WO2012097590A1 - 一种光传送网背板实现前向纠错的方法、系统及装置 - Google Patents

一种光传送网背板实现前向纠错的方法、系统及装置 Download PDF

Info

Publication number
WO2012097590A1
WO2012097590A1 PCT/CN2011/078595 CN2011078595W WO2012097590A1 WO 2012097590 A1 WO2012097590 A1 WO 2012097590A1 CN 2011078595 W CN2011078595 W CN 2011078595W WO 2012097590 A1 WO2012097590 A1 WO 2012097590A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
error correction
forward error
data frame
parameter value
Prior art date
Application number
PCT/CN2011/078595
Other languages
English (en)
French (fr)
Inventor
庄严
刘会田
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012097590A1 publication Critical patent/WO2012097590A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0043Realisations of complexity reduction techniques, e.g. use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers

Definitions

  • the present invention relates to the field of communication transmission network technologies, and in particular, to a method, system and device for implementing Forward Error Correction (FEC) on an optical transport network (OTN) backplane.
  • FEC Forward Error Correction
  • OTN optical transport network
  • OTN is a transport network based on Wavelength Division Multiplexing (WDM) technology, which organizes networks in optical layers, and is a backbone transport network in next-generation networks.
  • WDM Wavelength Division Multiplexing
  • OTN is a new generation of "digital transmission system” and "optical transmission system” standardized by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T) through a series of standards such as G.872, G.709, and G.798.
  • ITU-T International Telecommunication Union Telecommunication Standardization Sector
  • G.872, G.709, and G.798 will solve the problems of weak wavelength-free/sub-wavelength service scheduling, weak networking capabilities, and weak protection capabilities of traditional WDM networks.
  • the protection signal In the digital signal, in order to prevent external signal interference, the protection signal does not mutate, and multiple error correction code settings are performed.
  • the digital signal is very sensitive to the error signal during the decoding process. As long as there are very small and small errors every second, it cannot be decoded normally.
  • forward error correction called FEC is a very important anti-interference algorithm.
  • the forward error correction method can reduce the bit error rate of the digital signal and improve the reliability of signal transmission.
  • the embodiments of the present invention provide a method, a system, and a device for implementing FEC on an OTN backplane, which are used to solve the problem that the existing OTN backplane transmission wastes system resources when the FEC function is implemented, and the signal transmission quality cannot be achieved.
  • the problem of flexible adjustment is used to solve the problem that the existing OTN backplane transmission wastes system resources when the FEC function is implemented, and the signal transmission quality cannot be achieved.
  • a method for transmitting forward error correction of an optical transport network backplane includes:
  • the transmitting end determines the slot parameter value according to the identified number of forward error correction encoders configured by itself; the number of the forward error correction encoder is not less than 1;
  • Each encoded data is multiplexed into an OTUk data frame and transmitted according to the determined time slot parameter value.
  • the method for identifying the number of the forward error correction encoders is:
  • the transmitting end Based on the value of each status register connected to each forward error correction encoder, the transmitting end identifies the number of forward error correction encoders configured by itself.
  • the process of multiplexing the encoded data into an OTUk data frame and transmitting the method includes: multiplexing each of the encoded data into a sequence according to the determined time slot parameter value according to the sequence of each encoded data in the divided code OTUk data frames are sent and sent.
  • a method for receiving forward error correction of an optical transport network backplane includes:
  • the receiving end determines the slot parameter value according to the identified number of forward error correction decoders configured by itself; the number of the forward error correction decoders is the same as the number of forward error correction encoders configured by the transmitting end;
  • the method for identifying the number of the forward error correction decoders is:
  • the receiving end Based on the value of each status register connected to each forward error correction decoder, the receiving end identifies the number of forward error correction decoders configured by itself.
  • the process of multiplexing the decoded data into an OTUk data frame and transmitting comprises: multiplexing each decoded data into OTUk data according to the determined time slot parameter value according to the sequence of dividing each channel of data. Frame and send.
  • a system for implementing forward error correction on an optical transport network backplane includes:
  • a transmitting end configured to determine a slot parameter value according to the number of forward error correction encoders configured by the identifier; the number of the forward error correction encoder is not less than 1; and according to the determined slot parameter value And dividing the OTUk data frame to be sent into data of the corresponding path, and transmitting each divided data to the corresponding forward error correction encoder code; and according to the determined time slot parameter value, the coded
  • Each channel of data is multiplexed into OTUk data frames and transmitted;
  • a receiving end configured to determine a slot parameter value according to the number of forward error correction decoders configured by the identifier; the number of the forward error correction decoder and the number of forward error correction encoders configured by the transmitting end And; according to the determined time slot parameter value, dividing the received OTUk data frame into data of the corresponding path, and transmitting each divided data to the corresponding forward error correction decoder for decoding;
  • the determined time slot parameter value is used to multiplex each decoded data into an OTUk data frame and transmit it.
  • a transmitting device for implementing forward error correction on an optical transport network backplane comprising:
  • a data frame time slot adjusting unit configured to determine a time slot parameter value according to the identified number of forward error correction encoders configured by itself, and send the determined time slot parameter value to the data frame time slot decomposition unit and the data frame a slot multiplexing unit; the number of the forward error correction encoder is not less than 1;
  • a data frame slot decomposition unit is configured to divide the OTUk data frame to be transmitted into data corresponding to the path according to the received time slot parameter value, and respectively send each divided data to the corresponding front Error correction encoder
  • At least one forward error correction encoder for encoding the received data and transmitting the encoded data to the data frame slot multiplexing unit
  • the data frame slot multiplexing unit is configured to separately multiplex each encoded data into an OTUk data frame according to the received slot parameter value and send the data.
  • the device further includes:
  • At least one status register is used to confirm whether the position of the forward error correction encoder is connected to the corresponding forward error correction encoder, thereby determining whether to change its own value.
  • a receiving device for implementing forward error correction on an optical transport network backplane comprising:
  • a data frame time slot adjusting unit configured to determine a time slot parameter value according to the identified number of forward error correction decoders configured by itself, and send the determined time slot parameter value to the data frame time slot decomposition unit and the data frame a slot multiplexing unit; the number of the forward error correction decoders being the same as the number of forward error correction encoders configured at the transmitting end;
  • the data frame slot decomposition unit is configured to divide the received OTUk data frame into data of the corresponding path according to the received time slot parameter value, and respectively send each divided data to the corresponding forward error correction decoder. ;
  • At least one forward error correction decoder for decoding the received data and transmitting the decoded data to the data frame slot multiplexing unit
  • the data frame slot multiplexing unit is configured to separately multiplex each decoded data into an OTUk data frame according to the received slot parameter value and send the data.
  • the device further includes:
  • At least one status register is configured to confirm whether the position of the forward error correction decoder is connected to the corresponding forward error correction decoder, thereby determining whether to change its own value.
  • the embodiment of the invention provides a method, a system and a device for implementing FEC on an OTN backplane.
  • the time slot is determined according to the number of FEC encoders configured by itself.
  • Parameter value, according to the time slot parameter value the OTUk data frame to be transmitted is divided into corresponding path data, and sent to each corresponding FEC encoder code, and each coded data is determined according to the determined time slot parameter value. Multiplexed into OTUk data frames and transmitted.
  • the number of FEC encoders can be configured according to the requirements of signal transmission quality, and the number is not less than 1, so that system resources can be effectively saved, and FEC can be flexibly implemented according to requirements of signal transmission quality.
  • FIG. 1 is a schematic structural diagram of an apparatus for transmitting an FEC of an OTN backplane according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a structure of a transmitting apparatus shown in FIG. 1 according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a receiving device for implementing an FEC on an OTN backplane according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a receiving process of the receiving device shown in FIG. 5 according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a sending device and a receiving device when a transmitting device and a receiving device are located in the same device according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a system for implementing FEC on an OTN backplane according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention flexibly implements FEC according to signal transmission quality requirements, and provides a method, system and device for implementing FEC on an OTN backplane.
  • different signal transmission qualities are realized by flexibly configuring the number of FEC encoders and decoders. Quantity requirements.
  • the OTN backplane can flexibly implement the FEC according to the requirements of the signal transmission quality, thereby improving the fault tolerance of the signal transmission between the backplane and the client board, the backplane and the circuit board, and ensuring signal transmission. quality.
  • FIG. 1 is a schematic structural diagram of an apparatus for transmitting FEC implemented by an OTN backplane according to an embodiment of the present invention, where the apparatus includes: a data frame slot adjustment unit 11, a data frame slot resolution unit 12, and at least one forward error correction encoder. 13 and data frame slot multiplexing unit 14.
  • the data frame slot adjustment unit 11 is configured to determine a slot parameter value according to the identified number of forward error correction encoders 13 configured by itself, and send the determined slot parameter value to the data frame slot resolution unit 12 And a data frame slot multiplexing unit 14, wherein the number of forward error correction encoders 13 is not less than one;
  • the data frame slot decomposition unit 12 is configured to divide the OTUk data frame to be transmitted into data corresponding to the path according to the received time slot parameter value, and send each divided data to the corresponding forward error correction encoder. 13;
  • the forward error correction encoder 13 is configured to encode the received data, and send the encoded data to the data frame slot multiplexing unit 14;
  • the data frame slot multiplexing unit 14 is configured to multiplex each encoded data into an OTUk data frame and transmit according to the received slot parameter value.
  • the apparatus further includes:
  • At least one status register is used to confirm whether the position of the connection forward error correction encoder 13 is loaded with the corresponding forward error correction encoder 13, thereby determining whether to change its own value.
  • Each of the status registers is connected to the position of an FEC encoder, and the FEC encoder is loaded according to the position The situation determines its own value.
  • the number of different FEC encoders can be configured according to the requirements of the signal transmission quality.
  • the positions of the 16 FEC encoders can be reserved in the transmitting device.
  • the sequence number of each FEC encoder position can be determined in the order of position. After configuring the corresponding number of FEC encoders according to the requirements of signal transmission quality, each FEC encoder configured can be loaded into the corresponding FEC encoder position according to the position number sequence.
  • a status register is connected to each FEC encoder position. When the FEC encoder is loaded with the FEC encoder, the value of the status register is 1. When the FEC encoder is not loaded with the FEC encoder, the status register is The value is 0.
  • FIG. 2 is a schematic diagram of an FEC sending process performed by an OTN backplane according to an embodiment of the present invention, where the process includes the following steps:
  • the transmitting end determines a slot parameter value according to the identified number of forward error correction encoders configured by itself, where the number of the forward error correction encoders is not less than 1.
  • S202 Divide the OTUk data frame to be transmitted into data corresponding to the path according to the determined time slot parameter value, and send each divided data to the corresponding forward error correction encoder code.
  • S203 Divide each encoded data into an OTUk data frame and send according to the determined time slot parameter value.
  • the process of multiplexing each encoded data into an OTUk data frame and transmitting comprises: multiplexing each encoded data into an OTUk data frame according to the determined time slot parameter value according to the order of dividing each data. And send.
  • FIG. 3 is a schematic structural diagram of a transmitting apparatus shown in FIG. 1 according to an embodiment of the present invention, and details the transmission process of the FEC by the OTN backplane.
  • the data frame time slot adjusting unit in the transmitting device determines the bit of each of the current FEC encoders by reading the value of each state register connected to the 16 FEC encoder positions. Set whether the corresponding FEC encoder has been loaded to determine the number of FEC encoders configured by itself.
  • the slot parameter value is determined, that is, how many slots should be decomposed into OTUk data frames.
  • the slot parameter value is sent to the data frame slot decomposition unit and the data frame slot multiplexing unit, so that the data frame slot decomposition unit and the data frame slot Multiplex unit pair
  • the OTUk data frame performs correct slot decomposition and slot multiplexing.
  • the data frame slot decomposition unit decomposes the OTUk data frame to be transmitted without FEC into the data of the corresponding path according to the time slot parameter value sent by the data frame time slot adjustment unit, and outputs each channel data to the configured corresponding FEC code.
  • the data frame time slot decomposition unit has a connection relationship with the position of each FEC encoder, but only works with the connection line where the configured FEC encoder is located during operation.
  • the data frame slot decomposing unit decomposes the non-FEC OTUk data frame to be corresponding to the data of the corresponding path, and performs the inter-slot interleaving.
  • each FEC encoder After each FEC encoder encodes the received data, each FEC encoder outputs the encoded data to the data frame slot multiplexing unit.
  • the data frame slot multiplexing unit multiplexes the received data encoded by each FEC encoder into an OTUk data frame according to the slot parameter value transmitted by the received data frame slot adjustment unit.
  • the data frame time slot multiplexing unit has a connection relationship with each FEC encoder position, but only works with the connected line where the configured FEC encoder is located.
  • FIG. 4 is a schematic structural diagram of an apparatus for receiving an FEC of an OTN backplane according to an embodiment of the present invention, where the apparatus includes: a data frame slot adjustment unit 41, a data frame slot decomposition unit 42, and at least one forward error correction decoding.
  • the data frame slot adjustment unit 41 is configured to determine a slot parameter value according to the identified number of forward error correction decoders 43 configured by itself, and send the determined slot parameter value to the data frame slot resolution unit 42. And a data frame slot multiplexing unit 44, wherein the forward error correction decoder 43 The number is the same as the number of forward error correction encoders configured by the transmitting device;
  • the data frame slot decomposition unit 42 is configured to divide the received OTUk data frame into data of the corresponding path according to the received time slot parameter value, and send each divided data to the corresponding forward error correction decoder. 43;
  • a forward error correction decoder 43 configured to decode the received data, and send the decoded data to the data frame slot multiplexing unit;
  • the data frame slot multiplexing unit 44 is configured to multiplex each decoded data into an OTUk data frame and transmit according to the received slot parameter value.
  • the device further includes:
  • At least one status register is configured to confirm whether the position of the forward error correction decoder is connected to the corresponding forward error correction decoder, thereby determining whether to change its own value.
  • Each of the status registers is connected to the position of an FEC decoder, and its own value is determined based on the loading of the FEC decoder at that position.
  • the number of different FEC decoders can be configured according to the requirements of the signal transmission quality.
  • the positions of the 16 FEC decoders can be reserved in the receiving apparatus.
  • the sequence number of each FEC decoder position can be determined in the order of position. After configuring the corresponding number of FEC decoders according to the requirements of the signal transmission quality, each configured FEC decoder can be loaded into the corresponding FEC decoder position according to the position number sequence.
  • a status register is connected to each FEC decoder position. When the FEC decoder is loaded with the FEC decoder, the value of the status register is 1. When the FEC decoder is not loaded with the FEC decoder, the status register is The value is 0.
  • FIG. 5 is a schematic diagram of an FEC receiving process performed by an OTN backplane according to an embodiment of the present invention, where the process includes the following steps: S501: The receiving end determines, according to the identified number of forward error correction decoders configured by itself, the number of the forward error correction decoder, and the number of the forward error correction encoder configured by the transmitting end The number is the same.
  • S502 Divide the received OTUk data frame into corresponding channel data according to the determined time slot parameter value, and send each divided data to a corresponding forward error correction decoder for decoding.
  • S503 Divide each decoded data into an OTUk data frame and send according to the determined time slot parameter value.
  • the process of multiplexing each decoded data into an OTUk data frame and transmitting comprises: multiplexing each decoded data into an OTUk data frame according to the determined time slot parameter value according to the order of dividing each data. And send.
  • FIG. 6 is a schematic diagram showing the structure of the receiving apparatus shown in FIG. 5 according to an embodiment of the present invention, and the receiving process of the FEC in the OTN backplane is described in detail.
  • the data frame time slot adjusting unit in the receiving apparatus determines whether the position of each of the current FEC decoders is already determined by reading the value of each status register connected to the 16 FEC decoder positions. The corresponding FEC decoder is loaded to determine the number of FEC decoders that are configured by itself.
  • the number of FEC decoders in the receiving device needs to be configured according to the number of FEC encoders used when performing FEC on the OTUk data, that is, The number of FEC decoders in the receiving device is the same as the number of FEC encoders configured in the transmitting device.
  • the slot parameter value is determined, that is, how many slots should be decomposed into OTUk data frames.
  • the slot parameter value is sent to the data frame slot decomposition unit and the data frame slot multiplexing unit, so that the data frame slot decomposition unit and the data frame slot
  • the multiplexing unit performs correct slot decomposition and time slot multiplexing on the OTUk data frame.
  • the data frame slot decomposition unit decomposes the received FEC OTUk data frame into corresponding path data according to the slot parameter value sent by the data frame slot adjustment unit, and outputs each channel data to the configured corresponding FEC. decoder.
  • the data frame slot resolution unit has a connection relationship with the location of each FEC decoder, but only works with the connection line where the configured FEC decoder is located during operation.
  • the data frame slot decomposing unit performs the deinterpolation of the received ETUk data frame that has undergone FEC into the corresponding path.
  • each FEC decoder After each FEC decoder decodes the received data, each FEC decoder outputs the decoded data to the data frame slot multiplexing unit.
  • the data frame slot multiplexing unit multiplexes the received data decoded by each FEC decoder into an OTUk data frame according to the slot parameter value sent by the received data frame slot adjustment unit (the OTUk data frame is not Perform FEC data frame).
  • the data frame slot multiplexing unit has a connection relationship with the location of each FEC decoder, but only works with the connection line where the configured FEC decoder is located.
  • the transmitting device and the receiving device may be located in the same device or in different devices.
  • one data frame time slot adjusting unit may be shared.
  • FIG. 7 is a schematic structural diagram of a transmitting device and a receiving device when a transmitting device and a receiving device are located in the same device according to an embodiment of the present invention, where the device includes a data frame time slot adjusting unit and a first data frame in the transmitting device a slot decomposition unit and a first data frame slot multiplexing unit, a data frame slot adjustment unit, a second data frame slot decomposition unit, and a second data frame slot multiplexing unit in the receiving device.
  • the process of implementing FEC in the OTN backplane in the embodiment of the present invention will be described in detail with reference to FIG.
  • the value of each status register that is connected is reset to zero.
  • the FEC encoder is loaded with the position of each FEC encoder with sequence numbers 1-9, and the serial number. For each status register connected to each FEC encoder position of 1-9, since each FEC encoder is loaded at each position, the value of each status register connected to each position is 1.
  • the FEC decoder is loaded in turn at the position of each FEC decoder with sequence numbers 1-9, and each status register connected to each FEC decoder position numbered 1-9, because the FEC decoder is loaded for each position. Therefore, the value of each status register connected to each location is 1. That is, the transmitting device in the other device corresponding to the receiving device also uses nine FEC encoders to encode the data in the process of implementing FEC.
  • the data frame slot adjustment unit reads the value of each status register connected to each FEC encoder/decoder position, and determines each status register of each FEC encoder/decoder position connected with a sequence number of 1-9.
  • the value of 1 and the value of each status register connected to each FEC encoder/decoder position with a sequence number of 10 ⁇ 16 is 0, so the number of FEC encoders/decoders that identify their own configuration is 9.
  • the data frame slot adjustment unit determines the slot parameter value to be 9 based on the identified number of FEC encoder/decoders configured by itself. And determining the determined slot parameter value to the first data frame slot decomposing unit, the first data frame slot multiplexing unit, and the second data frame slot decomposing unit, and the second data frame slot multiplexing unit.
  • the first data frame time slot decomposing unit After receiving the time slot parameter value sent by the data frame time slot adjusting unit, the first data frame time slot decomposing unit decomposes the unfetched OUTk data frame to be transmitted into 9 channels of data, and sends each channel data to the sequence number 1
  • the FEC encoder corresponding to the position of ⁇ 9 performs encoding processing.
  • Each FEC encoder corresponding to the position of 1 to 9 encodes the received data, and then transmits the encoded data to the first data frame slot multiplexing unit.
  • the first data frame slot multiplexing unit multiplexes 9 channels of data encoded by each FEC encoder corresponding to the position of the sequence number 1 ⁇ 9 into a complete FEC OTUk data according to the received slot parameter value. frame.
  • the second data frame slot decomposing unit receives the OTUk data that has been subjected to FEC In the frame, according to the slot parameter value sent by the received data frame slot adjustment unit, the received FEC OUTk data frame is decomposed into 9 channels of data, and each channel is sent to the position 1 ⁇ 9.
  • the corresponding FEC decoder performs decoding processing.
  • Each FEC decoder corresponding to the position of 1 to 9 decodes the received data, and then transmits the decoded data to the second data frame slot multiplexing unit.
  • the second data frame slot multiplexing unit multiplexes the 9 channels of data decoded by each FEC decoder corresponding to the positions 1 to 9 according to the received slot parameter value into a complete OTUk data without FEC. frame.
  • FIG. 8 is a schematic structural diagram of a system for implementing FEC on an OTN backplane according to an embodiment of the present disclosure, where the system includes:
  • the transmitting end 81 is configured to determine a slot parameter value according to the number of the forward error correction encoders configured by the identifier, where the number of the forward error correction encoders is not less than 1, according to the determined slot parameters a value, the OTUk data frame to be transmitted is divided into data of the corresponding path, and each divided data is sent to a corresponding forward error correction encoder code, and each coded is encoded according to the determined time slot parameter value.
  • the road data is multiplexed into OTUk data frames and transmitted;
  • the receiving end 82 is configured to determine a slot parameter value according to the number of the forward error correction decoders configured by the identifier, where the number of the forward error correction decoders and the forward error correction coding configured by the transmitting end The number of the devices is the same, according to the determined time slot parameter value, the received OTUk data frame is divided into corresponding channel data, and each divided data is sent to the corresponding forward error correction decoder for decoding, according to The determined time slot parameter value is used to multiplex each decoded data into an OTUk data frame and transmit it.
  • the embodiment of the invention provides a method, a system and a device for implementing forward error correction on an optical transport network backplane.
  • the time slot parameter value is determined according to the number of FEC encoders configured by itself. And dividing the to-be-transmitted OTUk data frame into corresponding path data according to the time slot parameter value, and sending the data to each corresponding FEC encoder, and encoding each encoded data,
  • the determined time slot parameter values are multiplexed into OTUk data frames and transmitted.
  • the number of FEC encoders can be configured according to the requirements of signal transmission quality, and the number is not less than 1, so that system resources can be effectively saved, and FEC can be flexibly implemented according to requirements of signal transmission quality.
  • the OTN backplane can flexibly implement the FEC according to the requirements of the signal transmission quality, thereby improving the fault tolerance of the signal transmission between the backplane and the client board, the backplane and the circuit board, and ensuring signal transmission. quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Optical Communication System (AREA)

Description

一种光传送网背板实现前向纠错的方法、 系统及装置 技术领域
本发明涉及通信传送网技术领域, 尤其涉及一种光传送网 (Optical Transport Network, OTN ) 背板实现前向糾错 ( Forward Error Correction , FEC ) 的方法、 系统及装置。 背景技术
OTN是以波分复用 (Wavelength Division Multiplexing, WDM )技术为 基础,在光层组织网络的传送网,并且是下一代网络中的骨干传送网。 OTN 是国际电信联盟电信标准化部门 (ITU-T )通过 G.872、 G.709、 G.798等一 系列标准所规范的新一代 "数字传送体系"和 "光传送体系"。 OTN将解决 传统 WDM网络无波长 /子波长业务调度能力弱、 组网能力弱、 保护能力弱 等问题。
在数字信号中, 为了防止外界信号干扰, 保护信号不变异, 要进行多 重的糾错码设置。 数字信号在解码过程中, 对错误信号十分敏感, 每秒钟 只要有很小很小的误码, 就无法正常解码。 在各种纠错码的设置中, 被称 做 FEC的前向纠错是一个非常重要的防干扰算法。 采用前向纠错方法, 可 以降低数字信号的误码率, 提高信号传输的可靠性。
目前 OTN背板传输在实现 FEC的功能时,采用固定数量的 16个编码 / 解码器实现。 但对于信号传输质量要求不高的情况, 16个编 /解码器会造成 系统资源的浪费, 并且由于不同的用户或者不同的场合对信号传输质量的 要求不同, 而采用固定数量的编 /解码器只能实现固定的信号传输质量, 无 法实现信号传输质量的灵活调整。 发明内容
有鉴于此,本发明实施例提供一种 OTN背板实现 FEC的方法、 系统及 装置,用以解决现有 OTN背板传输在实现 FEC的功能时,造成系统资源的 浪费及无法实现信号传输质量的灵活调整的问题。
为了解决上述问题, 本发明的技术方案是这样实现的:
一种光传送网背板实现前向纠错的发送方法, 包括:
发送端根据识别到的自身配置的前向纠错编码器的数目, 确定时隙参 数值; 所述前向纠错编码器的数目不小于 1;
根据已确定的时隙参数值, 将待发送的 OTUk数据帧划分为对应路的 数据, 并将划分后的数据发送到对应的前向纠错编码器编码;
根据已确定的所述时隙参数值, 将编码后的每路数据复用成 OTUk数 据帧并发送。
其中, 识别所述前向纠错编码器数目的方法为:
根据与每个前向纠错编码器对应连接的每个状态寄存器的数值, 发送 端识别自身配置的前向纠错编码器的数目。
其中, 所述将编码后的数据复用成 OTUk数据帧并发送的过程包括: 根据划分编码后的每路数据的顺序, 按照确定的时隙参数值, 将编码 后的每路数据复用成 OTUk数据帧并发送。
一种光传送网背板实现前向纠错的接收方法, 包括:
接收端根据识别到的自身配置的前向纠错解码器的数目, 确定时隙参 数值; 所述前向纠错解码器的数目与发送端配置的前向纠错编码器的数目 相同;
根据已确定的时隙参数值, 将接收到的 OTUk数据帧划分为对应路的 数据, 并将划分后的数据发送到对应的前向纠错解码器解码;
根据已确定的所述时隙参数值, 将解码后的数据复用成 OTUk数据帧 并发送。
其中, 识别所述前向纠错解码器数目的方法为:
根据与每个前向纠错解码器对应连接的每个状态寄存器的数值, 接收 端识别自身配置的前向纠错解码器的数目。
其中, 所述将解码后的数据复用成 OTUk数据帧并发送的过程包括: 根据划分每路数据的顺序, 按照已确定的时隙参数值, 将解码后的每 路数据复用成 OTUk数据帧并发送。
一种光传送网背板实现前向纠错的系统, 包括:
发送端, 用于根据识别到的自身配置的前向纠错编码器的数目, 确定 时隙参数值; 所述前向纠错编码器的数目不小于 1; 以及根据已确定的时隙 参数值, 将待发送的 OTUk数据帧划分为对应路的数据, 并将划分后的每 路数据发送到对应的前向纠错编码器编码; 还有根据已确定的时隙参数值, 将编码后的每路数据复用成 OTUk数据帧并发送;
接收端, 用于根据识别到的自身配置的前向纠错解码器的数目, 确定 时隙参数值; 所述前向纠错解码器的数目与发送端配置的前向纠错编码器 的数目相同; 以及根据已确定的时隙参数值, 将接收到的 OTUk数据帧划 分为对应路的数据, 并将划分后的每路数据发送到对应的前向糾错解码器 解码; 还有根据已确定的时隙参数值, 将解码后的每路数据复用成 OTUk 数据帧并发送。
一种光传送网背板实现前向纠错的发送装置, 包括:
数据帧时隙调节单元, 用于根据识别到的自身配置的前向纠错编码器 的数目, 确定时隙参数值, 并将确定的时隙参数值发送到数据帧时隙分解 单元和数据帧时隙复用单元; 所述前向纠错编码器的数目不小于 1;
数据帧时隙分解单元,用于根据接收的时隙参数值,将待发送的 OTUk 数据帧划分为对应路的数据, 并分别将划分后的每路数据发送到对应的前 向纠错编码器;
至少一个前向纠错编码器, 用于对接收到的数据进行编码, 并将编码 后的数据发送到数据帧时隙复用单元;
数据帧时隙复用单元, 用于根据接收的时隙参数值, 分别将编码后的 每路数据复用成 OTUk数据帧并发送。
其中, 所述装置还包括:
至少一个状态寄存器, 用于确认连接前向纠错编码器的位置是否加载 了对应的前向纠错编码器, 据此确定是否改变自身的数值。
一种光传送网背板实现前向纠错的接收装置, 包括:
数据帧时隙调节单元, 用于根据识别到的自身配置的前向纠错解码器 的数目, 确定时隙参数值, 并将确定的时隙参数值发送到数据帧时隙分解 单元和数据帧时隙复用单元; 所述前向纠错解码器的数目与发送端配置的 前向纠错编码器的数目相同;
数据帧时隙分解单元,用于根据接收的时隙参数值,将接收到的 OTUk 数据帧划分为对应路的数据, 并分别将划分后的每路数据发送到对应的前 向纠错解码器;
至少一个前向糾错解码器, 用于对接收到的数据进行解码, 并将解码 后的数据发送到数据帧时隙复用单元;
数据帧时隙复用单元, 用于根据接收的时隙参数值, 分别将解码后的 每路数据复用成 OTUk数据帧并发送。
其中, 所述装置还包括:
至少一个状态寄存器, 用于确认连接前向纠错解码器的位置是否加载 了对应的前向纠错解码器, 据此确定是否改变自身的数值。
本发明实施例提供了一种 OTN背板实现 FEC的方法、 系统及装置, 当 发送端进行数据的发送时, 根据自身配置的 FEC编码器的数目, 确定时隙 参数值, 根据该时隙参数值将待发送 OTUk数据帧划分为对应路的数据, 发送到对应的每个 FEC编码器编码, 并将编码后的每路数据, 根据已确定 的时隙参数值复用成 OTUk数据帧并发送。 由于在本发明实施例中可以根 据信号传输质量的要求配置 FEC编码器的数目, 该数目不小于 1 , 因此可 以有效的节省系统资源, 并可以根据信号传输质量的要求, 灵活实现 FEC。 附图说明
图 1为本发明实施例提供的一种 OTN背板实现 FEC的发送装置结构示 意图;
图 2为本发明实施例提供的一种 OTN背板实现 FEC的发送过程; 图 3为本发明实施例提供的具体的结合图 1所示的发送装置的结构示 意图;
图 4为本发明实施例提供的一种 OTN背板实现 FEC的接收装置的结构 示意图;
图 5为本发明实施例提供的一种 OTN背板实现 FEC的接收过程; 图 6为本发明实施例提供的具体的结合图 5所示的接收装置的结构示 意图;
图 7 为本发明实施例提供的发送装置和接收装置位于同一设备中时, 发送装置和接收装置的组成结构示意图;
图 8为本发明实施例提供的一种 OTN背板实现 FEC的系统结构示意 图。 具体实施方式
本发明实施例为了节省系统资源, 根据信号的传输质量要求, 灵活实 现 FEC, 提供了一种 OTN背板实现 FEC的方法、 系统及装置。 在本发明 实施例中通过灵活配置 FEC编码器和解码器的数目, 实现不同信号传输质 量的要求。 并且由于在本发明实施例中 OTN背板可以根据信号传输质量的 要求灵活实现 FEC, 因此提高了背板与客户板, 背板与线路板板之间的信 号传输的容错能力, 保证了信号传输质量。
为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚、 明白, 以下结合附图和实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
图 1为本发明实施例提供的一种 OTN背板实现 FEC的发送装置结构示 意图, 该装置包括: 数据帧时隙调节单元 11、 数据帧时隙分解单元 12、 至 少一个前向纠错编码器 13和数据帧时隙复用单元 14。
数据帧时隙调节单元 11 , 用于根据识别到的自身配置的前向纠错编码 器 13的数目, 确定时隙参数值, 并将确定的时隙参数值发送到数据帧时隙 分解单元 12和数据帧时隙复用单元 14, 其中前向纠错编码器 13的数目不 小于 1;
数据帧时隙分解单元 12, 用于根据接收的时隙参数值, 将待发送的 OTUk数据帧划分为对应路的数据,并将划分后的每路数据发送到对应的前 向纠错编码器 13;
前向纠错编码器 13 , 用于对接收到的数据进行编码, 并将编码后的数 据发送到数据帧时隙复用单元 14;
数据帧时隙复用单元 14, 用于根据接收的时隙参数值, 将编码后的每 路数据复用成 OTUk数据帧并发送。
并且为了便于数据帧时隙调节单元 11识别自身配置的 FEC编码器的数 目, 在本发明实施例中该装置中还包括:
至少一个状态寄存器, 用于确认连接前向纠错编码器 13的位置是否加 载了对应的前向纠错编码器 13 , 据此确定是否改变自身的数值。 其中每个 状态寄存器与一个 FEC编码器的位置连接,根据该位置加载 FEC编码器的 情况确定自身的数值。
在本发明实施例中可以根据信号传输质量的要求, 配置不同的 FEC编 码器的数目, 具体的在本发明实施例中可以在该发送装置中预留 16个 FEC 编码器的位置。 并且为了便于管理还可以按照位置的次序, 确定每个 FEC 编码器位置的序号。 当根据信号传输质量的要求配置了相应数目的 FEC编 码器后,可以将配置好的每个 FEC编码器,按照位置的序号顺序将每个 FEC 编码器加载至相应的 FEC编码器位置。
与每个 FEC编码器位置连接有一个状态寄存器, 当该 FEC编码器位置 加载了 FEC编码器时, 该状态寄存器的值为 1 , 当 FEC编码器得位置未加 载 FEC编码器时, 该状态寄存器的值为 0。
图 2为本发明实施例提供的一种 OTN背板实现 FEC的发送过程,该过 程包括以下步驟:
S201 : 发送端根据识别到的自身配置的前向纠错编码器的数目, 确定 时隙参数值, 其中所述前向纠错编码器的数目不小于 1。
S202: 根据已确定的时隙参数值, 将待发送的 OTUk数据帧划分为对 应路的数据, 并将划分后的每路数据发送到对应的前向纠错编码器编码。
S203: 根据已确定的时隙参数值, 将编码后的每路数据复用成 OTUk 数据帧并发送。
所述将编码后的每路数据复用成 OTUk数据帧并发送的过程包括: 根据划分每路数据的顺序, 按照确定的时隙参数值, 将编码后的每路 数据复用成 OTUk数据帧并发送。
图 3为本发明实施例提供的具体的结合图 1所示的发送装置的结构示 意图,对上述 OTN背板实现 FEC的发送过程进行详细说明。在本发明实施 例中发送装置中的数据帧时隙调节单元通过读取与 16个 FEC编码器位置对 应连接的每个状态寄存器的数值, 来判断当前自身的每个 FEC编码器的位 置是否已经加载了相应的 FEC编码器,从而确定自身配置的 FEC编码器的 数目。
当数据帧时隙调节单元确定了自身配置的 FEC编码器的数目后, 确定 时隙参数值, 即应该将 OTUk数据帧分解为多少个时隙。 当数据帧时隙调 节单元确定了时隙参数值后, 将该时隙参数值发送到数据帧时隙分解单元 和数据帧时隙复用单元, 使数据帧时隙分解单元和数据帧时隙复用单元对
OTUk数据帧进行正确的时隙分解和时隙复用。
数据帧时隙分解单元根据数据帧时隙调节单元发送的时隙参数值, 将 待发送的未进行 FEC的 OTUk数据帧分解为对应路的数据, 并把每路数据 输出给配置的对应 FEC编码器。数据帧时隙分解单元与每个 FEC编码器的 位置都存在连接关系, 但工作时只采用配置的 FEC编码器所在的连接线路 工作。 其中, 数据帧时隙分解单元将待发送的未进行 FEC的 OTUk数据帧 分解为对应路的数据时, 按照时隙间插进行。
当每个 FEC编码器对接收到的数据进行编码后,每个 FEC编码器将编 码后的数据输出给数据帧时隙复用单元。 数据帧时隙复用单元根据接收到 的数据帧时隙调节单元发送的时隙参数值, 将接收到的每个 FEC编码器编 码后的数据复用成 OTUk数据帧。 其中, 数据帧时隙复用单元与每个 FEC 编码器的位置都存在连接关系, 但工作时只采用配置的 FEC编码器所在的 连接线路工作。
图 4为本发明实施例提供的一种 OTN背板实现 FEC的接收装置的结构 示意图, 该装置包括: 数据帧时隙调节单元 41、 数据帧时隙分解单元 42、 至少一个前向糾错解码器 43和数据帧时隙复用单元 44。
数据帧时隙调节单元 41 , 用于根据识别到的自身配置的前向纠错解码 器 43的数目, 确定时隙参数值, 并将确定的时隙参数值发送到数据帧时隙 分解单元 42和数据帧时隙复用单元 44, 其中, 所述前向纠错解码器 43的 数目与发送装置配置的前向纠错编码器的数目相同;
数据帧时隙分解单元 42, 用于根据接收的时隙参数值, 将接收到的 OTUk数据帧划分为对应路的数据,并将划分后的每路数据发送到对应的前 向纠错解码器 43;
前向纠错解码器 43 , 用于对接收到的数据进行解码, 并将解码后的数 据发送到数据帧时隙复用单元;
数据帧时隙复用单元 44, 用于根据接收的时隙参数值, 将解码后的每 路数据复用成 OTUk数据帧并发送。
并且为了便于数据帧时隙调节单元 44识别自身配置的 FEC解码器的数 目, 在本发明实施例中该装置中还包括:
至少一个状态寄存器, 用于确认连接前向纠错解码器的位置是否加载 了对应的前向纠错解码器, 据此确定是否改变自身的数值。 其中每个状态 寄存器与一个 FEC解码器的位置连接,根据该位置加载 FEC解码器的情况 确定自身的数值。
在本发明实施例中可以根据信号传输质量的要求, 配置不同的 FEC解 码器的数目, 具体的在本发明实施例中可以在该接收装置中预留 16个 FEC 解码器的位置。 并且为了便于管理还可以按照位置的次序, 确定每个 FEC 解码器位置的序号。 当根据信号传输质量的要求配置了相应数目的 FEC解 码器后,可以将配置好的每个 FEC解码器,按照位置的序号顺序将每个 FEC 解码器加载至相应的 FEC解码器位置。
与每个 FEC解码器位置连接有一个状态寄存器, 当该 FEC解码器位置 加载了 FEC解码器时, 该状态寄存器的值为 1 , 当 FEC解码器得位置未加 载 FEC解码器时, 该状态寄存器的值为 0。
图 5为本发明实施例提供的一种 OTN背板实现 FEC的接收过程,该过 程包括以下步驟: S501 : 接收端根据识别到的自身配置的前向纠错解码器的数目, 确定 时隙参数值, 其中, 所述前向纠错解码器的数目与发送端配置的前向纠错 编码器的数目相同。
S502: 根据已确定的时隙参数值, 将接收的 OTUk数据帧划分为对应 路的数据, 并将划分后的每路数据发送到对应的前向纠错解码器解码。
S503: 根据已确定的时隙参数值, 将解码后的每路数据复用成 OTUk 数据帧并发送。
所述将解码后的每路数据复用成 OTUk数据帧并发送的过程包括: 根据划分每路数据的顺序, 按照确定的时隙参数值, 将解码后的每路 数据 复用成 OTUk数据帧并发送。
图 6为本发明实施例提供的具体的结合图 5所示的接收装置的结构示 意图,对上述 OTN背板实现 FEC的接收过程进行详细说明。在本发明实施 例中接收装置中的数据帧时隙调节单元通过读取与 16个 FEC解码器位置对 应连接的每个状态寄存器的数值, 来判断当前自身的每个 FEC解码器的位 置是否已经加载了相应的 FEC解码器,从而确定自身配置的 FEC解码器的 数目。
为了实现对已经进行了 FEC的 OTUk数据帧进行正确的解码, 在本发 明实施例中需要根据对该 OTUk数据进行 FEC时采用的 FEC编码器的数 目, 配置接收装置中 FEC解码器的数目, 即接收装置中的 FEC解码器的数 目与发送装置中配置的 FEC编码器的数目相同。
当数据帧时隙调节单元确定了自身配置的 FEC解码器的数目后, 确定 时隙参数值, 即应该将 OTUk数据帧分解为多少个时隙。 当数据帧时隙调 节单元确定了时隙参数值后, 将该时隙参数值发送到数据帧时隙分解单元 和数据帧时隙复用单元, 使数据帧时隙分解单元和数据帧时隙复用单元对 OTUk数据帧进行正确的时隙分解和时隙复用。 数据帧时隙分解单元根据数据帧时隙调节单元发送的时隙参数值, 将 接收到的已进行了 FEC的 OTUk数据帧分解为对应路的数据, 并把每路数 据输出给配置的对应 FEC解码器。数据帧时隙分解单元与每个 FEC解码器 的位置都存在连接关系, 但工作时只采用配置的 FEC解码器所在的连接线 路工作。 其中, 数据帧时隙分解单元将接收到的已进行了 FEC的 OTUk数 据帧分解为对应路的数据时, 按照时隙间插进行。
当每个 FEC解码器对接收到的数据进行解码后,每个 FEC解码器将解 码后的数据输出给数据帧时隙复用单元。 数据帧时隙复用单元根据接收到 的数据帧时隙调节单元发送的时隙参数值, 将接收到的每个 FEC解码器解 码后的数据复用成 OTUk数据帧(该 OTUk数据帧为未进行 FEC的数据帧)。 其中, 数据帧时隙复用单元与每个 FEC解码器的位置都存在连接关系, 但 工作时只采用配置的 FEC解码器所在的连接线路工作。
具体的该发送装置和接收装置可以位于同一设备中, 也可以位于不同 的设备中, 当该发送装置和接收装置位于同一设备中时, 可以共用一个数 据帧时隙调节单元。
图 7 为本发明实施例提供的发送装置和接收装置位于同一设备中时, 发送装置和接收装置的组成结构示意图, 该设备中包括发送装置中的数据 帧时隙调节单元、 第一数据帧时隙分解单元和第一数据帧时隙复用单元, 接收装置中的数据帧时隙调节单元、 第二数据帧时隙分解单元和第二数据 帧时隙复用单元。结合图 7对本发明实施例中 OTN背板实现 FEC的过程进 行评细说明。
首先,确定发送装置和接收装置中的 FEC编码器和 FEC解码器所在的 位置的序号, 即确定发送装置和接收装置中序号为 1~16的位置, 将与每个 FEC编码器和 FEC解码器连接的每个状态寄存器的值都复位为 0。
依次在序号为 1~9的每个 FEC编码器的位置加载 FEC编码器,与序号 为 1~9的每个 FEC编码器位置连接的每个状态寄存器, 由于该每个位置加 载了 FEC编码器, 因此与该每个位置连接的每个状态寄存器的值为 1。
依次在序号为 1~9的每个 FEC解码器的位置加载 FEC解码器,与序号 为 1~9的每个 FEC解码器位置连接的每个状态寄存器, 由于该每个位置加 载了 FEC解码器, 因此与该每个位置连接的每个状态寄存器的值为 1。 即 与该接收装置对应的其他设备中的发送装置在实现 FEC的过程中也是采用 了 9个 FEC编码器对数据进行编码的。
数据帧时隙调节单元读取与每个 FEC编码器 /解码器位置连接的每个状 态寄存器的值,确定序号为 1~9的每个 FEC编码器 /解码器位置连接的每个 状态寄存器的值为 1 , 序号为 10~16的每个 FEC编码器 /解码器位置连接的 每个状态寄存器的值为 0, 因此识别自身配置的 FEC编码器 /解码器的数目 都是 9。
数据帧时隙调节单元根据识别到的自身配置的 FEC编码器 /解码器的数 目, 确定时隙参数值为 9。 并将确定的该时隙参数值发送到第一数据帧时隙 分解单元、 第一数据帧时隙复用单元以及第二数据帧时隙分解单元、 第二 数据帧时隙复用单元。
第一数据帧时隙分解单元接收到数据帧时隙调节单元发送的时隙参数 值后, 将待发送的未进行 FEC的 OUTk数据帧分解为 9路数据, 将每路数 据发送到序号为 1~9的位置对应的 FEC编码器,进行编码处理。序号为 1~9 的位置对应的每个 FEC编码器对接收到的数据进行编码处理后, 将编码后 的数据发送到第一数据帧时隙复用单元。
第一数据帧时隙复用单元根据接收到的时隙参数值, 将序号为 1~9 的 位置对应的每个 FEC编码器编码后的 9路数据复用成完整的进行了 FEC的 OTUk数据帧。
同样, 当第二数据帧时隙分解单元接收到已进行了 FEC的 OTUk数据 帧时, 根据接收到数据帧时隙调节单元发送的时隙参数值, 将接收到的已 进行了 FEC的 OUTk数据帧分解为 9路数据,将每路数据发送到序号为 1~9 的位置对应的 FEC解码器, 进行解码处理。 序号为 1~9的位置对应的每个 FEC解码器对接收到的数据进行解码处理后, 将解码后的数据发送到第二 数据帧时隙复用单元。
第二数据帧时隙复用单元根据接收到的时隙参数值, 将序号为 1~9 的 位置对应的每个 FEC解码器解码后的 9路数据复用成完整的未进行 FEC的 OTUk数据帧。
图 8为本发明实施例提供的一种 OTN背板实现 FEC的系统结构示意 图, 该系统包括:
发送端 81 , 用于根据识别到的自身配置的前向纠错编码器的数目, 确 定时隙参数值, 其中所述前向纠错编码器的数目不小于 1 ,根据已确定的时 隙参数值, 将待发送的 OTUk数据帧划分为对应路的数据, 并将划分后的 每路数据发送到对应的前向纠错编码器编码, 根据已确定的时隙参数值, 将编码后的每路数据复用成 OTUk数据帧并发送;
接收端 82, 用于根据识别到的自身配置的前向纠错解码器的数目, 确 定时隙参数值, 其中, 所述前向纠错解码器的数目与发送端配置的前向纠 错编码器的数目相同, 根据已确定的时隙参数值, 将接收到的 OTUk数据 帧划分为对应路的数据, 并将划分后的每路数据发送到对应的前向纠错解 码器解码, 根据已确定的时隙参数值, 将解码后的每路数据复用成 OTUk 数据帧并发送。
本发明实施例提供了一种光传送网背板实现前向纠错的方法、 系统及 装置, 当发送端进行数据的发送时, 根据自身配置的 FEC编码器的数目, 确定时隙参数值, 根据该时隙参数值将待发送 OTUk数据帧划分为对应路 的数据, 发送到对应的每个 FEC编码器编码, 并将编码后的每路数据, 根 据已确定的时隙参数值复用成 OTUk数据帧并发送。 由于在本发明实施例 中可以根据信号传输质量的要求配置 FEC编码器的数目, 该数目不小于 1 , 因此可以有效的节省系统资源, 并可以根据信号传输质量的要求, 灵活实 现 FEC。并且由于在本发明实施例中 OTN背板可以根据信号传输质量的要 求灵活实现 FEC, 因此提高了背板与客户板, 背板与线路板板之间的信号 传输的容错能力, 保证了信号传输质量。
上述说明示出并描述了本发明的一个优选实施例, 但如前所述, 应当 理解本发明并非局限于本文所披露的形式, 不应看作是对其他实施例的排 除, 而可用于各种其他组合、 修改和环境, 并能够在本文所述发明构想范 围内, 通过上述教导或相关领域的技术或知识进行改动。 而本领域人员所 进行的改动和变化不脱离本发明的精神和范围, 则都应在本发明所附权利 要求的保护范围内。

Claims

权利要求书
1、 一种光传送网背板实现前向纠错的发送方法, 包括:
发送端根据识别到的自身配置的前向纠错编码器的数目, 确定时隙参 数值; 所述前向纠错编码器的数目不小于 1;
根据已确定的时隙参数值, 将待发送的 OTUk数据帧划分为对应路的 数据, 并将划分后的数据发送到对应的前向纠错编码器编码;
根据已确定的所述时隙参数值, 将编码后的每路数据复用成 OTUk数 据帧并发送。
2、 如权利要求 1所述的方法, 其中, 识别所述前向纠错编码器数目的 方法为:
根据与每个前向纠错编码器对应连接的每个状态寄存器的数值, 发送 端识别自身配置的前向纠错编码器的数目。
3、 如权利要求 1或 2所述的方法, 其中, 所述将编码后的数据复用成 OTUk数据帧并发送的过程包括:
根据划分编码后的每路数据的顺序, 按照确定的时隙参数值, 将编码 后的每路数据复用成 OTUk数据帧并发送。
4、 一种光传送网背板实现前向纠错的接收方法, 包括:
接收端根据识别到的自身配置的前向纠错解码器的数目, 确定时隙参 数值; 所述前向纠错解码器的数目与发送端配置的前向纠错编码器的数目 相同;
根据已确定的时隙参数值, 将接收到的 OTUk数据帧划分为对应路的 数据, 并将划分后的数据发送到对应的前向纠错解码器解码;
根据已确定的所述时隙参数值, 将解码后的数据复用成 OTUk数据帧 并发送。
5、 如权利要求 4所述的方法, 其中, 识别所述前向纠错解码器数目的 方法为:
根据与每个前向纠错解码器对应连接的每个状态寄存器的数值, 接收 端识别自身配置的前向纠错解码器的数目。
6、 如权利要求 4或 5所述的方法, 其中, 所述将解码后的数据复用成 OTUk数据帧并发送的过程包括:
根据划分每路数据的顺序, 按照已确定的时隙参数值, 将解码后的每 路数据复用成 OTUk数据帧并发送。
7、 一种光传送网背板实现前向纠错的系统, 包括:
发送端, 用于根据识别到的自身配置的前向纠错编码器的数目, 确定 时隙参数值; 所述前向纠错编码器的数目不小于 1; 以及根据已确定的时隙 参数值, 将待发送的 OTUk数据帧划分为对应路的数据, 并将划分后的每 路数据发送到对应的前向纠错编码器编码; 还有根据已确定的时隙参数值, 将编码后的每路数据复用成 OTUk数据帧并发送;
接收端, 用于根据识别到的自身配置的前向纠错解码器的数目, 确定 时隙参数值; 所述前向纠错解码器的数目与发送端配置的前向纠错编码器 的数目相同; 以及根据已确定的时隙参数值, 将接收到的 OTUk数据帧划 分为对应路的数据, 并将划分后的每路数据发送到对应的前向糾错解码器 解码; 还有根据已确定的时隙参数值, 将解码后的每路数据复用成 OTUk 数据帧并发送。
8、 一种光传送网背板实现前向纠错的发送装置, 包括:
数据帧时隙调节单元, 用于根据识别到的自身配置的前向纠错编码器 的数目, 确定时隙参数值, 并将确定的时隙参数值发送到数据帧时隙分解 单元和数据帧时隙复用单元; 所述前向纠错编码器的数目不小于 1;
数据帧时隙分解单元,用于根据接收的时隙参数值,将待发送的 OTUk 数据帧划分为对应路的数据, 并分别将划分后的每路数据发送到对应的前 向纠错编码器;
至少一个前向纠错编码器, 用于对接收到的数据进行编码, 并将编码 后的数据发送到数据帧时隙复用单元;
数据帧时隙复用单元, 用于根据接收的时隙参数值, 分别将编码后的 每路数据复用成 OTUk数据帧并发送。
9、 如权利要求 8所述的装置, 其中, 所述装置还包括:
至少一个状态寄存器, 用于确认连接前向纠错编码器的位置是否加载 了对应的前向纠错编码器, 据此确定是否改变自身的数值。
10、 一种光传送网背板实现前向纠错的接收装置, 包括:
数据帧时隙调节单元, 用于根据识别到的自身配置的前向纠错解码器 的数目, 确定时隙参数值, 并将确定的时隙参数值发送到数据帧时隙分解 单元和数据帧时隙复用单元; 所述前向纠错解码器的数目与发送端配置的 前向纠错编码器的数目相同;
数据帧时隙分解单元,用于根据接收的时隙参数值,将接收到的 OTUk 数据帧划分为对应路的数据, 并分别将划分后的每路数据发送到对应的前 向纠错解码器;
至少一个前向糾错解码器, 用于对接收到的数据进行解码, 并将解码 后的数据发送到数据帧时隙复用单元;
数据帧时隙复用单元, 用于根据接收的时隙参数值, 分别将解码后的 每路数据复用成 OTUk数据帧并发送。
11、 如权利要求 10所述的装置, 其中, 所述装置还包括:
至少一个状态寄存器, 用于确认连接前向纠错解码器的位置是否加载 了对应的前向纠错解码器, 据此确定是否改变自身的数值。
PCT/CN2011/078595 2011-01-20 2011-08-18 一种光传送网背板实现前向纠错的方法、系统及装置 WO2012097590A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110022910.6 2011-01-20
CN201110022910.6A CN102075296B (zh) 2011-01-20 2011-01-20 一种光传送网背板实现前向纠错的方法、系统及装置

Publications (1)

Publication Number Publication Date
WO2012097590A1 true WO2012097590A1 (zh) 2012-07-26

Family

ID=44033653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078595 WO2012097590A1 (zh) 2011-01-20 2011-08-18 一种光传送网背板实现前向纠错的方法、系统及装置

Country Status (2)

Country Link
CN (1) CN102075296B (zh)
WO (1) WO2012097590A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149148A (zh) * 2018-02-13 2019-08-20 颖飞公司 通信系统和光收发器设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075296B (zh) * 2011-01-20 2014-08-20 中兴通讯股份有限公司 一种光传送网背板实现前向纠错的方法、系统及装置
EP2738968A4 (en) * 2011-08-19 2014-10-15 Huawei Tech Co Ltd OPTICAL TRANSMISSION MODULE AND OPTICAL SIGNAL TRANSMISSION DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1839559A (zh) * 2003-08-29 2006-09-27 诺基亚公司 在无线通信系统中以所选择的分集级别传送数据的装置和相关方法
CN101051879A (zh) * 2007-04-06 2007-10-10 华为技术有限公司 低速业务复用及解复用的方法和装置
US20080065960A1 (en) * 2006-08-25 2008-03-13 Weiying Cheng Apparatus and Method for Communicating FEC Mode and Alarming Mismatch
US20100080562A1 (en) * 2008-09-29 2010-04-01 Infinera Corporation Degradation adaptation network
CN101888283A (zh) * 2009-05-11 2010-11-17 三菱电机株式会社 Fec帧构成装置及方法
CN102075296A (zh) * 2011-01-20 2011-05-25 中兴通讯股份有限公司 一种光传送网背板实现前向纠错的方法、系统及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI112894B (fi) * 1997-04-10 2004-01-30 Nokia Corp Menetelmä kehysvirhetodennäköisyyden pienentämiseksi tietokehysmuotoisessa tiedonsiirrossa
US6845104B2 (en) * 2000-06-14 2005-01-18 Ipr Licensing, Inc. Receiver for time division multiplex system without explicit time slot assignment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1839559A (zh) * 2003-08-29 2006-09-27 诺基亚公司 在无线通信系统中以所选择的分集级别传送数据的装置和相关方法
US20080065960A1 (en) * 2006-08-25 2008-03-13 Weiying Cheng Apparatus and Method for Communicating FEC Mode and Alarming Mismatch
CN101051879A (zh) * 2007-04-06 2007-10-10 华为技术有限公司 低速业务复用及解复用的方法和装置
US20100080562A1 (en) * 2008-09-29 2010-04-01 Infinera Corporation Degradation adaptation network
CN101888283A (zh) * 2009-05-11 2010-11-17 三菱电机株式会社 Fec帧构成装置及方法
CN102075296A (zh) * 2011-01-20 2011-05-25 中兴通讯股份有限公司 一种光传送网背板实现前向纠错的方法、系统及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Interfaces for the Optical Transport Network(OTN) G.709/Y.1331", ITU, December 2009 (2009-12-01), pages 166 - 167 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149148A (zh) * 2018-02-13 2019-08-20 颖飞公司 通信系统和光收发器设备
CN110149148B (zh) * 2018-02-13 2022-02-25 颖飞公司 通信系统和光收发器设备

Also Published As

Publication number Publication date
CN102075296B (zh) 2014-08-20
CN102075296A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
US8205141B2 (en) Virtual lane forward error correction in multilane distribution
US20220077875A1 (en) Data Transmission Method, Encoding Method, Decoding Method, Apparatus, Device, and Storage Medium
US10523238B2 (en) Coding and decoding method, apparatus, and system for forward error correction
CN107113288B (zh) 在66位码中添加操作、管理与维护(oam)信息
CN108667553B (zh) 编码方法、解码方法、装置和系统
WO2007055150A1 (ja) 通信装置、送信機、受信機および誤り訂正光通信システム
JP5522547B2 (ja) データエラー報告を実現するための方法およびデバイス
US7957642B2 (en) Efficient and simple bit error rate calculation on optical transport layer
WO2012084270A1 (en) Communications network using adaptable fec
WO2012097590A1 (zh) 一种光传送网背板实现前向纠错的方法、系统及装置
JPWO2005013542A1 (ja) 再生中継方法及びその装置
Mizuochi Recent progress in forward error correction for optical communication systems
JP2009260882A (ja) 復号化装置及び光通信システムの宅内装置
JP4878974B2 (ja) 送信装置及び通信システム
GB2396786A (en) Data encoding/decoding for fibre optic communication
WO2013185355A1 (zh) 数据处理方法、装置及系统
US11792123B2 (en) Concept for a source device and a destination device of a point-to- multipoint communication network
EP4258681A1 (en) Uplink fec encoding method and apparatus, uplink fec decoding method and apparatus, and optical network device
EP3902214A1 (en) A concept for a source device and a destination device of a point-to-multipoint communication network
CN109787709B (zh) 无源光网络,编解码确定方法及装置
WO2013145650A1 (ja) データ通信システムにおける通信帯域制御方法および装置
WO2013145652A1 (ja) データ通信システムにおける誤り訂正符号制御方法および装置
CN116261066A (zh) 一种数据传输方法及相关设备
CN112470413A (zh) 用于单向数据传输的纠错方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856126

Country of ref document: EP

Kind code of ref document: A1