JP2010159950A - Method of dismounting furnace with multilayer refractory structure - Google Patents

Method of dismounting furnace with multilayer refractory structure Download PDF

Info

Publication number
JP2010159950A
JP2010159950A JP2009202502A JP2009202502A JP2010159950A JP 2010159950 A JP2010159950 A JP 2010159950A JP 2009202502 A JP2009202502 A JP 2009202502A JP 2009202502 A JP2009202502 A JP 2009202502A JP 2010159950 A JP2010159950 A JP 2010159950A
Authority
JP
Japan
Prior art keywords
furnace
refractory
dismantling
asbestos
containing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009202502A
Other languages
Japanese (ja)
Other versions
JP4528876B2 (en
Inventor
Kazumi Kurayoshi
和美 倉吉
Akira Kato
亮 加藤
Katsumi Mori
克己 森
Yoshihito Doi
義仁 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009202502A priority Critical patent/JP4528876B2/en
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to AU2010290644A priority patent/AU2010290644B2/en
Priority to UAA201202199A priority patent/UA99429C2/en
Priority to CN201080037469.2A priority patent/CN102483305B/en
Priority to CA 2771911 priority patent/CA2771911C/en
Priority to BR112012003952A priority patent/BR112012003952A2/en
Priority to US13/391,113 priority patent/US8578582B2/en
Priority to EP20100813561 priority patent/EP2474801B1/en
Priority to RU2012112592/02A priority patent/RU2500963C1/en
Priority to KR20127005084A priority patent/KR101164459B1/en
Priority to PCT/JP2010/060802 priority patent/WO2011027610A1/en
Priority to PL10813561T priority patent/PL2474801T3/en
Priority to ES10813561.7T priority patent/ES2468800T3/en
Publication of JP2010159950A publication Critical patent/JP2010159950A/en
Application granted granted Critical
Publication of JP4528876B2 publication Critical patent/JP4528876B2/en
Priority to ZA2012/01140A priority patent/ZA201201140B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tunnel Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of dismounting a furnace with a multilayer refractory structure capable of reducing work load while securing safety against asbestos. <P>SOLUTION: The method is used for dismounting the furnace with the multilayer refractory structure including a shell 61, a containing layer 62A covering the inner side of the shell 61 and formed by containing refractory materials 621, 622 containing asbestos, and a non-containing layer 62B covering the inner side of the containing layer 62A and formed by non-containing refractory materials 623-625 containing no asbestos to form multiple layers. After a primary dismounting process of dismounting the non-containing layer 62B from the core side while leaving the containing layer 62A and at least one layer 623 of the non-containing layer 62B brought into contact with the containing layer 62A as remaining parts 62C is performed, a secondary dismounting process of dismounting the remaining parts 62C is performed in accordance with countermeasures against asbestos. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、多層耐火物構造の炉の解体方法に関し、炉内の内壁の一部がアスベストを含有する耐火物で形成された多層耐火物構造の炉の解体に利用できる。   The present invention relates to a method for dismantling a furnace having a multilayer refractory structure, and can be used for dismantling a furnace having a multilayer refractory structure in which a part of the inner wall of the furnace is formed of a refractory containing asbestos.

従来、内部の高熱に耐えるために、鉄製の外皮(鉄皮)の内側に耐火煉瓦等の耐火物を多層に張った多層耐火物構造の炉が用いられている。
このような多層耐火物構造の炉は、高炉、非鉄溶鉱炉、ガラス溶解炉、これらの炉に熱風を供給するための熱風炉、更に薄板用連続処理設備における焼鈍炉、各種の鋼材を加熱するための加熱炉として利用されている。
Conventionally, in order to withstand high internal heat, a multi-layer refractory structure furnace in which refractories such as refractory bricks are stretched in multiple layers inside an iron skin (iron skin) has been used.
Such multi-layer refractory furnaces include blast furnaces, non-ferrous blast furnaces, glass melting furnaces, hot air furnaces for supplying hot air to these furnaces, annealing furnaces in continuous processing equipment for thin plates, and for heating various steel materials. It is used as a heating furnace.

多層耐火物構造の炉の一例として、高炉に熱風を供給するための熱風炉について説明する。
熱風炉には内燃式と外燃式がある。内燃式の熱風炉では、炉内に燃焼部と蓄熱部とが一体に収容される(例えば特許文献1)。外燃式の熱風炉では、燃焼部と蓄熱部とが別の炉体とされ、連結管により互いの上端が連結される(例えば特許文献2,特許文献3)。
何れの形式でも、燃焼部においてバーナーで高温の燃焼ガスを生成し、これを蓄熱部に通して蓄熱する。十分に蓄熱されたら、蓄熱部に空気を逆向きに通し、これにより熱風を生成している(例えば特許文献4)。
As an example of a furnace having a multilayer refractory structure, a hot air furnace for supplying hot air to a blast furnace will be described.
There are an internal combustion type and an external combustion type in the hot stove. In an internal combustion type hot stove, a combustion part and a heat storage part are integrally accommodated in the furnace (for example, Patent Document 1). In the external combustion type hot stove, the combustion section and the heat storage section are separate furnace bodies, and their upper ends are connected by a connecting pipe (for example, Patent Document 2 and Patent Document 3).
In any form, high-temperature combustion gas is generated by a burner in the combustion section, and this is passed through the heat storage section to store heat. When the heat is sufficiently stored, air is passed through the heat storage section in the reverse direction, thereby generating hot air (for example, Patent Document 4).

熱風炉の炉壁は、内部の高熱に耐えるために、鉄製の外皮(鉄皮)の内側に耐火煉瓦等の耐火物を張って構成される。炉壁の耐火煉瓦は、炉芯方向へ多層に重ねて厚みを稼ぎ、部分に応じて必要な耐熱性能を確保している。さらに、炉壁の耐火物としては、耐火煉瓦と鉄皮との間に張られた断熱性の煉瓦やボード、鉄皮内面に吹き付けられた断熱性の被覆材が用いられる。
内燃式の熱風炉では、このような炉壁の内側に燃焼部と蓄熱部とが形成される。これらの燃焼部および蓄熱部の間には耐火物による仕切りが形成される。
外燃式の熱風炉では、燃焼部および蓄熱部となる各炉体において前述した耐火物を有する炉壁が形成される。
The furnace wall of the hot stove is configured by placing a refractory material such as a refractory brick on the inside of an iron outer shell (iron skin) in order to withstand high heat inside. The refractory bricks on the furnace wall are stacked in multiple layers in the direction of the furnace core to increase the thickness, and the necessary heat resistance is ensured depending on the part. Furthermore, as the refractory for the furnace wall, a heat insulating brick or board stretched between the refractory brick and the iron skin, or a heat insulating covering material sprayed on the inner surface of the iron skin is used.
In an internal combustion type hot stove, a combustion part and a heat storage part are formed inside such a furnace wall. A partition made of refractory is formed between the combustion section and the heat storage section.
In the external combustion type hot stove, a furnace wall having the above-described refractory is formed in each furnace body serving as a combustion part and a heat storage part.

内燃式の熱風炉の蓄熱部、あるいは外燃式の蓄熱部の炉体内には、蓄熱用耐火物として蓄熱煉瓦が充填される。蓄熱煉瓦は、通気孔がありかつ熱容量が大きいことが特徴であるが、基本的に耐火煉瓦と同様な耐火物であり、例えば六角柱状のギッター煉瓦が用いられる(例えば特許文献5)。   A heat storage brick of a heat storage section of an internal combustion type hot stove or an external combustion type heat storage section is filled with a heat storage brick as a heat storage refractory. The heat storage brick is characterized by having a vent hole and a large heat capacity, but is basically a refractory material similar to the refractory brick, and for example, a hexagonal columnar jitter brick is used (for example, Patent Document 5).

熱風炉は、数十年に及ぶ耐久性を有するものであるが、稼働に伴って内部の耐火物が劣化し、その更新のために炉内の古い耐火物の解体が必要となる。解体すべき耐火物としては、炉壁の耐火物のほか、内燃式の仕切り部分の耐火物、蓄熱材としての耐火物があり、これらの解体には重機を用いた大規模な作業が必要である(例えば特許文献1,特許文献3)。   Although the hot stove has durability for several decades, the internal refractory deteriorates with the operation, and the old refractory in the furnace needs to be dismantled for the replacement. Refractories to be dismantled include refractories on the furnace wall, refractories on internal partitions, and refractories as heat storage materials. These dismantling require large-scale work using heavy machinery. Yes (for example, Patent Document 1 and Patent Document 3).

特開2003−34812号公報JP 2003-34812 A 特開2004−68136号公報JP 2004-68136 A 特許3017655号公報Japanese Patent No. 3017655 特開2006−241500号公報JP 2006-241500 A 特開2004−315921号公報JP 2004-315921 A

前述の通り、熱風炉は数十年単位で解体が必要となる。解体にあたって、一部の熱風炉では耐火物の取り扱いに十分な注意が必要である。
数十年前に構築された古い熱風炉では、特に鉄皮に近い部分の耐火物として、安価で断熱性が優れたアスベストが利用されている。例えば、アスベストは鉄皮の内側に吹き付け被覆されたり、ボード状の断熱材中に含有されていたりする。
As mentioned above, the hot stove needs to be dismantled every decades. At the time of dismantling, some blast furnaces require careful handling of refractories.
In an old hot stove built several decades ago, asbestos, which is inexpensive and excellent in heat insulation, is used as a refractory near the iron skin. For example, asbestos is spray coated on the inside of the iron skin, or is contained in a board-like heat insulating material.

アスベスト(石綿)とは、岩石を形成する鉱物のうち、蛇紋石の群に属する繊維状のケイ酸塩鉱物、すなわちクリソタイル(白石綿)および角閃石の群に属する繊維状ケイ酸塩鉱物、すなわち、アクチノライト、アモサイト(茶石綿)アンソフィライト、クロシドライト(青石綿)、トレモライト又は、これらの一又は二以上を含有する混合物をいう。
近年、アスベストは人体に対する危険性が問題となり、アスベストを使用した建物等の解体には「石綿障害予防規則」等により飛散防止を含む厳重なアスベスト対策が要求されている。具体的には、第1に、作業場所の隔離・負圧化、セキュリティーゾーンの設置、第2に、湿潤剤を散布しての解体作業、第3に、アスベスト解体屑の二重袋詰め、第4に、特別管理産業廃棄物としての運搬・処分など、厳重な管理の下で作業に従事しなければならない。
Asbestos is a mineral that forms rocks, a fibrous silicate mineral that belongs to the serpentine group, that is, a fibrous silicate mineral that belongs to the group of chrysotile and amphibole, that is, , Actinolite, amosite (tea asbestos) anthophyllite, crocidolite (blue asbestos), tremolite, or a mixture containing one or more of these.
In recent years, asbestos has become a serious danger to the human body, and asbestos dismantling of buildings and the like requires strict asbestos countermeasures including prevention of scattering according to the “Asbestos Disorder Prevention Regulations” and the like. Specifically, the first is the isolation and negative pressure of the work place, the installation of a security zone, the second, the dismantling work by spraying the wetting agent, the third, the double packing of asbestos dismantling waste, Fourth, work must be carried out under strict control, such as transportation and disposal as specially controlled industrial waste.

従来の解体方法では、炉内の上方から機械または手作業により2〜3mずつ解体してゆく。この際、炉壁および炉内の耐火物は、アスベスト含有耐火物も非含有耐火物も一括解体され、混合した状態で廃棄物となる。このような廃棄物は、その全量に対してアスベスト対策が必要となる。
従来の熱風炉の解体において、一つの炉で生じる廃棄物の量は、例えば3000〜6000トンにのぼる。このような多量の廃棄物に対してアスベスト対策を実施する必要があると、熱風炉の解体における作業負荷が膨大なものになり、期間および費用の面でも大きな負担となる。
In the conventional dismantling method, it is disassembled by 2 to 3 m from above in the furnace by machine or manual work. At this time, both the asbestos-containing refractory and the non-contained refractory are dismantled together and the waste refractories in the furnace wall and in the furnace are mixed. As for such waste, asbestos measures are necessary for the total amount.
In the dismantling of a conventional hot stove, the amount of waste generated in one furnace is, for example, 3000 to 6000 tons. If it is necessary to implement asbestos countermeasures for such a large amount of waste, the work load in dismantling the hot stove will become enormous, which will be a heavy burden in terms of time and cost.

以上、多層耐火物構造の炉の一例として、高炉用の熱風炉の解体について説明したが、他の用途の多層耐火物構造の炉、例えば非鉄溶鉱炉用熱風炉、ガラス溶解炉、更に薄板用連続処理設備における焼鈍炉、各種の鋼材を加熱するための加熱炉においても、同様な課題がある。すなわち、十数年以前に構築された多層耐火物構造の炉は、いずれも鉄皮に近い部分の耐火物として、安価で断熱性に優れたアスベストが使用されている。このため、前述した各炉の解体においては、先に熱風炉で説明したものと同様な課題を有している。   As described above, as an example of a multi-layer refractory furnace, the dismantling of a hot blast furnace for a blast furnace has been described. There are similar problems in an annealing furnace in a processing facility and a heating furnace for heating various steel materials. That is, asbestos that is inexpensive and excellent in heat insulation is used as a refractory in a portion close to the iron skin in all of the furnaces having a multilayer refractory structure that was built over a decade ago. For this reason, in the dismantling of each furnace mentioned above, it has the same subject as what was previously demonstrated with the hot stove.

本発明の主な目的は、多層耐火物構造の炉における解体費用(アスベスト処理費用)を低減できるとともに解体期間を短縮できる多層耐火物構造の炉の解体方法を提供することである。   A main object of the present invention is to provide a method for demolishing a multi-layer refractory structure furnace that can reduce the demolition cost (asbestos treatment cost) in the multi-layer refractory structure furnace and can shorten the demolition period.

本発明は、外皮と、前記外皮の内側を覆いかつアスベストを含有する含有耐火物で形成された含有層と、前記含有層の内側を覆いかつアスベストを含有しない非含有耐火物で多層に形成された非含有層と、を有する多層耐火物構造の炉の解体方法であって、
前記非含有層の少なくとも最外側の一層と前記含有層とを残部として残して前記非含有層を炉芯側から解体する一次解体工程を行った後、アスベスト対策のもとで前記残部を解体する二次解体工程を行うことを特徴とする。
The present invention is formed in multiple layers with an outer skin, a containing layer formed by containing a refractory material that covers the inside of the outer skin and contains asbestos, and a non-containing refractory material that covers the inside of the containing layer and does not contain asbestos. A method of dismantling a furnace having a multilayer refractory structure having a non-containing layer,
After performing a primary demolition step of disassembling the non-containing layer from the furnace core side, leaving at least the outermost layer of the non-containing layer and the containing layer as a remaining portion, dismantling the remaining portion under asbestos countermeasures A secondary disassembly process is performed.

このような本発明では、一次解体工程により前記残部以外の解体が行われる。つまり、外皮(一般に鉄皮)の内側に設置された耐火物(炉壁耐火物)のうち残部を除く部分が解体できる。一次解体工程ではアスベストを含む残部の解体を行わないため、アスベスト対策の必要はなく、アスベスト対策を行う場合に比べて作業負荷を大幅に低減できる。次に、二次解体工程において、残部の解体が行われる。二次解体工程においては、アスベスト対策のもとで残部の耐火物を処理するため、残部に含まれるアスベストに対する安全性を確保できる。この際、残部は十分に少なくできるため、作業負荷を低減することができる。
一例として、アスベストを使用した高炉用の熱風炉において、炉内に使用されている耐火物は3000〜6000トンにも及ぶが、本発明によればアスベストとして解体する残部の量は100〜200トンに低減することができる。
In such this invention, dismantling other than the said remainder is performed by a primary disassembly process. That is, the part except the remainder among the refractories (furnace wall refractories) installed inside the outer skin (generally iron skin) can be disassembled. Since the remainder including asbestos is not dismantled in the primary dismantling process, there is no need for asbestos countermeasures, and the workload can be greatly reduced as compared with the case of asbestos countermeasures. Next, the remaining part is disassembled in the secondary disassembly process. In the secondary dismantling process, since the remaining refractory is processed under asbestos measures, safety against asbestos contained in the remaining portion can be ensured. At this time, since the remaining portion can be sufficiently reduced, the work load can be reduced.
As an example, in a hot blast furnace for blast furnaces using asbestos, the refractory used in the furnace reaches 3000 to 6000 tons, but according to the present invention, the remaining amount to be disassembled as asbestos is 100 to 200 tons. Can be reduced.

通常の熱風炉は、内燃式でも外燃式でも、炉壁耐火物の内側に蓄熱用耐火物が充填されており、その量は1000〜2000トンに達する。
本発明の一次解体工程においては、前述した蓄熱用耐火物および炉壁耐火物(残部を除く)の両方を解体してゆくことが望ましい。これにより、アスベスト対策が必要な残部を最小限にすることができる。ただし、炉壁耐火物の解体に先立って蓄熱用耐火物を解体しておいてもよいし、一次解体工程では蓄熱用耐火物だけを解体するとしてもよい。本発明においては、解体を対象とする例えば熱風炉におけるアスベスト含有耐火物層の炉心側に設けられている非含有耐火物層の劣化度合いにより、適宜その方法を選択すればよい。なお、内燃式熱風炉の場合、前記蓄熱用耐火物には蓄熱煉瓦の他に仕切も含まれる。
In a normal hot stove, whether it is an internal combustion type or an external combustion type, a refractory for heat storage is filled inside the furnace wall refractory, and the amount reaches 1000 to 2000 tons.
In the primary dismantling process of the present invention, it is desirable to dismantle both the heat storage refractory and the furnace wall refractory (excluding the remainder). Thereby, the remainder which needs an asbestos countermeasure can be minimized. However, the heat storage refractory may be disassembled prior to dismantling the furnace wall refractory, or only the heat storage refractory may be disassembled in the primary disassembly process. In the present invention, the method may be appropriately selected depending on the degree of deterioration of the non-containing refractory layer provided on the core side of the asbestos-containing refractory layer in, for example, a hot blast furnace intended for dismantling. In the case of an internal combustion hot stove, the heat storage refractory includes a partition in addition to the heat storage brick.

本発明において、前記一次解体工程は、前記残部を前記外皮に固定する残部固定工程を含むことが望ましい。
このような本発明では、一次解体工程で残部を薄く残した場合でも、これを固定することでその剥落を防止することができ、残部を最小限にしてアスベスト対策のための作業負荷を軽減しつつ、安全性を確保できる。
In the present invention, it is desirable that the primary dismantling step includes a remaining portion fixing step of fixing the remaining portion to the outer skin.
In the present invention, even when the remaining portion is left thin in the primary dismantling process, it can be prevented from peeling off by fixing it, and the remaining portion is minimized to reduce the work load for asbestos countermeasures. However, safety can be ensured.

本発明において、炉内を縦方向に複数の区画に区分し、各区画において前記一次解体工程および前記二次解体工程を順次行うとともに、これらの各工程を各区画で順次ずらせて実施することが望ましい。
このような本発明では、他の区画で一次解体または二次解体を実施しつつ、先行する区画において新規内壁の設置を開始することもでき、一次解体、二次解体、設置を全体として進める場合に比べて工程の待ち時間を低減し、全体としての作業期間を短縮できる。
In the present invention, the inside of the furnace is divided into a plurality of sections in the vertical direction, and the primary dismantling process and the secondary dismantling process are sequentially performed in each section, and these steps are sequentially shifted in each section. desirable.
In the present invention, in the case where primary disassembly or secondary disassembly is performed in other sections, installation of a new inner wall can be started in the preceding section, and primary disassembly, secondary disassembly, and installation are advanced as a whole Compared to the above, the waiting time of the process can be reduced, and the entire work period can be shortened.

本発明において、前記二次解体工程では、前記残部の解体で生じた解体屑を炉内で更に破砕することが望ましい。
このような本発明では、二次解体工程において解体する残部が、アスベストを含む前記含有耐火物とともに前記非含有層の少なくとも最外側の一層を含むため、解体屑の概略直径が100〜400mmと大きく、アスベスト廃棄専用袋への袋詰めに際し、充填効率が低い。そこで、炉内で補助的な破砕を行うことで、作業効率の向上および処分体積の低減を図ることができる。
なお、炉内での追加的な破砕および袋詰めは、従来の炉外に設置された気密設備における破砕および袋詰めと併用してもよい。
In the present invention, in the secondary demolition step, it is desirable that the demolition waste generated by the remaining demolition is further crushed in a furnace.
In such this invention, since the remainder to be disassembled in the secondary disassembly process includes at least the outermost layer of the non-containing layer together with the contained refractory containing asbestos, the approximate diameter of the dismantling waste is as large as 100 to 400 mm. When filling asbestos disposal bags, filling efficiency is low. Therefore, by performing auxiliary crushing in the furnace, it is possible to improve work efficiency and reduce the disposal volume.
The additional crushing and bagging in the furnace may be used in combination with crushing and bagging in a conventional airtight facility installed outside the furnace.

本発明の第1実施形態の熱風炉を示す縦断面図。The longitudinal cross-sectional view which shows the hot stove of 1st Embodiment of this invention. 前記第1実施形態の熱風炉を示す横断面図。The cross-sectional view showing the hot stove of the first embodiment. 前記第1実施形態のドーム部の壁体を示す拡大断面図。The expanded sectional view which shows the wall body of the dome part of the said 1st Embodiment. 前記第1実施形態のコニカル部の壁体を示す拡大断面図。The expanded sectional view which shows the wall body of the conical part of the said 1st Embodiment. 前記第1実施形態の直胴部の壁体を示す拡大断面図。The expanded sectional view which shows the wall body of the straight body part of the said 1st Embodiment. 前記第1実施形態の解体手順を示す図。The figure which shows the dismantling procedure of the said 1st Embodiment. 前記第1実施形態の第1区画の一次解体工程を示す縦断面図。The longitudinal cross-sectional view which shows the primary dismantling process of the 1st division of the said 1st Embodiment. 前記第1実施形態の残部固定に用いる固定板を示す正面図。The front view which shows the fixing plate used for the remainder fixing of the said 1st Embodiment. 前記第1実施形態の残部固定を示す拡大断面図。The expanded sectional view which shows the remainder fixation of the said 1st Embodiment. 前記第1実施形態の第2区画の一次解体工程を示す縦断面図。The longitudinal cross-sectional view which shows the primary dismantling process of the 2nd division of the said 1st Embodiment. 前記第1実施形態の二次解体工程を示す図。The figure which shows the secondary dismantling process of the said 1st Embodiment. 前記第1実施形態の第2区画の二次解体工程を示す縦断面図。The longitudinal cross-sectional view which shows the secondary dismantling process of the 2nd division of the said 1st Embodiment. 本発明の第2実施形態の解体手順を示す図。The figure which shows the disassembly procedure of 2nd Embodiment of this invention. 本発明の第3実施形態の熱風炉を示す縦断面図。The longitudinal cross-sectional view which shows the hot stove of 3rd Embodiment of this invention. 本発明の第4実施形態の冷延鋼板用連続焼鈍処理装置を示す模式図。The schematic diagram which shows the continuous annealing processing apparatus for cold-rolled steel plates of 4th Embodiment of this invention. 前記第4実施形態における炉体を示す拡大断面図。The expanded sectional view which shows the furnace body in the said 4th Embodiment. 本発明の第5実施形態の熱風炉を示す横断面図。The cross-sectional view which shows the hot stove of 5th Embodiment of this invention. 前記第5実施形態の熱風炉を示す縦断面図。The longitudinal cross-sectional view which shows the hot stove of the said 5th Embodiment. 前記第5実施形態の要部を示す拡大横断面図。The expanded cross-sectional view which shows the principal part of the said 5th Embodiment. 前記第5実施形態の要部を示す斜視図。The perspective view which shows the principal part of the said 5th Embodiment.

以下、本発明の実施形態を図面に基づいて説明する。
〔第1実施形態〕
図1および図2には、本発明に基づく多層耐火物構造の炉の一例として本発明が適用された熱風炉1が示されている。
図1において、熱風炉1は基礎2上に設置された炉体3を有する。炉体3は円筒状の直胴部6と、直胴部6の上部にやや大径に形成されたコニカル部5と、コニカル部5の上面に設置された半球状のドーム部4とを有する。
図2は直胴部6の水平断面形状を示す。同図にも示すように、直胴部6の内部には図中左側に燃焼室7が形成され、残りの部分が蓄熱室8とされている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
1 and 2 show a hot stove 1 to which the present invention is applied as an example of a furnace having a multilayer refractory structure according to the present invention.
In FIG. 1, a hot stove 1 has a furnace body 3 installed on a foundation 2. The furnace body 3 has a cylindrical straight body portion 6, a conical portion 5 formed on the upper portion of the straight body portion 6 with a slightly larger diameter, and a hemispherical dome portion 4 installed on the upper surface of the conical portion 5. .
FIG. 2 shows a horizontal sectional shape of the straight body portion 6. As shown in the figure, a combustion chamber 7 is formed on the left side in the figure inside the straight body portion 6, and the remaining portion is a heat storage chamber 8.

燃焼室7は、耐火煉瓦で形成された断面円弧状の仕切71を有し、その内側に上下に延びるガス通路72を有する(図2参照)。仕切71の下端にはガス通路72内に高温の燃焼ガスを送り込むバーナー73が設置されている(図1参照)。
蓄熱室8は、六角柱状の蓄熱煉瓦81が配列され、これにより蓄熱室8の全体を埋める蓄熱体82が形成されている(図2参照)。蓄熱体82は蓄熱室8の底部に設置される支持体83により支持されている(図1参照)。
蓄熱体82において、蓄熱煉瓦81は、それぞれ上下に貫通する通気孔を有し、かつ各々の通気孔が互いに連続するように配列されており(図示省略)、蓄熱体82の上面側から支持体83まで、全体として通気が可能である。
The combustion chamber 7 has a partition 71 having an arcuate cross section formed of refractory bricks, and has a gas passage 72 extending vertically in the inside thereof (see FIG. 2). A burner 73 for sending high-temperature combustion gas into the gas passage 72 is installed at the lower end of the partition 71 (see FIG. 1).
In the heat storage chamber 8, hexagonal columnar heat storage bricks 81 are arranged, thereby forming a heat storage body 82 that fills the entire heat storage chamber 8 (see FIG. 2). The heat storage body 82 is supported by a support body 83 installed at the bottom of the heat storage chamber 8 (see FIG. 1).
In the heat storage body 82, each of the heat storage bricks 81 has a vent hole penetrating vertically, and the vent holes are arranged so as to be continuous with each other (not shown), and the support body is supported from the upper surface side of the heat storage body 82. Up to 83, ventilation is possible as a whole.

炉体3には、燃料導入口1A、外気連通口1B、熱風取出口1Cが形成されている。
燃料導入口1Aは、直胴部6の燃焼室7側の下部に形成され、バーナー73に連通されている。
外気連通口1Bは、直胴部6の蓄熱室8側の下部に形成され、支持体83下方の中空部分に連通されている。
熱風取出口1Cは、直胴部6の蓄熱室8側の中間高さに形成され、燃焼室7のガス通路72に連通されている。
The furnace body 3 is formed with a fuel introduction port 1A, an outside air communication port 1B, and a hot air outlet 1C.
1 A of fuel inlets are formed in the lower part by the side of the combustion chamber 7 of the straight body part 6, and are connected with the burner 73. As shown in FIG.
The outside air communication port 1 </ b> B is formed at a lower portion of the straight body portion 6 on the heat storage chamber 8 side and communicates with a hollow portion below the support body 83.
The hot air outlet 1 </ b> C is formed at an intermediate height of the straight body portion 6 on the heat storage chamber 8 side and communicates with the gas passage 72 of the combustion chamber 7.

このような熱風炉1においては、熱風取出口1Cを閉じた状態で、燃料導入口1Aから高炉炉頂ガス等の燃料をバーナー73に導入して燃焼させる。燃焼ガスはガス通路72を上昇してドーム部4内で折り返し、蓄熱体82を通過して外気連通口1Bから排出される。蓄熱体82においては、通過する高温の燃焼ガスにより蓄熱される。
所定の蓄熱が行われたら、バーナー73を停止させ、熱風取出口1Cを開いて高炉に接続し、外気連通口1Bから外気を導入する。導入された外気は、蓄熱体82を通過する間に加熱され、高温となってドーム部4内で折り返し、ガス通路72ないし熱風取出口1Cから熱風として取り出される。
In such a hot stove 1, fuel such as blast furnace top gas is introduced into the burner 73 from the fuel inlet 1 </ b> A and burned with the hot air outlet 1 </ b> C closed. The combustion gas ascends in the gas passage 72 and is folded back in the dome portion 4, passes through the heat storage body 82, and is discharged from the outside air communication port 1 </ b> B. In the heat storage body 82, heat is stored by the passing high-temperature combustion gas.
When the predetermined heat storage is performed, the burner 73 is stopped, the hot air outlet 1C is opened and connected to the blast furnace, and the outside air is introduced from the outside air communication port 1B. The introduced outside air is heated while passing through the heat accumulator 82, becomes high temperature, turns back in the dome portion 4, and is taken out as hot air from the gas passage 72 or the hot air outlet 1C.

このような高温の燃焼ガス等に耐えるために、炉体3には耐火物による耐熱構造が採用されている。
炉体3を構成するドーム部4,コニカル部5,直胴部6は、炉壁としてそれぞれ鉄製の外皮である鉄皮41,51,61と、その内側に張られた断熱煉瓦および耐火煉瓦を主体とする耐火物42,52,62とを有する。
コニカル部5,直胴部6において、前述した燃焼室7の仕切71および蓄熱室8の蓄熱体82は、それぞれ耐火物52,62の内側に設置される。
ドーム部4,コニカル部5,直胴部6においては、各々に要求される耐火性能に応じて耐火物42,52,62の構成が選択される。
In order to withstand such a high-temperature combustion gas, the furnace body 3 has a heat-resistant structure made of a refractory.
The dome part 4, the conical part 5 and the straight body part 6 constituting the furnace body 3 are made of iron skins 41, 51, 61 which are iron shells as furnace walls, and heat insulating bricks and refractory bricks stretched inside thereof. It has refractories 42, 52 and 62 as main components.
In the conical part 5 and the straight body part 6, the partition 71 of the combustion chamber 7 and the heat storage body 82 of the heat storage chamber 8 described above are installed inside the refractories 52 and 62, respectively.
In the dome part 4, the conical part 5, and the straight body part 6, the configuration of the refractory materials 42, 52 and 62 is selected according to the fire resistance performance required for each.

図3に示すように、ドーム部4においては、鉄皮41の内側にはキャスタブル421が吹き付けにより形成され、その内側に断熱煉瓦422および耐火煉瓦423が張られている。
このようなドーム部4において、キャスタブル421、断熱煉瓦422、耐火煉瓦423はアスベストを含有しない非含有耐火物に該当し、これらが本発明における非含有層42Bに該当する。
ここで、ドーム部4にはアスベストを含有する含有耐火物は使用されておらず、本発明の含有層に該当する部分はないとともに、アスベスト対策が必要ないため本発明の残部も設定されない。従って、ドーム部4の一次解体工程では、後述する通り耐火煉瓦423からキャスタブル421までの非含有層42Bが一括して解体される。
As shown in FIG. 3, in the dome portion 4, a castable 421 is formed on the inner side of the iron skin 41 by spraying, and a heat insulating brick 422 and a refractory brick 423 are stretched on the inner side.
In such a dome part 4, the castable 421, the heat insulating brick 422, and the refractory brick 423 correspond to the non-containing refractory containing no asbestos, and these correspond to the non-containing layer 42B in the present invention.
Here, the refractory containing asbestos is not used in the dome portion 4, and there is no portion corresponding to the inclusion layer of the present invention, and no countermeasure against asbestos is required, so the remaining portion of the present invention is not set. Therefore, in the primary dismantling process of the dome part 4, the non-containing layer 42B from the refractory bricks 423 to the castable 421 is dismantled collectively as described later.

図4に示すように、コニカル部5においては、鉄皮51の内側にはキャスタブル521が吹き付けにより形成され、その内側に茶石綿を含む断熱ボード522が張られ、その内側に断熱煉瓦523,524および耐火煉瓦525が張られている。
このようなコニカル部5において、断熱ボード522はアスベストを含有する含有耐火物に該当し、断熱ボード522およびその外側のキャスタブル521が本発明における含有層52Aに該当する。キャスタブル521はアスベストを含有しない非含有耐火物に該当するが、キャスタブル521の解体にはその内側の断熱ボード522の解体が必須であるため、これらの断熱ボード522およびキャスタブル521を併せて含有層52Aとする。断熱煉瓦523,524および耐火煉瓦525はアスベストを含有しない非含有耐火物に該当し、これらの断熱煉瓦523,524および耐火煉瓦525が本発明における非含有層52Bに該当する。
ここで、非含有層52Bのうち含有層52Aに接する少なくとも一層である最外側の断熱煉瓦523と、含有層52Aのキャスタブル521および断熱ボード522とにより、本発明における残部52Cが構成される。後述する一次解体工程では、残部52Cを残して耐火物の解体が行われる。
As shown in FIG. 4, in the conical portion 5, a castable 521 is formed on the inner side of the iron skin 51 by spraying, a heat insulating board 522 containing tea asbestos is stretched on the inner side, and heat insulating bricks 523 and 524 are formed on the inner side. And refractory bricks 525 are stretched.
In such a conical part 5, the heat insulation board 522 corresponds to the contained refractory containing asbestos, and the heat insulation board 522 and the outer castable 521 correspond to the inclusion layer 52A in the present invention. Although the castable 521 corresponds to a non-containing refractory containing no asbestos, the disassembly of the castable 521 requires disassembly of the heat insulating board 522 inside the castable 521. Therefore, the heat insulating board 522 and the castable 521 are combined to include the contained layer 52A. And The heat insulating bricks 523 and 524 and the refractory brick 525 correspond to non-containing refractories containing no asbestos, and these heat insulating bricks 523 and 524 and the refractory brick 525 correspond to the non-containing layer 52B in the present invention.
Here, the outermost insulating brick 523 which is at least one layer in contact with the containing layer 52A in the non-containing layer 52B, the castable 521 and the heat insulating board 522 of the containing layer 52A constitute the remaining portion 52C in the present invention. In the primary disassembly process described later, the refractory is dismantled leaving the remaining portion 52C.

図5に示すように、直胴部6においては、鉄皮61の内側には青石綿を含むスラグウール層621が吹き付けにより形成され、その内側に茶石綿を含む断熱ボード622が張られ、その内側に断熱煉瓦623,624および耐火煉瓦625が張られている。
このような直胴部6において、スラグウール層621および断熱ボード622はアスベストを含有する含有耐火物に該当し、これらのスラグウール層621および断熱ボード622が本発明における含有層62Aに該当する。断熱煉瓦623,624および耐火煉瓦625はアスベストを含有しない非含有耐火物に該当し、これらの断熱煉瓦623,624および耐火煉瓦625が本発明における非含有層62Bに該当する。
ここで、非含有層62Bのうち含有層62Aに接する少なくとも一層である最外側の断熱煉瓦623と、含有層62Aのスラグウール層621および断熱ボード622とにより、本発明における残部62Cが構成される。後述する一次解体工程では、残部62Cを残して耐火物の解体が行われる。
As shown in FIG. 5, in the straight body portion 6, a slag wool layer 621 containing blue asbestos is formed on the inside of the iron skin 61 by spraying, and a heat insulation board 622 containing tea asbestos is stretched inside thereof, Heat insulating bricks 623 and 624 and refractory bricks 625 are stretched inside.
In such a straight body part 6, the slag wool layer 621 and the heat insulation board 622 correspond to the contained refractory containing asbestos, and these slag wool layer 621 and the heat insulation board 622 correspond to the content layer 62A in this invention. The heat insulating bricks 623 and 624 and the refractory brick 625 correspond to non-containing refractories containing no asbestos, and these heat insulating bricks 623 and 624 and the refractory brick 625 correspond to the non-containing layer 62B in the present invention.
Here, the outermost heat insulating brick 623 which is at least one layer in contact with the containing layer 62A among the non-containing layers 62B, the slag wool layer 621 and the heat insulating board 622 of the containing layer 62A constitute the remaining portion 62C in the present invention. . In the primary disassembly process described later, the refractory is disassembled leaving the remaining portion 62C.

このような熱風炉1に対して、炉内の耐火物の解体ないし新規耐火物の設置を行うために、次のような手順を実行する。
図6において、解体作業の開始にあたり、先ず区画設定を行う(処理S11)。
図7に示すように、本実施形態では、直胴部6の上端近傍に仕切線3Aを設定し、仕切線3Aより上の直胴部6,コニカル部5,ドーム部4を第1区画とし、仕切線3Aより下の直胴部6を第2区画とする。
In order to dismantle the refractory in the furnace or install a new refractory in such a hot stove 1, the following procedure is executed.
In FIG. 6, at the start of the dismantling work, first, the section is set (processing S11).
As shown in FIG. 7, in this embodiment, the partition line 3A is set near the upper end of the straight body part 6, and the straight body part 6, the conical part 5 and the dome part 4 above the partition line 3A are defined as the first section. The straight body portion 6 below the partition line 3A is defined as a second section.

次に、ドーム部4内壁面の作業を行うための足場を組む(図6の処理S12)。
図7に示すように、足場43は蓄熱室8の蓄熱煉瓦81上に設置する。燃焼室7にはガス通路72が開口しているため、これを蓋44で覆う。なお、蓋44には後述する一次解体で生じる廃棄物を投下するための廃棄口を開けておく。
この際、燃焼室7の下部では、バーナー73を撤去するとともに、燃料導入口1Aを挿通してコンベア74を設置し、後述する一次解体の際に上方から投棄される耐火物を受け、ダンプトラック75へ搬出するように準備しておく。
Next, a scaffold for performing work on the inner wall surface of the dome portion 4 is assembled (step S12 in FIG. 6).
As shown in FIG. 7, the scaffold 43 is installed on the heat storage brick 81 of the heat storage chamber 8. Since a gas passage 72 is open in the combustion chamber 7, it is covered with a lid 44. In addition, the lid 44 is opened with a waste outlet for dropping waste generated in the primary dismantling described later.
At this time, in the lower part of the combustion chamber 7, the burner 73 is removed, and the conveyor 74 is installed through the fuel introduction port 1A, and receives a refractory dumped from above at the time of the primary dismantling described later. Prepare to unload to 75.

これらの準備ができたら、第1区画の一次解体を行う(図6の処理S13)。
第1区画の一次解体では、足場43を利用してドーム部4の炉壁に対する一次解体を行い、足場43を撤去した後、コニカル部5から直胴部6へと続く燃焼室7の仕切71の耐火煉瓦、および蓄熱室8の蓄熱煉瓦81を、それぞれの上面から順次解体してゆく。並行して、仕切71および蓄熱煉瓦81の解体に伴って炉内に露出したコニカル部5および直胴部6の内壁に対する一次解体を行う。
When these preparations are completed, primary disassembly of the first section is performed (processing S13 in FIG. 6).
In the primary dismantling of the first section, the scaffold 43 is used to primarily disassemble the dome part 4 against the furnace wall, the scaffold 43 is removed, and then the partition 71 of the combustion chamber 7 that continues from the conical part 5 to the straight body part 6. The refractory bricks and the heat storage bricks 81 of the heat storage chamber 8 are sequentially dismantled from the respective upper surfaces. In parallel, primary disassembly is performed on the inner wall of the conical part 5 and the straight body part 6 exposed in the furnace as the partition 71 and the heat storage brick 81 are disassembled.

炉壁の一次解体においては、本発明に基づいて、非含有層の少なくとも最外側の一層と含有層とを残部として残して非含有層を炉芯側から解体する。
ドーム部4においては、図3に示すように、非含有層42Bであるキャスタブル421、断熱煉瓦422、耐火煉瓦423が一括して除去される。ドーム部4においては残部として残す部分がないため、続く二次解体工程は省略される。
コニカル部5においては、図4に示すように、断熱煉瓦524および耐火煉瓦525の二層だけを解体し、非含有層52Bのうち最外側の断熱煉瓦523と、含有層52Aであるキャスタブル521および断熱ボード522とを、残部52Cとして残す。
直胴部6においては、図5に示すように、耐火煉瓦625および断熱煉瓦624だけを解体し、非含有層62Bのうち最外側の断熱煉瓦623と、含有層62Aであるスラグウール層621および断熱ボード622とを、残部62Cを残す。
In the primary dismantling of the furnace wall, based on the present invention, the non-containing layer is disassembled from the furnace core side, leaving at least the outermost layer and the containing layer as the remainder.
In the dome portion 4, as shown in FIG. 3, the castable 421, the heat insulating brick 422, and the refractory brick 423 that are the non-containing layer 42 </ b> B are removed in a lump. In the dome part 4, since there is no part left as a remainder, the subsequent secondary dismantling process is abbreviate | omitted.
In the conical part 5, as shown in FIG. 4, only two layers of the heat insulating brick 524 and the refractory brick 525 are disassembled, and the outermost heat insulating brick 523 of the non-containing layer 52B and the castable 521 which is the containing layer 52A and The heat insulating board 522 is left as the remaining portion 52C.
In the straight body portion 6, as shown in FIG. 5, only the refractory bricks 625 and the heat insulating bricks 624 are disassembled, and the outermost heat insulating brick 623 among the non-containing layers 62B and the slag wool layer 621 which is the containing layer 62A and The remaining part 62 </ b> C is left with the heat insulating board 622.

これら各部の一次解体により、ドーム部4の炉壁は鉄皮41だけとなり、コニカル部5および直胴部6においては鉄皮51,61およびその内側に残る残部52C,62Cだけになる。これらの残部52C,62Cは、当初の耐火物52,62に比べて薄くなったことで鉄皮51,61から剥離等しやすくなる。
このため、残部52C,62Cと鉄皮51,61との接合を補助するべく、本発明に基づく残部固定工程を実施する。この残部固定工程により、残部52C,62Cの脱落が防止され、安全に解体を行うことができる。
残部固定工程は、各部の一次解体の間に残部52C,62Cを除く耐火物52,62の解体と並行して行う。
As a result of the primary dismantling of these parts, the furnace wall of the dome part 4 is only the iron skin 41, and the conical part 5 and the straight body part 6 are only the iron skins 51 and 61 and the remaining parts 52C and 62C remaining inside thereof. These remaining portions 52C and 62C are easily peeled off from the iron shells 51 and 61 because they are thinner than the original refractories 52 and 62.
For this reason, in order to assist joining of the remaining parts 52C and 62C and the iron shells 51 and 61, the remaining part fixing process based on this invention is implemented. By this remaining portion fixing step, the remaining portions 52C and 62C are prevented from falling off and can be safely disassembled.
The remaining portion fixing step is performed in parallel with the dismantling of the refractories 52 and 62 excluding the remaining portions 52C and 62C during the primary disassembly of each portion.

図8において、残部固定には長尺の鉄板を用いた固定板91を用いる。固定板91には所定間隔で固定孔92が形成されている。固定孔92は固定板91の長手方向に延びるスリット状にする。固定孔92をスリット状とすることで、固定棒94に対する位置ずれ等にも対応可能である。
なお、固定板91としては、鉄に限らず、例えば鉄以外の他の金属、ベニヤ板等の木材、合成樹脂材料など、他の材質のものを用いてもよい。
固定板91として、前述した鉄板等、剛性を有する材料を用いる場合、固定する炉壁内面の曲率に応じて予め湾曲させておくことが望ましい。
固定板91としては、可撓性を有するもの、例えば合成樹脂材料あるいは金属製でも薄い板材などを用いたもの、としてもよい。可撓性を有する材料であれば、固定する炉壁内面の曲率に応じて現場で湾曲させることも容易である。
固定板91としては、長尺の板材に限らず、シート状あるいは幅の広い板材を用いてもよい。このような場合、広い面積にわたって前述した残部を押さえることができ、例えばドーム部4などの下向きで剥離が生じ易い残部に対して有効である。
In FIG. 8, a fixing plate 91 using a long iron plate is used for the remaining portion fixing. Fixing holes 92 are formed in the fixing plate 91 at predetermined intervals. The fixing hole 92 has a slit shape extending in the longitudinal direction of the fixing plate 91. By making the fixing hole 92 into a slit shape, it is possible to cope with a positional deviation with respect to the fixing rod 94.
The fixing plate 91 is not limited to iron, and other materials such as metals other than iron, wood such as plywood, and synthetic resin materials may be used.
When a material having rigidity such as the above-described iron plate is used as the fixing plate 91, it is desirable that the fixing plate 91 be previously curved according to the curvature of the furnace wall inner surface to be fixed.
The fixing plate 91 may be flexible, for example, a synthetic resin material or a metal or thin plate material. If it is a material which has flexibility, it is also easy to bend in the field according to the curvature of the furnace wall inner surface to fix.
The fixing plate 91 is not limited to a long plate material, and may be a sheet or a wide plate material. In such a case, the above-described remaining portion can be pressed over a wide area, which is effective, for example, for the remaining portion that is likely to be peeled downward such as the dome portion 4.

残部固定工程の具体的手順は以下の通りである。
図9において、例えば直胴部6では、一次解体により耐火煉瓦625および断熱煉瓦624(図5参照)が解体され、鉄皮61の内側には残部62C(断熱煉瓦623、断熱ボード622およびスラグウール層621)が残されている。
ここで、残部62Cの内側から鉄皮61の内面までドリルで孔93を開ける。この際、アスベスト分の飛散を避けるために、孔開けと並行して孔93には湿潤剤を注入する。
孔93が開いたら、鉄皮61の内面に固定棒94の一端を溶接する。この溶接にはスタッド溶接を採用することが好ましい。更に、固定棒94の他端を固定板91の固定孔92に挿通させ、固定棒94にナット95を螺合させて締め付け固定する。これにより、固定板91は固定棒94を介して鉄皮61に固定され、固定板91により残部62Cの内面が押さえられ、残部62Cの脱落を防止することができる。
The specific procedure of the remaining portion fixing step is as follows.
In FIG. 9, for example, in the straight body portion 6, the refractory brick 625 and the heat insulating brick 624 (see FIG. 5) are dismantled by primary disassembly, and the remaining portion 62 </ b> C (the heat insulating brick 623, the heat insulating board 622, and the slag wool is disposed inside the iron skin 61. Layer 621) remains.
Here, a hole 93 is drilled from the inside of the remaining portion 62 </ b> C to the inner surface of the iron skin 61 with a drill. At this time, in order to avoid scattering of asbestos, a wetting agent is injected into the hole 93 in parallel with the drilling.
When the hole 93 is opened, one end of the fixing rod 94 is welded to the inner surface of the iron skin 61. It is preferable to employ stud welding for this welding. Further, the other end of the fixing rod 94 is inserted into the fixing hole 92 of the fixing plate 91, and a nut 95 is screwed into the fixing rod 94 to be fastened and fixed. Accordingly, the fixing plate 91 is fixed to the iron skin 61 via the fixing rod 94, and the inner surface of the remaining portion 62C is pressed by the fixing plate 91, and the remaining portion 62C can be prevented from falling off.

なお、残部固定工程において、固定板91を設置する上下方向の間隔は、固定する残部の強度等に応じて適宜選択する。つまり、残部の厚みが薄く、強度が期待できない場合には、設置間隔を密にし、逆に残部が厚く、あるいは比較的強度のある耐熱ボード主体である場合など、間隔を粗にしてもよい。
残部の強度が十分に期待できる場合、残部固定工程は省略してもよい。
In the remaining portion fixing step, the vertical interval at which the fixing plate 91 is installed is appropriately selected according to the strength of the remaining portion to be fixed. That is, when the remaining portion is thin and the strength cannot be expected, the installation interval may be increased, and conversely, the remaining portion may be thicker, or the interval may be roughened, for example, when the remaining portion is mainly a heat-resistant board.
If the strength of the remaining portion can be expected sufficiently, the remaining portion fixing step may be omitted.

図7に戻って、第1区画の一次解体(図6の処理S13)が完了すると、炉壁の仕切線3Aより上の部分は残部52C(図5参照)だけになる。
ここで、仕切線3A位置に中間デッキ30を設置する(図6の処理S14)。
図10において、中間デッキ30は、鉄骨を組んで円盤状に形成され、表面には鉄板を張って作業用の床面として利用できる。
中間デッキ30の周辺は、直胴部6の鉄皮61の内側に固定される。この固定にあたっては、残部62Cを貫通する必要がある。この貫通にあたっては、前述した固定板91の設置に準じた湿潤剤による局部的なアスベスト対策を実施する。
Returning to FIG. 7, when the primary dismantling of the first section (process S13 in FIG. 6) is completed, the portion above the partition line 3A of the furnace wall is only the remaining portion 52C (see FIG. 5).
Here, the intermediate deck 30 is installed at the position of the partition line 3A (step S14 in FIG. 6).
In FIG. 10, the intermediate deck 30 is formed in a disk shape by assembling a steel frame, and an iron plate is stretched on the surface and can be used as a floor surface for work.
The periphery of the intermediate deck 30 is fixed inside the iron skin 61 of the straight body portion 6. For this fixing, it is necessary to penetrate the remaining portion 62C. In this penetration, local asbestos countermeasures with a wetting agent according to the installation of the fixing plate 91 described above are implemented.

中間デッキ30の設置(図6の処理S14)ができたら、その上方の第1区画において二次解体(図6の処理S15)を開始するとともに、下方の第2区画においては一次解体(図6の処理S21)を開始する。   When the intermediate deck 30 is installed (process S14 in FIG. 6), secondary dismantling (process S15 in FIG. 6) is started in the first section above the intermediate deck 30, and primary dismantling (FIG. 6 is performed in the second section below). The process S21) is started.

二次解体においては、本発明に基づいて、アスベスト対策のもとで残部を解体する。具体的には、以下に示す二次解体工程を実施する。
二次解体工程では、前述した残部(前述した残部52C,62C)の解体を行うため、その工程の全般にわたってアスベスト対策を実施する。
図11において、二次解体工程では、先ず、アスベスト対策を開始する(処理S51)。具体的には、区画内の密封および内部減圧等の条件を確認するとともに、廃棄物処理のための封止容器の搬入、搬出経路の汚染防止設備の設置などである。
準備が整ったら、残部を順次解体してゆく(処理S52)。解体した残部については、炉内の区画内部で破砕し(処理S53)、封止容器に入れて搬出して二重封止を行う(処理S54)。
In secondary dismantling, the remainder is dismantled under asbestos countermeasures based on the present invention. Specifically, the secondary disassembly process shown below is performed.
In the secondary disassembly process, asbestos measures are implemented throughout the entire process in order to disassemble the remaining parts (the above-described remaining parts 52C and 62C).
In FIG. 11, in the secondary dismantling process, first, asbestos countermeasures are started (processing S51). Specifically, the conditions such as sealing in the compartment and internal decompression are confirmed, and a sealed container for waste disposal is carried in, and contamination prevention equipment is installed in the carry-out path.
When the preparation is completed, the remaining parts are sequentially disassembled (process S52). The disassembled remaining part is crushed inside the compartment in the furnace (process S53), put into a sealed container, and carried out for double sealing (process S54).

これらの処理S52〜S54が区画内の全ての残部に対して完了したら(処理S55)、当該区画におけるアスベスト対策を終了し(処理S56)、当該区画の二次解体工程が完了する。
なお、アスベスト対策は、実施地域時期に応じた法政省令や自治体規則などに応じて定められた条件を満足するように適宜設定する。
解体した残部の炉内破砕は必須ではなく、炉外へ搬出したのち破砕してもよい。
When these processes S52 to S54 are completed for all remaining parts in the section (process S55), the asbestos countermeasure in the section is terminated (process S56), and the secondary disassembly process of the section is completed.
In addition, asbestos measures are set as appropriate so as to satisfy the conditions determined according to the Ordinance of the Ministry of Law and local government regulations according to the implementation region period.
It is not essential to crush the remaining part in the furnace after dismantling, and it may be crushed after being carried out of the furnace.

第1区画での二次解体(図6の処理S15)と並行して、第2区画での一次解体(図6の処理S21)が行われる。
第2区画の一次解体は、前述した第1区画と同様に行われる。
第2区画の一次解体にあたっては、中間デッキ30から作業用のゴンドラ31を吊り下げ、燃焼室7のガス通路72内を昇降させ、解体に伴って下降してゆく耐火物(仕切71および蓄熱煉瓦81)の上面への作業員の往来および資材の補給などを確保する。
以上のような各部分に対する炉内耐火物の解体および炉壁の解体の繰り返しにより、第2区画での一次解体(図6の処理S21)が行われる。
In parallel with the secondary dismantling in the first section (process S15 in FIG. 6), the primary dismantling in the second section (process S21 in FIG. 6) is performed.
The primary disassembly of the second section is performed in the same manner as the first section described above.
In the primary dismantling of the second section, the working gondola 31 is suspended from the intermediate deck 30, the gas passage 72 of the combustion chamber 7 is lifted and lowered, and the refractory (partition 71 and heat storage bricks) descending with dismantling. 81) ensure the traffic of workers to the upper surface and the replenishment of materials.
By repeating the dismantling of the refractory in the furnace and the dismantling of the furnace wall for each part as described above, the primary dismantling in the second section (processing S21 in FIG. 6) is performed.

第1区画においては、二次解体(処理S15)が完了した後、残部がなくなった鉄皮の内側に新たな耐火物を設置し、炉壁を再生する(図6の処理S16)。このために、第1区画内には適宜足場を組む。
一方、第2区画においては、一次解体(処理S21)に続いて、二次解体(処理S22)および耐火物設置(処理S23)を実施する。
第2区画における二次解体(処理S22)および耐火物設置(処理S23)は、基本的に第1区画と同様な手順で行う。この際、第2区画は直胴部6が縦に長いため、中間デッキ30から吊り下げられた作業用ゴンドラを用いる。
In the first section, after the secondary dismantling (processing S15) is completed, a new refractory is installed inside the iron shell where the remaining portion disappears, and the furnace wall is regenerated (processing S16 in FIG. 6). For this purpose, a scaffold is appropriately assembled in the first section.
On the other hand, in the second section, secondary dismantling (processing S22) and refractory installation (processing S23) are performed following the primary dismantling (processing S21).
Secondary dismantling (processing S22) and refractory installation (processing S23) in the second section are basically performed in the same procedure as in the first section. At this time, since the straight section 6 is vertically long in the second section, a work gondola suspended from the intermediate deck 30 is used.

図12において、中間デッキ30にはウインチが設置され、このウインチにはワイヤを介してゴンドラ32が吊り下げられている。
ゴンドラ32は、鉄骨を組んで円盤状に形成され、表面には鉄板を張って作業用の床面として利用できる。ゴンドラ32の外周は、残部62Cとの間に、昇降時に干渉が生じないように所定の間隔を有する。
このような作業用のゴンドラ32を用いて残部62Cを上方から底部まで解体してゆくことで、第2区画での二次解体(図6の処理S22)が行われる。
二次解体により、炉体3内の底部には残部を解体した解体屑181が積み上げられる。解体屑181は、炉体3内の底部に設置されたコンベア182および破砕装置183を用いて更に細かく破砕され、専用袋180に詰められて炉外へ搬出される。炉体3の外部に気密区画187を設置し、この区画にコンベア184および破砕装置185を設置し、これらのコンベア184および破砕装置185により解体屑181の粉砕を行ってもよく、炉内のコンベア182および破砕装置183および炉外のコンベア184および破砕装置185を併用してもよい。何れの場合も、外部への出入りにあたってセキュリティーゾーン186を設け、アスベスト成分の流出を防止する。
In FIG. 12, a winch is installed on the intermediate deck 30, and a gondola 32 is suspended from the winch via a wire.
The gondola 32 is formed in a disk shape by assembling a steel frame, and an iron plate is stretched on the surface so that it can be used as a work floor. The outer periphery of the gondola 32 is spaced apart from the remaining portion 62C by a predetermined distance so as not to cause interference when moving up and down.
By using the working gondola 32 to disassemble the remaining portion 62C from the top to the bottom, secondary disassembly (processing S22 in FIG. 6) in the second section is performed.
As a result of the secondary dismantling, dismantling scraps 181 that are dismantled from the remainder are stacked on the bottom of the furnace body 3. The demolition waste 181 is further finely crushed using a conveyor 182 and a crushing device 183 installed at the bottom of the furnace body 3, packed in a special bag 180, and carried out of the furnace. An airtight section 187 may be installed outside the furnace body 3, a conveyor 184 and a crushing device 185 may be installed in the section, and the demolition waste 181 may be pulverized by the conveyor 184 and the crushing apparatus 185. You may use 182 and the crushing apparatus 183, the conveyor 184 outside a furnace, and the crushing apparatus 185 together. In either case, a security zone 186 is provided for entering and exiting the outside to prevent the asbestos component from flowing out.

二次解体が完了したら、同様にゴンドラ32を用いて鉄皮61の内側に対する耐火物設置(図6の処理S23)を実施する。
第1区画の耐火物設置(図6の処理S16)および第2区画の耐火物設置(図6の処理S23)がともに完了したら、中間デッキ30を撤去し(図6の処理S17)、これにより炉体3の耐火物が更新される。
以上の実施形態においては、本発明の適用により、アスベストを含有していない耐火物については、アスベスト処理なしで解体することができる。それにより、従来のように、アスベスト含有耐火物と含有しない耐火物とを一括して解体処理していた際の処理量(例えば約7000m3)に対し、アスベスト処理が必要な耐火物(アスベスト含有耐火物と一部の含有しない耐火物)の量が7分の1(約1000m3)とすることができ、アスベスト処理量を大幅に減量することができた。
When the secondary disassembly is completed, the refractory is installed on the inner side of the iron skin 61 using the gondola 32 (processing S23 in FIG. 6).
When the refractory installation in the first section (process S16 in FIG. 6) and the refractory installation in the second section (process S23 in FIG. 6) are both completed, the intermediate deck 30 is removed (process S17 in FIG. 6). The refractory of the furnace body 3 is updated.
In the above embodiment, by applying the present invention, a refractory that does not contain asbestos can be disassembled without asbestos treatment. As a result, refractories that require asbestos treatment (for example, containing asbestos), compared to the processing amount when disassembling the refractories containing asbestos and refractories that do not contain as a whole (for example, about 7000 m 3 ). The amount of the refractory and a part of the refractory not contained) could be reduced to 1/7 (about 1000 m 3 ), and the amount of asbestos treated could be greatly reduced.

また、前記実施形態では、炉内に中間デッキ30を設置することで、その上部および下部の空間においてそれぞれ解体作業を並行して行うことができ、作業期間の重複化によって全体としての解体期間を約1ヶ月短縮することができた。
さらに、アスベスト含有耐火物の解体屑を炉内で破砕することにより、アスベスト処理の量を減らすことができ、炉外で処理した場合約1000m3であるのに対し、約700m3に減らすことができた。
Further, in the above embodiment, by disposing the intermediate deck 30 in the furnace, the dismantling work can be performed in parallel in the upper and lower spaces, respectively, and the entire dismantling period can be reduced by duplicating the work periods. It could be shortened by about 1 month.
Furthermore, the amount of asbestos treatment can be reduced by crushing demolition waste of asbestos-containing refractories in the furnace, and when it is treated outside the furnace, it is about 1000 m 3 , while it is reduced to about 700 m 3. did it.

なお、本発明は前記実施形態に限定されるものではなく、具体的な各部構成などは実施にあたって適宜変形などすることができる。
前述した第1実施形態では炉体3の内部に第1区画および第2区画という二つの区画を設定したが、これは3つ以上としてもよい。各区画の間にはそれぞれ中間デッキを設置し、各区画においてそれぞれアスベスト対策が行えるようにしてもよい。
In addition, this invention is not limited to the said embodiment, A concrete structure of each part etc. can be suitably changed in implementation.
In the first embodiment described above, two sections of the first section and the second section are set inside the furnace body 3, but the number may be three or more. An intermediate deck may be installed between the sections so that each section can take measures against asbestos.

〔第2実施形態〕
図13に示す第2実施形態では、第1〜第3の区画を設定するとともに、各々の間に中間デッキA,Bを設置し、各区画で順次一次解体ないし二次解体が行われるようにしている。
第1区画において、処理S11〜S17は図6と同様である。但し、処理S14,S17は中間デッキAに対する処理となる。
第2区画において、処理S21〜S23は図6と同様である。但し、処理S14,S17は中間デッキAに対する処理となり、中間デッキBに対する処理S31,S35が追加される。
第3区画において、各処理S31〜S35は図6に対して追加されるものであるが、これらはそれぞれ図6における第2区画の処理S14,S21〜S23,S17に準じた内容である。
このような本実施形態でも、前述した実施形態と同様な効果が得られるほか、区画を増やすことで、並行処理の比率を増すことができる。
この場合でも、煩雑な処理が集中する二次解体は区画毎に順次ずれて実施できるため、設備の共用等の面で効率的な処理を行うことができる。
[Second Embodiment]
In the second embodiment shown in FIG. 13, first to third sections are set, and intermediate decks A and B are installed between the sections, so that primary or secondary disassembly is performed sequentially in each section. ing.
In the first section, processes S11 to S17 are the same as those in FIG. However, the processes S14 and S17 are processes for the intermediate deck A.
In the second section, processes S21 to S23 are the same as those in FIG. However, processes S14 and S17 are processes for intermediate deck A, and processes S31 and S35 for intermediate deck B are added.
In the third section, the processes S31 to S35 are added to FIG. 6, and these are the contents according to the processes S14, S21 to S23, and S17 of the second section in FIG.
In this embodiment as well, the same effect as the above-described embodiment can be obtained, and the ratio of parallel processing can be increased by increasing the number of partitions.
Even in this case, since the secondary dismantling in which complicated processing is concentrated can be carried out sequentially with respect to each section, efficient processing can be performed in terms of sharing facilities and the like.

前述した各実施形態では、内燃式の熱風炉について説明したが、外燃式の熱風炉でも同様の処理を行うことができる。
〔第3実施形態〕
図14に示す第3実施形態では、蓄熱炉又は燃焼炉100の全体が蓄熱室又は燃焼室とされ、その炉体は鉄皮101とアスベスト含有および非含有の耐火煉瓦積みで構成された多層耐火物構造102とで構成されている。このような外燃式熱風炉の蓄熱炉又は燃焼炉100においても、本発明を適用することができ、前述した実施形態と同様の効果を得ることができる。
In each of the above-described embodiments, the internal combustion type hot stove has been described, but the same processing can be performed in an external combustion type hot stove.
[Third Embodiment]
In the third embodiment shown in FIG. 14, the entire regenerative furnace or combustion furnace 100 is a regenerative chamber or combustion chamber, and the furnace body is a multi-layer fire-resistant brick composed of iron shell 101 and asbestos-containing and non-containing refractory brickwork. The object structure 102 is comprised. The present invention can also be applied to the regenerative furnace or combustion furnace 100 of the external combustion type hot stove, and the same effects as those of the above-described embodiment can be obtained.

なお、第3実施形態においては、解体した耐火物の搬出のために、蓄熱炉又は燃焼炉100の外部に搬出専用のシュート110を設置している。シュート110は、蓄熱炉又は燃焼炉100に沿って垂直に延びる直胴部111と、この直胴部111から分岐した複数の枝管部112とで構成され、枝管部112は蓄熱炉又は燃焼炉100の炉壁を貫通して炉内へ連通され、炉内から耐火物を投下可能である。シュート110の下端は解放されており、一般耐火物を自然落下させ、収集・排出処理を行うことができる。
このような専用のシュート110を用いる場合、複数の炉の間に直胴部111を設置し、複数の炉で同じ直胴部111等を共用してもよい。このような直胴部111等の共用化により、さらに費用および期間の短縮を図ることができる。
In the third embodiment, a chute 110 dedicated to carrying out is installed outside the regenerative furnace or combustion furnace 100 for carrying out the dismantled refractory. The chute 110 includes a straight body portion 111 extending vertically along the heat storage furnace or the combustion furnace 100, and a plurality of branch pipe portions 112 branched from the straight body portion 111. The branch pipe portion 112 is a heat storage furnace or a combustion chamber. The refractory can be dropped from the furnace through the furnace wall of the furnace 100 and communicated with the furnace. The lower end of the chute 110 is open, and the general refractory can be naturally dropped to perform collection / discharge processing.
When such a dedicated chute 110 is used, the straight body 111 may be installed between a plurality of furnaces, and the same straight body 111 or the like may be shared by the plurality of furnaces. Cost and period can be further reduced by sharing the straight body 111 and the like.

前述した各実施形態では高炉に熱風を供給する熱風炉について説明したが、本発明は他の用途の多層耐火物構造の炉、例えば非鉄溶鉱炉用熱風炉、ガラス溶解炉、更に薄板用連続処理設備における焼鈍炉、各種の鋼材を加熱するための加熱炉にも適用でき、前記各実施形態と同様な効果を得ることができる。〔第4実施形態〕
図15には冷延鋼板用連続焼鈍処理装置200が示されている。この装置は、冷延鋼板210を導入する側(図中右側)から加熱帯201、均熱帯202、一次冷却帯203、過時効帯204、二次冷却帯205を有する。各部には搬送ロール211が設置されて冷延鋼板210がジグザグ状に送られる。各部には加熱装置(図示省略)が設置され、通過する冷延鋼板210を所定温度に加熱あるいは保温可能である。
In each of the above-described embodiments, the hot blast furnace supplying hot air to the blast furnace has been described. However, the present invention is a furnace having a multi-layer refractory structure for other uses, such as a hot blast furnace for non-ferrous blast furnaces, a glass melting furnace, and a continuous processing facility for thin plates. The present invention can also be applied to an annealing furnace and a heating furnace for heating various steel materials, and the same effects as those of the above embodiments can be obtained. [Fourth Embodiment]
FIG. 15 shows a continuous annealing apparatus 200 for cold-rolled steel sheets. This apparatus has a heating zone 201, a soaking zone 202, a primary cooling zone 203, an overaging zone 204, and a secondary cooling zone 205 from the side where the cold rolled steel sheet 210 is introduced (right side in the figure). A conveyance roll 211 is installed in each part, and the cold-rolled steel sheet 210 is sent in a zigzag shape. Each unit is provided with a heating device (not shown), and the cold-rolled steel sheet 210 passing therethrough can be heated or kept at a predetermined temperature.

図16には、前述した冷延鋼板用連続焼鈍処理装置200のうち、加熱帯201および均熱帯202の炉体220の構造が示されている。加熱帯201および均熱帯202は、冷延鋼板210に対する炉内での加熱温度が高いため、アスベストを含有する多層耐火物構造の炉体220となっている。具体的には、鉄皮221の内側には、耐火物としてアスベストを含有する断熱ボード222が二層に張られ、その内側にアスベストを含有しない耐火煉瓦223が二層に張られている。本発明はこのような炉体220を有する加熱帯201および均熱帯202を炉として、その解体にも適用でき、前記各実施形態と同様な効果を得ることができる。   FIG. 16 shows the structure of the heating zone 201 and the soaking zone 202 of the furnace body 220 in the above-described continuous annealing apparatus 200 for cold-rolled steel sheets. The heating zone 201 and the soaking zone 202 are a furnace body 220 having a multilayer refractory structure containing asbestos because the heating temperature in the furnace for the cold-rolled steel sheet 210 is high. Specifically, the heat insulation board 222 containing asbestos as a refractory is stretched in two layers inside the iron shell 221, and the fire brick 223 not containing asbestos is stretched in two layers inside. The present invention can be applied to the dismantling of the heating zone 201 and the soaking zone 202 having such a furnace body 220 as a furnace, and the same effects as those of the above embodiments can be obtained.

前述した各実施形態では、アスベストを含有する耐火物の残部が脱落しないように、長尺の固定板91を用いたが、この固定板91を固定する手段としては耐火物を貫通する固定棒94に限らず、異なる方法で固定してもよい。
〔第5実施形態〕
図17から図20には、本発明の第5実施形態が示されている。本実施形態は、前述した第1実施形態と同様な熱風炉1の直胴部6において、アスベストを含有する耐火物の残部62Cを鉄皮61に固定するために、複数の環状の固定板191を用いるとともに、これらを複数の縦材192で一括して支持する。
In each of the above-described embodiments, the long fixing plate 91 is used so that the remainder of the refractory containing asbestos does not fall off. However, as a means for fixing the fixing plate 91, a fixing rod 94 penetrating the refractory is used. Not limited to this, it may be fixed by a different method.
[Fifth Embodiment]
17 to 20 show a fifth embodiment of the present invention. In the present embodiment, a plurality of annular fixing plates 191 are used to fix the remaining portion 62C of the refractory containing asbestos to the iron shell 61 in the straight body portion 6 of the hot stove 1 similar to the first embodiment described above. These are used and are collectively supported by a plurality of vertical members 192.

図17および図18に示すように、鉄皮61の内側には残部62Cが残され、残部62Cの内側に沿って縦材192が配置されている。縦材192は、直胴部6の連続方向(垂直方向)に延びる長尺の板材であり、直胴部6の周方向に所定間隔で配列されている。これらの縦材192を順次連結するように、複数の固定板191が設置されている。
固定板191は、長尺の板材を円弧状に曲げたものであり、複数の円弧状の固定板191を連結することにより、全体として炉内の周方向に沿った円環を形成する。このような固定板191による円環は、さらに直胴部6の連続方向である垂直方向に沿って複数が所定間隔で配列されている。これらにより、固定板191で形成された複数の円環は、周囲に配列された複数の縦材192で相互に連結され、いわばバスケット状の構造が形成されている。
As shown in FIGS. 17 and 18, the remaining portion 62 </ b> C is left inside the iron skin 61, and a vertical member 192 is disposed along the inner side of the remaining portion 62 </ b> C. The vertical members 192 are long plate members that extend in the continuous direction (vertical direction) of the straight body portion 6, and are arranged at predetermined intervals in the circumferential direction of the straight body portion 6. A plurality of fixing plates 191 are installed so as to sequentially connect these vertical members 192.
The fixed plate 191 is formed by bending a long plate material into an arc shape. By connecting a plurality of arc-shaped fixed plates 191, an annular ring is formed along the circumferential direction in the furnace as a whole. A plurality of such annular rings by the fixing plate 191 are arranged at predetermined intervals along a vertical direction that is a continuous direction of the straight body portion 6. As a result, the plurality of rings formed by the fixing plate 191 are connected to each other by a plurality of vertical members 192 arranged in the periphery, so that a basket-like structure is formed.

図19および図20には固定板191と縦材192との接続部分が示されている。
固定板191の両端はそれぞれ折り曲げられてフランジ193、194とされている。一方のフランジ193は縦材192に溶接等により固定されている。他方のフランジ194は縦材192に沿わされ、他の固定板191のフランジ193に対向されている。但し、固定板191のフランジ194側は縦材192とは固定されておらず、固定板191はフランジ193側だけで縦材192に固定されている。すなわち、1本の固定板191は1本の縦材192にのみ固定され、1本の縦材192は複数の途中位置に固定板191を有する櫛状を形成する。この櫛状を順次連結することで、任意の周長のバスケット状の構造が得られるようになっている。
19 and 20 show a connecting portion between the fixing plate 191 and the vertical member 192. FIG.
Both ends of the fixed plate 191 are bent to form flanges 193 and 194, respectively. One flange 193 is fixed to the longitudinal member 192 by welding or the like. The other flange 194 extends along the longitudinal member 192 and faces the flange 193 of the other fixing plate 191. However, the flange 194 side of the fixed plate 191 is not fixed to the vertical member 192, and the fixed plate 191 is fixed to the vertical member 192 only on the flange 193 side. That is, one fixed plate 191 is fixed only to one vertical member 192, and one vertical member 192 forms a comb shape having fixed plates 191 at a plurality of intermediate positions. By sequentially connecting the combs, a basket-like structure having an arbitrary circumference can be obtained.

対向するフランジ193、194はボルトで連結されている。フランジ193にはボルト195が貫通され、その頭部はフランジ193に溶接等により固定されている。ボルト195の軸部はフランジ194の挿通孔に通され、位置決めナット196および締め付けナット197によりフランジ194に固定されている。ボルト195における位置決めナット196の位置を適宜選択することで、フランジ193、194の間隔が調整でき、固定板191が形成する円環の周長を残部62Cの内側に合わせて調整することができる。このような調整により、固定板191は、縦材192に接続される端部を除き、中間の大部分で残部62Cに押しつけられ、残部62Cの脱落防止として機能できる。   Opposing flanges 193 and 194 are connected by bolts. Bolts 195 are passed through the flange 193 and the heads thereof are fixed to the flange 193 by welding or the like. The shaft portion of the bolt 195 is passed through the insertion hole of the flange 194 and is fixed to the flange 194 by a positioning nut 196 and a tightening nut 197. By appropriately selecting the position of the positioning nut 196 in the bolt 195, the interval between the flanges 193 and 194 can be adjusted, and the circumference of the ring formed by the fixing plate 191 can be adjusted to the inside of the remaining portion 62C. By such adjustment, the fixing plate 191 is pressed against the remaining portion 62C in most of the middle except for the end portion connected to the vertical member 192, and can function to prevent the remaining portion 62C from falling off.

縦材192の上下端部には支持部材198が溶接等により接続され、支持部材198は残部62Cがない部分で鉄皮61の内側に溶接等により固定されている。これらの支持部材198により縦材192ないし固定板191の全てが鉄皮61に支持され、従ってアスベストを含有する残部62Cを貫通する部分等は一切必要がない。
このような本実施形態によれば、炉内の残部62Cを押さえるために固定棒等を残部62Cに貫通させる必要がないため、アスベストを含有する耐火物の飛散の可能性をさらに低減でき、飛散防止のための作業をさらに簡略化することができる。
A support member 198 is connected to the upper and lower ends of the vertical member 192 by welding or the like, and the support member 198 is fixed to the inside of the iron skin 61 by welding or the like at a portion where the remaining portion 62C does not exist. All of the vertical members 192 or the fixing plate 191 are supported by the iron skin 61 by these support members 198, and therefore, there is no need for a portion penetrating the remaining portion 62C containing asbestos.
According to such this embodiment, since it is not necessary to penetrate the remaining portion 62C with a fixing rod or the like in order to hold the remaining portion 62C in the furnace, the possibility of scattering of the refractory containing asbestos can be further reduced. The work for prevention can be further simplified.

なお、固定板191としては、長尺の板材に限らず、シート状あるいは幅の広い板材を用いてもよく、縦材192とともに形成されるバスケット状の構造を面で連続した円筒状の構造とすることもでき、単なる残部の押さえに限らず、アスベストを含有する残部を被覆する機能も持たせることができる。   The fixed plate 191 is not limited to a long plate, but may be a sheet or a wide plate. A basket-like structure formed together with the vertical member 192 is a continuous cylindrical structure. It is also possible to provide not only a simple pressing of the remaining part but also a function of covering the remaining part containing asbestos.

本発明は、多層耐火物構造の炉の解体方法に関し、炉内の内壁の一部がアスベストを含有する耐火物で形成された熱風炉の解体に利用できる。   The present invention relates to a method for demolishing a furnace having a multilayer refractory structure, and can be used for demolishing a hot blast furnace in which a part of an inner wall of the furnace is formed of a refractory containing asbestos.

1…多層耐火物構造の炉である熱風炉
2…基礎
3…炉体
4…ドーム部
5…コニカル部
6…直胴部
7…燃焼室
8…蓄熱室
30…中間デッキ
31,32…ゴンドラ
41,51,61…鉄皮
42,52,62…耐火物
52A,62A…含有層
42B,52B,62B…非含有層
52C,62C…残部
43…足場
44…蓋
71…仕切
72…ガス通路
73…バーナー
81…蓄熱煉瓦
82…蓄熱体
91…固定板
94…固定棒
100…多層耐火物構造の炉である蓄熱炉又は燃焼炉
101…外皮
102…含有耐火物および非含有耐火物を含む多層耐火物構造
191…固定板
192…縦材 201,202…多層耐火物構造の炉である加熱帯および均熱帯
221…外皮
222…含有耐火物である断熱ボード
223…非含有耐火物である耐火煉瓦
421,521…非含有耐火物であるキャスタブル
422,523,524,623,624…非含有耐火物である断熱煉瓦
423,525,625…非含有耐火物である耐火煉瓦
522,622…含有耐火物である断熱ボード
621…含有耐火物であるスラグウール層
DESCRIPTION OF SYMBOLS 1 ... Hot-blast furnace which is a furnace of multilayer refractory structure 2 ... Foundation 3 ... Furnace body 4 ... Dome part 5 ... Conical part 6 ... Straight trunk part 7 ... Combustion chamber 8 ... Heat storage chamber 30 ... Intermediate deck 31, 32 ... Gondola 41 , 51, 61 ... Iron skin 42, 52, 62 ... Refractory 52A, 62A ... Containing layer 42B, 52B, 62B ... Non-containing layer 52C, 62C ... Remaining 43 ... Scaffold 44 ... Lid 71 ... Partition 72 ... Gas passage 73 ... Burner 81 ... thermal storage brick 82 ... thermal storage body 91 ... fixed plate 94 ... fixed rod 100 ... thermal storage furnace or combustion furnace 101 which is a furnace having a multilayer refractory structure 101 ... outer shell 102 ... multilayer refractory including a contained refractory and a non-containing refractory Structure 191 ... Fixed plate 192 ... Longitudinal material 201, 202 ... Heated zone and soaking zone that is a furnace of multilayer refractory structure 221 ... Outer skin 222 ... Thermal insulation board that is refractory contained 223 ... Fire resistance that is not contained refractory Tile 421, 521 ... Castable 422, 523, 524, 623, 624 ... Non-containing refractory insulating brick 423, 525, 625 ... Non-containing refractory refractory brick 522, 622 ... Included refractory Heat insulation board 621 ... slag wool layer containing refractory

Claims (4)

外皮と、前記外皮の内側を覆いかつアスベストを含有する含有耐火物で形成された含有層と、前記含有層の内側を覆いかつアスベストを含有しない非含有耐火物で多層に形成された非含有層と、を有する多層耐火物構造の炉の解体方法であって、
前記非含有層の少なくとも最外側の一層と前記含有層とを残部として残して前記非含有層を炉芯側から解体する一次解体工程を行った後、アスベスト対策のもとで前記残部を解体する二次解体工程を行うことを特徴とする多層耐火物構造の炉の解体方法。
An outer skin, a containing layer formed of a contained refractory material covering the inside of the outer skin and containing asbestos, and a non-containing layer formed of a non-containing refractory material covering the inner side of the containing layer and containing no asbestos A method for dismantling a furnace having a multilayer refractory structure comprising:
After performing a primary demolition step of disassembling the non-containing layer from the furnace core side, leaving at least the outermost layer of the non-containing layer and the containing layer as a remaining portion, dismantling the remaining portion under asbestos countermeasures A method for disassembling a furnace having a multilayer refractory structure, wherein a secondary dismantling step is performed.
請求項1に記載された多層耐火物構造の炉の解体方法において、
前記一次解体工程は、前記残部を前記外皮側に固定する残部固定工程を含むことを特徴とする多層耐火物構造の炉の解体方法。
In the method for dismantling a furnace having a multilayer refractory structure according to claim 1,
The method of disassembling a furnace having a multilayer refractory structure, wherein the primary dismantling step includes a remaining portion fixing step of fixing the remaining portion to the outer skin side.
請求項1または請求項2に記載された多層耐火物構造の炉の解体方法において、
炉内を縦方向に複数の区画に区分し、各区画において前記一次解体工程および前記二次解体工程を順次行うとともに、これらの各工程を各区画で順次ずらせて実施することを特徴とする多層耐火物構造の炉の解体方法。
In the method for disassembling a furnace having a multilayer refractory structure according to claim 1 or 2,
The inside of the furnace is divided into a plurality of sections in the vertical direction, and the primary disassembly process and the secondary disassembly process are sequentially performed in each section, and the respective processes are sequentially shifted in each section. Dismantling method of refractory furnace.
請求項1から請求項3の何れかに記載された多層耐火物構造の炉の解体方法において、
前記二次解体工程では、前記残部の解体で生じた解体屑を炉内で更に破砕することを特徴とする多層耐火物構造の炉の解体方法。
In the method for disassembling a furnace having a multilayer refractory structure according to any one of claims 1 to 3,
In the secondary dismantling step, the dismantling waste generated by dismantling the remaining portion is further crushed in the furnace, and the method of dismantling the furnace having a multilayer refractory structure is characterized.
JP2009202502A 2008-12-08 2009-09-02 Dismantling method of multi-layer refractory furnace Active JP4528876B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2009202502A JP4528876B2 (en) 2008-12-08 2009-09-02 Dismantling method of multi-layer refractory furnace
PCT/JP2010/060802 WO2011027610A1 (en) 2009-09-02 2010-06-25 Method of demolishing furnace of multilayered-refractory structure
CN201080037469.2A CN102483305B (en) 2009-09-02 2010-06-25 Method of demolishing furnace of multilayered-refractory structure
CA 2771911 CA2771911C (en) 2009-09-02 2010-06-25 Method of demolishing furnace of multilayered-refractory structure
BR112012003952A BR112012003952A2 (en) 2009-09-02 2010-06-25 METHOD OF DEMOLITION OF MULTI-LAYER REFRACTORY STRUCTURE FURNACE
US13/391,113 US8578582B2 (en) 2009-09-02 2010-06-25 Method of demolishing furnace of multilayered-refractory structure
EP20100813561 EP2474801B1 (en) 2009-09-02 2010-06-25 Method of demolishing furnace of multilayered-refractory structure
RU2012112592/02A RU2500963C1 (en) 2009-09-02 2010-06-25 Removal method of furnace having multilayer refractory structure
AU2010290644A AU2010290644B2 (en) 2009-09-02 2010-06-25 Method of demolishing furnace of multilayered-refractory structure
UAA201202199A UA99429C2 (en) 2009-09-02 2010-06-25 Method of demolishing a furnace of a multilayered-refractory structure
PL10813561T PL2474801T3 (en) 2009-09-02 2010-06-25 Method of demolishing furnace of multilayered-refractory structure
ES10813561.7T ES2468800T3 (en) 2009-09-02 2010-06-25 Demolition procedure of a multilayer refractory structure furnace
KR20127005084A KR101164459B1 (en) 2009-09-02 2010-06-25 Method of demolishing furnace of multilayered-refractory structure
ZA2012/01140A ZA201201140B (en) 2009-09-02 2012-02-16 Method of demolishing furnace of multilayered-refractory structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008312437 2008-12-08
JP2009202502A JP4528876B2 (en) 2008-12-08 2009-09-02 Dismantling method of multi-layer refractory furnace

Publications (2)

Publication Number Publication Date
JP2010159950A true JP2010159950A (en) 2010-07-22
JP4528876B2 JP4528876B2 (en) 2010-08-25

Family

ID=42577236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202502A Active JP4528876B2 (en) 2008-12-08 2009-09-02 Dismantling method of multi-layer refractory furnace

Country Status (1)

Country Link
JP (1) JP4528876B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064346A (en) * 2009-09-15 2011-03-31 Nippon Steel Engineering Co Ltd Method of dismantling heat-resistant tube structure
JP2017106258A (en) * 2015-12-10 2017-06-15 株式会社藤林商会 Sludge water disposal system
JP2017150032A (en) * 2016-02-24 2017-08-31 新日鉄住金エンジニアリング株式会社 Method for dismantling hot-blast stove
JP2021042400A (en) * 2019-09-06 2021-03-18 日本製鉄株式会社 Dismantling facility of air-heating furnace and dismantling method of air-heating furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436827B2 (en) 2020-04-02 2024-02-22 日本製鉄株式会社 How to install a hot air stove

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310568A (en) * 2001-04-11 2002-10-23 Shinagawa Refract Co Ltd Method for repairing refractory wall for molten metal container
JP2004144392A (en) * 2002-10-24 2004-05-20 Narata:Kk Chimney deconstructing method
JP2004177081A (en) * 2002-11-29 2004-06-24 Shimizu Corp Disassembling method of refractory material of incinerator
JP2006220404A (en) * 2005-02-08 2006-08-24 Shinko Kk Removal method and device for chimney inner wall surface layer
JP2009256930A (en) * 2008-04-15 2009-11-05 Shimizu Corp Demolition method for chimney

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259827A (en) * 1986-04-09 1987-11-12 Fujitsu Ltd Manufacture of sprocket wheel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310568A (en) * 2001-04-11 2002-10-23 Shinagawa Refract Co Ltd Method for repairing refractory wall for molten metal container
JP2004144392A (en) * 2002-10-24 2004-05-20 Narata:Kk Chimney deconstructing method
JP2004177081A (en) * 2002-11-29 2004-06-24 Shimizu Corp Disassembling method of refractory material of incinerator
JP2006220404A (en) * 2005-02-08 2006-08-24 Shinko Kk Removal method and device for chimney inner wall surface layer
JP2009256930A (en) * 2008-04-15 2009-11-05 Shimizu Corp Demolition method for chimney

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064346A (en) * 2009-09-15 2011-03-31 Nippon Steel Engineering Co Ltd Method of dismantling heat-resistant tube structure
JP2017106258A (en) * 2015-12-10 2017-06-15 株式会社藤林商会 Sludge water disposal system
JP2017150032A (en) * 2016-02-24 2017-08-31 新日鉄住金エンジニアリング株式会社 Method for dismantling hot-blast stove
JP2021042400A (en) * 2019-09-06 2021-03-18 日本製鉄株式会社 Dismantling facility of air-heating furnace and dismantling method of air-heating furnace
JP7311768B2 (en) 2019-09-06 2023-07-20 日本製鉄株式会社 Dismantling equipment for hot stove and method for dismantling hot stove

Also Published As

Publication number Publication date
JP4528876B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
WO2011027610A1 (en) Method of demolishing furnace of multilayered-refractory structure
JP4528876B2 (en) Dismantling method of multi-layer refractory furnace
JP5659690B2 (en) Sinter cooling device
CN102519258A (en) Burner of roasting furnace and construction method for burner
CN201269518Y (en) Afterburning type carbon monoxide exhaust-heat boiler
US20100164149A1 (en) Center Backfire Inner Heat Regenerative Energy Saving High Efficiency Furnace and Tank Integration Reduction Furnace System
CN105200173A (en) Cross construction method of replacing furnace shells and cooling walls of blast furnaces
JP6553526B2 (en) How to disassemble the hot blast furnace
JP2010059482A (en) Method for dismantling furnace bottom part of blast furnace, and carrying device
CN106586912A (en) Group air heating furnace on-line overhauling refractory material transport system and overhauling method
JP5172800B2 (en) Dismantling method of heat-resistant pipe structure
CN100516236C (en) Method for removing blast furnace bottom coagulated remainder iron
JP2019203617A (en) Small-sized incineration melting furnace
RU2824148C1 (en) Two-bath reflecting furnace for remelting aluminium scrap
JP3421280B2 (en) Heat insulation method in coke oven brick repair
CN217636726U (en) Smelting furnace for smelting alloy
RU2617087C1 (en) Tandem reverberatory furnace for aluminium scrap remelting
JP7311768B2 (en) Dismantling equipment for hot stove and method for dismantling hot stove
JPH0949008A (en) Method for repairing hot stove
JP2000309813A (en) Working method for fitting cooling stave on furnace body of blast furnace
RU96933U1 (en) FIRE SOLID SOLID WASTE NEUTRALIZER
CN115127340A (en) Smelting furnace for smelting alloy and manufacturing method thereof
JPH07120165A (en) Method of dismantling ceramics oven refractory
CN116772586A (en) Heat-insulating corrosion-resistant manhole device for overhauling boiling chlorination furnace and boiling chlorination furnace
CN108728599A (en) A kind of Blast Furnace Bottom residue iron method for dismounting

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4528876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350