JP2010158720A - 方向性凝固プロセス用の鋳造用鋳型及び製造方法 - Google Patents

方向性凝固プロセス用の鋳造用鋳型及び製造方法 Download PDF

Info

Publication number
JP2010158720A
JP2010158720A JP2009296937A JP2009296937A JP2010158720A JP 2010158720 A JP2010158720 A JP 2010158720A JP 2009296937 A JP2009296937 A JP 2009296937A JP 2009296937 A JP2009296937 A JP 2009296937A JP 2010158720 A JP2010158720 A JP 2010158720A
Authority
JP
Japan
Prior art keywords
mold
layer
metal
directional solidification
release layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009296937A
Other languages
English (en)
Other versions
JP5437788B2 (ja
Inventor
Shyh-Chin Huang
シーチン・ホアン
Andrew John Elliott
アンドリュー・ジョン・エリオット
Michael Francis Xavier Gigliotti Jr
マイケル・フランシス・ザヴィアー・ギグリオッティ,ジュニア
Roger John Petterson
ロジャー・ジョン・ペッターソン
Francis Rutkowski Stephen
スティーブン・フランシス・ルトコウスキ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2010158720A publication Critical patent/JP2010158720A/ja
Application granted granted Critical
Publication of JP5437788B2 publication Critical patent/JP5437788B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

【課題】冷却浴を使用する方向性凝固プロセスに適しており、方向性凝固プロセス中液体金属冷却剤と鋳造金属の表面との反応を防止又は遅延させるように構成された鋳造用鋳型を提供する。
【解決手段】冷却浴を用いる方向性凝固プロセスに適した鋳造用鋳型10は鋳型本体上に傾斜フェースコート構造体12を含んでいる。傾斜フェースコート構造体は最内層14及び剥離層18を含んでおり、剥離層は溶融金属の冷却の際に破損して、鋳型本体を最内層から分離し、最内層は鋳造される金属と接触又は近接したまま留まる。また、方向性凝固プロセスも開示される。
【選択図】図1

Description

本発明は一般に方向性凝固鋳造法で使用する鋳造用鋳型及びその製造方法に関する。具体的には、本鋳造用鋳型は、方向性凝固プロセス中液体金属冷却剤が鋳造金属の表面と反応するのを防止又は遅延させるように構成された傾斜フェースコート構造体を含んでいる。
方向性凝固プロセスは、柱状及び単結晶成長組織を有するタービン動翼及び静翼のような部品の製造に広く使用されている方法である。単結晶超合金の高温機械的特性が多結晶組織を有する鋳造物よりも優れていることはよく知られている。一般に、望ましい単結晶成長組織は、部品を画成する垂直配置式鋳型の底部で生成する。移動する熱勾配の影響下で単結晶凝固先端(front)が構造体内を伝搬する。
様々な方向性凝固法が存在する。ある方法で、方向性凝固は、溶融金属を収容する鋳型を加熱炉から、溶融材料の冷却媒体として作用する冷却浴中にゆっくりと下降させることによって実施できる。冷却浴は、溶融材料の融点よりは低いが液体冷却剤の融点を超える温度に加熱された金属を含む。溶融材料の凝固は、鋳型が冷却浴中を下降するに伴って鋳型の底部から頂部に進行する。こうして、鋳型内の溶融材料から冷却浴に熱が移動すると固体−液体界面は上方へ前進する。鋳型を液体で冷却する際の1つの問題は、液体冷却剤が鋳造材料を汚染し、そのため不都合な表面点食が起こる傾向があることである。鋳型が適切に密封されていなかったり、或いは鋳造作業完了前に早期割れを起こすと、液体冷却剤と鋳造金属との反応が起こりかねない。
溶融鋳造金属とシェルモールドの表面との間に保護障壁を形成するためフェースコートが用いられることがある。例えば、米国特許第6676381号(Subramanian他)には、イットリア又は1種以上の希土類金属と、酸化物、ケイ化物、ケイ酸塩及び硫化物のような他の無機成分に基づくフェースコートが記載されている。フェースコート組成物は、大抵は、一般にイットリア成分のような高融点材料と共にバインダー材料を含むスラリーの形態である。反応性の溶融鋳造金属がシェルモールドに送られると、フェースコートは鋳造金属と鋳型壁つまりフェースコートの下の壁との間の不都合な反応を防止する。時にフェースコートは同じ目的で、(シェルモールド内の)中子の部分(通常は鋳造金属と接触する)を保護するために用いることができる。現在のフェースコートは、鋳造プロセス中に鋳型本体が割れた時など、役に立たない傾向がある。
米国特許第6676381号明細書 米国特許第5275227号明細書 米国特許第6276433号明細書
そこで、冷却浴を使用する方向性凝固プロセスに適しており、方向性凝固プロセス中液体金属冷却剤と鋳造金属の表面との反応を防止又は遅延させるように構成された鋳造用鋳型があれば望ましいであろう。
本明細書では、方向性凝固プロセス用の鋳型及びその方法について開示する。一実施形態では、方向性凝固プロセス用の鋳型は、方向性凝固プロセス中に溶融金属と接触する最内層と鋳型本体と接触する剥離層とを含む傾斜フェースコート構造体を有しており、剥離層は鋳造金属の方向性凝固の際に破損するように構成されている。
別の実施形態では、鋳型は、最内層と、焼結層と、細孔を有する剥離層とを含む傾斜フェースコート構造体、及び鋳型本体を有しており、最内層及び焼結層は、鋳造金属の冷却及び方向性凝固の際に鋳造金属に接着又は近接したまま留まるように構成されており、鋳型本体は剥離層付近で最内層及び焼結層から分離される。
方向性凝固鋳造プロセスは、溶融金属と接触する最内層と剥離層とを含む傾斜フェースコート構造体が鋳型本体上に形成された鋳型内で溶融金属を鋳造し、溶融材料の融点よりは低いが液体冷却剤の融点を超える温度に加熱された液体冷却剤を含む冷却浴中に鋳型を下降させ、冷却浴内を下降するに伴って、熱を鋳型から冷却浴へ移動させると共に溶融金属を方向性凝固させることを含み、剥離層は破損して、溶融金属が冷却する間最内層を鋳型本体から分離する。
本発明は、本発明の様々な特徴に関する以下の詳細な説明及びその中に含まれている実施例を参照することによりさらに容易に理解されるであろう。
以下、図面を参照するが、図面において同様の要素には同様の符号を付した。
図1は、本発明に係る鋳造用鋳型の部分断面図を示す。 図2は、方向性凝固プロセスによる溶融材料の鋳造に使用できる炉の代表的な実施形態を示す。
本明細書では、方向性インベストメント鋳造法に使用する鋳型のフェースコート構造体について開示する。フェースコート構造体は一般に、鋳造金属と接触する最内層、最内層に隣接する焼結層、及び鋳型の主本体に近接又は隣接する外側剥離層を含む傾斜組成を有する。最内層と焼結層は凝固プロセス中に剥離層で鋳型から離脱するように構成されており、これら最内層と焼結層は、金属が凝固し収縮して鋳型本体から離れるときに鋳造金属表面に結合したまま残る。従って、これらの離脱した層、すなわち最内層と焼結層は、金属が冷却する際鋳造金属表面に接着及び/又は近接したまま留まり、方向性凝固プロセス中に鋳型内に侵入する液体金属冷却剤との直接接触及び反応から鋳造金属を保護する。
図1に、鋳型10の部分断面図を示す。上述の通り、鋳型は、最内層14、焼結層16、及び剥離層18を含むフェースコート構造体12を有している。鋳型本体20は剥離層上に形成されており、通例所望の厚さが得られるように複数のセラミック層を含んでいる。最内層12は、鋳型キャビティー内に設置されたとき鋳造金属と直接接触するように位置している。
最も内側のフェースコート層14は一般に、鋳造金属に対して比較的不活性なセラミック材料から製造される。加えて、以下により詳細に述べるように、最内層は収縮が起こったときでも鋳造金属と接触したまま残るようになっている。鋳造金属の表面上に結合して残留するフェースコート材料は、液体冷媒による攻撃から鋳造金属を物理的に分離するのに役立つ。最内層は、バインダーと、特に限定されないが、アルミナ、カルシア、シリカ、ジルコニア、ジルコン、イットリア、チタニア、イットリア洗浄アルミナ、これらの物理的混合物、及びこれらの化学的混合物(すなわち、これらの材料の反応生成物)のような高融点金属又は金属酸化物を含む材料のスラリーから形成することができる。バインダーはシリカ系材料であることが多い。コロイド状シリカがこの目的で極めて一般的であり、インベストメント鋳造用鋳型に広く使用されている。この種の市販のコロイド状シリカグレードのものは約10〜50%のシリカ含有量を有することが多い。この層並びに鋳型を形成するその他の層のためのスラリーは、高融点金属/金属酸化物及びバインダーを水のような液体と混合することによって形成することができる。最も内側のフェースコートスラリーは、浸漬又はスプレー塗装によって鋳型蝋型の表面上に塗布することができる。追加の最内フェースコートスラリーはまた、鋳型の内側の表面を作成後のスラリーで「洗浄する」ことによっても塗布することができる。
最も内側のフェースコート材料の選択は鋳造される金属に大きく左右される。殆どの金属は、特にインベストメント鋳造法中に使用される高温では極めて反応性が高いので、当然、最内層の製造に使用する材料は鋳造プロセスの条件下で鋳造される溶融金属又は合金に対して実質的に非反応性であることになる。イットリアは、チタン及びチタン合金から物品を鋳造する際に現在のところ好ましいフェースコート材料であるが、これは主として溶融チタン及びチタン合金との反応性が殆どの他の鋳型形成用材料より低いからである。一方、凝固後鋳造金属が収縮して鋳型の残りの部分から離れる際に最も内側のフェースコート材料が金属表面に結合しているためには、鋳造金属表面とのある程度の反応が望ましい。従って、許容できない程反応した金属表面を生成する程に激し過ぎることはないがフェースコート材料が鋳造表面に結合するのには充分である適当な程度のフェースコート−金属反応を生起させる最内フェースコート化学の選択を考慮する必要がある。この点に関して、例えばイットリアはニッケル基超合金と穏やかに反応する傾向があり、超合金のインベストメント鋳造用の最も内側のフェースコートの製造に好ましい成分である。
最も内側のフェースコートスラリーに対する化学を選択するための別の考察事項は、上述の第1の成分と反応することができる第2の酸化物成分を配合することである。フェースコート内の反応は、最も内側のフェースコート層内の粒子を一緒に結合させて、金属表面と直接接触する個々のフェースコート粒子だけではなく最も内側のフェースコート材料の層全体が鋳造金属表面に結合することができるので望ましい。この点に関して、アルミナ若しくはシリカ粒子又はこれらの組合せが最も内側のフェースコートスラリーの第2の成分として好ましい候補である。第2の成分は、望ましい粒子間結合を生成するには充分であるが、鋳造金属と第1の成分との反応を妨げるには十分でない比較的小量で加えるべきである。
単層又は複数の層として形成することができる最も内側のフェースコート層14の全体の厚さは約5〜約500μm、さらに好ましくは約10〜約150μmである。最も内側のフェースコート層は約1〜約100μm、さらに好ましくは2〜約50μmの比較的微細な粒径を有するべきである。
焼結層16は連続で緻密であり、粒子間の裂け目は鋳型の予熱及び凝固プロセスの間に焼結機構により充填される。焼結層は液体冷却剤の侵入に対して密閉障壁を提供し鋳造金属との直接接触を防止する機能を果たす。焼結層は上記と同様なバインダー並びに高融点金属及び/又は金属酸化物から形成され得る。例えば、組成物はイットリア、アルミナ及びシリカを含むことができる。しかし、焼結層は、最も内側のフェースコート層14とは異なる成分の混合物を有するスラリーから製造するのが好ましい。一般に、焼結層スラリーは最も内側のフェースコートスラリーより高い濃度の第二次成分を含有するべきである。このより高い第二次成分含有量によって、より高い程度の粒子間反応が生じ、従って鋳造金属を攻撃する冷媒のさらなる侵入に対する密閉シールを提供することができるより緻密な層のフェースコート構造体が生成する。焼結層内で増やすのが好ましい第二次成分は、イットリア及びアルミナと反応して、鋳造プロセス中にフェースコート粒子の隙間を充填し得る低融点生成物を形成することができることが知られているシリカである。
焼結層16の機能は、冷却用金属媒体の侵入によりこれと接触し反応することから鋳造金属を保護する物理的障壁を提供するという点で、最も内側のフェースコート層14の機能と類似していることに留意されたい。緻密な焼結フェースコート層構造体が形成されると、一般により多孔質の最も内側のフェースコート層に加えて鋳造金属の保護がさらに確実になる。最も内側のフェースコート層が比較的厚く連続的に均一で緻密な状況では、鋳造金属の望ましい保護の実現に焼結層は必要でないこともあり得る。この意味で、別個の焼結フェースコート層は、本発明で教示される傾斜フェースコート構造体内で任意であり決定的なものではない。
単層又は複数の層として形成することができる焼結層の全体の厚さは約0〜約200μm、さらに好ましくは約10〜50μmである。高融点材料は約1〜約100μm、さらに好ましくは約2〜約50μmの平均直径を有する。
剥離層18はバインダーと高融点材料から形成される。一実施形態では、剥離層は多孔質であり、その量は鋳造金属の冷却(すなわち収縮)の際に鋳型の主本体から離脱するのに有効なものである。スタッコ粒子によりスラリー層間に形成される層は一般に高濃度の細孔を有している。従って、フェースコート層間剥離はフェースコートスタッコ層の内部又はそのスタッコ層に隣接して起こり得る。また、剥離層は、より多孔質の領域が生成し得るならば、フェースコート領域内部でも誘発され得る。一面では金属−フェースコート反応の、他面ではフェースコート−スタッコ反応の性質に応じて、フェースコート化学の結合元素はフェースコート層の内側で消耗され得る。この金属、フェースコート、及びスタッコ間の複雑な相互作用により、フェースコート領域内に多孔質の層が生成し得る。フェースコート領域内で反応により誘発される多孔質の層は、一般に、フェースコート反応中のシリカの局部的消耗の結果である。
形成機構に応じて、剥離層18は最も内側のフェースコート層14と焼結層16との間に、又は図1に示されているように焼結層の外側に形成することができる点に留意することが重要である。剥離層18の特定の位置には関係なく、本教示に従って形成された場合、最内層14と焼結層16の両方が鋳造金属に対して保護を提供することができる。しかし、一般に、剥離層18が焼結層16の外側に位置していて、最も内側のフェースコート層14と焼結フェースコート層16の両方が鋳型の残りの部分から分離されて収縮中に鋳造金属から離別することができるようになるのが好ましい。
細孔により、層の気孔率は一実施形態では10〜40%、他の実施形態では30〜60%となる。高融点材料の粒径は一例では約1〜約100μm、別の例では約10〜約150μmである。代表的な剥離層組成物はジルコン、シリカ、イットリア及びアルミナ粒子を含む。単層又は複数の層として形成することができる剥離層の全体の厚さは一例では約1〜約100μm、他の例では約10〜500μmである。
鋳型本体20は複数の層で形成することができ、特定の材料に限られることはない。超合金の方向性凝固の場合、鋳型材料は通例バインダー並びに、石英、溶融シリカ、カルシア、ジルコン、ジルコニア、アルミナ、アルミノケイ酸塩、及びイットリア洗浄アルミナ、タングステン、イットリア、チタニア並びに これらの組合せを含む高融点材料から選択される。
通例、上記の傾斜フェースコート構造体を有する鋳型を形成する方法は、蝋型(ワックスパターン)(他のポリマーから製造したパターンを使用することもできる)を、特定の層組成を定めることになるスラリー組成物又はスプレー塗料中に浸漬して、そのパターンをスラリーの層で被覆することを含んでいる。先ず最初に鋳造しようとする溶融金属又は合金と接触する最内層を形成し、次いで湿っているうちに比較的に粗いセラミック微粒子(スタッコ)を塗る。スタッコ層は、流動床を用いてスプレー塗装により、又はレインコーティング(rain coating)により設けることができる。適切なレインコーティング装置はPacific Kiln & Insulations社から市販されている。その後、パターンを所望のスラリー組成物に浸漬し、過剰のスラリーをドレン排出し、スタッコとして塗るという手順を所望の層の数に相当する必要な回数繰り返すことによって焼結層と剥離層を順次形成するとよい。一実施形態では、次の塗装及びスタッコ塗り作業を行う前に各スラリー/スタッコ層を乾燥する。他の実施形態では、次のスラリーコーティングを設ける前にスタッコ塗りすることなくスラリーコーティングを乾燥させる。幾つかのスタッコ工程を省くことは、本発明により教示される望ましい傾斜フェースコート構造体の創成に有効な方法となり得る。
スタッコ材料として有用な材料は鋳型形成用材料として現状で考えられる有用な材料と実質的に同じであり、すなわち、アルミナ、カルシア、シリカ、ジルコニア、ジルコン、イットリア、これらの物理的混合物、及びこれらの化学的混合物である。鋳型形成用材料とスタッコの主要な差は粒径である。すなわち、スタッコは一般に、スラリーを形成する高融点金属/金属酸化物のような他の鋳型形成用材料より大きい粒径を有する。フェースコートスタッコ材料の粒径の範囲は一般に約10〜約200μmである。鋳型の外側本体を構成するバックアップ層は一般に約20〜約250μmの粒径を有するスタッコを含む。スタッコ、並びにその他の鋳型用高融点材料は、本発明を実施するための他のスタッコ材料との密な混合物として形成することができる。
パターンの回りでフェースコート構造体が凝固したら、追加の層、例えば約2〜約25の追加の層、通例約5〜約20の追加の層、より一般的には約10〜約15の追加の層パターンに設けて鋳型本体20を形成する。十分乾燥した後、蝋型をシェルモールドから取り除き、鋳型を焼成する。時には、高温加熱からシェルを冷却する前に、シェルに溶融金属を充填する。或いは、鋳型を室温に冷却し、後の使用のために保存する。その後の鋳型の再加熱は亀裂が生じないように制御する。溶融金属をシェルに導入するには、重力、圧力、真空及び遠心分離法を始めとする各種の方法が使用されている。鋳造用鋳型内で溶融金属が凝固し充分に冷却されたら、鋳造物をシェルから取り出すことができる。
図2に、溶融材料を方向性凝固プロセスにより鋳造するのに使用することができる炉50の代表的な実施形態を示す。図に示されているように、炉50は、断熱炉箱54を予熱するためにこの箱54の内部に配置された抵抗加熱された導電性帯片52(例えば、黒鉛帯片)を含むことができる。別の実施形態では導電性帯片は誘導コイルに替えることができる。鋳型位置決め器64が、金属酸化物スラリーで被覆された内面を有するセラミック鋳型56を炉箱54内に保持することができる。鋳型56の内部には、炉箱54を溶融材料の融点より高い温度に加熱することにより溶融状態に維持された溶融材料を充填することができる。方向性凝固は、溶融材料を収容する鋳型56を加熱された炉箱54(すなわち、ホットゾーン)から出し炉箱54の開口58を介して冷却浴60(すなわち、コールドゾーン)内へ下降させることによって実現することができる。冷却浴60は溶融材料の冷却媒体として機能することができる。冷却浴60は、溶融材料の融点より低く液体冷却媒体の融点より高い温度に加熱された高融点金属のような金属のるつぼ62内に収容することができる。溶融材料の凝固は、鋳型56が冷却浴60中を下降するにつれて鋳型56内部で底部から頂部に向かって進行することができる。特に、固体−液体界面は、鋳型56内の溶融材料から冷却浴60に熱が移動すると共に上方へ進むことができる。
方向性凝固炉の冷却浴として満足のいく液体冷却剤は鋳造金属合金よりかなり低い融点及び高い熱伝導率を有していなければならない。また冷却剤は化学的に不活性であって低い蒸気圧を有するべきである。適切な金属としては、融点が700℃未満の金属がある。融点が700℃未満の金属としては、特に限定されないが、リチウム(186℃)、ナトリウム(98℃)、マグネシウム(650℃)、アルミニウム(660℃)、カリウム(63℃)、亜鉛(419℃)、ガリウム(30℃)、セレン(220℃)、ルビジウム(39℃)、カドミウム(320℃)、インジウム(156℃)、スズ(232℃)、アンチモン(630℃)、テルル(450℃)、セシウム(28℃)、水銀(−39℃)、タリウム(300℃)、鉛(327℃)、ビスマス(276℃)、及びこれらの各種組合せがある。
凝固プロセス中いずれかの液体冷却剤、例えば液体金属が鋳型の主本体20に侵入する場合、傾斜セラミックフェースコートは液体冷却媒体が鋳型内の溶融材料の表面と接触するのを阻止することができる。一例として、液体冷却媒体の侵入は、鋳型が適切に密封されていない場合、又は凝固プロセスが完了する前の時期尚早なときに鋳型に亀裂が入る場合に起こり得る。溶融材料の表面に隣接して傾斜フェースコートが存在すると、液体冷却媒体と溶融材料の成分の交差拡散、及び2つの材料間のあらゆる表面反応を防止又は遅延させることができる。その結果、望ましいことに溶融材料の組成は実質的に同じままであり、凝固プロセス中に汚染されなくなる。
実施の際には、シェルモールド56内の合金が確実に溶融するように充分な高温に炉箱54を予熱する。次いで、鋳型位置決め器64により鋳型56を所定の速度で液体金属冷却剤60中に降下させる。熱がシェルモールド56内の合金から伝導され、冷却用金属により取り除かれると共に固体−液体界面が上方へ進む。冷却浴60中への浸漬によって合金が充分に冷却された後柱状及び単結晶成長組織を有する鋳造された部品が全体に形成される。その後、部品はシェルモールド56から容易に取り出すことができる。
上記のように鋳造することができる材料の例としては、特に限定されないが、金属、金属合金、超合金及びこれらの1種以上の材料を含む組合せがある。本明細書で使用する場合、用語「超合金」とは、高温で優れた強度と耐酸化性を有するニッケル(Ni)基、コバルト(Co)基又は鉄(Fe)基高融点合金をいう。超合金はまた、表面安定性を付与するクロム(Cr)のような金属並びに強化する目的のモリブデン(Mo)、タングステン(W)、ニオブ(Nb)、チタン(Ti)、及び/又はアルミニウム(Al)のような1種以上の微量成分を含んでいてもよい。超合金はその物理的性質のため、特にガスタービン部品の製造に有用である。
本明細書では、単数形で記載した場合でも、量を限定する意図ではなく、標記のものが1以上存在することを意味する。また、同一の成分又は性質に関する範囲はすべて上下限を含み、独立に組合せ可能である(例えば、「約5〜約20wt%」は「約5〜約20wt%」の範囲の上下限及びあらゆる中間値を含む)。本明細書を通じて「一実施形態」、「別の実施形態」、「ある実施形態」などという場合、その実施形態に関連して記載された特定の要素(例えば、特徴、構造、及び/又は特性)が本明細書に記載された1以上の実施形態に含まれており、他の実施形態で存在していてもいなくてもよいことを意味している。加えて、記載されている要素は様々な実施形態では適切ないかなる意味でも組み合わせることができるということと了解されたい。また、本発明は記載されたいかなる理論にも限定されないことも了解されたい。特に断らない限り、本明細書で使用する技術的及び科学的用語は本発明が属する分野の当業者により一般に理解されているのと同じ意味を有する。
以上の記載では、最良の形態を含めて本発明を開示するために、当業者が本発明を実施し使用することができるように幾つかの例を使用した。本発明の範囲は特許請求の範囲に定義されており、当業者には自明の他の例も含み得る。かかる他の例は、それらが特許請求の範囲の文言と異ならない構成要件を有するか、又は特許請求の範囲の文言と実質的な差がない均等な構成要件を含む場合、特許請求の範囲に含まれる。
10 鋳型
12 フェースコート構造体
14 最内層
16 焼結層
18 剥離層
20 本体
50 炉
52 導電性帯片
54 炉箱
56 セラミック鋳型
58 開口
60 冷却浴
62 るつぼ
64 鋳型位置決め器

Claims (20)

  1. 方向性凝固プロセス用の鋳型であって、方向性凝固プロセス中に溶融金属と接触する最内層と鋳型本体と接触する剥離層とを含む傾斜フェースコート構造体を含み、剥離層が鋳造金属の方向性凝固の際に破損するように構成されている、鋳型。
  2. さらに、最内層及び剥離層の中間に焼結層を含む、請求項1記載の鋳型。
  3. 剥離層の厚さが1〜100μmで、気孔率が10〜40%である、請求項1記載の鋳型。
  4. 剥離層の厚さが10〜500μmで、気孔率が30〜60%である、請求項1記載の鋳型。
  5. 最内層の厚さが5〜500μmであり、層間剥離層の厚さが1〜500μmであり、焼結層の厚さが0〜200μmである、請求項2記載の鋳型。
  6. 最内層が、収縮が起こったとき溶融金属と接触したまま残るように構成されている、請求項1記載の鋳型。
  7. 最内層及び剥離層がバインダー及び高融点金属又は金属酸化物を含む、請求項1記載の鋳型。
  8. 鋳造金属の方向性凝固のための鋳型であって、
    最内層と、焼結層と、細孔を有する剥離層とを含む傾斜フェースコート構造体、及び
    鋳型本体
    を備えており、最内層及び焼結層が、鋳造金属の冷却及び方向性凝固の際に鋳造金属に接着又は近接したまま留まるように構成されており、鋳型本体が剥離層付近で最内層及び焼結層から分離する、鋳型。
  9. 焼結層が、1〜100μmの平均粒径を有する高融点金属及び/又は金属酸化物を含む、請求項8記載の鋳型。
  10. 剥離層の厚さが10〜500μmで、気孔率が30〜60%である、請求項8記載の鋳型。
  11. 剥離層の厚さが1〜100μmで、気孔率が10〜40%である、請求項8記載の鋳型。
  12. 最内層及び剥離層がバインダー及び高融点金属又は金属酸化物を含む、請求項8記載の鋳型。
  13. 鋳造金属が金属、金属合金、超合金及びこれらの1種以上の材料を含む組合せを含む、請求項8記載の鋳型。
  14. 焼結層が鋳型の予熱及び凝固プロセス中に焼結するように構成されている、請求項8記載の鋳型。
  15. 溶融金属と接触する最内層及び剥離層を含む傾斜フェースコート構造体が鋳型本体上に形成されている鋳型内で溶融金属を鋳造し、
    溶融材料の融点よりは低いが液体冷却剤の融点を超える温度に加熱された液体冷却剤を含む冷却浴中に鋳型を下降させ、
    鋳型から冷却浴へ熱を移動させ、鋳型が冷却浴内を下降するときに溶融金属を方向性凝固させる
    ことを含み、溶融金属が冷却されるにつれて剥離層が破損して最内層が鋳型本体から分離する、方向性凝固鋳造プロセス。
  16. 剥離層の厚さが1〜100μmで、気孔率が10〜40%である、請求項15記載の方向性凝固プロセス。
  17. さらに、最内層及び剥離層の中間に焼結層を形成することを含んでおり、焼結層が凝固プロセス中に焼結する、請求項15記載の方向性凝固プロセス。
  18. 溶融金属が冷却浴で冷却されるとき最内層が溶融金属と接触する、請求項15記載の方向性凝固プロセス。
  19. 液体冷却剤が700℃未満の融点を有する金属を含む、請求項15記載の方向性凝固プロセス。
  20. 溶融金属が金属、金属合金、超合金及びこれらの1種以上の材料を含む組合せを含む、請求項15記載の方向性凝固プロセス。
JP2009296937A 2009-01-06 2009-12-28 方向性凝固プロセス用の鋳造用鋳型及び製造方法 Expired - Fee Related JP5437788B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/348,937 US8307881B2 (en) 2009-01-06 2009-01-06 Casting molds for use in directional solidification processes and methods of making
US12/348,937 2009-01-06

Publications (2)

Publication Number Publication Date
JP2010158720A true JP2010158720A (ja) 2010-07-22
JP5437788B2 JP5437788B2 (ja) 2014-03-12

Family

ID=42072802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009296937A Expired - Fee Related JP5437788B2 (ja) 2009-01-06 2009-12-28 方向性凝固プロセス用の鋳造用鋳型及び製造方法

Country Status (5)

Country Link
US (1) US8307881B2 (ja)
EP (1) EP2208556B1 (ja)
JP (1) JP5437788B2 (ja)
CN (1) CN101885037B (ja)
PL (1) PL2208556T3 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504202A (ja) * 2013-01-29 2016-02-12 ゼネラル・エレクトリック・カンパニイ カルシウムヘキサアルミネート含有鋳型及びフェースコート組成物並びにチタン及びチタンアルミナイド合金を鋳造するための方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8752611B2 (en) * 2011-08-04 2014-06-17 General Electric Company System and method for directional casting
CN104583464A (zh) * 2012-06-25 2015-04-29 希利柯尔材料股份有限公司 用于纯化硅的耐火坩埚的表面的衬里以及使用该坩埚进行熔化和进一步定向凝固以纯化硅熔融体的方法
CN106141106A (zh) * 2015-03-31 2016-11-23 株式会社日立制作所 金属型铸造模具的涂层的涂敷方法以及该金属型铸造模具
CN105033180B (zh) * 2015-06-26 2017-03-01 北京北冶功能材料有限公司 改善定向凝固铸件凝固散热条件的熔模精密铸造方法
CN113369465B (zh) * 2021-06-24 2022-08-23 郑州轻工业大学 一种多梯度氧化钇型壳及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245937A (ja) * 1985-04-22 1986-11-01 Asahi Organic Chem Ind Co Ltd 鋳型材料組成物
JPH05208241A (ja) * 1992-01-31 1993-08-20 Hitachi Metals Ltd チタンまたはチタン合金の精密鋳造用鋳型
JPH11104784A (ja) * 1997-10-06 1999-04-20 Yasugi Seisakusho:Kk 精密鋳造用鋳型およびその製造方法
JP2000107852A (ja) * 1998-06-26 2000-04-18 General Electric Co <Ge> 一方向凝固鋳造品並びにその製造方法
JP2000202574A (ja) * 1999-01-12 2000-07-25 Mitsubishi Materials Corp 高強度精密鋳造鋳型およびその製造方法
JP2001170757A (ja) * 1999-10-25 2001-06-26 General Electric Co <Ge> 液体金属で冷却される方向性凝固法
JP2006305628A (ja) * 2005-03-30 2006-11-09 Asahi Organic Chem Ind Co Ltd シェルモールド用鋳型材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146346A (ja) * 1984-08-09 1986-03-06 Agency Of Ind Science & Technol 超合金の一方向性凝固鋳型に用いるインベストメントシエル鋳型の製造法
US4966225A (en) * 1988-06-13 1990-10-30 Howmet Corporation Ceramic shell mold for investment casting and method of making the same
US5275227A (en) * 1990-09-21 1994-01-04 Sulzer Brothers Limited Casting process for the production of castings by directional or monocrystalline solidification
CN1061704C (zh) * 1995-11-14 2001-02-07 中国科学院金属研究所 一种镍铝基金属材料单晶的制备方法
US6308767B1 (en) * 1999-12-21 2001-10-30 General Electric Company Liquid metal bath furnace and casting method
JP3592252B2 (ja) * 2001-04-05 2004-11-24 日信工業株式会社 鋳造方法及び鋳造装置
US6702886B2 (en) * 2001-11-20 2004-03-09 Alcoa Inc. Mold coating
US6676381B2 (en) * 2002-04-03 2004-01-13 General Electric Company Method and apparatus for casting near-net shape articles
CN2629875Y (zh) * 2003-03-10 2004-08-04 中国科学院金属研究所 一种定向凝固用碳化硅型壳
FR2870147B1 (fr) 2004-05-12 2007-09-14 Snecma Moteurs Sa Procede de fonderie a cire perdue
US7296616B2 (en) * 2004-12-22 2007-11-20 General Electric Company Shell mold for casting niobium-silicide alloys, and related compositions and processes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245937A (ja) * 1985-04-22 1986-11-01 Asahi Organic Chem Ind Co Ltd 鋳型材料組成物
JPH05208241A (ja) * 1992-01-31 1993-08-20 Hitachi Metals Ltd チタンまたはチタン合金の精密鋳造用鋳型
JPH11104784A (ja) * 1997-10-06 1999-04-20 Yasugi Seisakusho:Kk 精密鋳造用鋳型およびその製造方法
JP2000107852A (ja) * 1998-06-26 2000-04-18 General Electric Co <Ge> 一方向凝固鋳造品並びにその製造方法
JP2000202574A (ja) * 1999-01-12 2000-07-25 Mitsubishi Materials Corp 高強度精密鋳造鋳型およびその製造方法
JP2001170757A (ja) * 1999-10-25 2001-06-26 General Electric Co <Ge> 液体金属で冷却される方向性凝固法
JP2006305628A (ja) * 2005-03-30 2006-11-09 Asahi Organic Chem Ind Co Ltd シェルモールド用鋳型材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504202A (ja) * 2013-01-29 2016-02-12 ゼネラル・エレクトリック・カンパニイ カルシウムヘキサアルミネート含有鋳型及びフェースコート組成物並びにチタン及びチタンアルミナイド合金を鋳造するための方法

Also Published As

Publication number Publication date
CN101885037A (zh) 2010-11-17
EP2208556B1 (en) 2018-02-21
US20100170654A1 (en) 2010-07-08
PL2208556T3 (pl) 2018-08-31
EP2208556A1 (en) 2010-07-21
CN101885037B (zh) 2015-04-01
JP5437788B2 (ja) 2014-03-12
US8307881B2 (en) 2012-11-13

Similar Documents

Publication Publication Date Title
RU2529134C2 (ru) Отливки из сплава, имеющие защитные слои, и способы их изготовления
JP5437788B2 (ja) 方向性凝固プロセス用の鋳造用鋳型及び製造方法
US8062581B2 (en) Refractory crucibles capable of managing thermal stress and suitable for melting highly reactive alloys
US7761969B2 (en) Methods for making refractory crucibles
TWI439653B (zh) 用於熔融鈦合金之強化耐火坩堝
EP1990593B1 (en) Crucibles For Melting Titanium Alloys
US8210240B2 (en) Casting processes, casting apparatuses therefor, and castings produced thereby
US20080292804A1 (en) Methods for making refractory crucibles for melting titanium alloys
JP5925411B2 (ja) 鋳造プロセス及びそのためのイットリア含有フェースコート材料
CN107151748B (zh) 一种金锗合金焊料的熔炼方法
WO2014057914A1 (ja) 精密鋳造用鋳型及びその製造方法
CN111136243B (zh) 陶瓷/金属复合层的铸造方法
CN109735757A (zh) 一种烧结硬质合金用舟皿接触材料
WO2014057903A1 (ja) 精密鋳造用鋳型及びその製造方法
US3158912A (en) Controlled grain size casting method
US2004378A (en) Method of making refractory products and the like
CN109807284A (zh) 一种用于浇注的连体坩埚模壳制作工艺及连体坩埚模壳
US20090205799A1 (en) Casting molds for use in a directional solidification process and methods of making
JP5931516B2 (ja) アルミニウム溶湯接触部材の製造方法
RU2344018C1 (ru) Способ изготовления титановых тиглей с защитным покрытием
JP2004351454A (ja) マグネシウムインゴットの製造方法
JP6365192B2 (ja) Ni合金鋳造品の鋳造方法
JPS6225066B2 (ja)
JP2014226668A (ja) 精密鋳造用鋳型材料、精密鋳造用鋳型及びその製造方法
JPS6366894B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Ref document number: 5437788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees