JP2010166705A - Coreless linear motor armature and coreless linear motor - Google Patents

Coreless linear motor armature and coreless linear motor Download PDF

Info

Publication number
JP2010166705A
JP2010166705A JP2009006842A JP2009006842A JP2010166705A JP 2010166705 A JP2010166705 A JP 2010166705A JP 2009006842 A JP2009006842 A JP 2009006842A JP 2009006842 A JP2009006842 A JP 2009006842A JP 2010166705 A JP2010166705 A JP 2010166705A
Authority
JP
Japan
Prior art keywords
linear motor
armature
coreless linear
mold resin
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009006842A
Other languages
Japanese (ja)
Other versions
JP5413641B2 (en
JP2010166705A5 (en
Inventor
Kazuya Watanabe
和也 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2009006842A priority Critical patent/JP5413641B2/en
Priority to TW098140819A priority patent/TWI455456B/en
Priority to KR1020100000816A priority patent/KR20100084120A/en
Publication of JP2010166705A publication Critical patent/JP2010166705A/en
Publication of JP2010166705A5 publication Critical patent/JP2010166705A5/ja
Application granted granted Critical
Publication of JP5413641B2 publication Critical patent/JP5413641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coreless linear motor armature, and a coreless linear motor, preventing coolant channel deformation and also preventing degradation in cooling performance, by suppressing occurrence of depositions due to flow of coolant in a gap in the coolant channel positioned between a mold resin and a can even if an attaching posture of a motor changes. <P>SOLUTION: In the coreless linear motor armature, a gap and the surface between coil trains constituting an armature winding 5 is filled with a mold resin 7. The mold resin 7 has a projection 11a which is formed to be a flow path throttling part for partially throttling the cross sectional area of the flow path toward the flow direction of coolant in a coolant channel 13, protruding from the surface of the mold resin 7 toward the inner wall of cans 2a and 2b into the gap positioned between the cans 2a and 2b. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、推力リプルや低発熱が要求される一定速送りや高精度位置決め用のコアレスリニアモータに関し、特にその電機子構造に関するものである。   The present invention relates to a coreless linear motor for constant speed feed and high precision positioning that requires thrust ripple and low heat generation, and more particularly to its armature structure.

図4は従来技術を示すコアレスリニアモータの側断面図、図5は図4のコアレスリニアモータの斜視図である(例えば、特許文献1参照)。なお、従来例では、可動子を構成する電機子の両側に固定子となる界磁極を配置した磁束貫通型構造の可動コイル形リニアモータの例を用いて説明する。
図4において、1は電機子、2a、2bはキャン、3はフレーム、4はベース、5は電機子巻線、6は結線基板、7はモールド樹脂、8は界磁極、9は界磁ヨーク、10aおよび10bは永久磁石、13は冷媒通路である。
界磁極8は、コ字状断面を有する界磁ヨーク9の両側面の内側に紙面と垂直方向に向かって永久磁石10aおよび10bを極性が交互に異なるように複数個並べて配置されたものとなっている。電機子1は、永久磁石10aおよび10bの磁石列と磁気的空隙を介して対向配置すると共に、結線基板6に整列巻きしてなる複数のコイル列を有した電機子巻線5を配置し、コイル列とコイル列の間の隙間部および表面にモールド樹脂7を充填して固着したものとなっている。また、モールド樹脂7とキャン2a、2bとフレーム3によって囲まれる部分に冷媒通路13が形成されている。
このような構成において、リニアモータの電機子巻線1に通電すると、この電機子1と永久磁石10a、10bの磁束の電磁作用により、電機子巻線5を取り付けた電機子1が直線方向に移動する。このとき、冷媒通路13内部に冷媒を供給することで、電機子巻線5を構成するコイル列の表面が強制冷却される。
4 is a side sectional view of a coreless linear motor showing the prior art, and FIG. 5 is a perspective view of the coreless linear motor of FIG. 4 (see, for example, Patent Document 1). The conventional example will be described using an example of a moving coil linear motor having a magnetic flux penetrating structure in which field poles serving as stators are arranged on both sides of an armature constituting the mover.
In FIG. 4, 1 is an armature, 2a and 2b are cans, 3 is a frame, 4 is a base, 5 is an armature winding, 6 is a connection board, 7 is a mold resin, 8 is a field pole, and 9 is a field yoke. 10a and 10b are permanent magnets, and 13 is a refrigerant passage.
The field pole 8 is formed by arranging a plurality of permanent magnets 10a and 10b side by side in the direction perpendicular to the paper surface inside the both side surfaces of the field yoke 9 having a U-shaped cross section so that the polarities are alternately different. ing. The armature 1 is disposed so as to face the magnet rows of the permanent magnets 10a and 10b via a magnetic gap, and the armature winding 5 having a plurality of coil rows that are aligned and wound on the wiring board 6 is arranged. The gaps between the coil rows and the coil rows and the surface are filled with mold resin 7 and fixed. A coolant passage 13 is formed in a portion surrounded by the mold resin 7, the cans 2 a and 2 b and the frame 3.
In such a configuration, when the armature winding 1 of the linear motor is energized, the armature 1 to which the armature winding 5 is attached is linearly moved by the electromagnetic action of the magnetic flux of the armature 1 and the permanent magnets 10a and 10b. Moving. At this time, the surface of the coil row constituting the armature winding 5 is forcibly cooled by supplying the refrigerant into the refrigerant passage 13.

特許第3832556号Japanese Patent No. 3832556

しかしながら、従来のリニアモータは以下の問題があった。
(1)機械装置の小型化に伴い、リニアモータの取付姿勢の多様化が要求されるが、取付姿勢の多様化のためには任意の取付姿勢に対し冷却用の冷媒を常に冷媒通路内に充填することが必要である。従来のリニアモータ電機子は、コイル列を覆うモールド樹脂とキャンの間にある間隙部全てが冷媒通路を構成する単純な薄肉状の空間であるため、その流路断面積の広さから冷媒の流れを拘束できず、例えば、モータの取付姿勢が変わった場合に冷媒が流れることのない(流れが澱んだ)間隙部が発生するなどの問題があり、冷却性能を著しく低下させる要因となっていた。
(2)冷媒の流れの拘束のための方策として、モータの部品点数を増やす必要があるが、部品点数が増えると、熱の伝導性が悪くなることからモータの熱抵抗が増加し、モータの発熱量が大きくなるなどの問題があった。
(3)また、冷媒通路内の冷媒を均一に充填させる方策としては、冷媒通路内部に供給する冷媒流量を多くするなどの対策が必要となるが、冷媒流量を多くすると冷媒通路内部の圧力が上昇して冷媒通路が変形し、他の部材と干渉して冷媒通路自体が破壊されるなどの問題があった。
本発明は、上記課題を解決するためになされたものであり、モータの取付姿勢が変化してもモールド樹脂とキャンの間に位置する冷媒通路内の間隙部における冷媒の流れによる澱みの発生を抑え、冷却性能の低下を防ぐと共に、冷媒通路の変形を防止することができるコアレスリニアモータ電機子およびコアレスリニアモータを提供することを目的とする。
However, the conventional linear motor has the following problems.
(1) With the miniaturization of mechanical devices, diversification of the mounting posture of the linear motor is required, but in order to diversify the mounting posture, the cooling refrigerant is always placed in the refrigerant passage for any mounting posture. It is necessary to fill. In the conventional linear motor armature, since all the gaps between the mold resin covering the coil array and the can are a simple thin-walled space that forms the refrigerant passage, The flow cannot be constrained, for example, there is a problem that a gap does not flow (stagnation of the flow) when the mounting orientation of the motor changes, which causes a significant decrease in cooling performance. It was.
(2) As a measure for restraining the flow of the refrigerant, it is necessary to increase the number of parts of the motor. However, as the number of parts increases, the thermal conductivity of the motor increases because the heat conductivity deteriorates. There were problems such as an increase in heat generation.
(3) As a measure for uniformly filling the refrigerant in the refrigerant passage, measures such as increasing the flow rate of the refrigerant supplied into the refrigerant passage are required. However, if the refrigerant flow rate is increased, the pressure in the refrigerant passage is increased. As a result, the refrigerant passage is deformed and the refrigerant passage itself is destroyed due to interference with other members.
The present invention has been made in order to solve the above-described problem. Even if the mounting orientation of the motor changes, the occurrence of stagnation due to the flow of the refrigerant in the gap portion in the refrigerant passage located between the mold resin and the can. An object of the present invention is to provide a coreless linear motor armature and a coreless linear motor that can suppress, prevent deterioration of cooling performance, and prevent deformation of a refrigerant passage.

上記問題を解決するため、請求項1に記載の発明は、複数のコイル列からなる電機子巻線と、前記電機子巻線を覆うように設けられたキャンと、前記電機子巻線と前記キャンの間に形成され、前記コイル列の表面を強制冷却するように冷媒を流す冷媒通路と、を備えたコアレスリニアモータ電機子において、前記電機子巻線を構成するコイル列とコイル列の間の表面および隙間部には、モールド樹脂を充填してあり、前記モールド樹脂は、前記キャンとの間に位置する隙間部に該モールド樹脂の表面から該キャンの内壁に向けて突出し且つ冷媒の流れ方向に向かって流路断面積を部分的に絞る流路絞り部となる突起を形成したことを特徴としている。
請求項2に記載の発明は、請求項1記載のコアレスリニアモータ電機子において、前記突起が平面視で前記電機子巻線の隣り合うコイル列とコイル列の間または該コイル列の隣接部に沿って形成され、前記冷媒通路が平面視でコイル列に沿って長い偏平な流路断面形状を有することを特徴としている。
請求項3に記載の発明は、請求項1または2に記載のコアレスリニアモータ電機子において、前記突起は、前記モールド樹脂と同一材料としたことを特徴としている。
請求項4に記載の発明は、請求項1または2に記載のコアレスリニアモータにおいて、前記突起をモールド樹脂と一体成型したことを特徴としている。
請求項5に記載の発明は、請求項1または2に記載のコアレスリニアモータ電機子において、前記突起は、前記キャンとの間に挟み込まれて保持されるゴム系弾性体を備え、前記ゴム系弾性体は、前記キャンに荷重が加わると圧縮変形して前記突起と前記キャンとの間の隙間を気密するシール部材であることを特徴とあいている。
請求項6に記載の発明は、請求項1〜5の何れか1項に記載の電機子と、前期電機子と磁気的空隙を介して配置されると共に交互に極性が異なる複数の永久磁石を配列した界磁磁極と、を備え、前記電機子と前記界磁磁極の何れか一方を固定子とし、他方を可動子として相対的に走行するようにしたコアレスリニアモータを特徴としている。
In order to solve the above-mentioned problem, the invention according to claim 1 includes an armature winding formed of a plurality of coil arrays, a can provided so as to cover the armature winding, the armature winding, and the In a coreless linear motor armature, which is formed between the cans and includes a refrigerant passage through which a refrigerant flows so as to forcibly cool the surface of the coil array, between the coil array and the coil array constituting the armature winding The mold resin is filled in the surface and the gap portion, and the mold resin protrudes from the mold resin surface toward the inner wall of the can in the gap portion located between the can and the flow of the refrigerant. It is characterized in that a projection serving as a flow path restricting portion that partially narrows the cross-sectional area of the flow path in the direction is formed.
According to a second aspect of the present invention, in the coreless linear motor armature according to the first aspect, the projections are located between adjacent coil groups of the armature winding in the plan view or in adjacent portions of the coil group. The refrigerant passage is characterized by having a flat channel cross-sectional shape that is long along the coil row in plan view.
According to a third aspect of the present invention, in the coreless linear motor armature according to the first or second aspect, the protrusion is made of the same material as the mold resin.
According to a fourth aspect of the present invention, in the coreless linear motor according to the first or second aspect, the protrusion is integrally formed with a mold resin.
According to a fifth aspect of the present invention, in the coreless linear motor armature according to the first or second aspect, the protrusion includes a rubber-based elastic body that is sandwiched and held between the can and the rubber-based linear motor armature. The elastic body is characterized by being a sealing member that compresses and deforms when the load is applied to the can and hermetically seals a gap between the protrusion and the can.
According to a sixth aspect of the present invention, there is provided the armature according to any one of the first to fifth aspects, and a plurality of permanent magnets which are arranged via the magnetic gap and the previous armature and are alternately different in polarity. It is characterized by a coreless linear motor that includes an arrayed field magnetic pole, and that is relatively driven by using one of the armature and the field magnetic pole as a stator and the other as a mover.

請求項1および請求項2に記載の発明によると、コイル列を覆うモールド樹脂とキャンとの間の隙間部にモールド樹脂の表面からキャンの内壁に向けて突出し且つ冷媒の流れ方向に向かって流路断面積を部分的に絞る流路絞り部となる突起を設けたので、冷媒通路の内部において冷媒に対し任意の流路を作り出すことができ、また、突起の形状や数量によって冷媒の流れを任意に制御することができるため、常に冷媒を冷媒通路内に充填させ、かつ一定の冷媒を流すことが可能となる。その結果、モータの取付姿勢が変化してもモールド樹脂とキャンの間の冷媒通路内の間隙部における冷媒の流れによる澱みの発生を抑え、冷却性能の低下を防ぐと共に、冷媒通路の変形を防止することができる。
請求項3に記載の発明によると、突起の材質をモールド樹脂と同一としたことで、熱膨張係数を同一にでき、温度上昇に伴う熱変形に対し同一の熱変形量となるため、突起部にかかる熱応力を最小に抑えることが可能となり、突起の剥離などが起こりにくくなるため、信頼性が向上する。
請求項4に記載の発明によると、電機子巻線の絶縁および固定のために行うモールド工程と同時に突起を製作可能なことから、工数の低減ができ、作業性の改善、コストの削減が可能となる。また、モールド型により常に同じ位置と寸法で突起を配置することが可能となるため、冷媒の流れを一定に管理することができ、熱伝達に対する製品のバラツキを抑えることが可能となり、信頼性が向上する。
請求項5に記載の発明によると、突起とキャンを直接接触させず、ゴム系弾性体を介した構成とすることで、突起高さ寸法のバラツキにより発生するキャンへの接触応力を弾性体で逃がすことができるため、キャンの変形量を抑えることが可能となり、キャンの破壊や変形による他部品との干渉を抑制できるため信頼性が向上する。
請求項6に記載の発明によると、可動コイル形あるいは可動磁石形の何れのモータ形態であっても、任意方向に取付可能なコアレスリニアモータを提供することができる。
According to the first and second aspects of the present invention, the gap between the mold resin covering the coil array and the can protrudes from the surface of the mold resin toward the inner wall of the can and flows in the coolant flow direction. Protrusions that serve as flow passage restrictors that partially restrict the cross-sectional area of the road are provided, so that an arbitrary flow path can be created for the refrigerant inside the refrigerant passage. Since it can be arbitrarily controlled, it is possible to always fill the refrigerant passage with the refrigerant and to flow a constant refrigerant. As a result, even if the mounting orientation of the motor changes, the occurrence of stagnation due to the flow of the refrigerant in the gap in the refrigerant passage between the mold resin and the can is suppressed, preventing deterioration of the cooling performance and preventing the refrigerant passage from being deformed. can do.
According to the third aspect of the present invention, since the material of the projection is the same as that of the mold resin, the thermal expansion coefficient can be made the same, and the amount of thermal deformation is the same as the thermal deformation accompanying the temperature rise. It is possible to minimize the thermal stress applied to the film, and it becomes difficult for the protrusions to be peeled off, so that the reliability is improved.
According to the invention described in claim 4, since the projection can be manufactured simultaneously with the molding process for insulating and fixing the armature winding, the number of man-hours can be reduced, the workability can be improved, and the cost can be reduced. It becomes. In addition, since it is possible to always arrange the protrusions at the same position and size by the mold, it is possible to manage the flow of the refrigerant at a constant level, and to suppress the variation of the product with respect to the heat transfer, and the reliability is improved. improves.
According to the fifth aspect of the present invention, the contact between the protrusion and the can is not directly brought into contact with the rubber elastic body, so that the contact stress to the can caused by the variation in the height of the protrusion can be reduced with the elastic body. Since it can be escaped, the amount of deformation of the can can be suppressed, and interference with other parts due to the destruction or deformation of the can can be suppressed, thereby improving the reliability.
According to the sixth aspect of the present invention, it is possible to provide a coreless linear motor that can be mounted in any direction regardless of whether the motor is of a movable coil type or a movable magnet type.

本発明の実施例を示すリニアモータの側断面図Side sectional view of a linear motor showing an embodiment of the present invention 図1のリニアモータ電機子におけるコイル列の表面を覆うモールド樹脂と突起の配置関係を示した斜視図The perspective view which showed the arrangement | positioning relationship of the molding resin and projection which cover the surface of the coil row | line | column in the linear motor armature of FIG. 図2のリニアモータ電機子を平面方向に90°ずらした状態(図2の矢視A方向)において、突起とキャンの間に弾性体を配置した部分を拡大した側断面図2 is an enlarged side cross-sectional view of the portion where the elastic body is disposed between the protrusion and the can in the state in which the linear motor armature of FIG. 2 is shifted by 90 ° in the plane direction (direction A in FIG. 2). 従来技術を示すリニアモータの側断面図Side view of a linear motor showing the prior art 図4のコアレスリニアモータの斜視図4 is a perspective view of the coreless linear motor of FIG.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施例を示すリニアモータ電機子の側断面図、図2は図1のリニアモータ電機子におけるコイル列の表面を覆うモールド樹脂と突起の配置関係を示した斜視図であって、図1、図2ともに界磁極の図示を省略している。図3は図2のリニアモータ電機子を平面方向に90°ずらした状態(図2の矢視A方向)において、突起とキャンの間に弾性体を配置した部分を拡大した側断面図である。
図において、11aおよび11bはモールド樹脂に設けられた突起、12はシール部材である。
本実施例では、可動子を構成する電機子の両側に固定子となる界磁極を配置した磁束貫通型構造の可動コイル形コアレスリニアモータの例を用いて説明しており、電機子の冷却のため、フレーム3およびキャン2a、2bで冷媒通路13を構成している。本発明の構成要素が従来技術と同じ点についてはその説明を省略し、異なる点のみ説明する。
FIG. 1 is a side sectional view of a linear motor armature showing an embodiment of the present invention, and FIG. 2 is a perspective view showing an arrangement relationship between a mold resin and a projection covering the surface of a coil array in the linear motor armature of FIG. 1 and FIG. 2, the field pole is not shown. 3 is an enlarged side cross-sectional view of a portion where the elastic body is disposed between the protrusion and the can in the state in which the linear motor armature of FIG. 2 is shifted by 90 ° in the plane direction (direction of arrow A in FIG. 2). .
In the figure, 11a and 11b are protrusions provided on the mold resin, and 12 is a seal member.
In the present embodiment, an example of a moving coil type coreless linear motor having a magnetic flux penetrating structure in which field poles serving as stators are arranged on both sides of an armature constituting a mover is described. Therefore, the refrigerant passage 13 is constituted by the frame 3 and the cans 2a and 2b. The description of the components of the present invention that are the same as those of the prior art will be omitted, and only the differences will be described.

本発明が従来技術と異なる点は以下のとおりである。
すなわち、電機子巻線5を構成するコイル列とコイル列の間の表面および隙間部には、モールド樹脂7を充填してあり、モールド樹脂7は、キャン2a、2bとの間に位置する隙間部に該モールド樹脂7の表面から該キャン2a、2bの内壁に向けて突出し且つ冷媒通路13における冷媒の流れ方向に向かって流路断面積を部分的に絞る流路絞り部となる突起11aおよび11bを形成した点である。
また、突起11aおよび11bが平面視で電機子巻線5の隣り合うコイル列とコイル列の間または該コイル列の隣接部に沿って形成され、冷媒通路13が平面視でコイル列に沿って長い偏平な流路断面形状を有したものとなっており、いわゆる突起11aおよび11bが冷媒流路に対しラビリンスとなるように配置している。
また、突起11aおよび11bは、モールド樹脂と同一材料としたり、モールド樹脂と一体成型するように構成しても良い。
また、突起11aおよび11bは、キャン2a、2bとの間に挟み込まれて保持されるゴム系弾性体を備え、ゴム系弾性体は、キャン2a、2bに荷重が加わると圧縮変形して突起11aおよび11bとキャン2a、2bとの間の隙間を気密するシール部材12としたものである。
The present invention is different from the prior art as follows.
That is, the surface and the gap between the coil rows constituting the armature winding 5 are filled with the mold resin 7, and the mold resin 7 is a gap located between the cans 2a and 2b. A protrusion 11a that protrudes from the surface of the mold resin 7 toward the inner walls of the cans 2a and 2b and serves as a flow passage restricting portion that partially restricts the cross-sectional area of the flow passage in the refrigerant passage 13 in the refrigerant flow direction. 11b is formed.
Further, the projections 11a and 11b are formed between adjacent coil rows of the armature windings 5 in the plan view or along the adjacent portion of the coil row, and the refrigerant passage 13 is along the coil row in the plan view. It has a long and flat channel cross-sectional shape, and so-called protrusions 11a and 11b are arranged so as to be a labyrinth with respect to the refrigerant channel.
The protrusions 11a and 11b may be made of the same material as the mold resin or may be integrally formed with the mold resin.
The protrusions 11a and 11b include a rubber-based elastic body that is sandwiched and held between the cans 2a and 2b, and the rubber-based elastic body is compressed and deformed when a load is applied to the cans 2a and 2b. And the sealing member 12 which airtights the clearance gap between 11b and can 2a, 2b.

本発明の実施例は図1、図2に示すように、モールド樹脂7に突起を配置したことで、従来、流路を制御することが困難とされていた冷媒通路に替えて流路の制御を可能とする構造となり、モータの任意の取付姿勢に対して、モータ取付が可能となる。
また、突起11aおよび11bはモールド樹脂と同一材料かつ一体成型としたことで、熱による突起の変形や応力を緩和でき、信頼性が向上するさらには、位置決めが高精度に再現されることから、熱抵抗のばらつきを抑えられるため、信頼性が向上する。
また、突起11aおよび11bとキャン2a、2bを直接接触させず、弾性体を介した構成とすることで、突起11aおよび11bの高さ寸法のバラツキにより発生するキャンへの接触応力を弾性体で逃がすことができるため、キャン2a、2bの変形量を抑えることが可能となり、キャン2a、2bの破壊や変形による他部品との干渉を抑制できるため信頼性が向上する。
In the embodiment of the present invention, as shown in FIGS. 1 and 2, the protrusions are arranged on the mold resin 7, so that it is possible to control the flow path instead of the refrigerant path that has conventionally been difficult to control the flow path. Thus, the motor can be mounted to any mounting posture of the motor.
In addition, since the projections 11a and 11b are made of the same material as the mold resin and are integrally molded, the deformation and stress of the projection due to heat can be relieved, the reliability is improved, and the positioning is reproduced with high accuracy. Reliability can be improved because variations in thermal resistance can be suppressed.
In addition, the protrusions 11a and 11b and the cans 2a and 2b are not in direct contact with each other, and the elastic body is used so that the contact stress to the can caused by the variation in the height of the protrusions 11a and 11b can be reduced with the elastic body. Since it can be released, the deformation amount of the cans 2a and 2b can be suppressed, and interference with other parts due to the destruction and deformation of the cans 2a and 2b can be suppressed, so that the reliability is improved.

なお、本実施例では、固定子となる界磁極を可動子となる電機子の両側に配置した磁束貫通型構造のリニアモータの例を用いて説明したが、可動子を界磁極とし、電機子を固定子として固定子の片側に配置した、ギャップ対向型構造に替えても構成しても構わない。   In the present embodiment, description has been made using an example of a linear motor having a magnetic flux penetrating structure in which a field pole as a stator is arranged on both sides of an armature as a mover. As a stator, the gap opposing structure may be used instead of the gap facing structure, which is arranged on one side of the stator.

以上述べたように、任意の取付姿勢に対して取付可能なリニアモータを提供できるため、装置の小型化が必要とされる工作機械、半導体製造装置、液晶検査装置等に適用可能である。   As described above, since a linear motor that can be attached to an arbitrary attachment posture can be provided, it can be applied to a machine tool, a semiconductor manufacturing apparatus, a liquid crystal inspection apparatus, and the like that require downsizing of the apparatus.

1 電機子
2a、2b キャン
3 フレーム
4 ベース
5 電機子巻腺
6 結線基板
7 モールド樹脂
8 界磁極
9 ヨーク
10a、10b 永久磁石
11a、11b 突起
12 弾性体(シール部材)
13 冷媒通路
DESCRIPTION OF SYMBOLS 1 Armature 2a, 2b Can 3 Frame 4 Base 5 Armature winding gland 6 Connection board 7 Mold resin 8 Field pole 9 Yoke 10a, 10b Permanent magnet 11a, 11b Protrusion 12 Elastic body (seal member)
13 Refrigerant passage

Claims (6)

複数のコイル列からなる電機子巻線と、
前記電機子巻線を覆うように設けられたキャンと、
前記電機子巻線と前記キャンの間に形成され、前記コイル列の表面を強制冷却するように冷媒を流す冷媒通路と、
を備えたコアレスリニアモータ電機子において、
前記電機子巻線を構成するコイル列とコイル列の間の表面および隙間部には、モールド樹脂を充填してあり、
前記モールド樹脂は、前記キャンとの間に位置する隙間部に該モールド樹脂の表面から該キャンの内壁に向けて突出し且つ冷媒の流れ方向に向かって流路断面積を部分的に絞る流路絞り部となる突起を形成したことを特徴とするコアレスリニアモータ電機子。
An armature winding comprising a plurality of coil arrays;
A can provided to cover the armature winding;
A refrigerant passage formed between the armature winding and the can and flowing a refrigerant so as to forcibly cool the surface of the coil array;
In coreless linear motor armature with
The surface and the gap between the coil array and the coil array constituting the armature winding are filled with mold resin,
The mold resin protrudes from the surface of the mold resin toward the inner wall of the can in a gap located between the cans and partially restricts the flow path cross-sectional area in the refrigerant flow direction. A coreless linear motor armature, characterized in that a projection as a part is formed.
前記突起が平面視で前記電機子巻線の隣り合うコイル列とコイル列の間または該コイル列の隣接部に沿って形成され、前記冷媒通路が平面視でコイル列に沿って長い偏平な流路断面形状を有することを特徴とする請求項1記載のコアレスリニアモータ電機子。   The projection is formed between adjacent coil rows of the armature winding in the plan view or along the adjacent portion of the coil row, and the refrigerant passage is a flat flow that is long along the coil row in the plan view. The coreless linear motor armature according to claim 1, wherein the coreless linear motor armature has a road cross-sectional shape. 前記突起は、前記モールド樹脂と同一材料としたことを特徴とする請求項1または2に記載のコアレスリニアモータ電機子。   The coreless linear motor armature according to claim 1, wherein the protrusion is made of the same material as the mold resin. 前記突起は、前記モールド樹脂と一体成型したことを特徴とする請求項1または2に記載のコアレスリニアモータ電機子。   The coreless linear motor armature according to claim 1, wherein the protrusion is integrally formed with the mold resin. 前記突起は、前記キャンとの間に挟み込まれて保持されるゴム系弾性体を備え、前記ゴム系弾性体は、前記キャンに荷重が加わると圧縮変形して前記突起と前記キャンとの間の隙間を気密するシール部材であることを特徴とする請求項1または2に記載のコアレスリニアモータ電機子。   The protrusion includes a rubber-based elastic body that is sandwiched and held between the can, and the rubber-based elastic body is compressed and deformed when a load is applied to the can, so that the protrusion is between the can and the can. 3. The coreless linear motor armature according to claim 1, wherein the coreless linear motor armature is a seal member that hermetically seals the gap. 請求項1〜5の何れか1項に記載の電機子と、
前期電機子と磁気的空隙を介して配置されると共に交互に極性が異なる複数の永久磁石を配列した界磁磁極と、を備え、
前記電機子と前記界磁磁極の何れか一方を固定子とし、他方を可動子として相対的に走行するようにしたコアレスリニアモータ。
The armature according to any one of claims 1 to 5,
A magnetic field pole arranged with a plurality of permanent magnets alternately arranged in polarity with the previous armature and magnetic gaps,
A coreless linear motor that travels relatively with either one of the armature or the field magnetic pole as a stator and the other as a mover.
JP2009006842A 2009-01-15 2009-01-15 Coreless linear motor Expired - Fee Related JP5413641B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009006842A JP5413641B2 (en) 2009-01-15 2009-01-15 Coreless linear motor
TW098140819A TWI455456B (en) 2009-01-15 2009-11-30 Heartless motor
KR1020100000816A KR20100084120A (en) 2009-01-15 2010-01-06 Coreless linear motor armature and coreless linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009006842A JP5413641B2 (en) 2009-01-15 2009-01-15 Coreless linear motor

Publications (3)

Publication Number Publication Date
JP2010166705A true JP2010166705A (en) 2010-07-29
JP2010166705A5 JP2010166705A5 (en) 2012-02-16
JP5413641B2 JP5413641B2 (en) 2014-02-12

Family

ID=42582428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009006842A Expired - Fee Related JP5413641B2 (en) 2009-01-15 2009-01-15 Coreless linear motor

Country Status (3)

Country Link
JP (1) JP5413641B2 (en)
KR (1) KR20100084120A (en)
TW (1) TWI455456B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931769A (en) * 2011-08-12 2013-02-13 大银微系统股份有限公司 Fluid cooling mechanism of iron-core-free coil
JP2013251943A (en) * 2012-05-30 2013-12-12 Yaskawa Electric Corp Linear motor armature and linear motor
JP2015073390A (en) * 2013-10-03 2015-04-16 日本航空電子工業株式会社 Motor
JP2016086628A (en) * 2014-10-22 2016-05-19 鴻海精密工業股▲ふん▼有限公司 Linear motor
CN111082614A (en) * 2019-08-02 2020-04-28 大族激光科技产业集团股份有限公司 Magnet mounting equipment for secondary stator of motor and using method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230172689A (en) * 2022-06-15 2023-12-26 주식회사 져스텍 Water-cooled linear motor systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180361A (en) * 2002-11-25 2004-06-24 Nikon Corp Linear motor and method for manufacturing the same, and stage device and aligner
JP2004260941A (en) * 2003-02-26 2004-09-16 Nikon Corp Linear motor, stage device, and aligner
WO2008152876A1 (en) * 2007-06-13 2008-12-18 Kabushiki Kaisha Yaskawa Denki Canned linear motor armature and canned linear motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091079A1 (en) * 2003-04-07 2004-10-21 Kabushiki Kaisha Yaskawa Denki Canned linear motor armature and canned linear motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180361A (en) * 2002-11-25 2004-06-24 Nikon Corp Linear motor and method for manufacturing the same, and stage device and aligner
JP2004260941A (en) * 2003-02-26 2004-09-16 Nikon Corp Linear motor, stage device, and aligner
WO2008152876A1 (en) * 2007-06-13 2008-12-18 Kabushiki Kaisha Yaskawa Denki Canned linear motor armature and canned linear motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931769A (en) * 2011-08-12 2013-02-13 大银微系统股份有限公司 Fluid cooling mechanism of iron-core-free coil
JP2013251943A (en) * 2012-05-30 2013-12-12 Yaskawa Electric Corp Linear motor armature and linear motor
JP2015073390A (en) * 2013-10-03 2015-04-16 日本航空電子工業株式会社 Motor
JP2016086628A (en) * 2014-10-22 2016-05-19 鴻海精密工業股▲ふん▼有限公司 Linear motor
CN111082614A (en) * 2019-08-02 2020-04-28 大族激光科技产业集团股份有限公司 Magnet mounting equipment for secondary stator of motor and using method thereof

Also Published As

Publication number Publication date
JP5413641B2 (en) 2014-02-12
TWI455456B (en) 2014-10-01
TW201031088A (en) 2010-08-16
KR20100084120A (en) 2010-07-23

Similar Documents

Publication Publication Date Title
US6946755B2 (en) Linear motor
JP5413641B2 (en) Coreless linear motor
KR101222713B1 (en) Armature of canned linear motor and canned linear motor
EP2390992B1 (en) Sealed linear motor system
US7880344B2 (en) X-Y table actuator
WO2001063733A1 (en) Canned linear motor
JP4517278B2 (en) Coreless linear motor and canned linear motor
US7446439B2 (en) Linear motor armature and linear motor using the same
JP2006304438A (en) Linear motor
JPH11122901A (en) Linear motor
US7939973B2 (en) Canned linear motor armature and canned linear motor
JP2010166705A5 (en)
JP2007336765A (en) Armature for refrigerant-cooling linear motor, and refrigerant-cooling linear motor
JP2010074977A (en) Method of resin molding coreless linear motor armature, coreless linear motor armature, coreless linear motor, and table feed apparatus
JP5126652B2 (en) Moving coil linear motor
JP2004289911A (en) Linear slider
JP2006060969A (en) Armature for coreless linear motor and linear motor
JP4048557B2 (en) Linear motor cooling system
JP2004350419A (en) Linear motor
JP2015039263A (en) Armature of linear motor and linear motor
JP6677048B2 (en) Moving coil type linear motor
KR20020081891A (en) Linear motor with cooling device
JP2005094902A (en) Shifter
JP2022099892A (en) Cooling structure of linear motor and movable coil type linear motor with the cooling structure
JP2005039959A (en) Attraction force offset type linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

LAPS Cancellation because of no payment of annual fees