JP2010165695A - Method of manufacturing electrode mixture paste for alkaline storage battery - Google Patents
Method of manufacturing electrode mixture paste for alkaline storage battery Download PDFInfo
- Publication number
- JP2010165695A JP2010165695A JP2010072050A JP2010072050A JP2010165695A JP 2010165695 A JP2010165695 A JP 2010165695A JP 2010072050 A JP2010072050 A JP 2010072050A JP 2010072050 A JP2010072050 A JP 2010072050A JP 2010165695 A JP2010165695 A JP 2010165695A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- average particle
- electrode mixture
- mixture paste
- polysaccharide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、アルカリ蓄電池用電極合剤ペーストの製造方法に関し、より詳しくはアルカリ蓄電池の特性改良に不可欠な電極合剤の分散性向上技術に関する。 The present invention relates to a method for producing an electrode mixture paste for an alkaline storage battery, and more particularly to a technique for improving the dispersibility of an electrode mixture indispensable for improving the characteristics of an alkaline storage battery.
近年、情報機器の著しい普及にともない、高エネルギー密度なアルカリ蓄電池の開発が要望されている。この要望を受けて、ニッケルカドミウム蓄電池(以下ニカド電池という)の分野においては、従来の焼結式ニッケル正極を用いたニカド電池の高容量化が進み、また、これより30〜60%高容量である発泡メタル式ニッケル正極を用いた高エネルギー密度のニカド電池が開発されている。さらに、負極に水素吸蔵合金を用いた、ニカド電池よりもさらに高容量化したニッケル水素蓄電池(以下Ni/MHという)が開発されている。 In recent years, with the widespread use of information equipment, development of high energy density alkaline storage batteries has been demanded. In response to this demand, in the field of nickel cadmium storage batteries (hereinafter referred to as NiCad batteries), the capacity of NiCad batteries using conventional sintered nickel positive electrodes has increased, and the capacity has increased by 30 to 60%. A high energy density nickel-cadmium battery using a metal foam nickel positive electrode has been developed. Furthermore, a nickel-metal hydride storage battery (hereinafter referred to as Ni / MH) having a higher capacity than a nickel-cadmium battery using a hydrogen storage alloy for the negative electrode has been developed.
中でもNi/MHについては、正極のエネルギー密度を向上させるために、発泡ニッケル多孔体やニッケル繊維多孔体などの多孔度の高い3次元金属多孔体に、水酸化ニッケルや水素吸蔵合金などの活物質を含む電極合剤を高密度に充填・圧延したものが用いられている。 これらの正極、負極には、利用率の向上や高温特性の向上など各種特性の改善を目的として、様々な添加剤が添加される。一般的に添加剤は活物質より平均粒子径が小さいので、効率的な分散を目的とした電極合剤ペーストの製造方法が種々提案されている。 In particular, for Ni / MH, in order to improve the energy density of the positive electrode, an active material such as nickel hydroxide or a hydrogen storage alloy is added to a highly porous three-dimensional metal porous body such as a foamed nickel porous body or a nickel fiber porous body. The electrode mixture containing is filled and rolled at high density. Various additives are added to these positive electrode and negative electrode for the purpose of improving various characteristics such as improvement of utilization rate and improvement of high temperature characteristics. In general, since the additive has an average particle size smaller than that of the active material, various methods for producing electrode mixture pastes for efficient dispersion have been proposed.
具体的には、練合において撹拌の回転数を変化させ、添加剤の分散性を向上させて利用率を図る方法(例えば、特許文献1)、活物質と添加剤の混合物にアルカリ液を加えて混練することで添加効果を高める方法(例えば、特許文献2)、活物質と添加剤とを混合し、固練り状態で混練して分散性を高める方法(例えば、特許文献3)が提案されている。 Specifically, in the kneading, the rotational speed of stirring is changed to improve the dispersibility of the additive to increase the utilization (for example, Patent Document 1), and an alkali solution is added to the mixture of the active material and the additive And a method of improving the dispersibility by mixing the active material and the additive and kneading in a kneaded state (for example, Patent Document 3) has been proposed. ing.
ニカド電池やNi/MHなどのアルカリ蓄電池は、分散性を高めペーストに適度な粘性を持たせるための増粘剤として、耐アルカリ性および電気化学的安定性が高い多糖類を用いる。この多糖類とともに平均粒子径が異なる複数の粉末を混練した場合に、特許文献1〜3の方法を用いても、分散が不均一となり、利用率が低下するという課題があった。 Alkaline storage batteries such as nickel-cadmium batteries and Ni / MH use polysaccharides with high alkali resistance and high electrochemical stability as thickeners to increase dispersibility and give the paste an appropriate viscosity. When a plurality of powders having different average particle diameters are kneaded with this polysaccharide, there is a problem that even if the methods of Patent Documents 1 to 3 are used, the dispersion becomes non-uniform and the utilization rate decreases.
本発明は上記の課題を解決するものであり、電池使用環境下で安定な多糖類を用いつつ、電池特性向上のために電極に添加した各種添加剤の分散性が向上できる、効率的なアルカリ蓄電池用電極合剤ペーストの製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems, and is an efficient alkali that can improve the dispersibility of various additives added to an electrode for improving battery characteristics while using a polysaccharide that is stable in a battery use environment. It aims at providing the manufacturing method of the electrode mixture paste for storage batteries.
上記課題を解決するために、本発明のアルカリ蓄電池用電極合剤ペーストの製造方法は、平均粒子径が異なる2種の粉末と多糖類とを含むことを前提としており、大きい粉末Aの平均粒子径が8〜35μm、小さい粉末Bの平均粒子径が0.1〜5μmであって、粉末Bと多糖類とを混練する第一の工程と、第一の工程の混練物と粉末Aとを混練する第二
の工程とからなることを特徴とする。
In order to solve the above-mentioned problems, the method for producing an electrode mixture paste for an alkaline storage battery according to the present invention is based on the premise that two kinds of powders and polysaccharides having different average particle diameters are included, and the average particles of a large powder A The first step of kneading powder B and polysaccharide, and the kneaded product and powder A of the first step, having a diameter of 8 to 35 μm and an average particle size of small powder B of 0.1 to 5 μm And a second step of kneading.
多糖類は飽和6員環を主体とした繰り返し単位からなる鎖状構造を有しているため、増粘作用は高いものの、6員環が飽和結合であるがゆえに立体障害が大きく、鎖状構造に柔軟性がない(折れ曲がりにくい)。そのため、大きい粉末である活物質と、小さい粉末である添加剤と、多糖類とを同時に投入し混練すると、柔軟性のない多糖類は緩やかな球面を持った活物質のみに選択的に吸着する。したがって分散剤を兼ねる多糖類にほとんど吸着されない添加剤は電極合剤ペースト中で凝集し、分散性が低下する。しかるに本発明の製造方法では、多糖類に吸着されにくい添加剤を先に多糖類と混練することで、電極合剤ペースト内の添加剤の分散状態が良化するため、電池特性が向上する。 Since polysaccharides have a chain structure consisting of repeating units mainly composed of saturated 6-membered rings, the thickening effect is high, but the steric hindrance is large because the 6-membered rings are saturated bonds. Is inflexible (hard to bend). Therefore, when an active material that is a large powder, an additive that is a small powder, and a polysaccharide are added simultaneously and kneaded, the non-flexible polysaccharide is selectively adsorbed only to the active material having a gentle spherical surface. . Therefore, an additive that is hardly adsorbed by the polysaccharide serving also as a dispersant aggregates in the electrode mixture paste, and the dispersibility is lowered. However, in the production method of the present invention, since the additive that is not easily adsorbed by the polysaccharide is first kneaded with the polysaccharide, the dispersion state of the additive in the electrode mixture paste is improved, so that the battery characteristics are improved.
なお上述の説明では、粉末Aとして活物質を、粉末Bとして添加剤を例に本発明の効果を述べたが、充填性向上のために平均粒子径のみ異なる2種の同組成の活物質を用いた場合でも、同様の効果を得ることができる。 In the above description, the effect of the present invention has been described by taking the active material as the powder A and the additive as the powder B. However, in order to improve the filling property, two kinds of active materials having the same composition but different in average particle diameter are used. Even when used, the same effect can be obtained.
以上のように本発明によれば、平均粒子径が異なる2種の粉末の分散性を高めることができるので、粒子径が小さい粉末が添加剤であればその効果が飛躍的に向上するので、寿命特性をはじめとして電池諸特性に優れたアルカリ蓄電池を提供することができる。 As described above, according to the present invention, the dispersibility of two kinds of powders having different average particle diameters can be improved, and therefore, if the powder having a small particle diameter is an additive, the effect is drastically improved. It is possible to provide an alkaline storage battery having excellent battery characteristics such as life characteristics.
以下に本発明のアルカリ蓄電池用電極合剤ペーストの製造方法について、詳細に説明する。 Below, the manufacturing method of the electrode mixture paste for alkaline storage batteries of this invention is demonstrated in detail.
請求項1に記載の発明は、平均粒子径が異なる2種の粉末と多糖類とを含むことを前提としたアルカリ蓄電池用電極合剤ペーストの製造方法であって、大きい粉末Aの平均粒子径が8〜35μm、小さい粉末Bの平均粒子径が0.1〜5μmであって、粉末Bと多糖類とを混練する第一の工程と、第一の工程の混練物と粉末Aとを混練する第二の工程とからなることを特徴とする。上述したように多糖類は増粘作用が高いものの、鎖状構造に柔軟性がなく折れ曲がりにくい。ここで仮に上述した材料を一括混練した場合、多糖類は大きい方の粉末Aのみに選択的に吸着し、粉末Bは分散剤を兼ねる多糖類にほとんど吸着されずに電極合剤ペースト中で凝集する。請求項1に記載したように、多糖類に吸着されにくい粉末Bを先に多糖類と混練することにより、電極合剤ペースト内の分散性とともに電池特性を向上させることができる。 The invention according to claim 1 is a method for producing an electrode mixture paste for an alkaline storage battery on the assumption that two kinds of powders and polysaccharides having different average particle diameters are included, and the average particle diameter of a large powder A 8 to 35 μm, the average particle size of the small powder B is 0.1 to 5 μm, and the first step of kneading the powder B and the polysaccharide, and the kneaded product and the powder A of the first step are kneaded And a second step. As described above, polysaccharides have a high thickening effect, but the chain structure is not flexible and is not easily bent. Here, if the above-mentioned materials are kneaded together, the polysaccharide is selectively adsorbed only on the larger powder A, and the powder B is agglomerated in the electrode mixture paste with hardly being adsorbed on the polysaccharide that also serves as a dispersant. To do. As described in the first aspect, the powder B which is difficult to be adsorbed by the polysaccharide is first kneaded with the polysaccharide, thereby improving the battery characteristics as well as the dispersibility in the electrode mixture paste.
ここで粉末Aが活物質であり粉末Bが添加剤である場合、添加剤の効果(導電性・高温充電効率など)が向上するので好ましい。また粉末A・Bともに活物質である場合、電極合剤ペーストの塗布・充填効率(g/ml)が向上して高容量化が無理なく達成できるので好ましい。 Here, it is preferable that the powder A is an active material and the powder B is an additive because the effect of the additive (conductivity, high-temperature charging efficiency, etc.) is improved. Further, it is preferable that both powders A and B are active materials because the application / filling efficiency (g / ml) of the electrode mixture paste is improved and a high capacity can be achieved without difficulty.
なお、粉末Aは平均粒子径が8〜35μmである必要がある。8μm未満の場合は多糖類の吸着性が低下するので好ましくなく、35μmを超える場合は電極合剤ペーストの塗布・充填効率が顕著に低下するので好ましくない。また粉末Bは平均粒子径が0.1〜5μmである必要がある。0.1μm未満の場合は本発明の製造方法をもってしても多糖類の吸着性が低下するので好ましくなく、5μmを超える場合は添加剤としての機能や電極合剤ペーストの塗布・充填効率が顕著に低下するので好ましくない。 The powder A needs to have an average particle size of 8 to 35 μm. If it is less than 8 μm, the adsorptivity of the polysaccharide is reduced, which is not preferable, and if it exceeds 35 μm, the application / filling efficiency of the electrode mixture paste is significantly reduced, which is not preferable. Further, the powder B needs to have an average particle size of 0.1 to 5 μm. If it is less than 0.1 μm, even if it has the production method of the present invention, the adsorptivity of the polysaccharide is lowered. This is not preferable.
請求項2に記載の発明は、粉末A・粉末Bおよび多糖類に加えて粒子状の結着剤を含んでおり、上述した第一および第二の工程に加えて、第二の工程の混練物と結着剤とを混練する第三の工程を有することを特徴とする。粒子状の結着剤としてはスチレン−ブタジエン共重合体ゴム(以下SBRという)やその変性体、ポリテトラフルオロエチレン(以下PTFEという)およびアクリルニトリル単位を含む変性ゴムなどを挙げることができるが、これら結着剤はそれら自身の表面あるいは表面に吸着させた界面活性剤に、酸素原子を含む官能基を有している。この官能基は多糖類中に存在する水酸基やエーテル部位との親和性が高いので、電極合剤ペーストの密着性を上げる観点から上述した結着剤を用いる場合、多糖類との化学的親和性が高くない粉末A・Bと多糖類とを先に混練し、その後に結着剤を添加・混練するのが好ましい。 The invention according to claim 2 includes a particulate binder in addition to powder A / powder B and polysaccharide, and in addition to the first and second steps described above, kneading in the second step. It has the 3rd process of knead | mixing a thing and a binder. Examples of the particulate binder include styrene-butadiene copolymer rubber (hereinafter referred to as SBR) and modified products thereof, polytetrafluoroethylene (hereinafter referred to as PTFE), and modified rubber containing an acrylonitrile unit. These binders have a functional group containing an oxygen atom on their surface or a surfactant adsorbed on the surface. Since this functional group has high affinity with the hydroxyl group and ether moiety present in the polysaccharide, when using the above-mentioned binder from the viewpoint of increasing the adhesion of the electrode mixture paste, chemical affinity with the polysaccharide It is preferable to knead the powders A and B, which are not so high, and the polysaccharide first, and then add and knead the binder.
請求項3に記載の発明は、粉末Aが水酸化ニッケルであり、粉末Bがコバルト、コバルト化合物および希土類元素化合物の少なくとも1つであることを特徴とする。この組成はアルカリ蓄電池の正極に関するものであり、コバルトおよびコバルト化合物は導電性を有さない水酸化ニッケル(正極活物質)に導電ネットワークを持たせるために添加され、希土類元素化合物は主に高温充電効率を向上するために添加される。上述した材料からなる正極合剤ペーストを本発明の製造方法にて作製することにより、アルカリ蓄電池の電池諸特性を向上させることができる。なおコバルト化合物の一例としてはCoO、Co(OH)2およびCoOOHを挙げることができ、希土類元素化合物の一例としてはY2O3、Yb2O3、Lu2O3、Tm2O3およびEr2O3を挙げることができる。 The invention described in claim 3 is characterized in that the powder A is nickel hydroxide and the powder B is at least one of cobalt, a cobalt compound and a rare earth element compound. This composition is related to the positive electrode of alkaline storage battery. Cobalt and cobalt compounds are added to provide a conductive network to non-conductive nickel hydroxide (positive electrode active material), and rare earth element compounds are mainly charged at high temperature. It is added to improve efficiency. The battery characteristics of the alkaline storage battery can be improved by producing the positive electrode mixture paste made of the above-described material by the production method of the present invention. Examples of cobalt compounds include CoO, Co (OH) 2 and CoOOH, and examples of rare earth element compounds include Y 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , Tm 2 O 3 and Er. 2 O 3 can be mentioned.
請求項4に記載の発明は、請求項3の要件に加え、多糖類がキサンタンガムであることを特徴とする。キサンタンガムはグルコースの結合による主鎖部分と、マンノースなどからなる側鎖部分とから成り、一般的な多糖類であり主鎖部分のみから成るカルボキシメチルセルロース(以下CMCという)よりも増粘効果が大きい。よってコバルト・コバルト化合物・希土類元素化合物など、比重の大きな添加剤の沈降を抑制することができる。 The invention described in claim 4 is characterized in that, in addition to the requirement of claim 3, the polysaccharide is xanthan gum. Xanthan gum is composed of a main chain portion due to glucose binding and a side chain portion composed of mannose and the like, and has a thickening effect larger than that of carboxymethyl cellulose (hereinafter referred to as CMC) which is a general polysaccharide and only the main chain portion. Therefore, sedimentation of additives having a large specific gravity such as cobalt, cobalt compounds, and rare earth element compounds can be suppressed.
請求項5に記載の発明は、粉末Aが水素吸蔵合金であり、粉末Bが希土類元素化合物であることを特徴とする。この組成はNi/MHの負極に関するものであり、希土類元素化合物は高温充電効率やアルカリ電解液に対する耐腐食性を向上するために添加される。上述した材料からなる負極合剤ペーストを本発明の製造方法にて作製することにより、Ni/MHの電池諸特性を向上させることができる。なお希土類元素化合物の一例としては請求項3と同様のものを挙げることができる。さらにここで、導電性を高めるために炭素質材料(例えばケッチェンブラック・カーボンブラックなどのハードカーボン)を添加するのも好ましい態様の1つである。炭素質材料は凝集状態により2次粒子径が変動するものの、表面物性的に分散媒(水や極性溶媒など)との親和性が低いので、粉末Bとともに第1の工程にて混練するのが好ましい。 The invention according to claim 5 is characterized in that the powder A is a hydrogen storage alloy and the powder B is a rare earth element compound. This composition relates to a negative electrode of Ni / MH, and the rare earth element compound is added to improve high-temperature charging efficiency and corrosion resistance against an alkaline electrolyte. By producing a negative electrode mixture paste made of the above-described material by the production method of the present invention, various battery characteristics of Ni / MH can be improved. An example of the rare earth element compound is the same as that of the third aspect. Further, it is one of preferred embodiments to add a carbonaceous material (for example, hard carbon such as ketjen black and carbon black) in order to enhance conductivity. Although the secondary particle diameter of the carbonaceous material varies depending on the agglomerated state, the affinity for the dispersion medium (water, polar solvent, etc.) is low in surface properties, so that the carbonaceous material is kneaded together with the powder B in the first step. preferable.
請求項6に記載の発明は、請求項5の要件に加え、多糖類がCMCおよびその変性体であることを特徴とする。上述したように増粘効果はキサンタンガムのように側鎖部分を有する多糖類の方が高いが、粉末Aが水素吸蔵合金である場合、多糖類としてCMCおよびその変性体を選択するのが好ましい。この理由として、水素吸蔵合金の形状が砕石状であり、水酸化ニッケルのように球形ではないため、比較的柔軟性の高い構造を有する多糖類の方が吸着しやすいためと考えられる。なおCMCの変性体としては、エーテル化した部分をナトリウム塩およびアンモニウム塩にしたものが挙げられる。 The invention described in claim 6 is characterized in that, in addition to the requirements of claim 5, the polysaccharide is CMC and a modified product thereof. As described above, the thickening effect is higher in the polysaccharide having a side chain portion such as xanthan gum. However, when the powder A is a hydrogen storage alloy, it is preferable to select CMC and a modified product thereof as the polysaccharide. This is presumably because the hydrogen storage alloy has a crushed stone shape and is not spherical like nickel hydroxide, so that a polysaccharide having a relatively flexible structure is more easily adsorbed. In addition, as a modified body of CMC, what made the etherified part into sodium salt and ammonium salt is mentioned.
上述した構成(活物質+添加剤)の他に、粉末A・Bとして平均粒子径の異なる2種の水酸化ニッケルを用いた場合、電極合剤ペーストの塗布・充填効率(g/ml)が向上するので高容量化が無理なく達成できる。なおこの場合、水酸化ニッケルの表面をコバルト
・コバルト化合物および希土類元素化合物で被覆しておけば、塗布・充填効率の向上に加えて請求項3の効果を付与できるので、より好ましい。
In addition to the above-described configuration (active material + additive), when two types of nickel hydroxide having different average particle diameters are used as powders A and B, the application / filling efficiency (g / ml) of the electrode mixture paste is The capacity can be increased without difficulty. In this case, it is more preferable to coat the surface of nickel hydroxide with a cobalt-cobalt compound and a rare earth element compound because the effect of claim 3 can be imparted in addition to the improvement of coating / filling efficiency.
図1は本発明のアルカリ蓄電池用電極合剤ペーストの製造方法を示すフローチャート図である。第一の工程として、小さい方の粉末B・適量の多糖類および分散媒(水や極性溶剤など)とを予め混練する。引続き第二の工程として、第一の工程の混練物に大きい方の粉末Aを加え、さらに必要に応じ適量の分散媒を加えて混練する。ここで電極合剤ペーストの密着性を揚げる観点から粒子状の結着剤を用いる場合、第三の工程として第二の工程の混練物に上述した結着剤を加えることになる。 FIG. 1 is a flowchart showing a method for producing an electrode mixture paste for an alkaline storage battery of the present invention. As a first step, the smaller powder B, an appropriate amount of polysaccharide and a dispersion medium (water, polar solvent, etc.) are kneaded in advance. Subsequently, as the second step, the larger powder A is added to the kneaded product of the first step, and an appropriate amount of a dispersion medium is added and kneaded as necessary. Here, from the viewpoint of increasing the adhesion of the electrode mixture paste, when the particulate binder is used, the binder described above is added to the kneaded product of the second step as the third step.
以下に実施例をあげて、本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
(実施例1−1)
図1に沿って金属コバルト粉末、CoOOH粉末、Yb2O3粉末(全て平均粒子径4μm)とキサンタンガム粉末とを適量の純水とともに混練し、正極添加剤ペーストを作製した。このペーストに平均粒子径が10μmの水酸化ニッケル粉末を加えて練合撹拌し、さらにPTFE結着剤の分散液(第一工業製薬製D−1:商品名)を加えて正極合剤ペーストを作製した。ここで水酸化ニッケル100重量部に対して、金属コバルトは5重量部、CoOOHは5重量部、Yb2O3は4重量部、キサンタンガムは0.15重量部、PTFEは0.1重量部である(それぞれ固形分比)。このようにして作製した正極合剤ペーストを電極支持体である発泡状ニッケル多孔体へ充填し、乾燥、加圧後に所定の寸法(幅35mm、長さ220mm、厚み0.6mm)に切断して2800mAhの理論容量を持つ正極を作製した。
(Example 1-1)
According to FIG. 1, metallic cobalt powder, CoOOH powder, Yb 2 O 3 powder (all average particle diameter 4 μm) and xanthan gum powder were kneaded together with an appropriate amount of pure water to prepare a positive electrode additive paste. To this paste, nickel hydroxide powder having an average particle size of 10 μm is added and kneaded and stirred, and further a dispersion of PTFE binder (D-1 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) is added to prepare a positive electrode mixture paste. Produced. Here, 5 parts by weight of metallic cobalt, 5 parts by weight of CoOOH, 4 parts by weight of Yb 2 O 3 , 0.15 parts by weight of xanthan gum, and 0.1 parts by weight of PTFE with respect to 100 parts by weight of nickel hydroxide. (Solid content ratio). The positive electrode mixture paste thus prepared is filled into a foamed nickel porous body as an electrode support, dried and pressed to be cut into predetermined dimensions (width 35 mm, length 220 mm, thickness 0.6 mm). A positive electrode having a theoretical capacity of 2800 mAh was produced.
一方、図1に沿ってY2O3粉末(平均粒子径4μm)、炭素質材料としてケッチェンブラック粉末およびCMC(第一工業製薬製EP/商品名)を適量の純水とともに混練し、負極添加剤ペーストを作製した。このペーストに熱アルカリ浸漬処理を経た水素吸蔵合金粉末(平均粒子径27μm)を加えて練合撹拌し、さらにSBRの分散液(日本エーアンドエル社製NSK−72/商品名)を加えて負極合剤ペーストを作製した。ここで水素吸蔵合金100重量部に対して、Y2O3は0.7重量部、ケッチェンブラックは0.3重量部、CMCは0.15重量部である(それぞれ固形分比)。このようにして作製した負極合剤ペーストを二次元多孔体であるパンチングメタルに塗布し、乾燥、加圧後に所定の寸法(幅35mm、長さ310mm、厚み0.30mm)に切断して4200mAhの理論容量を持つ負極を作製した。 On the other hand, according to FIG. 1, Y 2 O 3 powder (average particle size 4 μm), Ketjen black powder and CMC (Daiichi Kogyo Seiyaku EP / trade name) as carbonaceous materials were kneaded together with an appropriate amount of pure water, and the negative electrode An additive paste was prepared. Hydrogen paste alloy powder (average particle size 27 μm) that has been subjected to hot alkali immersion treatment was added to this paste, and kneaded and stirred. Further, SBR dispersion (NSK-72 / trade name, manufactured by Nippon A & L Co., Ltd.) was added to the negative electrode. A mixture paste was prepared. Here, with respect to 100 parts by weight of the hydrogen storage alloy, Y 2 O 3 is 0.7 parts by weight, Ketjen Black is 0.3 parts by weight, and CMC is 0.15 parts by weight (solid content ratio). The negative electrode mixture paste thus prepared was applied to a punching metal that is a two-dimensional porous body, dried, pressed and then cut into predetermined dimensions (width 35 mm, length 310 mm, thickness 0.30 mm) to 4200 mAh. A negative electrode having a theoretical capacity was prepared.
以上の正負極を用いて円筒状の密閉型NI/MHを作製した。正負極およびこれらを隔絶するスルホン化ポリプロピレン製のセパレータを渦巻き状に旋回した電極群を、負極端子を兼ねるケースに挿入し、比重が1.27である水酸化カリウム−水酸化ナトリウム−水酸化リチウムからなるアルカリ電解液を4.7ml注入した後、安全弁および端子部を備えた封口板を配置して封口した。このようにして作製した電池を、実施例1−1の電池とする。 Cylindrical sealed NI / MH was produced using the above positive and negative electrodes. Potassium hydroxide-sodium hydroxide-lithium hydroxide having a specific gravity of 1.27 is inserted into a case also serving as a negative electrode terminal, in which a positive and negative electrode and a separator made of sulfonated polypropylene that separates them are spirally swung. After injecting 4.7 ml of the alkaline electrolyte consisting of, a sealing plate provided with a safety valve and a terminal part was arranged and sealed. The battery thus produced is referred to as the battery of Example 1-1.
(実施例1−2〜3)
実施例1−1に対し、水酸化ニッケルの平均粒子径を15および8μmとした以外は、実施例1−1と同様にして作製したNi/MHを、実施例1−2および1−3の電池とする。
(Examples 1-2 to 3)
Ni / MH produced in the same manner as in Example 1-1, except that the average particle diameter of nickel hydroxide was set to 15 and 8 μm with respect to Example 1-1. Use batteries.
(実施例1−4〜6)
実施例1−1に対し、金属コバルト粉末、CoOOH粉末およびYb2O3粉末の平均
粒子径を、全て5、2および0.1μmとした以外は、実施例1−1と同様にして作製したNi/MHを、実施例1−4、1−5および1−6の電池とする。
(Examples 1-4 to 6)
For Example 1-1, it was produced in the same manner as Example 1-1 except that the average particle diameters of the metal cobalt powder, CoOOH powder and Yb 2 O 3 powder were all 5, 2 and 0.1 μm. Let Ni / MH be the batteries of Examples 1-4, 1-5, and 1-6.
(実施例1−7〜8)
実施例1−1に対し、水素吸蔵合金粉末の平均粒子径を20および35μmとした以外は、実施例1−1と同様にして作製したNi/MHを、実施例1−7および1−8の電池とする。
(Examples 1-7 to 8)
Ni / MH produced in the same manner as in Example 1-1, except that the average particle size of the hydrogen storage alloy powder was changed to 20 and 35 μm with respect to Example 1-1, Examples 1-7 and 1-8 were used. Battery.
(実施例1−9〜11)
実施例1−1に対し、Y2O3粉末の平均粒子径を5、2および0.1μmとした以外は、実施例1−1と同様にして作製したNi/MHを、実施例1−9、1−10および1−11の電池とする。
(Examples 1-9 to 11)
Ni / MH produced in the same manner as in Example 1-1, except that the average particle diameter of Y 2 O 3 powder was set to 5, 2 and 0.1 μm with respect to Example 1-1. The batteries are 9, 1-10, and 1-11.
(比較例1−1)
従来の一括混練法である図2に沿って金属コバルト粉末、CoOOH粉末、Yb2O3粉末(全て平均粒子径4μm)と酸化亜鉛粉末とキサンタンガム粉末および平均粒子径が10μmの水酸化ニッケル粉末を適量の純水とともに一括混練して正極合剤ペーストを作製した以外は、実施例1−1と同様にして作製したNi/MHを、比較例1−1の電池とする。
(Comparative Example 1-1)
In accordance with FIG. 2, which is a conventional batch kneading method, a metal cobalt powder, a CoOOH powder, a Yb 2 O 3 powder (all with an average particle diameter of 4 μm), a zinc oxide powder, a xanthan gum powder, and a nickel hydroxide powder with an average particle diameter of 10 μm. A battery of Comparative Example 1-1 is made of Ni / MH produced in the same manner as in Example 1-1 except that a positive electrode mixture paste was produced by kneading together with an appropriate amount of pure water.
(比較例1−2)
従来の一括混練法である図2に沿ってY2O3粉末、ケッチェンブラック粉末(共に平均粒子径4μm)とCMCおよび熱アルカリ浸漬処理を経た水素吸蔵合金粉末(平均粒子径27μm)を適量の純水とともに一括混練して負極合剤ペーストを作製した以外は、実施例1−1と同様にして作製したNi/MHを、比較例1−2の電池とする。
(Comparative Example 1-2)
A suitable amount of Y 2 O 3 powder, ketjen black powder (both with an average particle diameter of 4 μm) and hydrogen storage alloy powder (average particle diameter of 27 μm) that has undergone CMC and hot alkali immersion treatment in accordance with the conventional batch kneading method shown in FIG. A battery of Comparative Example 1-2 is made of Ni / MH produced in the same manner as in Example 1-1 except that a negative electrode mixture paste is produced by kneading together with pure water.
(比較例1−3)
実施例1−1に対し、水酸化ニッケルの平均粒子径を7μmとした以外は、実施例1−1と同様にして作製したNi/MHを、比較例1−3の電池とする。
(Comparative Example 1-3)
A battery of Comparative Example 1-3 is made of Ni / MH produced in the same manner as in Example 1-1 except that the average particle diameter of nickel hydroxide is set to 7 μm with respect to Example 1-1.
(比較例1−4〜5)
実施例1−1に対し、金属コバルト粉末、CoOOH粉末およびYb2O3粉末の平均粒子径を、全て6および0.05μmとした以外は、実施例1−1と同様にして作製したNi/MHを、比較例1−4および1−5の電池とする。
(Comparative Examples 1-4-5)
Ni / produced in the same manner as in Example 1-1, except that the average particle sizes of the metallic cobalt powder, CoOOH powder, and Yb 2 O 3 powder were all 6 and 0.05 μm. Let MH be the batteries of Comparative Examples 1-4 and 1-5.
(比較例1−6)
実施例1−1に対し、水素吸蔵合金粉末の平均粒子径を40μmとした以外は、実施例1−1と同様にして作製したNi/MHを、比較例1−4の電池とする。
(Comparative Example 1-6)
A battery of Comparative Example 1-4 is made of Ni / MH manufactured in the same manner as in Example 1-1 except that the average particle size of the hydrogen storage alloy powder is 40 μm with respect to Example 1-1.
(比較例1−7〜8)
実施例1−1に対し、Y2O3粉末の平均粒子径を7および0.05μmとした以外は、実施例1−1と同様にして作製したNi/MHを、比較例1−7および1−8の電池とする。
(Comparative Examples 1-7 to 8)
Ni / MH produced in the same manner as in Example 1-1, except that the average particle diameter of Y 2 O 3 powder was changed to 7 and 0.05 μm with respect to Example 1-1, and Comparative Example 1-7 and The battery is 1-8.
以上の各電池を24時間放置した後、25℃雰囲気下で以下に示す初充放電を行い、その後に諸評価を行った。結果を(表1)に示す。
初充放電条件:
充電−280mAにて15時間(充電後に1時間放置)。
放電−900mAにて1.0Vに達するまで。
After each of the above batteries was left for 24 hours, the following initial charge / discharge was performed in an atmosphere at 25 ° C., and then various evaluations were performed. The results are shown in (Table 1).
Initial charge / discharge conditions:
Charging-15 hours at 280 mA (1 hour after charging).
Discharge-Until reaching 1.0V at 900mA.
(常温充放電試験)
25℃雰囲気下で以下に示す充放電を行った。結果を(表1)に示す。
充放電条件:
充電−280mAにて16時間(充電後に1時間放置)。
放電−560mAにて1.0Vに達するまで。
(Normal temperature charge / discharge test)
The following charge / discharge was performed in a 25 ° C. atmosphere. The results are shown in (Table 1).
Charging / discharging conditions:
Charging at 280 mA for 16 hours (1 hour after charging).
Discharge-Until reaching 1.0V at 560mA.
(高温充電試験)
以下に示す充放電を行った。結果を(表1)に示す。
充放電条件:
充電−50℃雰囲気下で280mAにて15時間(充電後に25℃雰囲気下で3時間放置)。
放電−25℃雰囲気下で900mAにて1.0Vに達するまで。
(High temperature charge test)
The following charge / discharge was performed. The results are shown in (Table 1).
Charging / discharging conditions:
Charging-15 hours at 280 mA in an atmosphere at -50 ° C (left for 3 hours in an atmosphere at 25 ° C after charging).
Discharge -25 ° C until reaching 1.0V at 900mA.
(間欠充電保存試験)
25℃雰囲気下で280mAにて10時間充電を行った後、65℃雰囲気下で以下に示す休止−補充電サイクルを繰り返した。
休止−22時間放置、補充電−280mAにて2時間。
(Intermittent charge storage test)
After charging at 280 mA for 10 hours in a 25 ° C. atmosphere, the following pause-auxiliary charging cycle was repeated in a 65 ° C. atmosphere.
Rest-Leave for 22 hours, supplementary charge-2 hours at 280 mA.
休止−補充電サイクルを1ヶ月繰り返す毎に、上述した常温充放電試験と同条件で放電容量を測定した。そして保存前の放電容量に対する保存後の放電容量の比率(以下、容量回復率と称す)が80%を下回るまで、休止−補充電サイクルと放電容量測定とからなる保存試験を繰り返した。この保存試験を繰り返した月数を(表1)に示す。 Each time the pause-auxiliary charge cycle was repeated for one month, the discharge capacity was measured under the same conditions as in the room temperature charge / discharge test described above. Then, the storage test consisting of the pause-complementary charge cycle and the discharge capacity measurement was repeated until the ratio of the discharge capacity after storage to the discharge capacity before storage (hereinafter referred to as capacity recovery rate) was less than 80%. The number of months in which this preservation test was repeated is shown in (Table 1).
正極合剤ペーストを従来の一括混練法(比較例1−1/図2)によらず本発明の混練法(図1)にて作製することにより、粉末Bに当たる金属コバルト、CoOOHおよびYb2O3を効率よく分散することができる。その結果、導電ネットワークの充実の効果として常温充放電特性が向上し、Yb2O3の効果として高温充電特性が向上した。ただし水
酸化ニッケルの平均粒子径が小さすぎる場合(比較例1−3)は多糖類であるキサンタンガムが水酸化ニッケル自身に吸着しづらくなることにより、主にYb2O3の分散効率が低下して高温充電特性が低下した。また添加剤である粉末Bの平均粒子径が大きすぎる場合(比較例1−4)は添加剤としての機能が顕著に低下し、平均粒子径が小さすぎる場合(比較例1−5)は本発明の製造方法をもってしても多糖類の吸着性が低下し、共に常温充放電特性および高温充電特性が低下する結果となった。
By producing the positive electrode mixture paste by the kneading method of the present invention (FIG. 1) regardless of the conventional batch kneading method (Comparative Example 1-1 / FIG. 2), metallic cobalt hitting the powder B, CoOOH and Yb 2 O 3 can be efficiently dispersed. As a result, room temperature charge / discharge characteristics were improved as an effect of enhancing the conductive network, and high temperature charge characteristics were improved as an effect of Yb 2 O 3 . However, when the average particle diameter of nickel hydroxide is too small (Comparative Example 1-3), the dispersion efficiency of Yb 2 O 3 mainly decreases because the xanthan gum which is a polysaccharide is difficult to adsorb on the nickel hydroxide itself. As a result, the high temperature charge characteristics deteriorated. Moreover, when the average particle diameter of powder B which is an additive is too large (Comparative Example 1-4), the function as an additive falls remarkably, and when the average particle diameter is too small (Comparative Example 1-5), this Even if it had the manufacturing method of invention, the adsorptivity of polysaccharide fell, and it resulted in the normal temperature charging / discharging characteristic and high temperature charging characteristic falling.
負極合剤ペーストを従来の一括混練法(比較例1−2/図2)によらず本発明の混練法(図1)にて作製することにより、粉末Bに当たるY2O3を効率よく分散することができる。その結果、アルカリ電解液に対する耐腐食性が向上することにより間欠充電保存特性が向上した。ただし水素吸蔵合金の平均粒子径が大きすぎる場合(比較例1−6)は電極合剤ペーストの塗布・充填効率が顕著に低下した結果として、間欠充電保存特性が低レベルであった。また添加剤であるY2O3の平均粒子径が大きすぎる場合(比較例1−7)は添加剤としての機能が顕著に低下し、平均粒子径が小さすぎる場合(比較例1−8)は本発明の製造方法をもってしても多糖類の吸着性が低下し、共に間欠充電保存特性が低レベルであった。 By producing the negative electrode mixture paste by the kneading method of the present invention (FIG. 1) regardless of the conventional batch kneading method (Comparative Example 1-2 / FIG. 2), Y 2 O 3 corresponding to the powder B is efficiently dispersed. can do. As a result, the intermittent charge storage characteristics were improved by improving the corrosion resistance against the alkaline electrolyte. However, when the average particle size of the hydrogen storage alloy was too large (Comparative Example 1-6), the intermittent charge storage characteristics were at a low level as a result of a significant decrease in the application / filling efficiency of the electrode mixture paste. In the case the average particle size of an additive Y 2 O 3 is too large if (Comparative Example 1-7) functions as an additive is significantly reduced, the average particle size is too small (Comparative Example 1-8) Even with the production method of the present invention, the polysaccharide adsorptivity decreased, and the intermittent charge storage characteristics were both low.
以上、粉末Bとして添加剤を用いた場合の結果として、平均粒子径が異なる2種の粉末と多糖類とを含むアルカリ蓄電池用電極合剤ペーストを作製する場合、大きい粉末Aの平均粒子径が8〜35μm、小さい粉末Bの平均粒子径が0.1〜5μmであって、粉末Bと多糖類とを混練する第一の工程と、第一の工程の混練物と粉末Aとを混練する第二の工程とに分割されている必要があることがわかる。 As described above, as a result of using an additive as the powder B, when preparing an electrode mixture paste for an alkaline storage battery containing two types of powders and polysaccharides having different average particle sizes, the average particle size of the large powder A is The first step of kneading powder B and polysaccharide, and the kneaded product of the first step and powder A are kneaded with an average particle size of 8 to 35 μm and small powder B being 0.1 to 5 μm. It turns out that it needs to be divided | segmented into the 2nd process.
(実施例2−1)
図1に沿って、粉末Bとして表面がCo(OH)2で被覆されている平均粒子径4μmの水酸化ニッケルと、キサンタンガム粉末とを適量の純水とともに混練した後、粉末Aとして表面がCo(OH)2で被覆されている平均粒子径10μmの水酸化ニッケルを加えてさらに混練し、最後にPTFE結着剤の分散液を加えて正極合剤ペーストを作製した。なお水酸化ニッケル100重量部に対して、被覆されている水酸化コバルトは7重量部であり、平均粒子径4μmの水酸化ニッケル(粉末B)と平均粒子径10μmの水酸化ニッケル(粉末A)の配合比は重量比で1:1である。この正極合剤ペーストを用いて実施例1−1と同様に正極を作製した。なおこの正極は、厚みが実施例1−1と同じく0.6mmとなるよう作製した。
(Example 2-1)
According to FIG. 1, after mixing nickel hydroxide having an average particle diameter of 4 μm whose surface is coated with Co (OH) 2 as powder B and xanthan gum powder together with an appropriate amount of pure water, the surface of powder A is Co Nickel hydroxide with an average particle diameter of 10 μm coated with (OH) 2 was added and further kneaded, and finally a dispersion of PTFE binder was added to prepare a positive electrode mixture paste. The coated cobalt hydroxide is 7 parts by weight with respect to 100 parts by weight of nickel hydroxide, nickel hydroxide (powder B) having an average particle diameter of 4 μm and nickel hydroxide (powder A) having an average particle diameter of 10 μm. The mixing ratio is 1: 1 by weight. Using this positive electrode mixture paste, a positive electrode was produced in the same manner as in Example 1-1. In addition, this positive electrode was produced so that thickness might be set to 0.6 mm similarly to Example 1-1.
負極は実施例1−1で作製したものを用い、実施例1−1と同様にして作製したNi/MHを、実施例2−1の電池とする。 The negative electrode produced in Example 1-1 was used, and Ni / MH produced in the same manner as in Example 1-1 was used as the battery of Example 2-1.
(実施例2−2〜3)
実施例2−1に対し、粉末Aの平均粒子径を15および8μmとした以外は、実施例2−1と同様にして作製したNi/MHを、実施例2−2および2−3の電池とする。
(Examples 2-2 to 3)
Ni / MH produced in the same manner as in Example 2-1 except that the average particle diameter of powder A was set to 15 and 8 μm with respect to Example 2-1, batteries of Examples 2-2 and 2-3. And
(実施例2−4〜6)
実施例2−1に対し、粉末Bの平均粒子径を5、2および0.1μmとした以外は、実施例2−1と同様にして作製したNi/MHを、実施例2−4、2−5および2−6の電池とする。
(Examples 2-4 to 6)
Ni / MH produced in the same manner as in Example 2-1 except that the average particle size of powder B was set to 5, 2, and 0.1 μm with respect to Example 2-1, and Examples 2-4 and 2 The batteries are −5 and 2-6.
(比較例2−1)
従来の一括混練法である図2に沿って実施例2−1と同じ材料を適量の純水とともに一括混練して正極合剤ペーストを作製した以外は、実施例2−1と同様にして作製したNi
/MHを、比較例2−1の電池とする。
(Comparative Example 2-1)
Produced in the same manner as in Example 2-1, except that the same material as in Example 2-1 was collectively kneaded together with an appropriate amount of pure water according to FIG. Ni
/ MH is the battery of Comparative Example 2-1.
(比較例2−2)
実施例2−1に対し、粉末Aの平均粒子径を7μmとした以外は、実施例2−1と同様にして作製したNi/MHを、比較例2−2の電池とする。
(Comparative Example 2-2)
A battery of Comparative Example 2-2 is made of Ni / MH produced in the same manner as in Example 2-1, except that the average particle diameter of the powder A is 7 μm with respect to Example 2-1.
(比較例2−3〜4)
実施例2−1に対し、粉末Bの平均粒子径を6および0.05μmとした以外は、実施例2−1と同様にして作製したNi/MHを、比較例2−3および2−4の電池とする。
(Comparative Examples 2-3 to 4)
Compared to Example 2-1, Ni / MH produced in the same manner as in Example 2-1 except that the average particle size of the powder B was 6 and 0.05 μm was used as Comparative Examples 2-3 and 2-4. Battery.
以上の各電池に対し実施例1と同様の放置と初充放電を行った後、実施例1と同様の常温充放電試験を行った。結果を(表2)に示す。 Each of the above batteries was left to stand and charged / discharged in the same manner as in Example 1, and then a room temperature charge / discharge test similar to that in Example 1 was performed. The results are shown in (Table 2).
正極合剤ペーストを従来の一括混練法(比較例2−1/図2)によらず本発明の混練法(図1)にて作製することにより、粉末Bを粉末Aに対して効率よく分散することができる。結果では常温充放電特性が向上したが、これは充填効率が実施例1−1よりも向上したために単位体積当たりの正極活物質量が増加したことによると考えられる。このように同一の組成を有する粉末どうしを混合した場合でも、本発明を展開することにより高容量化が無理なく達成できることがわかる。 The positive electrode mixture paste is produced by the kneading method of the present invention (FIG. 1) regardless of the conventional batch kneading method (Comparative Example 2-1 / FIG. 2), whereby the powder B is efficiently dispersed in the powder A. can do. Although the room temperature charge / discharge characteristics were improved in the results, it is considered that this was due to the increase in the amount of the positive electrode active material per unit volume because the filling efficiency was improved as compared with Example 1-1. Thus, it can be seen that even when powders having the same composition are mixed, a high capacity can be achieved without difficulty by developing the present invention.
ただし粉末Aの平均粒子径が小さすぎる場合(比較例2−2)は多糖類であるキサンタンガムが粉末A自身に吸着しづらくなることにより、粉末Aの分散が悪化して充填効率が低下した。また粉末Bの平均粒子径が大きすぎる場合(比較例2−3)は粉末Aと粉末Bとの粒子径の差が実質的になくなるために粉末Bが過分散となり、かえって充填効率が低下した。さらには粉末Bの平均粒子径が小さすぎる場合(比較例2−4)は本発明の製造方法をもってしても粉末Bへの多糖類の吸着性が低下するので、粉末Bの分散が悪化して充填効率が低下した。結果的にこれら3種の比較例は、共に常温充放電効率が低レベルであった。 However, when the average particle diameter of the powder A was too small (Comparative Example 2-2), the xanthan gum, which is a polysaccharide, was difficult to adsorb on the powder A itself, so that the dispersion of the powder A was deteriorated and the filling efficiency was lowered. Further, when the average particle size of the powder B is too large (Comparative Example 2-3), the difference in the particle size between the powder A and the powder B is substantially eliminated, so that the powder B is overdispersed, and the filling efficiency is reduced. . Furthermore, when the average particle diameter of the powder B is too small (Comparative Example 2-4), even if it has the manufacturing method of this invention, since the adsorptivity of the polysaccharide to the powder B will fall, the dispersion | distribution of the powder B will deteriorate. As a result, the filling efficiency decreased. As a result, in these three comparative examples, the room temperature charge / discharge efficiency was low.
なお本実施例では粉末Bとして金属コバルト、CoOOH、Yb2O3、Y2O3について効果的に作用していることを示したが、コバルト化合物としてCoOやCo(OH)2を
添加した場合や、希土類元素化合物としてY、Er、Tm、Yb、Luのうち少なくとも1種類以上の元素を含む酸化物、水酸化物およびフッ化物を添加した場合でも、本発明の
効果が得られることはいうまでもない。
In this example, it was shown that the powder B was effective for metallic cobalt, CoOOH, Yb 2 O 3 and Y 2 O 3 , but when CoO or Co (OH) 2 was added as a cobalt compound In addition, the effect of the present invention can be obtained even when an oxide, hydroxide, or fluoride containing at least one element of Y, Er, Tm, Yb, and Lu is added as the rare earth element compound. Not too long.
本発明にかかる製造方法はアルカリ蓄電池用電極に用いる添加物の効果を高めることや、活物質の充填性を向上して容易に高容量化することに展開が可能であり、あらゆる機器の電源として利用可能性は高く、その効果は大きい。 The production method according to the present invention can be developed to increase the effect of additives used for alkaline storage battery electrodes, and to easily increase the capacity by improving the filling properties of the active material. The availability is high and the effect is great.
Claims (2)
前記粉末のうち大きい方の粉末Aの平均粒子径は8〜35μmであり、小さい方の粉末Bの平均粒子径は0.1〜5μmであり、
前記粉末Bと前記多糖類とを混練する第一の工程と、
前記第一の工程の混練物と前記粉末Aとを混練する第二の工程とからなることを特徴とするアルカリ蓄電池用電極合剤ペーストの製造方法において、
前記粉末Aは水素吸蔵合金であり、前記粉末Bは希土類元素化合物であることを特徴とするアルカリ蓄電池用電極合剤ペーストの製造方法。 A method for producing an electrode mixture paste for an alkaline storage battery comprising two kinds of powders having different average particle sizes and a polysaccharide,
Of the powders, the larger powder A has an average particle size of 8 to 35 μm, and the smaller powder B has an average particle size of 0.1 to 5 μm,
A first step of kneading the powder B and the polysaccharide;
In the method for producing an electrode mixture paste for an alkaline storage battery, comprising the second step of kneading the kneaded product of the first step and the powder A,
The method for producing an electrode mixture paste for an alkaline storage battery, wherein the powder A is a hydrogen storage alloy and the powder B is a rare earth element compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010072050A JP2010165695A (en) | 2010-03-26 | 2010-03-26 | Method of manufacturing electrode mixture paste for alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010072050A JP2010165695A (en) | 2010-03-26 | 2010-03-26 | Method of manufacturing electrode mixture paste for alkaline storage battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005189410A Division JP4967263B2 (en) | 2005-06-29 | 2005-06-29 | Method for producing electrode mixture paste for alkaline storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010165695A true JP2010165695A (en) | 2010-07-29 |
Family
ID=42581679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010072050A Pending JP2010165695A (en) | 2010-03-26 | 2010-03-26 | Method of manufacturing electrode mixture paste for alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010165695A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018150879A1 (en) * | 2017-02-15 | 2018-08-23 | 株式会社豊田自動織機 | Bipolar electrode and alkaline storage battery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4967263B2 (en) * | 2005-06-29 | 2012-07-04 | パナソニック株式会社 | Method for producing electrode mixture paste for alkaline storage battery |
-
2010
- 2010-03-26 JP JP2010072050A patent/JP2010165695A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4967263B2 (en) * | 2005-06-29 | 2012-07-04 | パナソニック株式会社 | Method for producing electrode mixture paste for alkaline storage battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018150879A1 (en) * | 2017-02-15 | 2018-08-23 | 株式会社豊田自動織機 | Bipolar electrode and alkaline storage battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102439764B (en) | For the zinc electrode that the painting of rechargeable zinc battery is stuck with paste | |
US11335895B2 (en) | Micro-capsule type silicon-carbon composite negative electrode material and preparing method and use thereof | |
CN110993884B (en) | Lithium ion battery negative electrode slurry, preparation method, negative electrode plate and battery | |
Yuca et al. | An overview on efforts to enhance the Si electrode stability for lithium ion batteries | |
CN107925090B (en) | Electrode active material slurry and lithium secondary battery comprising the same | |
CN113140730A (en) | High-nickel ternary lithium ion battery | |
JP4967263B2 (en) | Method for producing electrode mixture paste for alkaline storage battery | |
CN109742331B (en) | Negative plate of secondary nickel-metal hydride battery and manufacturing method thereof | |
JP2010165695A (en) | Method of manufacturing electrode mixture paste for alkaline storage battery | |
JP2000306574A (en) | Manufacture of battery electrode | |
CN104218266A (en) | Preparation method of high-performance graphene-based NI-MH power battery | |
JP5194387B2 (en) | Alkaline storage battery, positive electrode for alkaline storage battery, and method for producing a mixture paste thereof | |
CN102800846A (en) | Preparation method for positive electrode of power battery | |
JP3788484B2 (en) | Nickel electrode for alkaline storage battery | |
JP2011018493A (en) | Nickel hydrogen secondary battery | |
CN105449172A (en) | Nickel-metal hydride battery negative electrode material and preparation method thereof, and nickel-metal hydride battery | |
KR101811131B1 (en) | New cynoethyl guar gum, negative electrode and secondary battery using the same, and the prepareation method of the same | |
KR20100056263A (en) | Fabrication method of negative electrode for nickel/zinc secondary battery using surface-modified current collector and nickel/zinc secondary battery fabricated using the same | |
JP4752401B2 (en) | Manufacturing method of cylindrical alkaline storage battery | |
JP2015022913A (en) | Method for producing composition for forming negative electrode active material layer | |
JPH11135112A (en) | Positive electrode for alkaline storage battery | |
JP3088649B2 (en) | Manufacturing method of hydrogen storage alloy electrode | |
JP3506365B2 (en) | Nickel positive electrode active material | |
CN114937772B (en) | Negative electrode material, negative electrode plate and lithium ion battery | |
CN107104235A (en) | Preparation method for the graphene nano carbon/carbon-copper composite material of lithium ion battery negative material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20121016 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20121218 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130326 |