JP2010166378A - 光通信システムおよびノード装置 - Google Patents

光通信システムおよびノード装置 Download PDF

Info

Publication number
JP2010166378A
JP2010166378A JP2009007651A JP2009007651A JP2010166378A JP 2010166378 A JP2010166378 A JP 2010166378A JP 2009007651 A JP2009007651 A JP 2009007651A JP 2009007651 A JP2009007651 A JP 2009007651A JP 2010166378 A JP2010166378 A JP 2010166378A
Authority
JP
Japan
Prior art keywords
decoding
error correction
transmission frame
error
node device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009007651A
Other languages
English (en)
Inventor
Kazuo Kubo
和夫 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009007651A priority Critical patent/JP2010166378A/ja
Publication of JP2010166378A publication Critical patent/JP2010166378A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Error Detection And Correction (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】様々なレベルの光品質の光パスが混在していても、無駄な電力消費を抑制することが可能で、省電力化を図る。
【解決手段】情報データにオーバヘッドと誤り訂正符号とを付加して形成された伝送フレームを伝送するノード装置であって、受信した伝送フレームの誤り訂正符号の繰り返し復号処理を行う誤り訂正復号回路を備え、誤り訂正復号回路は、内符号復号器、デインターリーバ、及び、外符号復号器からなる、複数の復号器を、縦続接続して構成され、最悪の品質を想定して予め設定された所定の繰り返し回数(最大回数)以前に伝送フレームの誤りビットが全て訂正されたときには、以降の復号器の誤り訂正動作は停止し行わない。
【選択図】図5

Description

この発明は光通信システムおよびノード装置に関し、特に、光通信ネットワークにおいて、高性能な誤り訂正機能を具備し、高速大容量で高品質な通信を行う光通信システムおよびノード装置に関するものである。
誤り訂正を具備した高速大容量な光通信システムに用いられる伝送フレームを示した例として、ITU-T Recommendation G.709に示されたOTUk(Optical channel Transport Unit−k)フレームを図10に示す。OTUkフレームは、図10に示すように、実際の通信データを格納するためのペイロード、フレーム同期のためのFA OH(Frame Alignment OverHead)、保守監視情報のためのOTUk OHおよびODUk OH(Optical channel Data Unit−k OverHead)、および、ペイロードのマッピングのためのOPUk OH(Optical channel Payload Unit−k)から構成され、さらに、伝送後の光品質の劣化によるビット誤りを訂正するための誤り訂正符号の情報を格納するFEC Redundancyを有している。通常、誤り訂正符号としてはリード・ソロモン符号(以下、RS符号とする。)(255,239)が用いられるが、その他にも、ITU-T Recommendation G.975.1に示されるように、誤り訂正性能を向上させるためにLDPC符号(Low-Density Parity Check Code)や各種連接符号および積符号が用いられている。なお、一般的に、FA OH、OTUk OH、ODUk OH、および、OPUk OHから構成された部分をオーバヘッドと呼び、FEC Redundancyから構成された部分を誤り訂正符号と呼ぶ。
このように、光通信システムにおいては、伝送フレームとして、実際に送信したい情報データであるペイロードに、オーバヘッドと誤り訂正符号とを付加したものを形成し、それを高速かつ長距離に伝送している。
また、誤り訂正性能を向上させるための1つの手法として、繰り返し復号処理が用いられている。従来の誤り訂正復号器の一例を図11に示す。誤り訂正復号器は、図11に示すように、内符号の誤り訂正処理を行う内符号復号回路1004と、データの配列を入れ替えるデインターリーバ1005と、外符号の誤り訂正処理を行う外符号復号回路1006と、繰り返し復号を行うためにデータの配列を再度入れ替えるインターリーバ1007とから構成され、所定回数の誤り訂正を繰り返すことで、誤り訂正性能を向上させる。なお、インターリーバ1007によりデータの並び替えを行うと、ビットが受信順の配列でなくなるため、誤り発生箇所が集中せず拡散されるので、誤り訂正能力の向上が見込める。
図11に示した誤り訂正復号器は、所定のN回繰り返し復号処理を行うために、処理速度の迅速化のために、N倍の動作速度で処理を行うか、N個の回路を縦続接続させて処理を行うか、あるいは、その組み合わせによって実現され、繰り返し数が多いほど誤り訂正性能が向上する。しかし、繰り返し数を多くすると消費電力や回路規模が増大するので、LSI技術の制限などを考慮して所定の繰り返し数Nが適宜選ばれる。
ITU-T Recommendation G(ITU−T勧告 Gシリーズ)
以上のように、上述の従来例では、誤り訂正性能を向上させるために繰り返し復号処理が行われているが、光通信システムを構築する際には、最悪の光品質となる光パスを仮定して、誤り訂正符号および繰り返し復号回数が決定され、様々なレベルの光品質の光パスに対しても同一のものを用いるので、光品質の良好な光パスでは無駄な電力が消費され、光通信システム全体の消費電力が増大してしまうという問題点があった。
本発明はかかる問題点を解決するためになされたものであり、様々なレベルの光品質の光パスが混在していても無駄な電力消費を抑制することが可能で、省電力な光通信システムおよびノード装置を提供することを目的とする。
この発明は、情報データにオーバヘッドと誤り訂正符号とを付加して形成された伝送フレームを伝送するノード装置であって、伝送フレームを受信する受信手段と、前記受信手段により受信した伝送フレームの誤り訂正符号の繰り返し復号処理を行う誤り訂正復号手段とを備え、前記誤り訂正復号手段は、予め設定された所定の繰り返し最大回数以前に、前記伝送フレームの誤りビットが全て訂正されたときには、以降の誤り訂正動作を停止させる。
この発明は、情報データにオーバヘッドと誤り訂正符号とを付加して形成された伝送フレームを伝送するノード装置であって、伝送フレームを受信する受信手段と、前記受信手段により受信した伝送フレームの誤り訂正符号の繰り返し復号処理を行う誤り訂正復号手段とを備え、前記誤り訂正復号手段は、予め設定された所定の繰り返し最大回数以前に、前記伝送フレームの誤りビットが全て訂正されたときには、以降の誤り訂正動作を停止させるようにしたので、様々なレベルの光品質の光パスが混在していても、無駄な電力消費を抑制することが可能で、省電力化を図ることができる。
本発明の実施の形態1に係る光通信システムの一例を示したネットワーク図である。 本発明の実施の形態1に係る光通信システムを構成するOADMの構成の一例を示した構成図である。 本発明の実施の形態1に係る光通信システムを構成するOADMに設けられたトランスポンダの構成を示す構成図である。 本発明の実施の形態1に係る光通信システムにおける繰り返し復号による誤り訂正の性能をグラフで示した説明図である。 本発明の実施の形態1に係る光通信システムを構成するOADMに設けられたFECフレーマの誤り訂正復号回路の一例を示す構成図である。 本発明の実施の形態1に係る光通信システムを構成するOADMに設けられたFECフレーマの誤り訂正復号回路の一例を示す構成図である。 本発明の実施の形態2に係る光通信システムの一例を示したネットワーク図である。 本発明の実施の形態4に係る光通信システムにおける繰り返し復号による誤り訂正の性能をグラフで示した説明図である。 本発明の実施の形態4に係る光通信システムを構成するOADMに設けられた軟判定回路の構成を示す構成図である。 ITU-T Recommendation G.709に示されたOTUkフレームを示した説明図である。 従来の光通信システムに設けられた誤り訂正復号器の構成の一例を示した構成図である。
実施の形態1.
図1は、本発明の実施の形態1に係る光通信システムの一例を示したネットワーク図である。図において、1〜6は光信号を受信して分岐挿入多重を行うOADM装置(ノード装置)であり、これらのOADM装置1〜6は、6ノード構成でリングネットワークを構成している。また、7は、OADM装置2を介して接続されたOADM装置1とOADM装置3との間の光パスであり、8は、OADM装置6、OADM装置5、OADM装置4を介して接続されたOADM装置1とOADM装置3との間の光パスである。
図2は、各OADM装置1〜6の構成の一例を示した構成図である。図2において、101はWest側伝送の波長多重信号が入力されて合分波する光合分波器、102は、光パスを、光合分波器101、光合分波器103、および、トランスポンダ104,105の間で、分岐させるか、挿入するか、あるいは、スルーさせる光スイッチである。103は、East側伝送の波長多重信号が入力されて合分波する光合分波器、104は光スイッチ102に接続され、West側の光パスを終端して図示しない外部装置へ接続するトランスポンダ、105は同様にEast側の光パスを終端して外部装置へ接続するするトランスポンダである。
また、図3は、トランスポンダ104,105の構成の詳細例を示す構成図であり、1001は、図示しない外部装置との光信号の送受信を行うクライアント光トランシーバであり、1002は、伝送フレームを処理するFECフレーマであり、例えば、上記の図10に示したITU-T Recommendation G.709に示されたOTUkフレーム等の伝送フレームを処理するものである。1003は、OTUkフレーム等の伝送フレームを光信号に変換して光スイッチ102と接続して光パスを送受信するWDMトランシーバである。
上記のように、各OADM装置1〜6では、光スイッチ102により分岐または挿入される光パスは、トランスポンダ104,105にて終端され、一方、スルーされる光パスは、光合分波器101、光スイッチ102、光合分波器103を介して電気信号に変換されることなく、光信号のまま、West側からEast側に中継される。なお、図2では図示していないが、周知のように伝送路の損失が大きい場合には、それぞれの伝送路の入出力には光アンプが具備され、伝送路の損失が補われる。
図1に示したネットワークでは、最も光パスの品質が劣化する経路、たとえば、OADM装置2、OADM装置3、OADM装置4、OADM装置5を介した、OADM装置1とOADM装置6との間の光パスの品質劣化を補償可能な誤り訂正性能を実現する誤り訂正方式が適用され、例えば、各種連接符号あるいは積符号と図10に示したような繰り返し復号が用いられる。本発明においては、このように、光パスの中継数に基づいて光パスの品質を判定するが、中継数だけでなく、さらに光パスの波長数などにも基づいて、光パスの品質を判定するようにしてもよい。
図4は、繰り返し復号による誤り訂正の性能を示した説明図であり、横軸は誤り訂正前の伝送路のビット誤り率、縦軸は誤り訂正後のビット誤り率である。ここで、Nは繰り返し復号の回数であり、図のようにNを大きくすることで誤り訂正性能が向上する。
図5は、本実施の形態1におけるFECフレーマ1002に設けられた誤り訂正復号回路の一例を示す構成図であり、1008および1012は内符号の誤り訂正処理を行う内符号復号器、1009および1013は後段の外符号復号のためにデータの配列を入れ替えるデインターリーバ、1010および1014は外符号の誤り訂正処理を行う外符号復号器、1011は、繰り返して復号を行うためにデータの配列を再度入れ替えるインターリーバである。インターリーバ1011によるデータの並び替えは、受信順でない順番にデータを配列させることで、誤り発生箇所が集中せず拡散されるため、誤り訂正能力の向上を図る目的で行われる。
図5においては、内符号復号器1008、デインターリーバ1009、外符号復号器1010、インターリーバ1011、内符号復号器1012、デインターリーバ1013、外符号復号器1014の順に従属接続されている。すなわち、本構成では、繰り返し復号を高速で実現するために複数(N個)の復号器(内符号復号器、デインターリーバ、外符号復号器から構成)を従属接続した例を示しており、図5は、N=2の例である。なお、このように、繰り返し復号回路は、複数の復号器を縦続接続するか、または、復号器の動作速度をN倍とするか、あるいは、これらの両者の組み合わせにより実現することができ、一般に、回路規模と動作速度とのトレードオフを考慮した構成がとられる。
図1に示した光パス7は、光パス8に比べて、経由するノード数(中継数)も少なく、伝送距離も短いため、品質劣化は小さいとすると、光パス8に比べて、光パス7は少ない繰り返し復号で誤りビットを訂正できる。光パス7を終端するトランスポンダ内の誤り訂正復号回路では、ある繰り返し数で誤りビットが全て訂正された場合、その後段の復号器の誤り訂正動作は停止させる。光パス8でも同様に、ある繰り返し数(光パス7よりも多い回数)で誤りビットが全て訂正された場合、その後段の復号器の誤り訂正動作は停止させる。このように、本実施の形態では、最悪経路の光パスの品質を想定して予め設定された所定の繰り返し回数(最大数)以前に誤りビットが全て訂正された場合には、以降の誤り訂正動作を停止させる。なお、例えば、CMOSロジックなどでは、不要ブロックのクロック供給を停止させたり、繰り返し復号処理の動作速度を遅くしたりすることで、停止部分の電力消費を抑えることができ、また、CML等の電流ロジックでは、回路の電流源をスイッチで遮断するなどにより停止部分の電力消費を抑えることができる。
上記で示したように、例えば、最悪経路の光パスの品質補償に必要な繰り返し復号回数は8回(繰り返し最大数)で、光パス7および光パス8に必要な繰り返し復号回数がそれぞれ5回および7回とすると、光パス7と光パス8とで、復号回路3回分と1回分の合計4回分の電力消費を抑制することができる。一般に、FECフレーマでは、より強力な誤り訂正性能を得るために誤り訂正復号回路の回路規模および消費電力が大きな割合を占めており、大幅な消費電力低減効果が得られる。
なお、各光パスにおける繰り返し復号回数は以下のようにして決定する。すなわち、全ての誤りビットが訂正されたか否かを、検出回路を別個に設けて検出するか、あるいは、内符号復号器1008,1012または外符号復号器1010,1014で検出し、全ての誤りビットが訂正されたと判定された場合に、以降の冗長な繰り返し復号は停止するように後段の復号器に復号回路OFF制御信号を出力する。図5においては、内符号復号器1008(または1012)が検出した場合には、内符号復号器1008(または1012)から外符号復号器1010(または1014)に復号回路OFF制御信号が送信され、外符号復号器1010(または1014)がそれを受けて、自身の復号処理の動作は行わないようにする。また、同様に、外符号復号器1010が検出した場合には、外符号復号器1010から内符号復号器1012に復号回路OFF制御信号が送信され、内符号復号器1012がそれを受けて、自身の復号処理の動作は行わないようにする。
以上説明したように、本発明の実施の形態1によれば、光パスの品質劣化に応じて誤り訂正回路の繰り返し復号回数を変えられるよう構成し、誤りビットが全て訂正された時点で、以降の不要な誤り訂正回路の動作を停止するよう構成したので、省電力なノード装置および光通信システムを提供することができる。
なお、上記の実施の形態1では、内符号と外符号から構成される連接符号あるいは積符号などの例で説明したが、この場合に限定されるものではなく、例えば、LDPC等による単一符号の繰り返し復号でも同様な効果を奏することはいうまでもない。また、2つの誤り訂正性能を組み合わせた例を示したが、その場合に限らず、3つ以上の誤り訂正性能を組み合わせた場合でも同様な効果を奏する。
また、本実施の形態においては、伝送フレームが、ITU−T G.709に記載のフォーマットである場合を例に挙げて説明したが、その場合に限らず、ITU−T G.975に記載のフォーマット、あるいは、少なくともFEC冗長領域を拡張したフォーマットであれば、任意の伝送フレームを用いてもよいことは言うまでもない。
実施の形態2.
上記の実施の形態1では、各復号器において誤りビットが全て訂正された場合、後段の繰り返し復号回路を停止させるよう構成したが、図6に示すように、図示していないノード装置の管理部からの回路OFF制御信号に従って、動作を停止するよう構成してもよい。図6は、本実施の形態におけるFECフレーマ1002の誤り訂正復号回路の構成を示した図である。図6の構成と図5の構成との違いは、図6においては、回路OFF制御信号が、復号器1010,1012,1014に外部から入力されている点である。他の構成および動作については、上記の実施の形態1と同様であるため、ここでは説明を省略する。
図7は本実施の形態に係る光通信システムの構成例を示したネットワーク図である。図7に示すように、本実施の形態においては、各OADM装置1〜6の監視制御を行うオペレーションシステム9が設けられている。オペレーションシステム9では、各光パスの品質情報に応じて、各光パスに必要な繰り返し復号回数を所定のマージンを持って決定し、この情報を、回路OFF制御信号として、各光パスの終端点のノードであるOADM装置1〜6へ送信する。当該情報を受信した各OADM装置1〜6では、トランスポンダ104,105のFECフレーマ1002に、回路OFF制御信号に基づく所定の繰り返し復号回数を設定する。具体的には、図6に示すように、FECフレーマ1002内の内符号復号器1012または外符号復号器1010,1014のうちの、それ以降の復号処理動作を停止すべき復号器に当該回路OFF制御信号が入力される。このようにして繰り返し復号回数を予め設定した上で、繰り返し復号処理を行い、回路OFF制御信号が入力された復号器によって、復号回数が設定回数に達したか否かを検出して、その回数に達したと判定された場合に、設定回数を超えた、以降の冗長な繰り返し復号処理の動作は停止するようにして、オペレーションシステム9によって決定された繰り返し復号回数の分だけ復号処理動作を繰り返し行うようにする。
以上説明したように、本実施の形態においては、上記の実施の形態1と同様に、省電力なノード装置および光通信システムを提供することができるとともに、さらに、オペレーションシステム9により光パス設定時に所定のマージンを考慮して繰り返し復号回数を静的に決めるよう構成したので、安定して動作する高信頼な光通信システムを提供することができる。
なお、上記の説明においては、繰り返し復号回数を所定のマージンを加えて決定する例について説明したが、所定のマージンの値については適宜決定するものとする。また、所定のマージンを必ずしも加える必要はなく、マージン無しで繰り返し復号回数を決定してもよいものとする。
実施の形態3.
上記の実施の形態2では、オペレーションシステム9により各光パスに必要な繰り返し復号回数を所定のマージンを持って決定して各光パスの終端点のOADM装置へ設定し、各OADM装置の終端点ではトランスポンダのFECフレームに所定の繰り返し復号回数を設定するよう構成したが、GMPLS等の分散制御プロトコルにより光パスを設定する際に光品質を判定し、シグナリングによりトランスポンダのFECフレームに所定の繰り返し復号回数を設定するよう構成しても実施の形態2と同様な効果を奏することは言うまでもない。
なお、他の構成および動作については、上記の実施の形態1または2と同様であるため、ここでは説明を省略する。
以上のように、本実施の形態においては、上記の実施の形態1および2と同様に、省電力なノード装置および光通信システムを提供することができるとともに、さらに、GMPLS等の分散制御プロトコルにより光パスを設定する際に光品質を判定し、シグナリングによりトランスポンダのFECフレームに所定の繰り返し復号回数を設定するよう構成したので、安定して動作する高信頼な光通信システムを提供することができる。
実施の形態4.
上記の実施の形態1〜3では、硬判定処理により誤り訂正復号器の繰り返し復号回数に応じて不要な回路の動作を停止させるよう構成したが、誤り訂正性能を向上させるための手段としては軟判定処理の適用も考えられる。図8は軟判定処理による誤り訂正性能の説明図であり、図のように、軟判定処理を用いることにより硬判定処理に比べてより性能を向上させることができる。
なお、誤り訂正復号には、受信信号を二値化して“0”または“1”の硬判定データに変換した後に誤り訂正する硬判定復号方式と、受信信号のアナログ値そのものを硬判定データの信頼値として利用し誤り訂正する軟判定復号方法があることは一般によく知られている。軟判定復号方式は、多くの情報を扱うため、硬判定復号方式よりも、多くの誤りを訂正することができる。中でも、最尤復号法は最も多くの間違いを訂正するものとして知られている。
図9は軟判定回路の一例を示す構成図であり、1014、1015a、1015bおよび1015cは入力バッファ、1016a、1016bおよび1016cはDフリップフロップ、1017は信頼度情報生成回路、1018aおよび1018bは多重分離回路、1019aおよび1019bは出力バッファである。図9に示したこれらの構成は、例えば、図3に示したWDM光トランシーバ1003あるいはFECフレーマ1002内に設けられる。本実施の形態においては、図9に示す軟判定回路を追加した点が上記の実施の形態1〜3と異なっている。他の構成および動作については、上記の実施の形態1〜3と同じであるため、ここではその説明を省略する。
受信電気信号は、まず、入力バッファ1014に入力され、そこから、3つの入力バッファ1015a、1015bおよび1015cに分配され、それぞれ、Dフリップフロップ1016a、1016bおよび1016cに入力される。Dフリップフロップ1016a、1016bおよび1016cでは、互いに異なる閾値で、受信電気信号が識別される。また、信頼度情報生成回路1017では、Dフリップフロップ1016a、1016bおよび1016cからの識別データに基づいて、硬判定データおよび信頼度情報からなる2ビットの軟判定データを生成する。多重分離回路1018aでは硬判定データの直列/並列変化を行い、多重分離回路1018bでは信頼度情報の直列/並列変化を行い、それぞれ、出力バッファ1019aおよび1019bを介して誤り訂正復号回路へ出力する。誤り訂正復号回路は、基本的に上記の図5または図6に示した構成と同様の構成を有しているが、本実施の形態においては、入力された信頼度情報に基づいて誤り訂正処理を行うことで訂正性能を向上させる。他の構成および動作については、上記の実施の形態1〜3と同様であるため、ここでは説明を省略する。
軟判定処理による誤り訂正性能が必要な光パスでは、軟判定処理と上記実施の形態1〜3において示した所定の繰り返し復号処理とが行われる。一方、軟判定処理による誤り訂正性能が不要な光パスでは、図9にハッチングで示すように、入力バッファ1015bおよび1015c、Dフリップフロップ1016bおよび1016c、多重分離回路1018b、出力バッファ1019bの動作を停止させる。ここで、CMOSロジック等では、クロックの供給を停止させたり、データを固定値とすることで電力消費を抑えることができ、CMLロジック等では回路の電流源をスイッチ等で遮断することで電力消費を抑えることができる。
本実施の形態においては、誤り訂正復号回路により、予め設定された所定の繰り返し最大回数以前に、誤りビットが全て訂正されたときには、誤り訂正復号回路による復号処理に必要な回路部分のみを動作させ、一方、予め設定された所定の繰り返し最大回数以内に、誤りビットが全て訂正されないときには、軟判定回路による軟判定復号処理を行う。
なお、軟判定が必要か不要か、すなわち、軟判定とするか硬判定のみとするかについてどのように決定するかにつき、以下に説明する。図7に示すように、本実施の形態においても、各OADM装置1〜6の監視制御を行うオペレーションシステム9が設けられている。オペレーションシステム9では、各光パスの品質に応じて、少なくとも、軟判定処理を行うか、あるいは、硬判定処理のみを行うかを決定して、制御信号として、当該光パスの終端点のOADM1〜6に送信する。当該制御信号を受けたOADM1〜6は、制御信号に基づいて、軟判定処理による誤り訂正性能が必要か不要かを判断し、必要/不要に合わせて上記の処理を行う。
以上説明したように本実施の形態では、各光パス毎に必要な誤り訂正性能に応じて軟判定回路の動作を停止するか否かを制御し、軟判定が不要な場合には、軟判定回路の動作を少なくとも一部停止して、電力消費を抑制するよう構成したので、ノード数が多く伝送距離の長い大規模な光通信システムを省電力で提供することができる。
実施の形態5.
なお、上記実施の形態4では、2ビット軟判定で繰り返し復号回数と軟判定/硬判定とを変更する例を示したが、3ビット以上の軟判定処理として、繰り返し復号回数と軟判定処理のビット数も変更するよう構成しても同様な効果を奏する。
1,2,3,4,5,6 OADM、7,8 光パス、9 オペレーションシステム、101,103 光合分波器、102 光スイッチ、104,105 トランスポンダ、1001 クライアント光トランシーバ、1002 FECフレーマ、1003 WDM光トランシーバ、1008,1012 内符号復号器、1009,1013 デインターリーバ、1010,1014 外符号復号器、1011 インターリーバ、1019a,1019b 出力バッファ。

Claims (7)

  1. 情報データにオーバヘッドと誤り訂正符号とを付加して形成された伝送フレームを伝送するノード装置であって、
    伝送フレームを受信する受信手段と、
    前記受信手段により受信した伝送フレームの誤り訂正符号の繰り返し復号処理を行う誤り訂正復号手段と
    を備え、
    前記誤り訂正復号手段は、予め設定された所定の繰り返し最大回数以前に、前記伝送フレームの誤りビットが全て訂正されたときには、以降の誤り訂正動作を停止させる
    ことを特徴とするノード装置。
  2. 前記誤り訂正復号手段は、前記伝送フレームの前記誤りビットが全て訂正されたか否かを検出し、全て訂正されたと判定した場合に、以降の復号処理動作を停止することを特徴とする請求項1に記載のノード装置。
  3. 外部に設けられた管理機能において光パスの品質情報に応じて決定された繰り返し復号処理の繰り返し復号回数が入力され、それにより繰り返し復号回数を設定し、繰り返し復号処理の復号回数が、設定された繰り返し復号回数に達したときに、以降の復号処理動作を停止することを特徴とする請求項1に記載のノード装置。
  4. 前記受信手段により受信した伝送フレームの軟判定復号処理を行う軟判定復号手段をさらに備え、
    前記誤り訂正復号手段による前記繰り返し復号処理は硬判定復号処理であって、
    前記誤り訂正復号手段により、予め設定された所定の繰り返し最大回数以前に、前記伝送フレームの誤りビットが全て訂正されたときには、前記誤り訂正復号手段による復号処理に必要な回路部分のみを動作させ、予め設定された所定の繰り返し最大回数以内に、前記伝送フレームの誤りビットが全て訂正されないときには、前記軟判定復号処理を行うことを特徴とする請求項1ないし3のいずれか1項に記載のノード装置。
  5. 外部に設けられた前記管理機能において光パスの品質情報に応じて少なくとも軟判定復号処理か硬判定復号処理とするかが決定され、軟判定復号処理を行うと決定された場合に、前記管理機能からの制御信号に基づいて、前記軟判定復号手段による前記軟判定復号処理を行うことを特徴とする請求項4に記載のノード装置。
  6. 前記伝送フレームが、ITU−T G.709あるいはITU−T G.975に記載のフォーマット、あるいは、少なくともFEC冗長領域を拡張したフォーマットであることを特徴とする請求項1ないし5のいずれか1項に記載のノード装置。
  7. 請求項1ないし6のいずれかに1項に記載されたノード装置をネットワークにより接続して構成したことを特徴とする光通信システム。
JP2009007651A 2009-01-16 2009-01-16 光通信システムおよびノード装置 Pending JP2010166378A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009007651A JP2010166378A (ja) 2009-01-16 2009-01-16 光通信システムおよびノード装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009007651A JP2010166378A (ja) 2009-01-16 2009-01-16 光通信システムおよびノード装置

Publications (1)

Publication Number Publication Date
JP2010166378A true JP2010166378A (ja) 2010-07-29

Family

ID=42582188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009007651A Pending JP2010166378A (ja) 2009-01-16 2009-01-16 光通信システムおよびノード装置

Country Status (1)

Country Link
JP (1) JP2010166378A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055654A (ja) * 2011-09-01 2013-03-21 Fujitsu Ltd 光ネットワークにおける電力節約のための方法及びシステム
US8737836B2 (en) 2011-05-27 2014-05-27 Fujitsu Limited Apparatus and method for setting an optical path in an optical network
US8887031B2 (en) 2011-09-23 2014-11-11 Nec Corporation Error correcting method, error correcting apparatus, sending device, receiving device, and error correcting program
JP7076018B1 (ja) 2021-02-01 2022-05-26 Nttエレクトロニクス株式会社 誤り訂正システム、誤り訂正方法、および通信システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8737836B2 (en) 2011-05-27 2014-05-27 Fujitsu Limited Apparatus and method for setting an optical path in an optical network
JP2013055654A (ja) * 2011-09-01 2013-03-21 Fujitsu Ltd 光ネットワークにおける電力節約のための方法及びシステム
US8887031B2 (en) 2011-09-23 2014-11-11 Nec Corporation Error correcting method, error correcting apparatus, sending device, receiving device, and error correcting program
JP7076018B1 (ja) 2021-02-01 2022-05-26 Nttエレクトロニクス株式会社 誤り訂正システム、誤り訂正方法、および通信システム
JP2022117592A (ja) * 2021-02-01 2022-08-12 Nttエレクトロニクス株式会社 誤り訂正システム、誤り訂正方法、および通信システム

Similar Documents

Publication Publication Date Title
EP2256973B1 (en) Error correcting device and error correcting method
US9537607B2 (en) Communications network using adaptable FEC
JP5419534B2 (ja) Fecフレーム構成装置および方法
US8205141B2 (en) Virtual lane forward error correction in multilane distribution
US9356625B2 (en) Frame generation method, optical transmission device, and optical transmission system
US20220077875A1 (en) Data Transmission Method, Encoding Method, Decoding Method, Apparatus, Device, and Storage Medium
US7957642B2 (en) Efficient and simple bit error rate calculation on optical transport layer
JP5266546B2 (ja) デジタル伝送システム
EP2509243B1 (en) Error correction for an otpical communication system supporting 40 gbit/s and 100 gbit/s client signals
US9319180B2 (en) Partitioning forward error correction decoding iterations to accommodate multiple data streams
JP2010166378A (ja) 光通信システムおよびノード装置
JP6265938B2 (ja) 誤り訂正装置、光受信器および光伝送装置
JP2009260882A (ja) 復号化装置及び光通信システムの宅内装置
EP3579424B1 (en) Error correction device and error correction method
CN107534491A (zh) 用于第一和第二链路部分之间的再生网络节点的装置和方法
JP2013070289A (ja) 誤り訂正方法、誤り訂正装置、送信機、受信機及び誤り訂正プログラム
WO2012097590A1 (zh) 一种光传送网背板实现前向纠错的方法、系统及装置
US9515683B2 (en) Forward error correction architecture and implementation for power/space efficient transmission systems
JP2010124169A (ja) 通信装置及び通信方法
KR20110032590A (ko) 오류 정정 부호화 및 복호화가 수행되는 광 전송장치 및 그 방법
Rasmussen et al. Adaptive forward error correction for energy efficient optical transport networks
WO2016114109A1 (ja) 送信回路、受信回路、光伝送システムおよびマルチフレームの送信方法