E SR, E TS, ERT or single-phase voltages E R , E S , E T and any of line voltages E VU , E WV , E UW generated between the switching power supply terminals U, V, W are input and input as described above. One of the line voltages E SR , E TS , E RT or the single-phase voltages E R , E S , E T and the line voltages E VU , E WV generated between the switching power supply terminals U, V, W , EUW as a reference voltage, a phase comparison step of comparing the phase of this reference voltage with the zero-phase current I 0, and the zero-phase current I 0 with respect to the reference voltage And the measurement value separated into the reactive component B having a phase difference perpendicular to this, Each terminal R, S, line voltage generated between T E SR, E TS, the line generated E RT or single-phase voltage E R, E S, E T and the switching power supply the terminals U, V, between W Based on the effective component A of the zero-phase current I 0 obtained when any of the inter-voltages E VU , E WV , and E UW is used as a reference voltage, and the reactive component B having a phase difference perpendicular thereto, U The total value of the leakage current Igr generated in two of the phase, V phase, and W phase, the value of the leakage current Igr generated in one of the U phase, V phase, and W phase, U phase, V And a calculation step of calculating the value of the leakage current Igr generated in the load device connected between two or three phases of the W phase and the W phase.

そして、上記スイッチング電源の出力上記各端子U,V,W間に発生する線間電圧EVU,EWV,EUW又は上記配電電源とスイッチング電源とを接続する三相給電線R,S,Tの線間電圧ESR,ETS,ERTのいずれか又は単相配電線の線間電圧を基準電圧とするときには、この基準電圧と上記零相電流I0との位相比較が行われ、上記漏洩電流Igrの演算が行われる。 The output of the switching power supply The line voltages E VU , E WV , E UW generated between the terminals U, V, W or the three-phase power supply lines R, S, T connecting the distribution power supply and the switching power supply When any one of the line voltages E SR , E TS , E RT or the line voltage of the single-phase distribution line is used as a reference voltage, a phase comparison between the reference voltage and the zero-phase current I 0 is performed, and the leakage Calculation of the current Igr is performed.

ここで、上記演算工程は、より具体的には、上記各端子U,V,W間に発生する線間電圧EVU,EWV,EUW又は上記各給電線R、S、Tの線間電圧ESR,ETS,ERTのいずれか又は単相配電線の線間電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値又は最大の値の倍数を、上記スイッチング電源を含む上記U,V,Wの各端子に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrとして演算する。 In this case, the calculation step more specifically includes line voltages E VU , E WV , E UW generated between the terminals U, V, W, or between the power supply lines R, S, T. When one of the voltages E SR , E TS , E RT or the line voltage of the single-phase distribution line is used as a reference voltage, the value of the formula (B−√3A), the value of the formula (B + √3A), the formula (−2B ) Is calculated as the leakage current Igr caused by the ground insulation resistance of the load device connected to the U, V, and W terminals including the switching power supply. .

上述したように、本発明は、従来不可能とされたスイッチング電源及びスイッチング電源に接続される負荷装置の電圧印加部分と接地部分間の絶縁抵抗を介して流れる漏洩電流Igrの測定を可能にし、しかも国際的に標準の配電方式となっている三相4線星形配電方式の三相及び単相配電線に接続されるスイッチング電源及びその負荷装置の絶縁監視を可能とする。   As described above, the present invention makes it possible to measure the leakage current Igr flowing through the insulation resistance between the voltage application portion and the ground portion of the load device connected to the switching power supply and the switching power supply, which has been impossible in the past, Moreover, it is possible to monitor the insulation of the switching power supply and its load device connected to the three-phase and single-phase distribution lines of the three-phase four-wire star distribution system, which is an internationally standard distribution system.

さらに、従来用いられている漏洩電流Igrの値を零相電流I0の値として検出して電路を遮断する遮断装置においては、電路や負荷装置の電圧印加部分と接地部分との間に存在する対地静電容量の増加及び不均一化、並びにスイッチング電源の容量の増加による零相電流I0中に含まれる高調波成分の増大等に起因する漏洩電流Ioの増加を見込んで、零相電流I0を検知して動作する漏電遮断器の故障動作電流を過大な値、例えば数百mAに設定していたが、本発明においては、上述したような漏洩電流Igrの検出が可能となり、故障動作電流値設定時に、この数値を反映させた、例えば数mAに設定を行うことで、不動作範囲の過大な故障電流のため事故が拡大する前に漏電遮断器を動作させることができるので、より安全に、電源系統や負荷の保護が可能になり、不測の漏電事故を少なくすることができる。 Furthermore, in the interruption device that detects the leakage current Igr value that has been conventionally used as the value of the zero-phase current I 0 and interrupts the electric circuit, it exists between the voltage application part and the grounding part of the electric circuit or load device. In anticipation of an increase in leakage current Io due to an increase in non-uniform capacitance to ground and an increase in harmonic components contained in the zero-phase current I 0 due to an increase in the capacity of the switching power supply, the zero-phase current I The fault operating current of the earth leakage circuit breaker that operates by detecting 0 is set to an excessive value, for example, several hundred mA. However, in the present invention, the leakage current Igr as described above can be detected, and the fault operation is performed. Reflecting this value when setting the current value, for example, by setting it to several mA, the earth leakage breaker can be operated before the accident expands due to an excessive failure current in the non-operation range. Safely, power system and Allowing protection of the load is, it is possible to reduce the accidental leakage accident.

また、本発明は、変圧器の二次側巻線を星形に結線した配電電源又は単相配電電源に接続されるスイッチング電源及びその負荷装置の対地絶縁抵抗に起因する漏洩電流Igrを測定する際、電圧入力のための接地端子を必要としない線間電圧を入力して漏洩電流Igrの測定が可能であるので、接地端子が欠如している配電系統の末端部分でも確実な計測が可能である。   In addition, the present invention measures the leakage current Igr caused by the grounding resistance of the switching power supply and its load device connected to the distribution power supply or the single-phase distribution power supply in which the secondary winding of the transformer is connected in a star shape. At this time, since it is possible to measure the leakage current Igr by inputting a line voltage that does not require a ground terminal for voltage input, it is possible to reliably measure even the end portion of the distribution system lacking the ground terminal. is there.

さらに、本発明に係る漏洩電流測定装置又は方法を採用することにより、スイッチング電源へ電力を供給する配電線の零相電流及び線間電圧を入力することで、スイッチング電源及びその負荷装置の漏洩電流Igrの計測が可能となり、スイッチング電源へ電力を供給する配電線の零相電流及び線間電圧を入力する場所より末端側に並列に接続される複数台のスイッチング電源及びその負荷装置の一括監視が可能である。   Further, by adopting the leakage current measuring device or method according to the present invention, the leakage current of the switching power supply and its load device can be input by inputting the zero-phase current and the line voltage of the distribution line supplying power to the switching power supply. Igr can be measured, and multiple switching power supplies connected in parallel to the terminal side from the place where the zero-phase current and line voltage of the distribution line supplying power to the switching power supply are input, and the collective monitoring of the load devices Is possible.

特に、本発明に係る漏洩電流測定装置及び方法は、複数台のサーボモータで駆動されるロボットなど自動装置全体の微弱な漏電の一括監視や、ビル内のインバータ空調機等負荷装置の一括監視、複数個のインバータ点灯の蛍光灯を一括監視する等の用途に適用して好適である。   In particular, the leakage current measuring apparatus and method according to the present invention includes a collective monitoring of weak leakage of an entire automatic device such as a robot driven by a plurality of servo motors, a collective monitoring of a load device such as an inverter air conditioner in a building, The present invention is suitable for applications such as batch monitoring of a plurality of inverter-lit fluorescent lamps.

そして、前述のスイッチング電源の負荷装置のうち、2相間若しくは三相間に接続される負荷の内部の漏電故障の際に発生する地絡電流の測定値は従来過小な値として測定されていたが、これを対地絶縁抵抗に起因する漏洩電流Igrの値に相当した適正な値として測定するので、高い信頼性をもって対地絶縁抵抗に起因する漏洩電流Igrを測定でき、漏電事故をも高い信頼性をもって防止することが可能となる。   And, among the load devices of the switching power supply described above, the measured value of the ground fault current that occurs in the case of a leakage failure inside the load connected between two or three phases has been measured as an excessively small value in the past. Since this is measured as an appropriate value corresponding to the value of the leakage current Igr caused by the ground insulation resistance, the leakage current Igr caused by the ground insulation resistance can be measured with high reliability, and a leakage accident can be prevented with high reliability. It becomes possible to do.

さらにまた、本発明は、演算手段によって演算された結果を表示手段に表示するようにしているので、スイッチング電源の負荷の状態を常時監視することができる。   Furthermore, according to the present invention, since the result calculated by the calculation means is displayed on the display means, the load state of the switching power supply can be constantly monitored.

さらにまた、本発明は、警報手段を備えることにより、漏洩電流Igrが異常状態になったことを音などの警報により告知することができるので、事故を未然に防止することができる。   Furthermore, according to the present invention, since the alarm means is provided, the fact that the leakage current Igr is in an abnormal state can be notified by an alarm such as a sound, so that an accident can be prevented.

変圧器の二次側巻線を星形に結線した三相星形電源に接続されるスイッチング電源、この電源に接続された負荷装置の漏洩電流Igrの測定に本発明に係る漏れ電流測定装置を適用した構成例を示す概略系統図である。A switching power source connected to a three-phase star power source in which the secondary winding of the transformer is connected in a star shape, and a leakage current measuring device according to the present invention for measuring a leakage current Igr of a load device connected to the power source. It is a schematic system diagram which shows the applied structural example. 三相4線式星形電源に接続される三相配電線用スイッチング電源、及び単相配電線用スイッチング電源、これらの電源に接続された負荷装置の漏洩電流Igrの測定に本発明に係る漏れ電流測定装置を適用した構成例を示す概略系統図である。Leakage current measurement according to the present invention for measuring leakage current Igr of a switching power supply for a three-phase distribution line connected to a three-phase four-wire star power supply, a switching power supply for a single-phase distribution line, and a load device connected to these power supplies It is a schematic system diagram which shows the structural example to which an apparatus is applied. 三相星形電源源系統の対地電圧ER,ES,ET、線間電圧ESR,ETS,ERTと中性点N、対地電圧ERを単相配電電源として利用したときの電気的中性点Ns、及びその対地電圧ENs、それに接地極Gとの関係を示すベクトル図である。When the ground voltage E R , E S , E T , line voltage E SR , E TS , E RT and neutral point N, ground voltage E R of the three-phase star power source system are used as a single-phase distribution power source FIG. 4 is a vector diagram showing a relationship between an electrical neutral point Ns, its ground voltage E Ns , and a ground pole G. 星形電源系統の単相配電線N,R相に接続されたスイッチング電源が発生する運転相電圧EU,EV、EWと電気的中性点Ne、接地極G、それに電気的中性点Neの接地極Gと同電位の中性点Nからの電位ENsの関係を示すベクトル図である。Operating phase voltages E U , E V , E W generated by the switching power supply connected to the single-phase distribution line N, R phase of the star-shaped power supply system, the electrical neutral point Ne, the grounding pole G, and the electrical neutral point FIG. 6 is a vector diagram showing the relationship between a ground point G of Ne and a potential E Ns from a neutral point N of the same potential. スイッチング電源が発生する運転相電圧EU,EV、EW、それらの電気的中性点Neに対する線間電圧EVU,EWV,EUW、電気的中性点Neの接地極Gに対する電位En及び負荷装置の関係を示す等価回路図である。The operating phase voltages E U , E V , E W generated by the switching power supply, the line voltages E VU , E WV , E UW with respect to their electrical neutral point Ne, and the potential with respect to the ground electrode G of the electrical neutral point Ne. It is an equivalent circuit diagram which shows the relationship between En and a load apparatus. スイッチング電源の電気的中性点Neに対する各相電圧EU,EV、EW、線間電圧EVU,EWV,EUW、電気的中性点Neの接地極Gに対する電位En、及び負荷中央点Mの電気的中性点Neに対する電圧ENMの関係を示すベクトル図である。Phase voltages E U , E V , E W , line voltages E VU , E WV , E UW , electric potential En with respect to the ground pole G of the electric neutral point Ne, and load it is a vector diagram showing the relationship between the voltage E NM for electrically neutral Ne of the central point M. スイッチング電源出力端子の対地電圧波形であって、商用周波数が60Hzで、運転周波数が20〜50Hzの例を示す図である。FIG. 6 is a diagram illustrating an example of a ground voltage waveform of a switching power supply output terminal, in which a commercial frequency is 60 Hz and an operation frequency is 20 to 50 Hz. 零相電流I0、基準電圧として入力される線間電圧ESR,ETS,ERT、線間電圧EVU,EWV,EUW、それに単相電圧ER,ES,ET、位相角θ、零相電流I0の有効成分A、零相電流I0の無効成分Bの関係を示すベクトル図である。Zero-phase current I 0 , line voltages E SR , E TS , E RT input as reference voltages, line voltages E VU , E WV , E UW , and single-phase voltages E R , E S , E T , phase angle theta, the active ingredient a of the zero-phase current I 0, is a vector diagram showing the relationship between the reactive component B of the zero-phase current I 0. ある時点で位相差がθの入力電圧Eと零相電流I0の波形と、位相判定のためのゼロクロッシング回路の出力波形の関係を示す図である。The waveform of the input voltage E and the zero-phase current I 0 of the phase difference θ at some point, is a diagram showing the relationship between the output waveform of the zero crossing circuit for phase determination. 本発明に係る漏れ電流測定装置を構成する信号処理部の詳細を示すブロック図である。It is a block diagram which shows the detail of the signal processing part which comprises the leakage current measuring apparatus which concerns on this invention. 複数のスイッチング電源及びその負荷装置を1台の本発明に係る漏れ電流測定装置で監視し、遮断器と警報器を制御する構成を備えた本発明に係る漏洩電流測定装置を示す構成図である。FIG. 2 is a configuration diagram showing a leakage current measuring device according to the present invention having a configuration in which a plurality of switching power supplies and their load devices are monitored by one leakage current measuring device according to the present invention and a circuit breaker and an alarm device are controlled. .

以下、本発明を適用した漏洩電流測定装置及びその測定方法の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of a leakage current measuring apparatus and a measuring method to which the present invention is applied will be described with reference to the drawings.

図1は、配電用変圧器の低圧側三相巻線1を星形に結線し、星形の中点である中性点Nを接地線8を経由して接地極Gで接地した星形配電方式を採用した配電系統に、本発明に係る漏洩電流測定装置を適用した例を示す概略系統図である。   Fig. 1 shows a star shape in which the low-voltage three-phase winding 1 of the distribution transformer is connected in a star shape, and the neutral point N, which is the center point of the star shape, is grounded by the grounding pole G via the grounding wire 8 It is a schematic system diagram which shows the example which applied the leakage current measuring apparatus which concerns on this invention to the power distribution system which employ | adopted the power distribution system.

なお、星形配電方式は、図1に示すような400V級の三相3線方式、若しくは星形巻線の中性点Nに接続され接地された中性線を配電線の1線として加え、中性点Nと三相の各端子間とに接続する単相負荷にも配電可能な三相4線方式があり、国際的に標準の配電方式として広く普及している。   The star distribution system is a 400V class three-phase three-wire system as shown in Fig. 1, or a neutral wire connected to the neutral point N of the star winding is added as one line of the distribution line. There is also a three-phase four-wire system that can distribute power even to a single-phase load connected between the neutral point N and each of the three-phase terminals, and is widely spread as an international standard distribution system.

本発明に係る漏洩電流測定装置は、この星形三相3線若しくは三相4線配電方式の配電系統を構成する主要素で、三相の対地電圧が等しい三相配電線(以下三相配電線と称する)又は三相4線配電方式の接地された中性点と三相端子のうちのいずれかから導出される1線の対地電圧が0で他線の対地電圧が相電圧である単相2線配電線(以下単相配電線と称する)に接続されるスイッチング電源及びそのスイッチング電源の負荷装置5の対地絶縁抵抗に起因する漏洩電流Igrを測定する。   A leakage current measuring apparatus according to the present invention is a main element constituting the star-shaped three-phase three-wire or three-phase four-wire distribution system, and is a three-phase distribution line (hereinafter referred to as a three-phase distribution line and a three-phase distribution line). Single-phase 2 in which the ground voltage of one line derived from either a grounded neutral point of a three-phase four-wire distribution system or a three-phase terminal is 0 and the ground voltage of the other line is a phase voltage. The leakage power Igr caused by the ground insulation resistance of the switching power supply connected to the line distribution line (hereinafter referred to as single-phase distribution line) and the load device 5 of the switching power supply is measured.

本発明に係る漏洩電流測定装置は、三相3線若しくは三相4線星形の配電方式を採用した配電系統に適用される。そして、図1に示す三相3線の配電方式において、配電用の三相変圧器の低圧側(二次側)に星形に結線された巻線1を備える。この星形巻線1には、三相配電線4R,4S,4Tを介してスイッチング電源2が接続されている。また、図2に示す三相4線の配電方式では、図1に示す三相配電線4R,4S,4Tのほか中性点Nから導出された接地線4Nが併設され、三相配電線4R,4S,4Tのうちの1線、例えば配電線4Rとともに単相配電線4N,4Rを構成し、スイッチング電源2sが接続されている。 The leakage current measuring apparatus according to the present invention is applied to a distribution system employing a three-phase three-wire or three-phase four-wire star distribution system. In the three-phase three-wire power distribution system shown in FIG. 1, a winding 1 connected in a star shape is provided on the low-voltage side (secondary side) of the three-phase transformer for power distribution. A switching power supply 2 is connected to the star winding 1 via three-phase distribution lines 4 R , 4 S , 4 T. Further, in the power distribution system of the three-phase four-wire as shown in FIG. 2, three-phase distribution lines 4 R, 4 S, 4 T other neutral N ground line 4 N derived from that shown in FIG. 1 is installed together, the three-phase distribution One of the wires 4 R , 4 S , and 4 T , for example, the single-phase distribution wires 4 N and 4 R are configured together with the distribution wire 4 R , and the switching power supply 2 s is connected thereto.

図1に示す三相3線の配電方式を採用した三相変圧器の低圧側の星形巻線1をさらに具体的に説明すると、星形巻線1は、星形を構成するように結線された3つの巻線1a,1b,1cを有し、これらの巻線1a,1b,1cの一方の端子である三相端子R,S,Tは、三相配電線4R,4S,4Tを介して、スイッチング電源2に接続されている。また、各巻線1a,1b,1cの他端を共通に結合して中性点Nとしており、巻線1aには中性点Nに対する端子Rの電位である相電圧ERが発生し、巻線1bには中性点Nに対する端子Sの電位である相電圧ESが発生し、巻線1cには中性点Nに対する端子Tの電位である相電圧ETが発生し、各端子R,S,T間には線間電圧ESR,ETS,ERTが発生している。 The star winding 1 on the low-voltage side of the three-phase transformer adopting the three-phase three-wire distribution system shown in FIG. 1 will be described in more detail. The star winding 1 is connected to form a star shape. The three-phase terminals R, S, and T, which are one terminals of the windings 1a, 1b, and 1c, are connected to the three-phase distribution lines 4 R , 4 S , 4 It is connected to the switching power supply 2 via T. Further, the other ends of the windings 1a, 1b, and 1c are connected in common to form a neutral point N. In the winding 1a, a phase voltage E R that is a potential of the terminal R with respect to the neutral point N is generated. A phase voltage E S that is the potential of the terminal S with respect to the neutral point N is generated on the line 1b, and a phase voltage E T that is a potential of the terminal T with respect to the neutral point N is generated on the winding 1c. , S, and T generate line voltages ESR , ETS , and ERT .

これら電圧の関係は、図3のベクトル図で表され、端子R,S,Tの電位の中性点である電気的中性点は三角形RSTの重心であり、星形巻線では各巻線を共通に結合した中性点Nに一致する。この中性点Nは、接地線8を介して、接地極Gに接続されている。   The relationship between these voltages is represented by the vector diagram of FIG. 3, where the electrical neutral point, which is the neutral point of the potential of the terminals R, S, and T, is the center of gravity of the triangle RST. Matches the neutral point N that is commonly connected. The neutral point N is connected to the ground electrode G through the ground wire 8.

さらに、図2に示す単相配電線の線間電圧は、相電圧ERであり、その電気的中性点は中性点Nと端子Rとの中間点Nsであり、この電気的中性点Nsの接地点Nに対する電位はベクトルENsで表され、その大きさは相電圧ERの1/2で商用周波数を持つ。 Further, the line voltage of the single-phase distribution line shown in FIG. 2 is the phase voltage E R , and its electric neutral point is an intermediate point Ns between the neutral point N and the terminal R, and this electric neutral point The potential of Ns with respect to the ground point N is represented by a vector E Ns , whose magnitude is 1/2 of the phase voltage E R and has a commercial frequency.

図2に示す配電系統において、スイッチング電源2又は2sに印加される線間電圧ESR,ETS,ERT又は相電圧ER,ES,ETは、スイッチング電源2又は2sの内部で一旦直流に変換され、さらにトランジスタ等のスイッチング素子によって、高周期で裁断されたパルス状の波形となり、これが組み合わされて、それに接続される負荷装置の運転に適した運転周波数及び電圧を発生する交流波形に変換される。前記負荷装置が例えば電動機のように磁束を必要とする装置にあっては、運転周波数の低下に従って発生電圧も低下する特性の、いわゆる可変電圧可変周波数特性(以下、VVVF特性という。)のスイッチング電源となる。また、スイッチング電源の発生電圧は、パルス状の波形の組み合わせであり、種々の周波数の高調波を含む。そして、スイッチング電源2又は2sの端子U,V,W間に発生した線間電圧EVU,EVW,EUWが負荷装置5に印加される。 In the power distribution system shown in FIG. 2, the line voltages E SR , E TS , E RT or phase voltages E R , E S , E T applied to the switching power supply 2 or 2 s are temporarily generated inside the switching power supply 2 or 2 s. An alternating current waveform that is converted to direct current, and that has a pulse-like waveform that is cut at a high cycle by a switching element such as a transistor, and this is combined to generate an operating frequency and voltage suitable for the operation of the load device connected to it. Is converted to If the load device is a device that requires magnetic flux, such as an electric motor, for example, a switching power supply having a so-called variable voltage variable frequency characteristic (hereinafter referred to as a VVVF characteristic) having a characteristic that the generated voltage also decreases as the operating frequency decreases. It becomes. The generated voltage of the switching power supply is a combination of pulse-like waveforms and includes harmonics of various frequencies. The line voltages E VU , E VW , E UW generated between the terminals U, V, W of the switching power supply 2 or 2 s are applied to the load device 5.

次に、スイッチング電源2又は2sに発生する電圧の状態を図5に示し、これらの電圧の関係を図6のベクトル図で示す。スイッチング電源2又は2sの内部回路は接地されていないので、図5に示す接地極Gは配電変圧器端子の接地されたS相又は中点Nに接続された接地極Gとして取り扱う。スイッチング電源2又は2sに発生する電圧の関係を示す図6のベクトル図で、端子U,V,Wにおける電位の電気的中性点Neは三角形UVWの重心であり、この重心Neに対する端子U,V,Wにおける電位が相電圧EU,EV,EWであり、その大きさは端子U,V,W間の線間電圧EVU,EWV,EUWの√3分の1で、各々が120度の位相差を有するVVVF特性の対称電源である。 Next, the state of the voltage generated in the switching power supply 2 or 2s is shown in FIG. 5, and the relationship between these voltages is shown in the vector diagram of FIG. Since the internal circuit of the switching power supply 2 or 2s is not grounded, the grounding pole G shown in FIG. 5 is handled as the grounding pole G connected to the grounded S-phase or midpoint N of the distribution transformer terminal. In the vector diagram of FIG. 6 showing the relationship between the voltages generated in the switching power supply 2 or 2s, the electrical neutral point Ne of the potential at the terminals U, V, W is the center of gravity of the triangle UVW, and the terminals U, The potentials at V and W are the phase voltages E U , E V and E W , and their magnitudes are 1/3 of the line voltages E VU , E WV and E UW between the terminals U, V and W, Symmetric power supplies with VVVF characteristics, each having a phase difference of 120 degrees.

図5及び図6で三相配電線に接続されたスイッチング電源2の端子U、V、Wの電気的中性点をNeとすると、図1に示す星形巻線1の中性点Nの電位は、端子R,S,Tの電気的中性点で且つ星形巻線の中性点Nと同一電位となり、前記中性点Nは接地極Gで接地されているので、スイッチング電源2の端子U,V,Wの電気的中性点Neも接地極Gと同電位である0電位であり、図5に示す接地極Gに対する電気的中性点Neの電位Enも0となる。但し、スイッチング電源2のスイッチング動作に伴う高調波電圧に対して電圧Enが存在するので、端子U,V,Wの対地電圧は高調波と運転周波数との合成電圧となり、この複雑な波形の対地電圧を入力すれば測定は困難なものとなるが、端子U,V,Wの線間電圧EVU,EWV,EUWはVVVF特性の正弦波であり、本発明に係る漏電測定装置及び方法はこれらの電圧を入力するので計測が可能となっている。 In FIG. 5 and FIG. 6, if the electrical neutral point of the terminals U, V, W of the switching power supply 2 connected to the three-phase distribution line is Ne, the potential of the neutral point N of the star winding 1 shown in FIG. Is the electrical neutral point of the terminals R, S, T and the same potential as the neutral point N of the star winding, and the neutral point N is grounded by the ground electrode G. The electrical neutral point Ne of the terminals U, V, and W is also 0 potential, which is the same potential as the ground electrode G, and the potential En of the electrical neutral point Ne with respect to the ground electrode G shown in FIG. However, since the voltage En exists with respect to the harmonic voltage associated with the switching operation of the switching power supply 2, the ground voltage at the terminals U, V, and W becomes a composite voltage of the harmonic and the operating frequency, and this complex waveform ground Measurement is difficult if voltage is input, but the line voltages E VU , E WV , and E UW of the terminals U, V, and W are sine waves having VVVF characteristics, and the leakage measuring apparatus and method according to the present invention are described below. Since these voltages are input, measurement is possible.

そして、図2に示す単相配電線の電気的中性点は中性点Nと端子Rとの中間点Nsで、この電気的中性点Nsの接地点Nに対する電位ENsが商用周波数を持つ図5及び図6に示す電圧Enとなり、その大きさは相電圧ERの1/2である。したがって、この単相配電線に接続されるスイッチング電源の対地電圧は商用周波数電位ENsに運転周波数相電圧EU,EV,EWが重畳された電圧となり、この対地電圧が負荷装置5に印加され対地漏洩電流I0を発生させる。 The electrical neutral point of the single-phase distribution line shown in FIG. 2 is an intermediate point Ns between the neutral point N and the terminal R, and the potential E Ns of the electrical neutral point Ns with respect to the ground point N has a commercial frequency. The voltage En shown in FIG. 5 and FIG. 6 is obtained, and its magnitude is ½ of the phase voltage E R. Therefore, the ground voltage of the switching power source connected to the single-phase distribution line is a voltage obtained by superimposing the operation frequency phase voltages E U , E V , E W on the commercial frequency potential E Ns , and this ground voltage is applied to the load device 5. The ground leakage current I 0 is generated.

ところで、負荷装置5の各相には対地静電容量CU,CV,CWが存在する。三相電源又は単相電源で駆動される通常の負荷装置で対地静電容量が比較的大きな電動機などの三相巻線は、接地部分に対して対称的な構造をしており、非対称設備の対地静電容量は無視できる。そこで、各相の対地静電容量CU,CV,CWはほとんど同じ容量となるのでこれをCとし、これら三相の各静電容量Cには、常時、対地電流Igcu,Igcv,Igcwが流れている。また、負荷装置5には対地漏洩抵抗ru,rv,rwが生ずることがある。これら対地漏洩抵抗ru,rv,rwには、漏洩電流Igru,Igrv,Igrwが流れる。 By the way, the ground capacitances C U , C V , and C W exist in each phase of the load device 5. A three-phase winding such as an electric motor with a relatively large earth capacitance in a normal load device driven by a three-phase power supply or a single-phase power supply has a symmetrical structure with respect to the grounding part. The ground capacitance is negligible. Therefore, since the ground capacitances C U , C V , and C W of each phase are almost the same, this is set to C, and the ground currents Igcu, Igcv, Igcw are always included in each of the three-phase capacitances C. Is flowing. Further, the load device 5 may have ground leakage resistances ru, rv, rw. Leakage currents Igru, Igrv, Igrw flow through these ground leakage resistances ru, rv, rw.

上述したような三相配電線若しくは単相配電線に接続されるスイッチング電源及びそのスイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrを測定する本発明に係る漏洩電流測定装置は、図1に示すように信号処理部3、演算部14、表示部15を有する処理演算部16を備える。そして、負荷装置5の対地絶縁抵抗に起因する漏洩電流Igrを測定する場合には、処理演算部16を構成する信号処理部3に、配電線4に流れる電流のベクトル和である零相電流I0が、これを検出する変流器9を介して入力される。また、スイッチング電源2の出力端子U,V,Wと負荷装置5とを接続する各給電線に流れる電流のベクトル和を零相電流I0として入力してもよい。 The leakage current measuring apparatus according to the present invention for measuring the leakage current Igr caused by the ground insulation resistance of the switching power supply connected to the three-phase distribution line or the single-phase distribution line as described above and the load device connected to the switching power supply, As shown in FIG. 1, a processing calculation unit 16 having a signal processing unit 3, a calculation unit 14, and a display unit 15 is provided. When measuring the leakage current Igr caused by the ground insulation resistance of the load device 5, the zero-phase current I which is the vector sum of the current flowing through the distribution line 4 is sent to the signal processing unit 3 constituting the processing calculation unit 16. 0 is input via the current transformer 9 that detects this. Further, the vector sum of the currents flowing in the respective power supply lines connecting the output terminals U, V, W of the switching power supply 2 and the load device 5 may be inputted as the zero-phase current I 0 .

なお、図2に示す配電系統において、負荷装置5sの対地絶縁抵抗に起因する漏洩電流Igrを測定する場合には、処理演算部16sを構成する信号処理部3に、配電線4に流れる電流のベクトル和である零相電流I0が、これを検出する零相変流器9sを介して入力される。 In the distribution system shown in FIG. 2, when the leakage current Igr caused by the ground insulation resistance of the load device 5s is measured, the current flowing through the distribution line 4 is transmitted to the signal processing unit 3 that constitutes the processing calculation unit 16s. A zero-phase current I 0 that is a vector sum is input via a zero-phase current transformer 9s that detects this.

ここで、負荷装置5又は5sに生じた各相の対地静電容量Cを流れる対地電流Igcu,Igcv,Igcwと負荷装置5又は5sに生じた各相の対地漏洩抵抗ru,rv,rwに流れる漏洩電流Igru,Igrv,Igrwのベクトル和である零相電流I0は、大地から配電電源変圧器の接地極G、接地線8を経由して、配電電源1からスイッチング電源2又は2sの経路を還流するので、零相電流I0はこの還流経路の途中であるスイッチング電源2又は2sの電源側、負荷側いずれの点でも測定が可能である。 Here, the current flows Igcu, Igcv, Igcw flowing through the ground capacitance C of each phase generated in the load device 5 or 5 s and the ground leakage resistance ru, rv, rw of each phase generated in the load device 5 or 5 s. The zero-phase current I 0 , which is the vector sum of the leakage currents Igru, Igrv, Igrw, passes from the ground via the grounding pole G and the grounding line 8 of the distribution power supply transformer to the switching power supply 2 or 2s. Since it circulates, the zero-phase current I 0 can be measured at any point on the power supply side or load side of the switching power supply 2 or 2s in the middle of the circulation path.

また、本発明を採用することにより、後述する図11に示すように、複数のスイッチング電源2a,2bにそれぞれ負荷装置5a,5bを接続したシステムの漏洩電流を1台の漏洩電流測定装置によって監視することが可能である。   Further, by adopting the present invention, as shown in FIG. 11 described later, the leakage current of a system in which load devices 5a and 5b are connected to a plurality of switching power supplies 2a and 2b, respectively, is monitored by a single leakage current measuring device. Is possible.

ここで、以上述べた配電用変圧器の定圧側巻線を星形に結線した三相配電線又は単相配電線に接続されるスイッチング電源及びそのスイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの測定方法及びその原理について説明する。   Here, due to the ground insulation resistance of the switching power supply connected to the three-phase distribution line or single-phase distribution line in which the constant-voltage side winding of the distribution transformer described above is connected in a star shape and the load device connected to the switching power supply A method for measuring the leakage current Igr and its principle will be described.

まず、図1に示すような配電用変圧器の低圧側巻線(二次側巻線)を星形に結線した三相3線又は三相4線の配電系統の三相端子R,S,T間に発生する線間電圧ESR,ETS,ERTと、各端子R,S,Tが星形巻線の接地点である中性点Nに対して発生する対地電圧ER,ES,ETの関係は、図3に示すベクトル図のように表すことができる。このとき中性点Nは、R,S,T相の電気的中性点に一致し、三相4線配電系統では、接地極Gに結線された中性点Nからの接地線の1線が三相配電線に追加される。 First, the three-phase terminals R, S, and three-phase terminals of the three-phase three-wire or three-phase four-wire distribution system in which the low-voltage side winding (secondary side winding) of the distribution transformer as shown in FIG. Line voltages E SR , E TS , E RT generated between T and ground voltages E R , E generated with respect to neutral point N where terminals R, S, T are ground points of the star winding The relationship between S and E T can be expressed as a vector diagram shown in FIG. At this time, the neutral point N coincides with the electrical neutral points of the R, S, and T phases, and in the three-phase four-wire distribution system, one of the ground wires from the neutral point N connected to the ground electrode G. Is added to the three-phase distribution line.

上述の三相配電線4R,4S,4Tに接続されるスイッチング電源2の各出力端子U,V,W間に発生する線間電圧EVU,EWV,EUW及びU,V,W相の電気的中性点Neと各端子U,V,W間に発生する相電圧EU,EV,EWと、接地極Gに対して中性点Neに加わる電圧Enの関係は、図5に示す等価回路図で表される。但し、各電圧及び電流を、それに含まれる高調波成分を濾波器で取り除き、商用周波数と運転周波数及びそれらの合成周波数を持つものとして取り扱えば、図3で示される前述の三相3線又は三相4線の配電系統の、接地極Gに接続された中性点Nの電位と、図5及び図6で示されるスイッチング電源2の各端子U,V,Wの電気的中性点Neの電位は一致するので、三相配電線に接続されるスイッチング電源2では図5に示す電圧Enは0となり、電気的中性点Neの電位は接地電位(0)である。 Line voltages E VU , E WV , E UW and U, V, W generated between the output terminals U, V, W of the switching power supply 2 connected to the three-phase distribution lines 4 R , 4 S , 4 T described above. The relationship between the electrical neutral point Ne of the phase and the phase voltages E U , E V , E W generated between the terminals U, V, W and the voltage En applied to the neutral point Ne with respect to the ground electrode G is as follows: This is represented by an equivalent circuit diagram shown in FIG. However, if each voltage and current is handled as having a commercial frequency, an operating frequency, and their combined frequency by removing the harmonic components contained therein by a filter, the three-phase three-wire or three-wire shown in FIG. The potential of the neutral point N connected to the ground pole G of the phase 4 wire distribution system and the electrical neutral point Ne of each terminal U, V, W of the switching power source 2 shown in FIGS. Since the potentials match, in the switching power supply 2 connected to the three-phase distribution line, the voltage En shown in FIG. 5 is 0, and the potential of the electrical neutral point Ne is the ground potential (0).

ここで、三相配電線に接続されるスイッチング電源2及び負荷装置5の漏洩電流Igr等を測定する際、漏洩電流測定装置に入力する測定の基準になる基準電圧Eとして、まず、負荷装置5の運転周波数を持つスイッチング電源2の各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのうちのいずれかを入力したときについて説明する。 Here, when measuring the leakage current Igr and the like of the switching power supply 2 and the load device 5 connected to the three-phase distribution line, first, as the reference voltage E serving as a measurement reference input to the leakage current measuring device, The case where any one of the line voltages E VU , E WV , E UW generated between the terminals U, V, W of the switching power supply 2 having the operation frequency is described.

ここで負荷装置5に生じた零相電流I0の周波数は運転周波数であり、商用周波数は重畳せず、図8に示すように、横軸である実数軸上の基準ベクトルである入力電圧に対して位相角θのベクトルI0として表される。 Here, the frequency of the zero-phase current I 0 generated in the load device 5 is the operating frequency, and the commercial frequency is not superimposed, and as shown in FIG. 8, the input voltage is a reference vector on the real axis that is the horizontal axis. On the other hand, it is represented as a vector I 0 of phase angle θ.

そこで、図6において、端子Uが端子Vに対して発生する線間電圧EVUを基準電圧とするとき、その値は接地電位である電気的中性点Neに対する相電圧EU,EV,EWの値Eに対し√3Eとして示され、各相電圧EU,EV,EWは下記の式(1)〜(3)のようにベクトル記号法により示すことができる。 Therefore, in FIG. 6, when the line voltage E VU generated by the terminal U with respect to the terminal V is used as a reference voltage, the value is the phase voltage E U , E V , It is shown as √3E with respect to the value E of E W , and each phase voltage E U , E V , E W can be expressed by the vector symbol method as in the following formulas (1) to (3).

U=0.5√3E−j0.5E ・・・(1)
V=−0.5√3E−j0.5E ・・・(2)
W=jE ・・・(3)
そして、負荷装置5のU,V,Wの各相に存在する大きさがほぼ等しい対地静電容量Cには、常時、対地電流Igcu,Igcv,Igcwが流れているが、各相電圧EU,EV,EWはバランスした三相電圧のため、上記対地電流Igcu,Igcv,Igcwのベクトル和はほぼ0である。
E U = 0.5√3E−j0.5E (1)
E V = −0.5√3E−j0.5E (2)
E W = jE (3)
Then, U of the load device 5, V, approximately equal earth capacitance C is large enough to present in each phase of W is always ground current Igcu, Igcv, but Igcw is flowing, the phase voltage E U , E V and E W are balanced three-phase voltages, and the vector sum of the ground currents Igcu, Igcv and Igcw is almost zero.

また、負荷装置5に生じた各相の対地漏洩抵抗ru,rv,rwにそれぞれ流れる漏洩電流Igru,Igrv,Igrwは、下記のベクトル記号の式(4)〜(6)で示すことができる。   Further, leakage currents Igru, Igrv, Igrw flowing in the ground leakage resistances ru, rv, rw of the respective phases generated in the load device 5 can be expressed by the following vector symbol expressions (4) to (6).

Igru=Eu/ru=0.5√3E/ru−j0.5E/ru ・・・(4)
Igrv=Ev/rv=−0.5√3E/rv−j0.5E/rv ・・・(5)
Igrw=Ew/rw=jE/rw ・・・(6)
以上から、巻線1の中点Nと接地極Gとの間を接続する接地線8、配電線4(4R,4S,4T)、スイッチング電源2、負荷装置5を経由して接地極Gに還流する電流である零相電流I0は、上記式(4)〜(6)を加えたものであり、下記のベクトル記号の式(7)で表すことができる。
Igru = Eu / ru = 0.5√3E / ru−j0.5E / ru (4)
Igrv = Ev / rv = −0.5√3E / rv−j0.5E / rv (5)
Igrw = Ew / rw = jE / rw (6)
From the above, grounding is performed via the grounding wire 8 that connects the middle point N of the winding 1 and the grounding pole G, the distribution line 4 (4 R , 4 S , 4 T ), the switching power supply 2, and the load device 5. The zero-phase current I 0 , which is the current flowing back to the pole G, is obtained by adding the above formulas (4) to (6) and can be represented by the following vector symbol formula (7).

0=0.5√3(E/ru−E/rv)
+j(E/rw−0.5E/ru−0.5E/rv) ・・・(7)
ここで、漏洩電流Igrを測定する際、この漏洩電流測定装置に入力される線間電圧EVUを基準電圧Eとするとき、上記式(7)で表される零相電流I0と、基準電圧Eと同位相の零相電流I0の有効成分Aと、基準電圧Eより90度位相が進んだ零相電流I0の無効成分Bの関係は、図8のベクトル図のように表され、上記有効成分Aは図8に示すベクトル図の零相電流I0の有効成分A及び上記式(7)の実数部分であるので、下記の式(8)により示すことができる。但し、以下のIgru,Igrv,Igrwは、それぞれのベクトルの大きさを表し、IgruはEv/rv、IgrwはEw/rwである。
I 0 = 0.5√3 (E / ru−E / rv)
+ J (E / rw-0.5E / ru-0.5E / rv) (7)
Here, when measuring the leakage current Igr, when the line voltage E VU input to the leakage current measuring apparatus is used as the reference voltage E, the zero-phase current I 0 expressed by the above equation (7) and the reference The relationship between the effective component A of the zero-phase current I 0 having the same phase as the voltage E and the reactive component B of the zero-phase current I 0 advanced in phase by 90 degrees from the reference voltage E is expressed as in the vector diagram of FIG. Since the effective component A is the effective component A of the zero-phase current I 0 in the vector diagram shown in FIG. 8 and the real part of the above equation (7), it can be expressed by the following equation (8). However, the following Igru, Igrv, and Igrw represent the magnitudes of the respective vectors, where Igru is Ev / rv and Igrw is Ew / rw.

A=0.5√3(Igru−Igrv) ・・・(8)
上記基準電圧として入力された線間電圧EVUから90度位相が進んだ零相電流I0の無効成分Bは、図8に示すベクトル図のI0の無効成分B及び式(7)の虚数部分であるので、下記の式(9)により示すことができる。
A = 0.5√3 (Igru-Igrv) (8)
The invalid component B of the zero-phase current I 0 whose phase is advanced by 90 degrees from the line voltage E VU input as the reference voltage is the invalid component B of I 0 in the vector diagram shown in FIG. 8 and the imaginary number of Expression (7). Since it is a part, it can be shown by the following formula (9).

B=Igrw−0.5Igru−0.5Igrv ・・・(9)
ここで、零相電流I0と、基準電圧Eとの間の位相角をθとすると、図8から判るように、上記有効成分AはI0cosθで表され、上記無効成分BはI0sinθで表される。
B = Igrw−0.5 Igru−0.5 Igrv (9)
Here, if the phase angle between the zero-phase current I 0 and the reference voltage E is θ, the effective component A is represented by I 0 cos θ and the ineffective component B is I 0 , as can be seen from FIG. It is represented by sin θ.

ところで、零相電流I0の有効成分A、無効成分Bの値を実際に測定して求めるにあたっては、処理演算部16の信号処理部3へ入力される基準電圧Eと零相電流I0の波形から、後述する図9に示すように、基準電圧Eと零相電流I0との間の位相の差を測定し、演算部14で零相電流I0を基準電圧Eと同位相の有効成分Aと基準電圧Eより90度位相が進んだ無効成分Bとに分解して出力する。すなわち、演算部14は、基準電圧Eと零相電流I0との位相角θに基づいて、上記有効成分Aと無効成分Bとを検出する。 Meanwhile, the active ingredient A of the zero-phase current I 0, when the determined by measuring the value of the reactive component B actually, the reference voltage E and the zero-phase current I 0 that is inputted to the signal processing section 3 of the processing operation section 16 From the waveform, as shown in FIG. 9 to be described later, the phase difference between the reference voltage E and the zero-phase current I 0 is measured, and the zero-phase current I 0 is effective in the same phase as the reference voltage E by the calculation unit 14. The component A and the invalid component B whose phase is advanced by 90 degrees from the reference voltage E are decomposed and output. That is, the calculation unit 14 detects the effective component A and the ineffective component B based on the phase angle θ between the reference voltage E and the zero-phase current I 0 .

次に、X,Y,Zを、下記の式(10)、(11)、(12)に示すようにおく。   Next, X, Y, and Z are set as shown in the following formulas (10), (11), and (12).

X=B−√3A ・・・(10)
Y=B+√3A ・・・(11)
Z=−2B ・・・(12)
そして、上記式(10)〜(12)に、上記式(8)、(9)のA,Bを代入すると次の式(13)〜(15)が得られる。
X = B−√3A (10)
Y = B + √3A (11)
Z = -2B (12)
Then, by substituting A and B in the above equations (8) and (9) into the above equations (10) to (12), the following equations (13) to (15) are obtained.

X=Igrv+Igrw−2Igru ・・・(13)
Y=Igrw+Igru−2Igrv ・・・(14)
Z=Igru+Igrv−2Igrw ・・・(15)
ここで、スイッチング電源2及び負荷装置5では、三相の各相に同時に漏洩電流Igrは流れないものとし、漏洩電流Igruが流れないときには上記式(13)を、漏洩電流Igrvが流れないときには上記式(14)を、漏洩電流Igrwが流れないときには上記式(15)を採用するものとすれば、上記X,Y,Zの値のうちの最大の値が、1相に漏洩電流Igrが流れた場合の当該漏洩電流Igrの測定値を示し、2相に漏洩電流Igrが流れた場合は2相分合計の漏洩電流Igrの値を示し、さらに後述する線間負荷中に発生した対地漏洩抵抗に相当する対地漏洩電流Igrの測定値に近い値として出力される。
X = Igrv + Igrw−2Igru (13)
Y = Igrw + Igru-2Igrv (14)
Z = Igru + Igrv-2Igrw (15)
Here, in the switching power supply 2 and the load device 5, it is assumed that the leakage current Igr does not flow simultaneously in each of the three phases, and the above equation (13) is obtained when the leakage current Igru does not flow, and the above equation (13) when the leakage current Iggr does not flow. If the equation (14) is adopted when the equation (14) is used when the leakage current Igrw does not flow, the maximum value among the above X, Y, and Z values is the leakage current Igr flowing in one phase. The measured value of the leakage current Igr in the case of two phases, and when the leakage current Igr flows in two phases, the value of the total leakage current Igr for two phases is shown, and further, the ground leakage resistance generated during the line load described later Is output as a value close to the measured value of the ground leakage current Igr corresponding to.

以上、式(1)〜(15)を含んだ部分の説明では、端子Vと端子Uとの間に発生する線間電圧EVUを基準電圧Eとしていたが、他の線間電圧EWV,EUWを基準電圧Eとしても上述の式(13)〜(15)は全く同様に適用が可能で、式(13)〜(15)のX,Y,Zとその右辺の式との組み合わせが入れ替わるだけであり、それらの最大の値を漏洩電流Igrの測定値とする漏洩電流Igrの値は同じ値であるので、三相線間電圧のいずれの相の電圧を入力しても同じ測定結果が得られ、測定の際の入力電圧の選定間違いが発生することはない。 As described above, in the description of the part including the equations (1) to (15), the line voltage E VU generated between the terminal V and the terminal U is used as the reference voltage E, but other line voltages E WV , The above formulas (13) to (15) can be applied in the same manner even when E UW is used as the reference voltage E. The combination of X, Y, Z in the formulas (13) to (15) and the formula on the right side thereof is Since the values of the leakage current Igr are the same value, the maximum value of which is the measured value of the leakage current Igr, so that the same measurement result can be obtained regardless of which phase voltage of the three-phase line voltage is input. Therefore, the selection error of the input voltage at the time of measurement does not occur.

前述の式(13)〜(15)からは、漏洩電流Igrの測定値は、負荷装置5の配線又はその端子で1相又は2相が地絡したときの測定値を表しているが、線間にまたがる負荷例えば電動機の巻線中で対地漏洩電流が発生したときも、この漏洩電流の測定には上述の式(13)〜(15)がそのまま適用可能である。以下、これを説明する。   From the above formulas (13) to (15), the measured value of the leakage current Igr represents the measured value when one phase or two phases are grounded at the wiring of the load device 5 or its terminal. Even when a ground leakage current is generated in a load, for example, a winding of an electric motor, the above equations (13) to (15) can be applied as they are to measure the leakage current. This will be described below.

例えば、図1に示す星形配電電源に接続されたスイッチング電源2の端子U,V,Wの対地電圧は、図6から明らかなように、電気的中性点Neの電位が接地点電位であるため、電気的中性点Neに対する相電圧EU,EV,EWが運転電圧の相電圧Eであるとき、V相とU相との間に接続された負荷装置5の例えば電動機巻線の中央点である線間負荷中央点Mが漏洩抵抗rを通じて地絡したとき、この線間負荷中央点Mの電気的中性点Neに対する対地電圧ENMの大きさは、星形配電電源では電圧Enが0であるため、図6に示すベクトル図から明らかなように0.5Eであり、対地漏洩電流は0.5E/rとなり、零相電流I0の値を漏洩電流Igrの値とする従来の漏洩電流の計測器ではこの値を計測する。 For example, as is apparent from FIG. 6, the ground voltage of the terminals U, V, W of the switching power supply 2 connected to the star distribution power supply shown in FIG. Therefore, when the phase voltages E U , E V , E W with respect to the electrical neutral point Ne are the phase voltages E of the operating voltage, for example, the motor winding of the load device 5 connected between the V phase and the U phase When the line load center point M, which is the center point of the line, causes a ground fault through the leakage resistance r, the magnitude of the ground voltage E NM with respect to the electrical neutral point Ne of the line load center point M Since the voltage En is 0, it is 0.5E as apparent from the vector diagram shown in FIG. 6, the ground leakage current is 0.5 E / r, and the value of the zero-phase current I 0 is the value of the leakage current Igr. The conventional leakage current measuring instrument measures this value.

しかるに、上記地絡が線間負荷中央点Mではなく、対地電圧がEである端子R又はS付近で発生すると、対地漏洩電流はE/rとなり、同じ漏洩抵抗rに対して、線間負荷中央点Mでの地絡による対地漏洩電流の測定値はこの値の半分となってしまう。そこで、漏電故障の程度を定格電圧時の対地漏洩電流値で評価するような漏洩電流測定装置にあっては、故障の程度を過小評価することになってしまう。その結果、適確に漏電故障を発見することが困難となり、漏洩電流I0の測定を行いながら漏電による事故を発見できなくなる虞がある。 However, if the ground fault occurs not at the line load center point M but near the terminal R or S where the ground voltage is E, the ground leakage current becomes E / r, and the line load is equal to the same leakage resistance r. The measured value of the ground leakage current due to the ground fault at the center point M is half of this value. Therefore, in a leakage current measuring apparatus that evaluates the degree of electric leakage failure with the ground leakage current value at the rated voltage, the degree of failure is underestimated. As a result, it is difficult to accurately find a leakage failure, and it may be impossible to find an accident due to leakage while measuring the leakage current I 0 .

本発明は、上述のような過小な値を示す漏洩電流Igrの測定値でなく、対地電圧Eを対地漏洩抵抗rの値で除して得られる漏洩電流Igrの測定値が、2相が地絡したときは2倍の測定値を示すことを上述した式(1)〜(15)を使用し検証する。なお、電動機巻線の端子Uと端子Vとの間に発生する線間電圧EVUの値は、対地電圧の値をEとしたとき√3Eとなり、上記電動機を含む負荷装置5に存在するそれぞれの対地静電容量CU,CV,CWは等しいものとして検証する。 In the present invention, the measured value of the leakage current Igr obtained by dividing the ground voltage E by the value of the ground leakage resistance r is not the measured value of the leakage current Igr that shows an excessively small value as described above. It is verified by using the above-described equations (1) to (15) that the measured value is doubled when entangled. Note that the value of the line voltage E VU generated between the terminal U and the terminal V of the motor winding is √3E when the value of the ground voltage is E, and exists in the load device 5 including the motor. The ground capacitances C U , C V , and C W are verified as being equal.

まず、図6に示すベクトル図において、線間負荷中央点Mのみに対地漏洩抵抗rが存在するとき、線間負荷中央点Mの接地電位である電気的中性点Neに対する対地電圧ENMは、大きさ√3Eである入力電圧ベクトルEVUに対して−j0.5Eとなるので、電動機巻線中央点Mから対地漏洩抵抗rを通過する対地漏洩電流INMは、−j0.5E/r,Igru,Igrv,Igrwの各電流がすべて0である。 First, in the vector diagram shown in FIG. 6, when the ground leakage resistance r exists only at the line load center point M, the ground voltage E NM with respect to the electrical neutral point Ne which is the ground potential of the line load center point M is Therefore, −j0.5E with respect to the input voltage vector E VU having the magnitude √3E, the ground leakage current I NM passing through the ground leakage resistance r from the motor winding center point M is −j0.5E / r. , Igru, Igrv, and Igrw are all zero.

これを前述の式(7)〜(9)に代入すると、零相電流I0の有効成分Aは0、無効成分Bは−0.5E/rとなる。このA、Bを前述の式(10)〜(12)に代入すると、X,Yは共に−0.5E/rとなり、ZはE/rとなり、X,Y,Zの値の最大値E/rが漏洩電流Igrの測定値、つまり定格電圧時の対地漏洩電流値として表示される。本発明に係る漏洩電流測定装置においては、測定された対地漏洩電流値の表示は、処理演算部16の表示部15で行われる。 If this is substituted into the above-mentioned formulas (7) to (9), the effective component A of the zero-phase current I 0 is 0 and the ineffective component B is −0.5 E / r. By substituting A and B into the above formulas (10) to (12), X and Y are both -0.5 E / r, Z is E / r, and the maximum value E of X, Y, and Z is E. / R is displayed as a measured value of the leakage current Igr, that is, a ground leakage current value at the rated voltage. In the leakage current measuring apparatus according to the present invention, the measured ground leakage current value is displayed on the display unit 15 of the processing calculation unit 16.

次に、U相及びV相に対地漏洩抵抗rが存在する場合には、上記有効成分Aは0となり、無効成分Bは−E/rとなる。このA及びBを式(10)〜(12)に代入すると、X及びYは共に−E/rとなり、Zは2E/rとなり、X,Y,Zの値の最大値2E/rがR相とS相の合計漏洩電流Igrの測定値として表示される。この表示も、処理演算部16の表示部15で行われる。   Next, when the ground leakage resistance r exists in the U phase and the V phase, the effective component A is 0 and the ineffective component B is -E / r. When A and B are substituted into equations (10) to (12), X and Y are both -E / r, Z is 2E / r, and the maximum value 2E / r of X, Y, and Z is R It is displayed as a measured value of the total leakage current Igr of the phase and S phase. This display is also performed on the display unit 15 of the processing calculation unit 16.

次に、漏洩電流Igr等を測定する際、漏洩電流測定装置に入力する測定の基準になる基準電圧Eとして、商用周波数である配電系統の端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかを入力する場合について説明する。 Next, when measuring the leakage current Igr and the like, a line voltage E generated between terminals R, S, and T of the distribution system, which is a commercial frequency, is used as a reference voltage E that is a measurement reference input to the leakage current measuring device. A case where any one of SR , ETS , and ERT is input will be described.

商用周波数は、特殊な例外を除き50Hz又は60Hzであるのに対し、運転周波数は60Hzから20Hzの帯域で変化されるか、少なくとも経過する場合が殆どである。前述のように三相配電線に接続されたスイッチング電源2及び負荷装置5の零相電流I0は運転周波数を持ち、基準電圧Eの商用周波数と異なるので、基準電圧Eに対する零相電流I0の位相角θは両周波数の差の周波数の周期で0度から360度まで変化する。 The commercial frequency is 50 Hz or 60 Hz, with special exceptions, while the operating frequency is mostly changed or at least elapses in the 60 Hz to 20 Hz band. Zero-phase current I 0 of the switching power supply 2 and the load device 5 connected to a three-phase distribution line as described above has the operation frequency, because different from the commercial frequency of the reference voltage E, the zero-phase to the reference voltage E current I 0 The phase angle θ varies from 0 degree to 360 degrees in the frequency cycle of the difference between the two frequencies.

この場合、前述の式(10)〜(12)のX,Y,Zの変化、ひいてはX,Y,Zの最大値である漏洩電流Igrの変化を求めるため、図8に示すベクトル図より、A=I0×cosθ、B=I0×sinθを式(10)〜(12)に代入すると、下記の式(16)〜(18)を得る。 In this case, in order to obtain the change of X, Y, Z in the above-described equations (10) to (12), and hence the change of the leakage current Igr which is the maximum value of X, Y, Z, from the vector diagram shown in FIG. Substituting A = I 0 × cos θ and B = I 0 × sin θ into the equations (10) to (12), the following equations (16) to (18) are obtained.

X=2I0×sin(θ−60度) ・・・(16)
Y=2I0×sin(θ+60度) ・・・(17)
Z=−2I0×sinθ ・・・(18)
ここで、位相角θが変化するとき、式(16)〜(18)の各々は+2I0から−2I0の間を変化し測定が困難になるが、本発明はX,Y,Zの最大値を漏洩電流Igrの値としているので、θが30度でYの値が2I0、θが150度でXの値が2I0、θが270度でZの値が2I0、θが90度、210度、330度で、X,Y,Zのうちのいずれか2つがI0なり、X,Y,Zのうちの最大値としてはI0から2I0間の値を運転周波数の3倍の周波数の周期で変動する。
X = 2I 0 × sin (θ−60 degrees) (16)
Y = 2I 0 × sin (θ + 60 degrees) (17)
Z = -2I 0 × sin θ (18)
Here, when the phase angle θ changes, each of the equations (16) to (18) changes between + 2I 0 and −2I 0 , making measurement difficult. However, the present invention has the maximum of X, Y, and Z. Since the value is the value of the leakage current Igr, θ is 30 degrees, the Y value is 2I 0 , θ is 150 degrees, the X value is 2I 0 , θ is 270 degrees, the Z value is 2I 0 , and θ is 90 At two degrees, 210 degrees and 330 degrees, any two of X, Y, and Z become I 0, and the maximum value of X, Y, and Z is a value between I 0 and 2I 0 of the operating frequency 3 It fluctuates with a period of double frequency.

ここで、零相電流I0と漏洩電流Igrの関係を検討する。図8からI0 2=A2+B2となり、前記式(8)、式(9)のA,Bをこの式に代入すると、I0は下記の式(19)のように表される。
0 2=Igru2+Igrv2+Igrw2−Igru・Igrv−Igrv・Igrw
−Igrw・Igru ・・・(19)
漏洩電流Igru,Igrv,Igrwのうちのいずれか1つが発生したときはI0=Igrとなるが、2相で、例えばIgru,Igrvが同時に発生したときは、
0 2=(Igru+Igrv)2−3(Igru×Igrv)
となり、I0の値はIgru,Igrvの合計値より小さくなる。
Here, the relationship between the zero-phase current I 0 and the leakage current Igr is examined. From FIG. 8, I 0 2 = A 2 + B 2 , and when A and B in the above formulas (8) and (9) are substituted into this formula, I 0 is represented by the following formula (19).
I 0 2 = Igru 2 + Igrv 2 + Igrw 2 −Igru · Igrv−Igrv · Igrw
-Igrw · Igru (19)
When any one of the leakage currents Igru, Igrv, and Iggrw occurs, I 0 = Igr, but when two phases, for example, Igru and Igrv occur simultaneously,
I 0 2 = (Igru + Igrv) 2 −3 (Igru × Igrv)
Thus, the value of I 0 is smaller than the total value of Igru and Igrv.

次に、前記式(16)〜(18)の変動の上限値である2I0では、
4I0 2=(Igru+Igrv)2+3(Igru−Igrv)2
となり、2I0の値はIgru,Igrvの合計値より大きな値を示し、Igru,Igrvの値が等しいときは、両者の合計値となる。
Next, at 2I 0 which is the upper limit value of the fluctuations of the equations (16) to (18),
4I 0 2 = (Igru + Igrv) 2 +3 (Igru-Igrv) 2
The value of 2I 0 is larger than the total value of Igru and Igrv, and when the values of Igru and Igrv are equal, they are the total value of both.

したがって、前記式(16)〜(18)の最大値の2I0、ひいては式(10)〜(12)のX,Y,Zのうちの最大値を漏洩電流Igrの値とすることができる。 Therefore, the maximum value 2I 0 of the equations (16) to (18), and hence the maximum value among X, Y, and Z of the equations (10) to (12) can be set as the value of the leakage current Igr.

また、零相電流I0、及び漏洩電流Igrの値は、U,V,Wの各相の対地電圧EU,EV,EWの値に比例しており、これら対地電圧EU,EV,EWの値は運転周波数が60Hz以上ではスイッチング電源の特性で一定であり、このときが最大で、このとき測定した値が定格の漏洩電流Igrの値である。運転周波数が60Hzより低下するにつれて運転電圧も低下し、例えば運転周波数が30Hzで約半分の電圧値となる。以上の計算は、運転周波数が60Hz付近に到達する前提での計算であるので、運転周波数がこれより低いときは到達した最大周波数によって、前述したように測定された漏洩電流Igrの値を下記に示す式(19a)によって補正する。但し、運転周波数が30Hzより低下すると誤差は増加する。 Further, the values of the zero-phase current I 0 and the leakage current Igr are proportional to the values of the ground voltages E U , E V , E W of the respective phases U, V, W, and these ground voltages E U , E The values of V and E W are constant due to the characteristics of the switching power supply when the operating frequency is 60 Hz or more, and the maximum value is obtained at this time. The value measured at this time is the value of the rated leakage current Igr. As the operating frequency decreases below 60 Hz, the operating voltage also decreases. For example, the operating frequency is about half at 30 Hz. Since the above calculation is based on the premise that the operating frequency reaches around 60 Hz, when the operating frequency is lower than this, the value of the leakage current Igr measured as described above according to the maximum frequency reached is as follows. Correction is performed by the equation (19a) shown. However, the error increases when the operating frequency falls below 30 Hz.

補正Igr=測定Igr×(60÷最大運転周波数) ・・・(19a)
次に、図2に示すように単相配電線4N,4R間にスイッチング電源2sが接続されている状態について説明する。
Correction Igr = Measurement Igr × (60 ÷ maximum operating frequency) (19a)
Next, a state in which the switching power supply 2s is connected between the single-phase distribution lines 4 N and 4 R as shown in FIG. 2 will be described.

前述したように、単相配電線4N,4Rのうちで0電位である配電線4Nに対する配電線4Rの電位が相電圧ERであり、この値が単相配電線の線間電圧であり、この電圧が基準電圧Eとして入力される。この基準電圧Eとされる線間電圧は、スイッチング電源源2s内で整流され、線間電圧の最大値の直流電圧に変換され、さらにVVVF特性の三相運転電圧に変換されるので、運転相電圧EU,EV,EWの大きさは、運転周波数が60Hz以上で、約E/√3で周波数の低下に伴い低くなる。また、単相配電線4N,4Rのの電気的中性点は、端子R,N間の中点Nsであり、この中点Nsの0電位点Nに対する電位ENSは図3に示すベクトル図のように表すことができる。 As described above, of the single-phase distribution lines 4 N and 4 R , the potential of the distribution line 4 R with respect to the distribution line 4 N having zero potential is the phase voltage E R , and this value is the line voltage of the single-phase distribution line. Yes, this voltage is input as the reference voltage E. The line voltage used as the reference voltage E is rectified in the switching power source 2s, converted into a DC voltage having the maximum value of the line voltage, and further converted into a three-phase operation voltage having a VVVF characteristic. The magnitudes of the voltages E U , E V , and E W become lower as the frequency decreases at an operating frequency of about 60 Hz or more and about E / √3. The electrical neutral point of the single-phase distribution lines 4 N and 4 R is a midpoint Ns between the terminals R and N. The potential E NS of the midpoint Ns with respect to the zero potential point N is a vector shown in FIG. It can be expressed as shown in the figure.

上述の単相配電線に接続されるスイッチング電源2sの各端子U,V,W間に発生する線間電圧EVU,EWV,EUW及びU,V,Wの各相の電気的中性点Neと各端子U,V,W間に発生する相電圧EU,EV,EWと、接地極Gに対して電気的中性点Neに加わる電圧Enの関係は、図5に示す等価回路のように表すことができ、ベクトル図で表すとき図4、図6にように表すことができる。 Electrical neutral point of each phase of line voltages E VU , E WV , E UW and U, V, W generated between terminals U, V, W of switching power supply 2s connected to the above single-phase distribution line The relationship between the phase voltages E U , E V , E W generated between Ne and the terminals U, V, W and the voltage En applied to the electrical neutral point Ne with respect to the ground pole G is equivalent to that shown in FIG. It can be expressed as a circuit, and when expressed as a vector diagram, it can be expressed as shown in FIGS.

但し、単相配電線の、図3に示す電気的中性点Nsと、図6に示すスイッチング電源2sの各端子U,V,Wの電気的中性点Neの電位は一致するので、この両者の関連を表した図4の電圧Enは、図3における接地極Gで接地されたN端子に対する電気的中性点Neの電位ENsと一致する。但し、図4に示す商用周波数ベクトルEnを固定とすると運転周波数ベクトルEU,EV,EWは120度の位相差を保ちながら、中性点Neの周りを回転し、図4で表示している時点では端子Uの対地電圧が最大になった状態を表示している。 However, since the electrical neutral point Ns shown in FIG. 3 of the single-phase distribution line and the electrical neutral point Ne of each terminal U, V, W of the switching power supply 2s shown in FIG. The voltage En of FIG. 4 representing the relationship of the above corresponds to the potential E Ns of the electrical neutral point Ne with respect to the N terminal grounded by the ground pole G in FIG. However, if the commercial frequency vector En shown in FIG. 4 is fixed, the operating frequency vectors E U , E V , E W rotate around the neutral point Ne while maintaining a phase difference of 120 degrees and are displayed in FIG. At this time, the state where the ground voltage of the terminal U is maximized is displayed.

単相配電線4N,4Rに接続されたスイッチング電源2sの電圧状態を示す図5において、負荷装置5に流入する零相電流I0を求める。負荷装置5のU,V,W相に印加される対地電圧は運転周波数の相電圧EU,EV,EWに商用周波数の電圧Enが重畳されたもので、図3に示される電位ENsが商用周波数の電圧Enであり、この電圧Enの大きさは基準電圧Eである単相配電線線間電圧ERの 1/2と一定であるのに対し、運転周波数の相電圧EU,EV,EWはVVVF特性のため、運転周波数が60Hzのとき、基準電圧Eの約1/√3の値となり、商用周波数の電圧Enの値のほぼ2/√3倍であるが、周波数の低下につれて電圧は低下する。 In FIG. 5 showing the voltage state of the switching power supply 2s connected to the single-phase distribution lines 4 N and 4 R , the zero-phase current I 0 flowing into the load device 5 is obtained. The ground voltage applied to the U, V, and W phases of the load device 5 is obtained by superposing the commercial frequency voltage En on the operation frequency phase voltages E U , E V , and E W , and the potential E shown in FIG. Ns is the voltage En of the commercial frequency, and the magnitude of the voltage En is constant at 1/2 of the single-phase distribution line voltage E R that is the reference voltage E, whereas the phase voltage E U , Since E V and E W are VVVF characteristics, when the operating frequency is 60 Hz, the value is approximately 1 / √3 of the reference voltage E, which is approximately 2 / √3 times the value of the commercial frequency voltage En. As the voltage decreases, the voltage decreases.

商用周波数の電圧Enに対する相電圧EU,EV,EWの割合をpとする。但し、pは2/√3以下とし、運転周波数及び商用周波数をそれぞれf及びfnとし、時間をtとしたとき、U,V,W相の瞬時対地電圧eoは、下記の式(20)で表される。 Let p be the ratio of the phase voltages E U , E V , E W to the commercial frequency voltage En. However, when p is 2 / √3 or less, the operating frequency and the commercial frequency are f and fn, respectively, and the time is t, the instantaneous ground voltage eo of the U, V, and W phases is expressed by the following equation (20). expressed.

eo=√2En(sin2πfnt+psinπft) ・・・(20)
式(20)を書き直すと、下記の式(20a)のように表すことができる。
eo = √2En (sin2πfnt + psinπft) (20)
When formula (20) is rewritten, it can be expressed as the following formula (20a).

eo=√2En{(1+p)sinαcosβ+(1−p)cosαsinβ)}
・・・(20a)
式(20a)で、α=2π{(fn+f)/2}t、β=2π{(fn―f)/2}tとする。
eo = √2En {(1 + p) sin αcos β + (1-p) cos αsin β)}
... (20a)
In equation (20a), α = 2π {(fn + f) / 2} t and β = 2π {(fn−f) / 2} t.

上記式(20)において、運転周波数fが商用周波数fnに近い60Hz〜40Hzではpは1.2〜0.8となるので、式(20a)の(1+p)の2.2〜1.8に対し、(1−p)は−0.2〜0.2となり、瞬時対地電圧eoの波形を考えるときには(1−p)項は無視できる。したがって、瞬時対地電圧eoの波形の周波数は式(20a)のαより、運転周波数fと商用周波数fnとの平均値は、60Hz,55Hz,50Hzとなり、この周波数の波形が、式(20a)のβの、運転周波数fと商用周波数fnとの差の半分の周波数で変調された波形で、前記の変調周期で、瞬時対地電圧eoは最高値を示し、この最高値の付近を測定して漏洩電流Igrの値を算出する。   In the above formula (20), when the operating frequency f is 60 Hz to 40 Hz close to the commercial frequency fn, p is 1.2 to 0.8, so that the formula (20a) (1 + p) is 2.2 to 1.8. On the other hand, (1-p) is -0.2 to 0.2, and the term (1-p) can be ignored when considering the waveform of the instantaneous ground voltage eo. Therefore, the frequency of the waveform of the instantaneous ground voltage eo is the average value of the operating frequency f and the commercial frequency fn from α in the equation (20a), and the waveform of this frequency is represented by the equation (20a). Waveform modulated at half of the difference between the operating frequency f and the commercial frequency fn of β, and the instantaneous ground voltage eo shows the highest value in the modulation period, and the vicinity of this highest value is measured and leaked. The value of the current Igr is calculated.

次に、式(20)において、運転周波数fが40Hz〜20Hzではpは0.8〜0.4となるので、上記式(20a)の(1+p)の1.8〜1.4に対し、(1−P)は0.2〜−0.6となり、同様に(1−p)項は無視し、瞬時対地電圧eoの波形の運転周波数fと商用周波数fnとの平均値は50Hz,45Hz,40Hzとなり、この周波数の波形が、式(20a)のβの、運転周波数fと商用周波数fnとの差の半分の周波数で変調された波形で、この変調周期で瞬時対地電圧eoは最高値を示す。このような特性を持つ式(20)で、三相4線式220V、50Hzの単相電源に接続されるスイッチング電源U,V,W相の瞬時対地電圧eoの波形を図7に示すが、この瞬時対地電圧eoと同波形の漏洩電流である零相電流I0が流れる。この電流I0の波形の最高値付近の波形は商用周波数の電圧Enの波形とほぼ一致するので、入力した商用周波数の基準電圧Eの波形と対応させながら、図9に示すように位相角θを測定して漏洩電流Igrの値を算出する。このように、運転周波数fが60〜20Hzでも、測定する零相電流I0の周波数は前述のように60〜40Hzとなり、周波数を50Hz又は60Hzとする商用周波数fnとの差は少なく、端子Rと接地端子Nとの間に発生する商用周波数fnの対地電圧ERを基準電圧Eとして入力し、前述の瞬時対地電圧eoと同波形の零相電流I0との位相角θを測定することは、少しの測定誤差を含むが、実用的に可能である。 Next, in the equation (20), when the operating frequency f is 40 Hz to 20 Hz, p becomes 0.8 to 0.4, so that (1 + p) 1.8 to 1.4 in the above equation (20a), (1-P) is 0.2 to -0.6. Similarly, the (1-p) term is ignored, and the average values of the operating frequency f and the commercial frequency fn of the waveform of the instantaneous ground voltage eo are 50 Hz and 45 Hz. , 40 Hz, and the waveform of this frequency is a waveform modulated by β of the equation (20a), which is half the difference between the operating frequency f and the commercial frequency fn, and the instantaneous ground voltage eo is the highest value in this modulation period. Indicates. FIG. 7 shows the waveform of the instantaneous ground voltage eo of the switching power supply U, V, W phase connected to the three-phase four-wire system 220V, 50 Hz single-phase power supply in the equation (20) having such characteristics. A zero-phase current I 0 which is a leakage current having the same waveform as the instantaneous ground voltage eo flows. Since the waveform in the vicinity of the maximum value of the waveform of the current I 0 substantially coincides with the waveform of the commercial frequency voltage En, the phase angle θ as shown in FIG. 9 while corresponding to the waveform of the input commercial frequency reference voltage E. Is measured to calculate the value of the leakage current Igr. Thus, even when the operating frequency f is 60 to 20 Hz, the frequency of the zero-phase current I 0 to be measured is 60 to 40 Hz as described above, and there is little difference from the commercial frequency fn with the frequency being 50 Hz or 60 Hz, and the terminal R The ground voltage E R of the commercial frequency fn generated between the ground terminal N and the ground terminal N is input as the reference voltage E, and the phase angle θ between the above-mentioned instantaneous ground voltage eo and the zero-phase current I 0 having the same waveform is measured. Contains a little measurement error, but is practically possible.

図2で、商用周波数の端子Rと接地電位である中性点Nにスイッチング電源2sが接続され、この端子R,N間に図3に示す電圧ERが印加される。図3で電圧ERの中点が印加電圧の電気的中性点Nsであり、この電気的中性点Nsの対地電圧は図3のENsで表される。商用周波数電源の電気的中性点Nsは、図4、図5で表されるスイッチング電源2sの電気的中性点Neに一致するので、図4、図5の商用周波数電圧Enは、対地電圧ENsとなり、その大きさはR相の対地電圧ERの半分になる。 In FIG. 2, a switching power supply 2s is connected to a commercial frequency terminal R and a neutral point N which is a ground potential, and a voltage E R shown in FIG. In FIG. 3, the middle point of the voltage E R is the electric neutral point Ns of the applied voltage, and the ground voltage of the electric neutral point Ns is represented by E Ns in FIG. Since the electrical neutral point Ns of the commercial frequency power supply coincides with the electrical neutral point Ne of the switching power supply 2s shown in FIG. 4 and FIG. 5, the commercial frequency voltage En of FIG. 4 and FIG. E Ns , the magnitude of which is half of the R-phase ground voltage E R.

また、図4、図6で、運転相電圧EU,EV,EWの位相は、商用周波数電圧Enの位相に対し、たえず変化しているので、例えばU相の対地電圧が最大になった時点ではベクトルEuが商用周波数電圧Enの方向と一致したときであり、図4に示すベクトル図がこの状態を表す。 In FIGS. 4 and 6, the phase of the operation phase voltages E U , E V , and E W is constantly changing with respect to the phase of the commercial frequency voltage En, so that, for example, the U-phase ground voltage is maximized. At this point, the vector Eu coincides with the direction of the commercial frequency voltage En, and the vector diagram shown in FIG. 4 represents this state.

図4に示す2つのベクトルEnとEuとは周波数が異なるので本来はベクトルでの表現はできないが、ここでは両周波数が接近しており、両者の位相がほぼ一致した時点の解析を行うので両者の周波数は等しいものとして取り扱う。   Since the two vectors En and Eu shown in FIG. 4 have different frequencies, they cannot be expressed by vectors. However, here, the two frequencies are close to each other, and the analysis is performed when the phases of the two are almost the same. Are treated as equal.

図4で運転相電圧EU,EV,EWの値をEdとするとき、図3に示される電圧ENsと図4に示す電圧Enが同じであるので、図4に示される基準電圧Eの1/2の電圧ENsと電圧Enが同位相のときU相の対地電圧が最大になるので、この時点のU,V,W端子の対地電圧EGU,EGV,EGWは、下記の式(21)〜(23)のようにベクトル記号法により示すことができる。 When the operating phase voltage E U in FIG. 4, E V, the value of E W and Ed, the voltage En shown in voltage E Ns and 4 shown in FIG. 3 are the same, the reference voltage shown in FIG. 4 When the voltage E Ns ½ of E and the voltage En have the same phase, the ground voltage of the U phase becomes the maximum, so the ground voltages E GU , E GV , E GW of the U, V, W terminals at this time are It can be shown by the vector symbol method as the following formulas (21) to (23).

GU=En+Ed ・・・(21)
GV=En−0.5Ed−j0.5 √3Ed ・・・(22)
GW=En−0.5Ed+j0.5 √3Ed ・・・(23)
そして、負荷装置5のU,V,Wの各相に存在する大きさがほぼ等しい対地静電容量Cに流れる対地電流をIgcu,Igcv,Igcwとし、角周波数ω=2πfnとおくと、上記対地電流Igcu,Igcv,Igcwは、下記の式(24)〜(26)で示すことができる。
E GU = En + Ed (21)
E GV = En−0.5Ed−j0.5 √3Ed (22)
E GW = En-0.5Ed + j0.5√3Ed (23)
Then, when the ground currents flowing through the ground capacitances C having substantially the same magnitude in the U, V, and W phases of the load device 5 are Igcu, Igcv, and Igcw and the angular frequency ω = 2πfn, The currents Igcu, Igcv, and Igcw can be expressed by the following formulas (24) to (26).

Igcu=jωCEGU=jωC(En+Ed) ・・・(24)
Igcv=jωCEGV=jωC(En−0.5Ed)+ωC・0.5√3Ed
・・・(25)
Igcw=jωCEGW=jωC(En−0.5Ed)−ωC・0.5√3Ed
・・・(26)
また、負荷装置5に生じた各相の対地漏洩抵抗ru,rv,rwに流れる漏洩電流をIgru,Igrv,Igrwとすると、各漏洩電流は下記の式(27)〜(29)で示すことができる。
Igcu = jωCE GU = jωC (En + Ed) (24)
Igcv = jωCE GV = jωC (En−0.5Ed) + ωC · 0.5√3Ed
... (25)
Igcw = jωCE GW = jωC (En−0.5Ed) −ωC · 0.5√3Ed
... (26)
Further, assuming that the leakage currents flowing to the ground leakage resistance ru, rv, rw of each phase generated in the load device 5 are Igru, Igrv, Igrw, each leakage current can be expressed by the following equations (27) to (29). it can.

Igru=EGU/ru=(En+Ed)/ru ・・・(27)
Igrv=EGV/rv=(En−0.5Ed)/rv−j0.5√3Ed/rv
・・・(28)
Igrw=EGW/rw=(En−0.5Ed)/rw+j0.5√3Ed/rw
・・・(29)
以上から、図2で巻線1aの中性点Nと接地極Gとの間を接続する接地線8、配電線4N,4R、スイッチング電源2s、負荷装置5sを経由して接地極Gに流れる電流である零相電流I0は、上記式(24)〜(29)を加えたものであり、1/ru=gu、1/rv=gv、1/rw=gwとおくと、下記の式(30)で表すことができる。
Igru = E GU / ru = (En + Ed) / ru (27)
Igrv = E GV /rv=(En−0.5Ed)/rv−j0.5√3Ed/rv
... (28)
Igrw = E GW /rw=(En−0.5Ed)/rw+j0.5√3Ed/rw
... (29)
From the above, the ground electrode G is connected via the ground wire 8, the distribution lines 4 N and 4 R , the switching power supply 2s, and the load device 5s that connect the neutral point N of the winding 1a and the ground electrode G in FIG. The zero-phase current I 0 that is the current flowing through the circuit is the sum of the above formulas (24) to (29). If 1 / ru = gu, 1 / rv = gv, 1 / rw = gw, (30).

0=(gu+gv+gw)En+(gu−0.5gv−0.5gw)Ed
+j{3ωCEn+0.5√3(gw−gv)Ed} ・・・(30)
ここで、漏洩電流Igrを測定する際、この漏洩電流測定装置に入力される対地電圧ERを基準電圧Eとするとき、上記式(30)で表される零相電流I0と、基準電圧Eと同位相の零相電流I0の有効成分Aと、基準電圧Eより90度位相が進んだ零相電流I0の無効成分Bの関係は、図8のベクトル図のように表され、上記有効成分Aは図8に示すベクトル図のI0及び上記式(30)の実数部分であるので、下記の式(31)により示すことができる。
I 0 = (gu + gv + gw) En + (gu−0.5 gv−0.5 gw) Ed
+ J {3ωCEn + 0.5√3 (gw−gv) Ed} (30)
Here, when measuring the leakage current Igr, when the ground voltage E R inputted to the leakage current measuring device and the reference voltage E, the zero-phase current I 0 of the formula (30), the reference voltage The relationship between the effective component A of the zero-phase current I 0 in phase with E and the ineffective component B of the zero-phase current I 0 advanced in phase by 90 degrees from the reference voltage E is expressed as in the vector diagram of FIG. Since the effective component A is I 0 in the vector diagram shown in FIG. 8 and the real part of the equation (30), it can be expressed by the following equation (31).

A=(gu+gv+gw)En+(gu−0.5gv−05gw)Ed・・・(31)
そして、上記基準電圧として入力された単相配電線の線間電圧Eでもある対地電圧ERから90度位相が進んだ零相電流I0の無効成分Bは、図8に示すベクトル図のI0及び式(30)の虚数部分であるので、下記の式(32)により示すことができる。
A = (gu + gv + gw) En + (gu−0.5 gv−05 gw) Ed (31)
The reactive component B of the zero-phase current I 0 has advanced 90 degrees phase from ground voltages E R which is also the line voltage E of the single-phase distribution line input as the reference voltage, I 0 of the vector diagram shown in FIG. 8 Since it is the imaginary part of the equation (30), it can be expressed by the following equation (32).

B=3ωCEn+0.5√3(gw−gv)Ed ・・・(32)
次に、前述の式(10)、(11)、(12)に式(31)、(32)をそれぞれ代入すると、下記の式(33)、(34)、(35)が得られる。
X=B−√3A
={3ωC−√3(gu+gv+gw)}En+√3(gw−gu)Ed
・・・(33)
Y=B+√3A
={3ωC+√3(gu+gv+gw)}En+√3(gu−gv)Ed
・・・(34)
Z=−2B=−6ωCEn−√3(gw−gv)Ed ・・・(35)
式(33)〜(35)のうち、最大の値を示す式は式(34)である。
B = 3ωCEn + 0.5√3 (gw−gv) Ed (32)
Next, when the equations (31) and (32) are substituted into the equations (10), (11), and (12), the following equations (33), (34), and (35) are obtained.
X = B-√3A
= {3ωC−√3 (gu + gv + gw)} En + √3 (gw−gu) Ed
... (33)
Y = B + √3A
= {3ωC + √3 (gu + gv + gw)} En + √3 (gu−gv) Ed
... (34)
Z = −2B = −6ωCEn−√3 (gw−gv) Ed (35)
Of the expressions (33) to (35), the expression indicating the maximum value is the expression (34).

式(34)で、スイッチング電源の特性から通常運転相電圧Edは運転周波数fが60Hzのとき最大値で、この値は図3の配電電源の相電圧ER、つまり入力電圧である基準電圧の1/√3にほぼ等しく、Enは入力電圧ERの半分、つまりEn=0.5√3Edとなるので、この関係を式(34)に代入すると、下記の式(34a)が得られる。 In the equation (34), the normal operation phase voltage Ed is the maximum value when the operation frequency f is 60 Hz from the characteristics of the switching power supply, and this value is the phase voltage E R of the distribution power supply in FIG. 3, that is, the reference voltage that is the input voltage. approximately equal to 1 / √3, En is half of the input voltage E R, i.e. since the En = 0.5√3Ed, substituting this relationship in equation (34), the following equation (34a) is obtained.

Ya={1.5√3ωC+(1.5+√3)gu+(1.5−√3)gv
+1.5gw}Ed ・・・(34a)
上記式(34a)において、対地静電容量Cに起因する対地漏洩電流Igcは式中ωCEdを含む項で表現されているが、運転周波数、商用周波数帯域では、この値は通常1mA以下と小さいので省略し、商用周波数の電圧Enに対し、運転周波数の電圧Edの位相が回転変化する。そして、式(34a)は、両電圧En,Edの位相が一致した時点を表現しているので、式中のgu,gv,gwの添え字u,v,wを固定する必要はなく、3相に同時に漏洩電流Igrは流れないとしているので、最小項は省略する。
Ya = {1.5√3ωC + (1.5 + √3) gu + (1.5−√3) gv
+1.5 gw} Ed (34a)
In the above formula (34a), the ground leakage current Igc due to the ground capacitance C is expressed by a term including ωCEd in the formula, but this value is usually as small as 1 mA or less at the operating frequency and commercial frequency band. Omitted, the phase of the operating frequency voltage Ed is rotationally changed with respect to the commercial frequency voltage En. Since the expression (34a) represents the point in time when the phases of the voltages En and Ed coincide with each other, it is not necessary to fix the subscripts u, v, and w of gu, gv, and gw in the expression. Since the leakage current Igr does not simultaneously flow in the phase, the minimum term is omitted.

また、図6に示すベクトル図より、Igru=(En+Eu)gu=(0.5√3+1)Ed・guとなるので、これらの関係を上記式(34a)に代入すると下記に式(34b)を得る。   Further, from the vector diagram shown in FIG. 6, Igru = (En + Eu) gu = (0.5√3 + 1) Ed · gu. Therefore, when these relationships are substituted into the above equation (34a), the following equation (34b) is obtained. obtain.

Ya=√3{Igru+√3/(2+√3)Igrw} ・・・(34b)
この式(34b)の括弧内の漏洩電流は、1相接地ならIgru、2相接地なら他の1相分の0.5倍が加わることになり、これらをまとめてIgrとすると、上記式(33)〜(34)のうち、最大の測定値をYmとすると、漏洩電流Igrの値は、下記の式(36)で与えられる。
Ya = √3 {Igru + √3 / (2 + √3) Igrw} (34b)
The leakage current in parentheses in this formula (34b) is Igru for one-phase grounding and 0.5 times the other one phase for two-phase grounding. Of the formulas (33) to (34), if the maximum measured value is Ym, the value of the leakage current Igr is given by the following formula (36).

Igr=Ym/√3) ・・・(36)
最大運転周波数fが60Hzより小さく60Hzを通過しないときは、電圧Edの値も低いので、運転周波数により値を補正する。
Igr = Ym / √3) (36)
When the maximum operating frequency f is smaller than 60 Hz and does not pass 60 Hz, the value of the voltage Ed is also low, so the value is corrected by the operating frequency.

確かに運転周波数が低下するにつれて誤差は増大するが、測定結果は漏洩電流Igrが0の場合とは明らかに差がある。そして、一般のスイッチング電源は、運転周波数と商用周波数の差が30Hz以内で運転されるか、運転周波数が通過するかであり、この誤差のために実用を妨げられる機会はほとんどない。   Certainly, the error increases as the operating frequency decreases, but the measurement result is clearly different from the case where the leakage current Igr is zero. In general switching power supplies, the difference between the operation frequency and the commercial frequency is operated within 30 Hz or the operation frequency passes, and there is almost no chance of impeding practical use due to this error.

次に、図1、図2に示す処理演算部16を構成する信号処理部3の具体例を、図10を参照して説明する。この信号処理部3は、電圧検出器21と、第1の増幅器22と、第1のローパスフィルタ(LPF)23と、第1の実効値変換器28と、零相電流(I0)検出器24と、第2の増幅器25と、第2のローパスフィルタ(LPF)26と、第2の実効値変換器29と、位相差計測器27とを備える。 Next, a specific example of the signal processing unit 3 constituting the processing calculation unit 16 shown in FIGS. 1 and 2 will be described with reference to FIG. The signal processing unit 3 includes a voltage detector 21, a first amplifier 22, a first low-pass filter (LPF) 23, a first effective value converter 28, and a zero-phase current (I 0 ) detector. 24, a second amplifier 25, a second low-pass filter (LPF) 26, a second effective value converter 29, and a phase difference measuring device 27.

図10において、電圧検出器21には、三相配電線R,S,Tの各相の各端子間に発生する線間電圧ESR,ETS,ERTのいずれか、又はスイッチング電源2の端子U,V,W間に発生した線間電圧EVU,EWV,EUWのいずれか、配電線4Nと配電線4R,4S,4Tのいずれか1相の単相電源にスイッチング電源2sが接続されている状態での単相線間電圧が基準電圧Eとして入力される。 In FIG. 10, the voltage detector 21 includes any of line voltages E SR , E TS , E RT generated between terminals of each phase of the three-phase distribution lines R, S, T, or a terminal of the switching power supply 2. Switching between U, V and W line voltage E VU , E WV , E UW , distribution line 4 N and distribution lines 4 R , 4 S , 4 T A single-phase line voltage in a state where the power source 2s is connected is input as the reference voltage E.

なお、図1、図2に示す系統図の三相配電線においては、線間電圧ESRが入力され、単相配電線においては線間電圧ERが入力されている。そして、第1の増幅器22は、電圧検出器21の検出感度に応じて、電圧検出器21から出力される基準電圧Eを適切な値になるまで増幅する。第1のローパスフィルタ23は、基準電圧Eとして入力される電圧の最高周波数である例えば60Hzを超える周波数成分を減衰させて基準電圧周波数波形を取り出す。 Incidentally, FIG. 1, the three-phase distribution line of the system diagram shown in Figure 2, is input line voltage E SR, the line voltage E R are input in the single-phase distribution line. Then, the first amplifier 22 amplifies the reference voltage E output from the voltage detector 21 according to the detection sensitivity of the voltage detector 21 until it reaches an appropriate value. The first low-pass filter 23 attenuates a frequency component exceeding, for example, 60 Hz, which is the highest frequency of the voltage input as the reference voltage E, and extracts a reference voltage frequency waveform.

そして、零相電流検出器24には、三相配電線にあっては、R,S,Tの各相の配電線4R,4S,4Tに流れる電流のベクトル和である零相電流I0が入力される。 In the three-phase distribution line, the zero-phase current detector 24 includes a zero-phase current I that is a vector sum of currents flowing through the distribution lines 4 R , 4 S , and 4 T of R, S, and T phases. 0 is entered.

また、三相4線式の配電方式にあっては、R,S,Tの各相及び接地相であるN相の各相の配電線4R,4S,4T及び中性線4Nの4線に流れる電流のベクトル和である零相電流I0が入力され、中性線4Nと配電線4R,4S,4Tのいずれか1相の単相電源では、単相2線に流れる電流のベクトル和である零相電流I0が入力される。 Further, in the three-phase four-wire distribution system, the distribution lines 4 R , 4 S , 4 T and the neutral wire 4 N of each phase of R, S, T and each of N phases as the ground phase The zero-phase current I 0, which is the vector sum of the currents flowing through the four wires, is input, and in the single-phase power source of any one of the neutral wire 4 N and the distribution lines 4 R , 4 S , 4 T , A zero-phase current I 0 which is a vector sum of currents flowing through the line is input.

第2の増幅器25は、零相電流検出器24の検出感度に応じて、零相電流検出器24から出力される零相電流I0を適切な値になるまで増幅する。第2のローパスフィルタ26は、零相電流I0の商用周波数及び運転周波数を超える周波数成分を減衰させて商用周波数及び運転周波数、これらの合成周波数波形を取り出す。 The second amplifier 25 amplifies the zero-phase current I 0 output from the zero-phase current detector 24 according to the detection sensitivity of the zero-phase current detector 24 until it reaches an appropriate value. The second low-pass filter 26 attenuates frequency components exceeding the commercial frequency and the operating frequency of the zero-phase current I 0 to extract the commercial frequency and the operating frequency and their combined frequency waveforms.

そして、位相差計測器27は、基準電圧として入力された配電電源各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれか、又はスイッチング電源2の端子U,V,W間に発生した線間電圧EVU,EWV,EUWのいずれか、又は中性線4Nと配電線4R,4S,4Tのいずれか1相の単相電源にスイッチング電源2sが接続されている状態での単相線間電圧のいずれかと、零相電流I0との位相差を計測する。ここで基準電圧Eとして入力された端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれか、又はスイッチング電源2の端子U,V,W間に発生した線間電圧EVU,EWV,EUWのいずれか、又は中性線4Nと配電線4R,4S,4Tのいずれか1相の単相電源にスイッチング電源2sが接続されている状態での単相線間電圧のいずれかと、零相電流I0との位相角θの関係を図8、図9に示す。なお、位相角θは、時間とともに変化するが、図8、図9ではその代表例を示す。 Then, the phase difference measuring instrument 27 is one of the line voltages E SR , E TS , E RT generated between the terminals R, S, T of the distribution power supply input as the reference voltage, or the terminal U of the switching power supply 2. , V, W, or any one of the line voltages E VU , E WV , E UW , or neutral wire 4 N and distribution lines 4 R , 4 S , 4 T The phase difference between any one of the single-phase line voltages and the zero-phase current I 0 when the switching power supply 2s is connected is measured. Here, any of line voltages E SR , E TS , E RT generated between terminals R, S, T input as reference voltage E, or a line generated between terminals U, V, W of switching power supply 2 Switching power supply 2s is connected to one-phase single-phase power supply of any one of interphase voltages E VU , E WV , E UW , or neutral wire 4 N and distribution lines 4 R , 4 S , 4 T FIG. 8 and FIG. 9 show the relationship between the phase angle θ between one of the single-phase line voltages and the zero-phase current I 0 . Although the phase angle θ changes with time, FIGS. 8 and 9 show typical examples.

そして、信号処理部3において、第1のローパスフィルタ23は出力された基準電圧Eの波形と、第2のローパスフィルタ26から出力された零相電流I0の波形を、例えばオペアンプゼロクロッシング回路に入力すると、それらの出力波形は、図9に示すように、基準電圧Eに対してはEZで示すようになり、零相電流I0に対してはIZで示すようになる。基準電圧E及び零相電流I0の出力波形の波高値を一致させて、出力波形EZとIZの差を求める。その差の絶対波形は、図9に示す|EZ−IZ|波形になる。図9に示す|EZ−IZ|波形及びIZ波形の突出部分の面積をそれぞれS1,S2とすれば、S1は基準電圧Eと零相電流I0との位相差角θに比例し、S2は位相差180度に比例する。このS1,S2に比例した電圧は、演算部14に出力される。 In the signal processing unit 3, the first low-pass filter 23 outputs the waveform of the output reference voltage E and the waveform of the zero-phase current I 0 output from the second low-pass filter 26 to, for example, an operational amplifier zero crossing circuit. When input, their output waveforms are indicated by E Z for the reference voltage E and indicated by I Z for the zero-phase current I 0 as shown in FIG. The peak values of the output waveforms of the reference voltage E and the zero-phase current I 0 are matched to obtain the difference between the output waveforms E Z and I Z. The absolute waveform of the difference is | E Z −I Z | waveform shown in FIG. If the areas of the protruding portions of the | E Z −I Z | waveform and the I Z waveform shown in FIG. 9 are S 1 and S 2 , respectively, S 1 is the phase difference angle θ between the reference voltage E and the zero-phase current I 0. S 2 is proportional to the phase difference of 180 degrees. The voltage proportional to S 1 and S 2 is output to the calculation unit 14.

そして、第1の実効値変換器28は、基準電圧Eの波形を両波整流して実効値に比例したアナログ値に変換し、演算部14に入力する。第2の実効値変換器29は、零相電流I0の基本周波数波形を両波整流して実効値に比例したアナログ値に変換して演算部14に入力する。 Then, the first effective value converter 28 rectifies the waveform of the reference voltage E in both waves to convert it into an analog value proportional to the effective value, and inputs it to the calculation unit 14. The second effective value converter 29 rectifies the fundamental frequency waveform of the zero-phase current I 0 into two-wave rectified and converts it to an analog value proportional to the effective value, and inputs it to the computing unit 14.

演算部14は、位相差計測器27が計測した基準電圧Eと零相電流I0との位相差角θを用いて、零相電流I0を基準電圧Eと同位相の有効成分Aと、基準電圧Eより90度位相が進んだ無効成分Bとに分解して出力する。 The calculation unit 14 uses the phase difference angle θ between the reference voltage E and the zero-phase current I 0 measured by the phase difference measuring device 27 to convert the zero-phase current I 0 into an active component A having the same phase as the reference voltage E, and It is decomposed into an ineffective component B having a phase advanced by 90 degrees from the reference voltage E and output.

なお、位相差計測器27が検出する基準電圧Eと零相電流I0との位相差角θは、次の式(37)から算出される。 The phase difference angle θ between the reference voltage E detected by the phase difference measuring instrument 27 and the zero-phase current I 0 is calculated from the following equation (37).

θ=(180S1)/S2 ・・・(37)
ここで、演算部14は、I0cosθの値を零相電流I0の有効成分Aの値として、I0sinθの値を零相電流I0の無効成分Bの値として演算し出力する。これら零相電流I0と、零相電流I0の有効成分A及び無効成分Bの関係は、前述したように、図8のベクトル図に示すように表される。
θ = (180S 1 ) / S 2 (37)
Here, the calculation unit 14 calculates and outputs the value of I 0 cos θ as the value of the effective component A of the zero-phase current I 0 and the value of I 0 sin θ as the value of the invalid component B of the zero-phase current I 0 . These zero-phase current I 0, the relationship of the active ingredient A and reactive component B of the zero-phase current I 0, as described above, is expressed as shown in the vector diagram of FIG.

そして、演算部14において、上述したような演算処理が行われ、スイッチング電源2の負荷装置5のU,V,Wの各相の対地漏洩抵抗ru,rv,rwが1相又は2相、あるいは2相間にまたがる負荷の中に存在しているとき、それらの中に流れる電流値又は2相分の合計電流値を漏洩電流Igrの値として測定し、その値を必要に応じて表示部15に表示させる。   Then, the arithmetic unit 14 performs the arithmetic processing as described above, and the ground leakage resistances ru, rv, rw of the U, V, W phases of the load device 5 of the switching power supply 2 are one phase or two phases, or When the load exists between two phases, the value of the current flowing in them or the total current value of the two phases is measured as the value of the leakage current Igr, and the value is displayed on the display unit 15 as necessary. Display.

本発明に係る漏洩電流測定装置及びこの測定装置を用いた測定方法においては、前述した零相電流I0の有効成分Aと無効成分Bを上述した式(10)〜(12)又は式(33)〜(35)に代入する演算処理を演算部14により行うことにより、U,V,Wの各相の対地漏洩抵抗ru,rv,rwが1相又は2相、あるいは2相間にまたがる負荷の中に存在しているとき、それらの中に流れる電流値又は2相分の合計電流値又はその値に近い電流値の測定が実現される。 In the leakage current measuring apparatus and the measuring method using this measuring apparatus according to the present invention, the effective component A and the ineffective component B of the above-described zero-phase current I 0 are expressed by the above-described equations (10) to (12) or (33). ) To (35) are performed by the calculation unit 14 so that the ground leakage resistance ru, rv, rw of each phase of U, V, W is one phase, two phases, or a load that spans between two phases. When present, measurement of the current value flowing in them or the total current value of two phases or a current value close to that value is realized.

また、本発明に係る漏洩電流測定装置は、図11に示すように、複数のスイッチング電源2a,2b及びその負荷装置5a,5bを1台の漏洩電流測定装置で監視することも可能である。また、配電線4の途中に遮断器19を設け、演算部14の演算の結果により、遮断器19の遮断動作を制御する構成としてもよい。本発明に係る漏洩電流測定装置は、演算部14により演算されて測定された対地漏洩抵抗ru,rv,rwの中を流れる漏洩電流Igrの測定結果を制御信号とし、この制御信号に基づいて配電線4の途中に設けた遮断器19を動作させることにより、スイッチング電源2a,2b及び負荷装置5a,5bを配電電源1から遮断する。   Further, as shown in FIG. 11, the leakage current measuring apparatus according to the present invention can monitor a plurality of switching power supplies 2a and 2b and their load devices 5a and 5b with a single leakage current measuring apparatus. Moreover, it is good also as a structure which provides the circuit breaker 19 in the middle of the distribution line 4, and controls the interruption | blocking operation | movement of the circuit breaker 19 with the result of the calculation of the calculating part 14. FIG. The leakage current measuring apparatus according to the present invention uses, as a control signal, the measurement result of the leakage current Igr flowing through the ground leakage resistances ru, rv, and rw calculated and measured by the calculation unit 14, and is distributed based on this control signal. By operating the circuit breaker 19 provided in the middle of the electric wire 4, the switching power supplies 2 a and 2 b and the load devices 5 a and 5 b are disconnected from the distribution power supply 1.

本発明に係る漏洩電流測定装置においては、上述のようにさらに遮断器を設けることにより、漏洩電流Igrの検出と共に、漏洩電流Igrが所定の値を超えたときスイッチング電源及び負荷装置を配電電源から遮断するようにすることができるので、配電電源に接続されたスイッチング電源及びその負荷装置を絶縁不良に伴う重大事故から守ることができる。   In the leakage current measuring apparatus according to the present invention, by further providing a circuit breaker as described above, when the leakage current Igr exceeds a predetermined value, the switching power supply and the load device are removed from the distribution power supply together with the detection of the leakage current Igr. Since it can be made to cut off, the switching power supply connected to the power distribution power supply and its load device can be protected from a serious accident caused by an insulation failure.

さらに、本発明に係る漏洩電流測定装置では、演算部14の演算の結果により、対地絶縁抵抗に起因する漏洩電流Igrの値が所定の値より大きくなったことが判定された場合には、その判定信号を制御信号として、音や発光等の警報装置を動作させ、音や発光等を用いて警報を発するようにしてもよい。このような警報装置を設けることにより、漏電に起因する事故を確実に防止することができる。なお、この警報装置は、図11に示すように、演算部14の判定信号を制御信号として警報器18を動作させるものであるので、演算部14からの判定信号が入力されるように、この演算部14に接続される。   Furthermore, in the leakage current measuring apparatus according to the present invention, when it is determined that the value of the leakage current Igr caused by the ground insulation resistance is larger than a predetermined value based on the calculation result of the calculation unit 14, An alarm device such as sound or light emission may be operated using the determination signal as a control signal, and an alarm may be issued using sound or light emission. By providing such an alarm device, it is possible to reliably prevent an accident due to electric leakage. As shown in FIG. 11, the alarm device operates the alarm device 18 using the determination signal of the calculation unit 14 as a control signal. Therefore, the alarm signal is input so that the determination signal from the calculation unit 14 is input. Connected to the calculation unit 14.

本発明に係る漏洩電流測定装置及び測定方法は、広く一般で実用されている電源周波数を変化させるインバータ及びインバータで駆動される電動機などの負荷装置や自動機械ロボット等に組み込まれているサーボモータ及びそれらを駆動するスィッチング電源装置における絶縁測定に用いることができる。   A leakage current measuring device and a measuring method according to the present invention include a servo motor incorporated in a load device such as an inverter and an electric motor driven by the inverter, an automatic machine robot, etc. It can be used for insulation measurement in a switching power supply for driving them.

1 星形配電電源、2 三相配電線用スイッチング電源、2s 単相配電線用スイッチング電源、3 信号処理部、4 配電線、5 負荷装置、8 接地線 9 零相変流器、14 演算部、15 表示部、16 処理演算部、18 警報機、19 遮断器、   DESCRIPTION OF SYMBOLS 1 Star distribution power supply, 2 Three-phase distribution line switching power supply, 2s Single-phase distribution line switching power supply, 3 Signal processing part, 4 Distribution line, 5 Load device, 8 Ground line 9 Zero-phase current transformer, 14 Calculation part, 15 Display unit, 16 processing operation unit, 18 alarm, 19 circuit breaker,

Claims (13)

変圧器の二次側巻線を星形に結線し、三相の電圧端子をR,S,Tとし、星形結線の接地された中性点をNとする電源から給電される三相4線式又は三相3線式の配電線又は上記中性点Nと端子R,S,Tのいずれかから給電される単相2線配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrを測定する漏洩電流測定装置において、
上記二次側巻線の各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は中性点Nと各端子R,S,T間に発生する単相電圧ER,ES,ET及び上記スイッチング電源の各出力端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを測定する電圧検出手段と、
各配電線及びスイッチング電源と上記スイッチング電源に接続される負荷装置に流れる電流のベクトル和である零相電流I0を検出する零相電流検出手段と、
上記電圧検出手段によって検出された上記線間電圧ESR,ETS,ERT又は単相電圧ER,ES,ET及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかが入力され、上記入力されたいずれかの線間電圧ESR,ETS,ERT又は単相電圧ER,ES,ET及び上記スイッチング電源の各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧とし、この基準電圧と上記零相電流I0との位相を比較する位相比較手段と、
上記基準電圧に対して、上記零相電流I0を同相の有効成分Aと、これと直角の位相差を有する無効成分Bに分離した計測値を求め、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は単相電圧ER,ES,ET及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧としたときに得られる上記零相電流I0の有効成分Aとこれと直角の位相差を有する無効成分Bとに基づいて、U相、V相、W相のうちの2相に発生する上記漏洩電流Igrの合計値、U相、V相、W相のうちの1相に発生する上記漏洩電流Igrの値、U相、V相、W相のうちの2相間若しくは三相間に接続される負荷装置の内部で発生する上記漏洩電流Igrの値を演算する演算手段と
を備えることを特徴とする漏洩電流測定装置。
Three-phase 4 fed from a power source with the secondary winding of the transformer connected in a star shape, the three-phase voltage terminals R, S, T, and the neutral point grounded in the star connection N A switching power supply connected to a wire-type or three-phase three-wire distribution line or a single-phase two-wire distribution line fed from one of the neutral points N and terminals R, S, and T, and the switching power supply In the leakage current measuring device for measuring the leakage current Igr caused by the ground insulation resistance of the load device,
Line voltage E SR , E TS , E RT generated between the terminals R, S, T of the secondary winding or a single phase voltage E generated between the neutral point N and the terminals R, S, T Voltage detecting means for measuring any of line voltages E VU , E WV , E UW generated between R , E S , E T and the output terminals U, V, W of the switching power supply;
Zero-phase current detection means for detecting zero-phase current I 0 which is a vector sum of currents flowing through each distribution line and the switching power supply and the load device connected to the switching power supply;
The line voltages E SR , E TS , E RT or the single-phase voltages E R , E S , E T detected by the voltage detection means and the line voltages generated between the switching power supply terminals U, V, W Any of E VU , E WV , E UW is input, and any of the input line voltages E SR , E TS , E RT or single-phase voltages E R , E S , E T and the switching power supply Phase comparison means for comparing any of the line voltages E VU , E WV , E UW generated between the terminals U, V, W with the reference voltage and comparing the phase of the reference voltage with the zero-phase current I 0. ,
A measurement value obtained by separating the zero-phase current I0 into the active component A having the same phase and the reactive component B having a phase difference orthogonal to the zero-phase current I0 with respect to the reference voltage is obtained and generated between the terminals R, S, and T. Line voltages E SR , E TS , E RT or single-phase voltages E R , E S , E T and line voltages E VU , E WV , E UW generated between the switching power supply terminals U, V, W Based on the effective component A of the zero-phase current I 0 obtained when any one of the above is used as a reference voltage and the reactive component B having a phase difference perpendicular to the effective component A, of the U-phase, V-phase, and W-phase Total value of leakage current Igr generated in two phases, value of leakage current Igr generated in one of U phase, V phase, and W phase, between two phases of U phase, V phase, and W phase or Computing means for computing the value of the leakage current Igr generated in the load device connected between the three phases. Leakage current measurement apparatus according to symptoms.
上記演算手段は、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を、上記スイッチング電源及びスイッチング電源の各端子U,V,Wに接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの近似値として演算することを特徴とする請求項1に記載の漏洩電流測定装置。 The calculation means is configured to detect line voltages E SR , E TS , E RT generated between the terminals R, S, T or line voltages E VU , E generated between the terminals U, V, W of the switching power supply. WV, when a reference voltage of either voltage E UW, the value of the formula (B-√3A), the value of the formula (B + √3A), the maximum of the values of the formula (-2B), 2. The leakage current measurement according to claim 1, wherein the leakage current measurement is performed as an approximate value of the leakage current Igr caused by ground insulation resistance of the switching power supply and a load device connected to each terminal U, V, W of the switching power supply. apparatus. 上記演算手段は、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値、上記各値の時間によって変動する値のうちの最大の値付近の数個の値を採取し、これらの値の平均値を上記スイッチング電源及びスイッチング電源の各端子U,V,Wに接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの近似値として演算することを特徴とする請求項1又は2に記載の漏洩電流測定装置。 The calculation means is configured to detect line voltages E SR , E TS , E RT generated between the terminals R, S, T or line voltages E VU , E generated between the terminals U, V, W of the switching power supply. WV, when a reference voltage of either one of the voltage E UW, the value of the formula (B-√3A), the value of the formula (B + √3A), the value of formula (-2B), the time of the respective values Several values near the maximum value among the fluctuating values are sampled, and the average value of these values is ground insulation resistance of the load device connected to each terminal U, V, W of the switching power supply and the switching power supply. The leakage current measuring device according to claim 1, wherein the leakage current measuring device is calculated as an approximate value of the leakage current Igr caused by. 上記演算手段は、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかの電圧を基準電圧としたとき、零相電流I0の2倍の値を上記スイッチング電源及びスイッチング電源の各端子U,V,Wに接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの近似値として演算することを特徴とする請求項1に記載の漏洩電流測定装置。 The calculation means has a value twice the zero-phase current I 0 when any of the line voltages E SR , E TS , E RT generated between the terminals R, S, T is used as a reference voltage. 2 is calculated as an approximate value of the leakage current Igr caused by the ground insulation resistance of the load device connected to each terminal U, V, W of the switching power supply and the switching power supply. measuring device. 上記演算手段は、上記単相2線配電線線間電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を√3で除した値を、上記スイッチング電源及びスイッチング電源の各端子U,V,Wに接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの近似値として演算することを特徴とする請求項1に記載の漏洩電流測定装置。   When the voltage between the single-phase two-wire distribution lines is the reference voltage, the calculation means is a value of the formula (B−√3A), a value of the formula (B + √3A), and a value of the formula (−2B) Is calculated as an approximate value of the leakage current Igr caused by the ground insulation resistance of the load device connected to each terminal U, V, W of the switching power supply and the switching power supply. The leakage current measuring apparatus according to claim 1. 当該漏洩電流測定装置は、さらに表示手段を備え、上記演算手段によって演算された結果が上記表示手段に表示されることを特徴とする請求項1〜5のいずれか1に記載の漏洩電流測定装置。   The leakage current measuring device according to claim 1, further comprising a display unit, wherein a result calculated by the calculating unit is displayed on the display unit. . 当該漏洩電流測定装置は、さらに警報手段を備え、上記演算手段において求められる上記漏洩電流Igrの値が所定の値を超えたときに上記警報手段より警報を発することを特徴とする請求項1〜6のいずれか1に記載の漏洩電流測定装置。   The leakage current measuring device further comprises an alarm means, and issues an alarm from the alarm means when the value of the leakage current Igr required by the arithmetic means exceeds a predetermined value. 6. The leakage current measuring device according to any one of 6. 当該漏洩電流測定装置は、さらに遮断手段を備え、上記演算手段において求められる上記漏洩電流Igrの値が所定の値を超えたときに上記遮断手段により電路を遮断することを特徴とする請求項1〜7のいずれか1に記載の漏洩電流測定装置。   2. The leakage current measuring apparatus further comprises a breaking means, and the electric circuit is cut off by the breaking means when a value of the leakage current Igr obtained by the computing means exceeds a predetermined value. The leakage current measuring device according to any one of? 7. 変圧器の二次側巻線を星形に結線し、三相の電圧端子をR,S,Tとし、星形結線の接地された中性点をNとする電源から給電される三相4線式又は三相3線式の配電線又は上記中性点Nと端子R,S,Tのいずれかから給電される単相2線配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrを測定する漏洩電流測定方法において、
上記二次側巻線の各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は中性点Nと各端子R,S,T間に発生する単相電圧ER,ES,ET及び上記スイッチング電源の各出力端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを検出する電圧検出工程と、
各配電線及びスイッチング電源と上記スイッチング電源に接続される負荷装置に流れる電流のベクトル和である零相電流I0を検出する零相電流検出工程と、
上記電圧検出手段によって検出された上記線間電圧ESR,ETS,ERT又は単相電圧ER,ES,ET及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかが入力され、上記入力されたいずれかの線間電圧ESR,ETS,ERT又は単相電圧ER,ES,ET及び上記スイッチング電源の各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧とし、この基準電圧と上記零相電流I0との位相を比較する位相比較工程と、
上記基準電圧に対して、上記零相電流I0を同相の有効成分Aと、これと直角の位相差を有する無効成分Bに分離した計測値を求め、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は単相電圧ER,ES,ET及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧としたときに得られる上記零相電流I0の有効成分Aとこれと直角の位相差を有する無効成分Bとに基づいて、U相、V相、W相のうちの2相に発生する上記漏洩電流Igrの合計値、U相、V相、W相のうちの1相に発生する上記漏洩電流Igrの値、U相、V相、W相のうちの2相間若しくは三相間に接続される負荷装置の内部で発生する上記漏洩電流Igrの値を演算する演算工程と
を備えることを特徴とする漏洩電流測定方法。
Three-phase 4 fed from a power source with the secondary winding of the transformer connected in a star shape, the three-phase voltage terminals R, S, T, and the neutral point grounded in the star connection N A switching power supply connected to a wire-type or three-phase three-wire distribution line or a single-phase two-wire distribution line fed from one of the neutral points N and terminals R, S, and T, and the switching power supply In the leakage current measuring method for measuring the leakage current Igr caused by the ground insulation resistance of the load device,
Line voltage E SR , E TS , E RT generated between the terminals R, S, T of the secondary winding or a single phase voltage E generated between the neutral point N and the terminals R, S, T A voltage detecting step for detecting any of line voltages E VU , E WV , E UW generated between R , E S , E T and the output terminals U, V, W of the switching power supply;
A zero-phase current detection step of detecting a zero-phase current I 0 that is a vector sum of currents flowing through each distribution line and the switching power supply and a load device connected to the switching power supply;
The line voltages E SR , E TS , E RT or the single-phase voltages E R , E S , E T detected by the voltage detection means and the line voltages generated between the switching power supply terminals U, V, W Any of E VU , E WV , E UW is input, and any of the input line voltages E SR , E TS , E RT or single-phase voltages E R , E S , E T and the switching power supply A phase comparison step in which any of the line voltages E VU , E WV , E UW generated between the terminals U, V, W is used as a reference voltage, and the phase of the reference voltage and the zero-phase current I 0 are compared. ,
A measurement value obtained by separating the zero-phase current I0 into the active component A having the same phase and the reactive component B having a phase difference orthogonal to the zero-phase current I0 with respect to the reference voltage is obtained and generated between the terminals R, S, and T. Line voltages E SR , E TS , E RT or single-phase voltages E R , E S , E T and line voltages E VU , E WV , E UW generated between the switching power supply terminals U, V, W Based on the effective component A of the zero-phase current I 0 obtained when any one of the above is used as a reference voltage and the reactive component B having a phase difference perpendicular to the effective component A, of the U-phase, V-phase, and W-phase Total value of leakage current Igr generated in two phases, value of leakage current Igr generated in one of U phase, V phase, and W phase, between two phases of U phase, V phase, and W phase or A calculation step of calculating the value of the leakage current Igr generated inside the load device connected between the three phases. Leakage current measurement method and butterflies.
上記演算工程は、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を、上記スイッチング電源及びスイッチング電源の各端子U,V,Wに接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの近似値として演算することを特徴とする請求項9に記載の漏洩電流測定方法。 The calculation process includes line voltages E SR , E TS , E RT generated between the terminals R, S, T or line voltages E VU , E generated between the terminals U, V, W of the switching power supply. WV, when a reference voltage of either voltage E UW, the value of the formula (B-√3A), the value of the formula (B + √3A), the maximum of the values of the formula (-2B), The leakage current measurement according to claim 9, wherein the leakage current measurement is performed as an approximate value of the leakage current Igr caused by the ground insulation resistance of the switching power supply and a load device connected to each terminal U, V, W of the switching power supply. Method. 上記演算手段は、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値、上記各値の時間によって変動する値のうちの最大の値付近の数個の値を採取し、これらの値の平均値を上記スイッチング電源及びスイッチング電源の各端子U,V,Wに接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの近似値として演算することを特徴とする請求項9又は10に記載の漏洩電流測定方法。
定方法。
The calculation means is configured to detect line voltages E SR , E TS , E RT generated between the terminals R, S, T or line voltages E VU , E generated between the terminals U, V, W of the switching power supply. WV, when a reference voltage of either one of the voltage E UW, the value of the formula (B-√3A), the value of the formula (B + √3A), the value of formula (-2B), the time of the respective values Several values near the maximum value among the fluctuating values are sampled, and the average value of these values is ground insulation resistance of the load device connected to each terminal U, V, W of the switching power supply and the switching power supply. The leakage current measuring method according to claim 9 or 10, wherein the leakage current is calculated as an approximate value of the leakage current Igr.
Method.
上記演算工程は、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかの電圧を基準電圧としたとき、零相電流I0の2倍の値を上記スイッチング電源及びスイッチング電源の各端子U,V,Wに接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの近似値として演算することを特徴とする請求項9に記載の漏洩電流測定装置。 The calculation step is a value that is twice the zero-phase current I 0 when any of the line voltages E SR , E TS , E RT generated between the terminals R, S, T is used as a reference voltage. The leakage current according to claim 9, wherein the leakage current Igr is calculated as an approximate value of the leakage current Igr caused by the ground insulation resistance of a load device connected to each terminal U, V, W of the switching power supply and the switching power supply. measuring device. 上記演算工程は、上記単相2線配電線線間電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を√3で除した値を、上記スイッチング電源及びスイッチング電源の各端子U,V,Wに接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの近似値として演算することを特徴とする請求項1に記載の漏洩電流測定方法。   The calculation step includes a value of the formula (B−√3A), a value of the formula (B + √3A), and a value of the formula (−2B) when the voltage between the single-phase two-wire distribution lines is a reference voltage. Is calculated as an approximate value of the leakage current Igr caused by the ground insulation resistance of the load device connected to each terminal U, V, W of the switching power supply and the switching power supply. The leakage current measuring method according to claim 1.
JP2010015544A 2010-01-27 2010-01-27 Leakage current measuring device and measuring method in electrical equipment Expired - Fee Related JP5477020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015544A JP5477020B2 (en) 2010-01-27 2010-01-27 Leakage current measuring device and measuring method in electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015544A JP5477020B2 (en) 2010-01-27 2010-01-27 Leakage current measuring device and measuring method in electrical equipment

Publications (2)

Publication Number Publication Date
JP2011153913A true JP2011153913A (en) 2011-08-11
JP5477020B2 JP5477020B2 (en) 2014-04-23

Family

ID=44539995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015544A Expired - Fee Related JP5477020B2 (en) 2010-01-27 2010-01-27 Leakage current measuring device and measuring method in electrical equipment

Country Status (1)

Country Link
JP (1) JP5477020B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170961A (en) * 2012-02-22 2013-09-02 Sanwa Technology Research Institute Apparatus and method for measuring power and leakage current
JP2017020913A (en) * 2015-07-10 2017-01-26 株式会社日立産機システム Insulation monitoring device and inverter device
CN106786360A (en) * 2015-11-24 2017-05-31 浙江省机电产品质量检测所 A kind of RCCB carries out the servicing unit of residual current test when loading
WO2017119125A1 (en) * 2016-01-08 2017-07-13 三菱電機株式会社 Insulation resistance measurement device
CN110402396A (en) * 2017-03-16 2019-11-01 头本頼数 Detect leakage current detection device, method and the program of leakage current
JP2020091250A (en) * 2018-12-07 2020-06-11 タナシン電機株式会社 Leakage current detection device and ground leakage current detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164375A (en) * 2006-12-27 2008-07-17 Sbc Co Ltd Device and method for measuring leakage current in electric apparatus
JP2009115754A (en) * 2007-11-09 2009-05-28 Sbc Co Ltd Device and method for measuring leakage current in electric equipment
JP2009145122A (en) * 2007-12-12 2009-07-02 Sbc Co Ltd Apparatus for measuring leakage current
JP2009229211A (en) * 2008-03-21 2009-10-08 Sbc Co Ltd Leakage current measuring device and its measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164375A (en) * 2006-12-27 2008-07-17 Sbc Co Ltd Device and method for measuring leakage current in electric apparatus
JP2009115754A (en) * 2007-11-09 2009-05-28 Sbc Co Ltd Device and method for measuring leakage current in electric equipment
JP2009145122A (en) * 2007-12-12 2009-07-02 Sbc Co Ltd Apparatus for measuring leakage current
JP2009229211A (en) * 2008-03-21 2009-10-08 Sbc Co Ltd Leakage current measuring device and its measuring method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170961A (en) * 2012-02-22 2013-09-02 Sanwa Technology Research Institute Apparatus and method for measuring power and leakage current
JP2017020913A (en) * 2015-07-10 2017-01-26 株式会社日立産機システム Insulation monitoring device and inverter device
CN106786360A (en) * 2015-11-24 2017-05-31 浙江省机电产品质量检测所 A kind of RCCB carries out the servicing unit of residual current test when loading
WO2017119125A1 (en) * 2016-01-08 2017-07-13 三菱電機株式会社 Insulation resistance measurement device
JPWO2017119125A1 (en) * 2016-01-08 2018-04-05 三菱電機株式会社 Insulation resistance measuring device
CN108474818A (en) * 2016-01-08 2018-08-31 三菱电机株式会社 Determination of insulation resistance device
CN108474818B (en) * 2016-01-08 2021-01-15 三菱电机株式会社 Insulation resistance measuring device
CN110402396A (en) * 2017-03-16 2019-11-01 头本頼数 Detect leakage current detection device, method and the program of leakage current
EP3598153A4 (en) * 2017-03-16 2020-03-11 Yorikazu Kashiramoto Leakage current detection device, method, and program for detecting leakage current
JP2020091250A (en) * 2018-12-07 2020-06-11 タナシン電機株式会社 Leakage current detection device and ground leakage current detection method

Also Published As

Publication number Publication date
JP5477020B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5544517B2 (en) Leakage current measuring device and measuring method in electrical equipment
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
EP2482411B1 (en) Drive Failure Protection
JP5477020B2 (en) Leakage current measuring device and measuring method in electrical equipment
JP2009115754A (en) Device and method for measuring leakage current in electric equipment
JP2008164374A (en) Device and method for measuring leakage current
JP2009058234A (en) Leak current measuring instrument and measuring method
JP5530769B2 (en) DC circuit leakage detection device
JP5380702B2 (en) Leakage current measuring device and measuring method
JP2012215423A (en) Leak current measuring device and leak current measuring method in power supply system
JP2008164375A (en) Device and method for measuring leakage current in electric apparatus
JP6222722B2 (en) Power and leakage current measuring apparatus and measuring method thereof
WO2008069249A1 (en) Leakage current determining apparatus and leakage current determining method
JP6460146B2 (en) Leakage current calculation device and leakage current calculation method
JP2009145122A (en) Apparatus for measuring leakage current
JP2017194465A (en) Monitoring device
JP2010060329A (en) Apparatus and method for measuring leakage current of electrical path and electric instrument
JP2009058235A (en) Leak current measuring instrument for electric path and electric apparatus, and its method
JP6704368B2 (en) Insulation monitoring device, method and program
JP2009229211A (en) Leakage current measuring device and its measuring method
JPH11287836A (en) Compound measuring device of power supply circuit
JP2008309681A (en) Insulation deterioration monitoring device and its method
JP7199651B2 (en) Detection device, method and program
JP2018128270A (en) Insulation monitoring device and insulation monitoring system
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5477020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees