JP2010156399A - Toroidal type continuously variable transmission - Google Patents

Toroidal type continuously variable transmission Download PDF

Info

Publication number
JP2010156399A
JP2010156399A JP2008334717A JP2008334717A JP2010156399A JP 2010156399 A JP2010156399 A JP 2010156399A JP 2008334717 A JP2008334717 A JP 2008334717A JP 2008334717 A JP2008334717 A JP 2008334717A JP 2010156399 A JP2010156399 A JP 2010156399A
Authority
JP
Japan
Prior art keywords
main body
outer ring
lubricating oil
continuously variable
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008334717A
Other languages
Japanese (ja)
Other versions
JP5149783B2 (en
Inventor
Hiroshi Ishikawa
宏史 石川
Eiji Inoue
英司 井上
Toshishige Sano
敏成 佐野
Akira Ijichi
彬 伊地知
Masami Sugaya
正美 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Toyota Motor Corp
Original Assignee
NSK Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd, Toyota Motor Corp filed Critical NSK Ltd
Priority to JP2008334717A priority Critical patent/JP5149783B2/en
Publication of JP2010156399A publication Critical patent/JP2010156399A/en
Application granted granted Critical
Publication of JP5149783B2 publication Critical patent/JP5149783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a structure reducing a torque loss of a thrust rolling bearing by reducing agitation resistance of lubrication oil as well as efficiently feeding the lubrication oil into respective pockets. <P>SOLUTION: Convex parts 24, 24 expanding to the axial direction of a main element 11a are formed at in-between parts between adjacent pockets in the circumferential direction, in a diameter direction intermediate part of both inside/outside surfaces of the main element 11a composing a retainer 10a. Compared with a case in which these convex parts 24, 24 are not formed in these in-between parts, therefore, volumes of spaces 23a, 23a between rolling bodies formed between these in-between parts and inner/outer ring tracks 6, 8 are decreased. As a result, the above problem is solved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明に係るトロイダル型無段変速機は、自動車用の変速装置として、或いは、ポンプ等の各種産業機械の運転速度を調節する為の変速装置として利用する。   The toroidal continuously variable transmission according to the present invention is used as a transmission for an automobile or as a transmission for adjusting the operating speed of various industrial machines such as a pump.

自動車用自動変速装置として使用されるトロイダル型無段変速機は、特許文献1、非特許文献1、2等の多くの刊行物に記載されると共に、一部で実施されており、周知である。この様なトロイダル型無段変速機は、例えば図19に示す様に、互いに対向する軸方向側面をトロイド曲面とした入力ディスク1、1と、同じく出力ディスク2、2との間に、複数個のパワーローラ3、3を挟持して成る。運転時には、上記入力ディスク1、1の回転が、これら各パワーローラ3、3を介して上記出力ディスク2、2に伝達される。これら各パワーローラ3、3は、それぞれトラニオン4、4に回転自在に支持されており、これら各トラニオン4、4は、それぞれ上記両ディスク1、2の中心軸に対し捩れの位置にある枢軸(図示省略)を中心とする揺動変位を自在に支持されている。上記両ディスク1、2同士の間の変速比を変える場合は、例えば図示しない油圧式のアクチュエータにより上記各トラニオン4、4を上記枢軸の軸方向に変位させる。   Toroidal continuously variable transmissions used as automatic transmissions for automobiles are described in many publications such as Patent Document 1, Non-Patent Documents 1 and 2, and are partly implemented and well known. . For example, as shown in FIG. 19, there are a plurality of such toroidal-type continuously variable transmissions between the input disks 1 and 1 and the output disks 2 and 2 each having a toroidal curved surface in the axial direction facing each other. The power rollers 3 and 3 are sandwiched. During operation, the rotation of the input disks 1, 1 is transmitted to the output disks 2, 2 via these power rollers 3, 3. The power rollers 3 and 3 are rotatably supported by trunnions 4 and 4, respectively. The trunnions 4 and 4 are pivots (twisted with respect to the central axes of the disks 1 and 2). Oscillating displacement centered around (not shown) is supported freely. When changing the gear ratio between the disks 1 and 2, the trunnions 4 and 4 are displaced in the axial direction of the pivot by, for example, a hydraulic actuator (not shown).

この結果、上記各パワーローラ3、3の周面と上記入力、出力各ディスク1、2の内側面との転がり接触部(トラクション部)に作用する、接線方向の力の向きが変化(転がり接触部にサイドスリップが発生)する。そして、この力の向きの変化に伴って上記各トラニオン4、4が上記枢軸を中心に揺動し、上記各パワーローラ3、3の周面と上記入力、出力各ディスク1、2の内側面との接触位置が変化する。これら各パワーローラ3、3の周面を、上記入力ディスク1、1の内側面の径方向外寄り部分と、上記出力ディスク2、2の内側面の径方向内寄り部分とに転がり接触させれば、上記両ディスク1、2同士の間の変速比が増速側になる。これに対して、上記各パワーローラ3、3の周面を、上記入力ディスク1、1の内側面の径方向内寄り部分と、上記出力ディスク2、2の内側面の径方向外寄り部分とに転がり接触させれば、上記両ディスク1、2同士の間の変速比が減速側になる。   As a result, the direction of the tangential force acting on the rolling contact portion (traction portion) between the peripheral surfaces of the power rollers 3 and 3 and the inner surfaces of the input and output disks 1 and 2 changes (rolling contact). Side slip occurs in the part). As the force changes, the trunnions 4 and 4 swing around the pivot, and the peripheral surfaces of the power rollers 3 and 3 and the inner surfaces of the input and output disks 1 and 2 are used. The contact position changes. The peripheral surfaces of the power rollers 3 and 3 are brought into rolling contact with the radially outward portion of the inner surface of the input discs 1 and 1 and the radially inward portion of the inner surfaces of the output discs 2 and 2. For example, the gear ratio between the two disks 1 and 2 is increased. On the other hand, the peripheral surfaces of the power rollers 3 and 3 are arranged in a radially inward portion of the inner surface of the input disks 1 and 1 and a radially outward portion of the inner surfaces of the output disks 2 and 2. , The gear ratio between the two disks 1 and 2 is reduced.

上述の様なトロイダル型無段変速機の運転時、上記各パワーローラ3、3は、上記両ディスク1、2から大きなスラスト荷重を受けつつ高速で回転する。この為に、上記各パワーローラ3、3と上記各トラニオン4、4との間に、それぞれスラスト玉軸受5、5を設け、これら各スラスト玉軸受5、5により、上記各パワーローラ3、3に加わる上記スラスト荷重を支承自在としている。これら各スラスト玉軸受5、5は、図20にも詳示する様に、上記各パワーローラ3の外側面(図20の下面)に形成された内輪軌道6と、上記各トラニオン4の内側面(図20の上面)に設置された外輪7の内側面に形成された外輪軌道8と、これら内輪軌道6と外輪軌道8との間に転動自在に設けられた、それぞれが転動体である玉9、9と、これら各玉9、9を保持する保持器10とから成る。   During operation of the toroidal type continuously variable transmission as described above, the power rollers 3 and 3 rotate at high speed while receiving a large thrust load from the disks 1 and 2. For this purpose, thrust ball bearings 5 and 5 are provided between the power rollers 3 and 3 and the trunnions 4 and 4, respectively. It is possible to support the thrust load applied to As shown in detail in FIG. 20, these thrust ball bearings 5, 5 are provided with an inner ring raceway 6 formed on the outer surface (lower surface in FIG. 20) of each power roller 3 and the inner surface of each trunnion 4. The outer ring raceway 8 formed on the inner side surface of the outer ring 7 installed on (the upper surface of FIG. 20), and each of the rolling rings provided between the inner ring raceway 6 and the outer ring raceway 8 is a rolling element. It consists of balls 9 and 9 and a cage 10 that holds these balls 9 and 9.

又、上記保持器10は、直径方向に亙り肉厚が均一な円輪状の主体11と、この主体11の円周方向複数個所に間欠的に設けられたポケット12、12とを備える。図示の構造の場合、これら各ポケット12、12の内面を、上記主体11の軸方向両側面に開口する円筒面により構成している。そして、これら各ポケット12、12内に、上記各玉9、9を転動自在に保持している。尚、上記図20に示した構造の場合、前記図19に示した構造とは異なり、上記外輪7を、上記各パワーローラ3を回転自在に支持する為の支持軸13、並びに、これら各パワーローラ3を上記各トラニオン4に、入力、出力各ディスク1、2の軸方向に関する変位を許容した状態で支持する為の枢支軸14と、一体に形成している。又、パワーローラ3の形状に関しても、図19の構造とは異ならせている。但し、これらの相違点は、本発明との関係では、重要ではない。   The cage 10 includes a ring-shaped main body 11 having a uniform wall thickness in the diameter direction, and pockets 12 and 12 provided intermittently at a plurality of positions in the circumferential direction of the main body 11. In the case of the illustrated structure, the inner surfaces of these pockets 12 and 12 are constituted by cylindrical surfaces that open on both side surfaces of the main body 11 in the axial direction. And in each of these pockets 12 and 12, each said balls 9 and 9 are held so that rolling is possible. In the case of the structure shown in FIG. 20, unlike the structure shown in FIG. 19, the outer ring 7 is supported by the support shaft 13 for rotatably supporting the power rollers 3, and the powers of these. The roller 3 is integrally formed with each trunnion 4 and a pivot shaft 14 for supporting the input and output disks 1 and 2 in a state in which displacement in the axial direction is allowed. Further, the shape of the power roller 3 is also different from the structure of FIG. However, these differences are not important in relation to the present invention.

ところで、上述の様なスラスト玉軸受5は、トロイダル型無段変速機の運転時に、上記各パワーローラ3に加わるスラスト荷重を支承しつつ、高速で回転する。この為、運転時に上記各スラスト玉軸受5には、十分量の潤滑油を供給し、各部の潤滑及び冷却を行う必要がある。この為従来から、上記図20に示す様に、上記枢支軸14の内部に形成した給油孔15に潤滑油を送り込み、この給油孔15から分岐した分岐孔16を通じて、上記スラスト玉軸受5の内径側に潤滑油を供給(吐出)する事が行われている。この様にして供給された潤滑油は、上記各パワーローラ3(及び保持器10)の回転に伴う遠心力により、この保持器10の軸方向両側面(内外両側面)と上記各パワーローラ3の外側面及び上記各外輪7の内側面との間の隙間を、それぞれ外径側に流動する。そして、転がり接触部等の各部を潤滑すると同時に冷却する。これにより、上記スラスト玉軸受5の一部が著しく摩耗したり、或いは焼き付いたりする事を防止する。   By the way, the thrust ball bearing 5 as described above rotates at high speed while supporting the thrust load applied to each of the power rollers 3 when the toroidal type continuously variable transmission is operated. For this reason, it is necessary to supply a sufficient amount of lubricating oil to each thrust ball bearing 5 during operation, and to lubricate and cool each part. Therefore, conventionally, as shown in FIG. 20, the lubricating oil is fed into the oil supply hole 15 formed inside the pivot shaft 14, and the thrust ball bearing 5 is connected through the branch hole 16 branched from the oil supply hole 15. Lubricating oil is supplied (discharged) to the inner diameter side. The lubricating oil supplied in this way is caused by centrifugal force accompanying the rotation of each power roller 3 (and cage 10), and both axial side surfaces (both inner and outer sides) of the cage 10 and each power roller 3 The gaps between the outer surface of the outer ring and the inner surface of each outer ring 7 flow toward the outer diameter side. And each part, such as a rolling contact part, is lubricated and cooled simultaneously. This prevents a part of the thrust ball bearing 5 from being significantly worn or seized.

又、従来から、上記スラスト玉軸受5に供給される潤滑油を、上記各ポケット12、12内に効率良く送り込む為に、上記図20及び図21に示した様に、上記主体11の軸方向側面に凹溝17、17を、この主体11の直径方向に亙り、上記各ポケット12、12を横切る状態で形成する事が知られている(特許文献2参照)。この様な構成によれば、上記保持器10が軸方向に変位した場合にも、上記各ポケット12、12内に十分量の潤滑油を供給できる。例えば上記図20に示した構造の場合には、上記主体11の内周縁部分18及び外周縁部分19と、これら両周縁部分18、19に対向する、上記各外輪7の内側面のうちの内径側、外径側両肩部20a、20b(主体11の内側面に凹溝17、17を設ける場合には、パワーローラ3の外側面のうちの内径側、外径側両肩部21a、21b)とが密接した場合にも、上記各凹溝17、17を通じて、上記各ポケット12、12内に十分量の潤滑油を供給できる。   Conventionally, in order to efficiently feed the lubricating oil supplied to the thrust ball bearing 5 into the pockets 12 and 12, as shown in FIGS. It is known that the concave grooves 17 and 17 are formed on the side surface in the diameter direction of the main body 11 so as to cross the pockets 12 and 12 (see Patent Document 2). According to such a configuration, a sufficient amount of lubricating oil can be supplied into the pockets 12 and 12 even when the cage 10 is displaced in the axial direction. For example, in the case of the structure shown in FIG. 20, the inner peripheral portion 18 and the outer peripheral portion 19 of the main body 11 and the inner diameter of the inner surface of each outer ring 7 that faces both the peripheral portions 18 and 19. Side and outer diameter side shoulder portions 20a and 20b (when the concave grooves 17 and 17 are provided on the inner side surface of the main body 11, the inner diameter side and outer diameter side shoulder portions 21a and 21b of the outer surface of the power roller 3) ), A sufficient amount of lubricating oil can be supplied into the pockets 12 and 12 through the concave grooves 17 and 17.

但し、上述した様な構成を有する保持器10を含め、従来構造の保持器を使用した場合、スラスト転がり軸受の運転時に、潤滑油の攪拌抵抗が大きくなると言った問題を招く。この理由に就いて、上記図20及び図21に示した、上記保持器10を用いて説明する。前述した様に、この保持器10を構成する主体11は、その肉厚が直径方向に亙り一定である為、この主体11の軸方向両側面のうちで、円周方向に隣り合うポケット12、12同士の間部分には、平坦面部22、22が存在する。従って、これら各平坦面部22、22と、これら各平坦面部22、22に対向する内輪軌道6及び外輪軌道8との間には、円周方向に隣り合う各玉9、9の転動面(のうち保持器10から露出した部分)により円周方向両側を仕切られる、それぞれが或る程度大きな容積を有する転動体間空間23、23が形成された状態となる。   However, when a cage having a conventional structure including the cage 10 having the above-described configuration is used, there arises a problem that the agitation resistance of the lubricating oil is increased during operation of the thrust rolling bearing. This reason will be described using the cage 10 shown in FIGS. 20 and 21. FIG. As described above, since the thickness of the main body 11 constituting the cage 10 is constant over the diameter direction, the pockets 12 adjacent to each other in the circumferential direction are formed on both side surfaces of the main body 11 in the axial direction. Flat surface portions 22 and 22 are present between the twelve portions. Therefore, between these flat surface portions 22 and 22 and the inner ring raceway 6 and the outer ring raceway 8 facing the respective flat surface portions 22 and 22, the rolling surfaces of the balls 9 and 9 adjacent in the circumferential direction ( The space between the rolling elements 23 and 23 is formed in which both sides in the circumferential direction are partitioned by the portion exposed from the cage 10) and each has a certain large volume.

そして、上記各転動体間空間23、23には、上記各凹溝17、17内から溢れ出した潤滑油の一部や、これら各凹溝17、17以外の部分(円周方向に隣り合う凹溝17、17同士の間部分)から流入した潤滑油等が流れ込む。この為、上記各転動体間空間23、23は、或る程度まとまった量の潤滑油が滞留した状態となる。従って、トロイダル型無段変速機の運転時には、上記各玉9、9の転動面のうちで上記保持器10から露出した部分が、上記転動体間各空間23、23内に滞留した潤滑油と衝突する(潤滑油を掻き分ける)事になる。この結果、潤滑油の攪拌抵抗に基づく、前記パワーローラ3の回転抵抗(動トルク)が大きくなると言った問題を招く。   And in each said rolling element space 23 and 23, a part of lubricating oil which overflowed from each said groove 17 and 17 and parts other than these each groove 17 and 17 (circumferential direction adjoins). Lubricating oil and the like flowing in from the concave grooves 17 and 17) flows in. For this reason, the spaces 23 and 23 between the rolling elements are in a state where a certain amount of lubricating oil is accumulated. Therefore, during operation of the toroidal continuously variable transmission, the portion of the rolling surface of each of the balls 9, 9 exposed from the cage 10 is the lubricating oil that has accumulated in the spaces 23, 23 between the rolling elements. It will collide with (slurry the lubricating oil). As a result, there arises a problem that the rotational resistance (dynamic torque) of the power roller 3 is increased based on the stirring resistance of the lubricating oil.

上述の様な潤滑油の攪拌抵抗の低減を図れる発明として、例えば特許文献3、4に記載された発明がある。このうちの特許文献3に記載された発明の場合には、保持器を構成する主体の軸方向側面のうち、円周方向に隣り合うポケット同士の間部分に、この主体の内周縁及び外周縁にそれぞれ連通する、スパイラル溝を形成している。そして、このスパイラル溝により、転動体間空間内に流れ込んだ潤滑油を、上記保持器の内径側に向けて排出する様にしている。一方、上記特許文献4に記載された発明の場合には、主体の内周縁部分のうちで、円周方向に関して各ポケットから外れた部分に、潤滑油の流れを妨げる為の壁部を形成している。そして、これら各壁部によって、転動体間空間内に潤滑油が流れ込む事を防止している。この様な特許文献3、4に記載された何れの発明によっても、転動体間空間内に存在する潤滑油量を少なくできる為、攪拌抵抗の低減を図る上で有利になる。   As inventions that can reduce the stirring resistance of the lubricating oil as described above, there are inventions described in Patent Documents 3 and 4, for example. In the case of the invention described in Patent Document 3 among these, among the axial side surfaces of the main body constituting the cage, the inner peripheral edge and the outer peripheral edge of the main body are located between the adjacent pockets in the circumferential direction. Spiral grooves that communicate with each other are formed. The spiral groove allows the lubricating oil flowing into the space between the rolling elements to be discharged toward the inner diameter side of the cage. On the other hand, in the case of the invention described in Patent Document 4, a wall portion for preventing the flow of lubricating oil is formed in a portion of the main inner peripheral edge portion that is separated from each pocket in the circumferential direction. ing. These wall portions prevent the lubricating oil from flowing into the space between the rolling elements. Any of the inventions described in Patent Documents 3 and 4 can reduce the amount of lubricating oil present in the space between the rolling elements, which is advantageous in reducing the stirring resistance.

但し、上記特許文献3に記載された発明の場合、スラスト玉軸受に供給される潤滑油量が多くなると、上記各スパイラル溝によって上記各転動体間空間から排出される潤滑油量よりも、これら各転動体間空間内に流入する潤滑油量が多くなり、結果として、これら各転動体間空間に、まとまった量の潤滑油が滞留してしまう。又、上記特許文献4に記載された発明の場合にも、スラスト玉軸受に供給される潤滑油量が多くなるにつれて、上記各転動体間空間内に流れ込む潤滑油量が増えてしまう。又、トロイダル無段変速機の運転時に、上記保持器は高速回転する為、上記各ポケット内に流れ込んだ潤滑油の一部が、上記各転動体間空間に向けて流れ出す可能性もある。この様に、上記特許文献3、4に記載された何れの発明の場合にも、転動体間空間自体の容積を小さくするものではない為、スラスト玉軸受に供給される潤滑油量が多くなった場合等に、攪拌抵抗を低減する効果を十分に得る事ができなくなる。
尚、本発明に関連するその他の先行技術文献としては、特許文献5〜8に記載された発明があるが、何れも上述の様な問題を解決できるものではない。
However, in the case of the invention described in Patent Document 3, when the amount of lubricating oil supplied to the thrust ball bearing is increased, the amount of lubricating oil discharged from the spaces between the rolling elements by the spiral grooves is larger than these. The amount of lubricating oil flowing into the spaces between the rolling elements increases, and as a result, a collective amount of lubricating oil stays in the spaces between the rolling elements. Also in the case of the invention described in Patent Document 4, the amount of lubricating oil flowing into the spaces between the rolling elements increases as the amount of lubricating oil supplied to the thrust ball bearing increases. In addition, when the toroidal continuously variable transmission is operated, the cage rotates at a high speed, so that a part of the lubricating oil flowing into the pockets may flow out toward the spaces between the rolling elements. As described above, in any of the inventions described in Patent Documents 3 and 4, since the volume of the space between the rolling elements is not reduced, the amount of lubricating oil supplied to the thrust ball bearing is increased. In such a case, the effect of reducing the stirring resistance cannot be sufficiently obtained.
As other prior art documents related to the present invention, there are inventions described in Patent Documents 5 to 8, but none of them can solve the above-mentioned problems.

特開2001−317601号公報JP 2001-317601 A 実開平7−35847号公報Japanese Utility Model Publication No. 7-35847 特開2004−340268号公報JP 2004-340268 A 特開2007−107625号公報JP 2007-107625 A 特開平10−246301号公報JP-A-10-246301 特開2004−76912号公報JP 2004-76912 A 特開2001−254792号公報JP 2001-254792 A 特開2006−307900号公報JP 2006-307900 A 青山元男著、「別冊ベストカー 赤バッジシリーズ245/クルマの最新メカがわかる本」、株式会社三雄社/株式会社講談社、平成13年12月20日、p.92−93Motoo Aoyama, "Bessed Best Car Red Badge Series 245 / A book that understands the latest mechanics of cars", Sanyusha Co., Ltd./Kodansha Co., Ltd., December 20, 2001, p. 92-93 田中裕久著、「トロイダルCVT」、株式会社コロナ社、2000年7月13日Hirohisa Tanaka, “Toroidal CVT”, Corona Inc., July 13, 2000

本発明は、上述の様な事情に鑑みて、潤滑油の攪拌抵抗を低減して、スラスト転がり軸受のトルク損失を低減すると共に、各ポケット内に効率良く潤滑油を送り込む事ができる、トロイダル型無段変速機を実現すべく発明したものである。更に、必要に応じて、潤滑油の剪断抵抗の低減、更には、上記各ポケットの内面と転動体(玉)との干渉防止を実現する事を意図している。   In view of the circumstances as described above, the present invention reduces the agitation resistance of the lubricating oil, reduces the torque loss of the thrust rolling bearing, and can efficiently feed the lubricating oil into each pocket. It was invented to realize a continuously variable transmission. Furthermore, it is intended to reduce the shear resistance of the lubricating oil and to prevent interference between the inner surface of each pocket and the rolling elements (balls) as necessary.

本発明のトロイダル型無段変速機は、例えば前述の図19に示した従来構造のトロイダル型無段変速機と同様に、入力ディスク及び出力ディスクと、複数個のトラニオンと、複数本の支持軸と、複数個のパワーローラと、複数組のスラスト転がり軸受とを備える。
このうちの入力ディスク及び出力ディスクは、相対回転を自在として互いに同心に支持されている。
又、上記各トラニオンは、上記両ディスクの軸方向に関してこれら両ディスクの間部分に設けられ、それぞれの両端部に互いに同心に、且つ、これら両ディスクの中心軸に対して捩れの位置に設けられた枢軸を中心とする揺動変位を自在とされている。
又、上記各支持軸は、上記各トラニオンの内側面から突出する状態で、これら各トラニオン毎に、1本ずつ設けられている。
又、上記各パワーローラは、上記各支持軸の周囲に回転自在に支持された状態で、上記両ディスク同士の間に挟持されている。
又、上記各スラスト転がり軸受は、それぞれ、上記各パワーローラの外側面と上記各トラニオンの内側面との間に設けられている。
そして、上記各スラスト転がり軸受は、それぞれ、上記各パワーローラの外側面に形成された内輪軌道と、上記各トラニオンの内側面に設置された外輪の内側面に形成された外輪軌道と、これら内輪軌道と外輪軌道との間に転動自在に設けられた複数個の転動体と、これら各転動体を保持する保持器とから成る。
The toroidal type continuously variable transmission of the present invention has an input disk, an output disk, a plurality of trunnions, and a plurality of support shafts, for example, in the same manner as the conventional toroidal type continuously variable transmission shown in FIG. And a plurality of power rollers and a plurality of sets of thrust rolling bearings.
Of these, the input disk and the output disk are supported concentrically so as to be freely rotatable relative to each other.
Each trunnion is provided between the two discs with respect to the axial direction of the two discs, is concentric with each other at both ends, and is twisted with respect to the central axis of the two discs. Oscillating displacement around the pivot axis is free.
Each of the support shafts is provided for each of the trunnions in a state protruding from the inner surface of each of the trunnions.
Each power roller is sandwiched between the two disks while being rotatably supported around each support shaft.
Each thrust rolling bearing is provided between the outer surface of each power roller and the inner surface of each trunnion.
Each thrust rolling bearing includes an inner ring raceway formed on the outer side surface of each power roller, an outer ring raceway formed on the inner side surface of the outer ring installed on the inner side surface of each trunnion, and the inner ring raceways. It comprises a plurality of rolling elements provided between the raceway and the outer ring raceway so as to be freely rollable, and a cage for holding the rolling elements.

特に、本発明のトロイダル型無段変速機にあっては、上記保持器が、円輪状の主体と、この主体の円周方向複数個所に間欠的に形成され、それぞれの内側に上記各転動体を転動自在に保持するポケットとを備えたものである。
そして、上記主体の軸方向両側面(内外両側面)の直径方向中間部のうちで、円周方向に隣り合うポケット同士の間部分に、これら各間部分と上記内輪軌道及び上記外輪軌道との間に存在する空間(転動体間空間)の一部を塞ぐ凸部を設けている。
尚、これら各凸部により上記各空間を塞ぐ割合としては、前記図20に示した従来構造の場合の様に、上記各間部分に凸部を設けず、単に平坦面とした場合の空間の容積を100%とした場合に、少なくとも70%、好ましくは90%程度を塞ぐ事が好ましい。
In particular, in the toroidal type continuously variable transmission according to the present invention, the cage is formed intermittently at an annular main body and at a plurality of locations in the circumferential direction of the main body. And a pocket for holding the roll freely.
Of the diametrically intermediate portions of both sides of the main body in the axial direction (both inner and outer side surfaces), between the pockets adjacent to each other in the circumferential direction, the portion between each of the inner ring track and the outer ring track Protrusions that block a part of the space existing between them (space between rolling elements) are provided.
In addition, as a ratio of closing each space by these convex portions, as in the case of the conventional structure shown in FIG. When the volume is 100%, it is preferable to block at least 70%, preferably about 90%.

又、本発明のトロイダル型無段変速機を実施する場合に好ましくは、例えば請求項2に係る発明の様に、上記主体の軸方向両側面と、上記各パワーローラの外側面及び上記各外輪の内側面との間にそれぞれ形成される隙間の和(軸方向厚さの合計)を、上記主体の外周縁部分よりも内周縁部分で小さくする。
更に、上記請求項2に係る発明を実施する場合に好ましくは、上記各凸部と上記内輪軌道及び上記外輪軌道との間にそれぞれ形成される隙間の和を、内周縁部分に於ける隙間の和(軸方向厚さの合計)よりも大きく、且つ、外周縁部分に於ける隙間の和(軸方向厚さの合計)よりも小さくする。
Further, when implementing the toroidal type continuously variable transmission according to the present invention, preferably, as in the invention according to claim 2, for example, both side surfaces of the main body in the axial direction, the outer surfaces of the power rollers, and the outer rings. The sum of the gaps formed between the inner peripheral surfaces of the main body and the inner peripheral surface (total thickness in the axial direction) is made smaller at the inner peripheral edge portion than at the outer peripheral edge portion of the main body.
Further, when the invention according to claim 2 is carried out, it is preferable that the sum of the gaps formed between each of the convex portions and the inner ring raceway and the outer ring raceway is defined as the gap in the inner peripheral edge portion. It is larger than the sum (total axial thickness) and smaller than the sum of the gaps at the outer peripheral edge (total axial thickness).

又、本発明のトロイダル型無段変速機を実施する場合に好ましくは、例えば請求項3に係る発明の様に、上記主体の円周方向に関する上記各凸部の両側面により、上記各ポケットの内面の一部を構成し、これら各ポケットの内面を、上記主体の直径方向に関して、内側の球面部と外側の円筒面部とを中間部で滑らかに連続させて成るものとする。更に、これら各円筒面部を上記主体の外周面に連通(開口)させる。
又、上述した様な、請求項3に係る発明を実施する場合に好ましくは、請求項4に係る発明の様に、上記各ポケットの内面を構成する球面部のピッチ円直径を、各転動体(玉)のピッチ円直径よりも小さくする。
尚、請求項3及び請求項4に係る発明を実施する場合には、スラスト転がり軸受を構成する転動体として、玉を使用する。
Further, when implementing the toroidal type continuously variable transmission according to the present invention, preferably, as in the invention according to claim 3, the pockets of the pockets are formed by both side surfaces of the convex portions in the circumferential direction of the main body. A part of the inner surface is formed, and the inner surface of each pocket is formed by smoothly connecting the inner spherical surface portion and the outer cylindrical surface portion at the intermediate portion with respect to the diameter direction of the main body. Further, these cylindrical surface portions are communicated (opened) to the outer peripheral surface of the main body.
Further, when the invention according to claim 3 as described above is carried out, preferably, as in the invention according to claim 4, the pitch circle diameter of the spherical portion constituting the inner surface of each pocket is set to each rolling element. It should be smaller than the pitch circle diameter of the ball.
In carrying out the inventions according to claims 3 and 4, balls are used as rolling elements constituting the thrust rolling bearing.

又、本発明のトロイダル型無段変速機を実施する場合に好ましくは、例えば請求項5に係る発明の様に、上記各凸部の母線形状を単一円弧状とし、これら各凸部の母線形状の曲率半径を、上記内輪軌道及び上記外輪軌道の曲率半径よりも小さくする。
或いは、請求項6に係る発明の様に、上記主体の軸方向に関する上記各凸部の先端部に、この主体の中心軸に直交する仮想平面に対し平行な平坦面を設ける。
Further, when implementing the toroidal type continuously variable transmission according to the present invention, preferably, as in the invention according to claim 5, for example, the bus bar shape of each convex portion is a single arc, and the bus bar of each convex portion is The curvature radius of the shape is made smaller than the curvature radii of the inner ring raceway and the outer ring raceway.
Alternatively, as in the invention according to claim 6, a flat surface parallel to a virtual plane orthogonal to the central axis of the main body is provided at the tip of each convex portion in the axial direction of the main body.

更に、本発明のトロイダル型無段変速機を実施する場合に好ましくは、例えば請求項7に係る発明の様に、上記主体の軸方向側面に、この主体の内周縁と上記各ポケットとを連通する潤滑油流路を設ける。
又、この様な請求項7に係る発明を実施する場合には、上記各ポケットと上記主体の外周縁とを連通する潤滑油流路を併せて設ける事もできる。即ち、前記図20及び図21に示した従来構造の場合と同様に、上記各ポケットを横切る状態で、潤滑油流路を設ける事ができる。
Further, when implementing the toroidal type continuously variable transmission according to the present invention, preferably, as in the invention according to claim 7, for example, the inner peripheral edge of the main body and the pockets communicate with each other on the side surface in the axial direction of the main body. A lubricating oil flow path is provided.
When carrying out the invention according to claim 7, it is also possible to provide a lubricating oil flow path that communicates the pockets with the outer peripheral edge of the main body. That is, as in the case of the conventional structure shown in FIGS. 20 and 21, the lubricating oil flow path can be provided in a state crossing the pockets.

上述の様な構成を有する本発明のトロイダル型無段変速機によれば、潤滑油の攪拌抵抗を低減して、スラスト転がり軸受のトルク損失を低減できると共に、各ポケット内に効率良く潤滑油を送り込む事ができる。
即ち、本発明の場合には、保持器を構成する主体の軸方向両側面の直径方向中間部のうちで、円周方向に隣り合うポケット同士の間部分と、内輪軌道及び外輪軌道との間に形成される空間の容積を、これら各間部分に凸部を設けない(単に平坦面とした)場合に比べて小さくできる。この為、上記各空間内に滞留可能な潤滑油量を少なくできる。従って、上記スラスト転がり軸受に供給される潤滑油量が多くなった場合にも、上記各空間内に滞留する潤滑油量を少なく抑えられる。又、上記各ポケット内に流入した潤滑油が、上記各空間内に流失する事も防止できる。この結果、スラスト転がり軸受の運転時に、上記各空間を各転動体が横切る場合に於ける、潤滑油の攪拌抵抗を低減して、上記スラスト転がり軸受のトルク損失(回転抵抗)を低減できる。更に、これら各空間内に流失する潤滑油量を少なく抑えられる事に伴い、上記各ポケット内に供給して、各転動体の転動面と、外輪軌道及び内輪軌道との転がり接触部の潤滑に供される潤滑油の量を増やす事もできる。
According to the toroidal continuously variable transmission of the present invention having the above-described configuration, the stirring resistance of the lubricating oil can be reduced, the torque loss of the thrust rolling bearing can be reduced, and the lubricating oil can be efficiently injected into each pocket. You can send it in.
That is, in the case of the present invention, among the diametrically intermediate portions of both axial side surfaces of the main body constituting the cage, between the pockets adjacent to each other in the circumferential direction and the inner ring track and the outer ring track. The volume of the space formed in the above can be made smaller than in the case where no convex portion is provided at each of these portions (simply a flat surface). For this reason, the amount of lubricating oil that can stay in each space can be reduced. Therefore, even when the amount of lubricating oil supplied to the thrust rolling bearing increases, the amount of lubricating oil staying in the spaces can be reduced. Further, it is possible to prevent the lubricating oil flowing into the pockets from flowing into the spaces. As a result, during the operation of the thrust rolling bearing, the agitation resistance of the lubricating oil can be reduced when the rolling elements cross the spaces, and the torque loss (rotational resistance) of the thrust rolling bearing can be reduced. Furthermore, as the amount of lubricating oil that flows into each of these spaces can be suppressed to a low level, the lubricating oil is supplied into the pockets to lubricate the rolling contact surfaces of the rolling elements with the outer ring raceway and the inner ring raceway. It is also possible to increase the amount of lubricating oil provided to.

又、請求項2に係る発明によれば、上記保持器が軸方向に変位した場合に、上記主体のうちで回転中心からの距離が短い(回転半径の小さい)部分である内周縁部分を、相手面(パワーローラの外側面或いは外輪の内側面)に摺接或いは近接対向させる事ができる。言い換えれば、上記保持器の外周縁部分が相手面と摺接若しくは近接対向する事を防止できる。この為、外周縁部分を摺接或いは近接対向させた場合に比べて、スラスト転がり軸受の損失トルク、並びに、潤滑油の剪断抵抗を低減できる。又、上記主体の外周縁部分に於ける隙間を大きく確保できる為、上記各ポケット内に流入した潤滑油を効率良く外部に排出する事ができる。   Further, according to the invention according to claim 2, when the cage is displaced in the axial direction, the inner peripheral edge portion which is a portion having a short distance from the rotation center (small rotation radius) among the main bodies, The contact surface (the outer surface of the power roller or the inner surface of the outer ring) can be slidably contacted or closely opposed. In other words, it is possible to prevent the outer peripheral edge portion of the cage from being in sliding contact with or in close proximity to the mating surface. For this reason, the loss torque of the thrust rolling bearing and the shearing resistance of the lubricating oil can be reduced as compared with the case where the outer peripheral edge portions are in sliding contact or close to each other. Further, since a large gap can be secured at the outer peripheral edge of the main body, the lubricating oil flowing into the pockets can be efficiently discharged to the outside.

又、請求項3に係る発明によれば、上記各ポケットの内面を、上記主体の軸方向両側面に開口する円筒面により構成する場合(図20参照)に比べて、上記各凸部の円周方向両側部分を、上記各ポケット内に保持される各玉の転動面の近傍まで拡大する事ができる。この為、上記各空間の容積をより小さくする事ができて、潤滑油の攪拌抵抗を更に低減できる。又、上記各ポケットの内面の一部を構成する円筒面部を、上記主体の外周面に連通させている為、これら各ポケット内に供給された潤滑油を、効率良く外部に排出する事もできる。更に、上記保持器の軸方向に関する位置決めを、所謂玉案内により規制できる為、この保持器(主体)の軸方向側面と、相手面とが干渉する(強く擦れ合う)事を有効に防止できる。   According to the invention of claim 3, compared to the case where the inner surface of each pocket is constituted by a cylindrical surface opening on both sides in the axial direction of the main body (see FIG. 20), the circle of each convex portion. Both circumferential portions can be enlarged to the vicinity of the rolling surfaces of the balls held in the pockets. For this reason, the volume of each said space can be made smaller, and the stirring resistance of lubricating oil can further be reduced. Moreover, since the cylindrical surface part which comprises a part of inner surface of each said pocket is connected with the said outer peripheral surface, the lubricating oil supplied in these each pocket can also be discharged | emitted efficiently outside. . Furthermore, since the positioning of the cage in the axial direction can be regulated by so-called ball guidance, it is possible to effectively prevent the axial side surface of the cage (main body) and the mating surface from interfering (strongly rubbing).

又、請求項4に係る発明によれば、上記各ポケットの内面のうちで、上記主体の直径方向に関する内端寄り部分と、これら各ポケット内に保持される各玉の転動面とが干渉する(強く擦れ合う)事を防止できる。この為、スラスト転がり軸受のトルク損失が大きくなる事を防止できる。   According to the invention of claim 4, among the inner surfaces of the respective pockets, the portion near the inner end of the main body in the diameter direction interferes with the rolling surfaces of the balls held in the respective pockets. Can be prevented from rubbing (strongly rubbing). For this reason, it is possible to prevent an increase in torque loss of the thrust rolling bearing.

又、請求項5に係る発明によれば、上記各転動体として玉を使用し、上記内輪軌道及び上記外輪軌道の断面形状を円弧形とした場合に、上記各空間の容積を効果的に小さくできる。又、上記各凸部と上記内輪軌道及び上記外輪軌道とを接触しにくくする事もできる。
又、請求項6に係る発明によれば、上記各凸部の高さ管理を行い易くできると共に、これら各凸部の形状によっては、上記保持器が直径方向に変位した場合に、これら各凸部と上記内輪軌道及び上記外輪軌道とが干渉する事を防止する事もできる。
According to the fifth aspect of the present invention, when a ball is used as each of the rolling elements and the cross-sectional shapes of the inner ring raceway and the outer ring raceway are arcuate, the volume of each space is effectively reduced. Can be small. In addition, it is possible to make it difficult for the convex portions to contact the inner ring track and the outer ring track.
According to the invention of claim 6, the height of each convex portion can be easily managed, and depending on the shape of each convex portion, when the cage is displaced in the diameter direction, each convex portion can be controlled. It is also possible to prevent the portion from interfering with the inner ring raceway and the outer ring raceway.

更に、請求項7に係る発明によれば、上記各ポケット内に潤滑油を効率良く送り込む事ができると共に、上記各空間内に流入する潤滑油量を少なく抑えられる。   Furthermore, according to the invention which concerns on Claim 7, while being able to send lubricating oil into each said pocket efficiently, the amount of lubricating oil which flows in into each said space can be restrained small.

[本発明の実施の形態の第1例]
図1〜7は、請求項1、5、7に対応する、本発明の実施の形態の第1例を示している。本例の特徴は、保持器10aを構成する主体11aの軸方向両側面のうち、円周方向に隣り合うポケット12、12同士の間部分の形状を工夫する事により、これら各間部分と、内輪軌道6及び外輪軌道8との間にそれぞれ形成される空間の容積を小さくし、これら各空間内に滞留する潤滑油量を少なくする点にある。その他の部分の構造及び作用は、前述の図19〜21に示した従来構造と同様である為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment of the present invention]
FIGS. 1-7 has shown the 1st example of embodiment of this invention corresponding to Claim 1,5,7. The feature of this example is that, by devising the shape of the portion between the pockets 12 adjacent to each other in the circumferential direction among the axially opposite side surfaces of the main body 11a constituting the cage 10a, The volume of the space formed between the inner ring raceway 6 and the outer ring raceway 8 is reduced, and the amount of lubricating oil staying in these spaces is reduced. Since the structure and operation of other parts are the same as those of the conventional structure shown in FIGS. 19 to 21 described above, overlapping illustrations and explanations are omitted or simplified, and the following description will focus on the characteristic parts of this example.

本例のスラスト玉軸受5aに組み込む保持器10aは、銅又は真鍮(高力黄銅)等の銅系合金、構造用炭素鋼等の鉄系合金等の金属材料製、或いは、ポリアミド等の合成樹脂製で、図4に示す様に、円輪状の主体11aと、この主体11aの円周方向複数個所に間欠的に設けられたポケット12、12とから成る、又、この主体11aの軸方向両側面には、この主体11aの直径方向に亙り、上記各ポケット12、12を横切る状態で、潤滑油流路となる凹溝17、17を設けている。尚、本例の場合にも、上記各ポケット12、12の内面を、前記図20、21に示した従来構造の場合と同様に、上記主体11aの軸方向両側面に開口する円筒面により構成している。   The cage 10a incorporated in the thrust ball bearing 5a of this example is made of a metal material such as a copper alloy such as copper or brass (high strength brass), an iron alloy such as structural carbon steel, or a synthetic resin such as polyamide. As shown in FIG. 4, it is made of an annular main body 11a and pockets 12 and 12 provided intermittently at a plurality of circumferential positions of the main body 11a. The surface is provided with concave grooves 17 and 17 that serve as lubricating oil passages in a state of crossing the pockets 12 and 12 in the diameter direction of the main body 11a. In the case of this example as well, the inner surfaces of the pockets 12 and 12 are constituted by cylindrical surfaces that open on both side surfaces in the axial direction of the main body 11a, as in the case of the conventional structure shown in FIGS. is doing.

特に、本例の場合には、上記主体11aの軸方向両側面の直径方向中間部(内周縁部分18と外周縁部分19とに挟まれた部分)のうちで、円周方向に隣り合うポケット12、12同士の間部分に、上記主体11aの軸方向に膨出した凸部24、24をそれぞれ設けている。これら各凸部24、24は、それぞれの円周方向側面を部分円筒面状の凹面として、上記各ポケット12、12の内面に連続させている。又、上記各凸部24、24は、パワーローラ3の外側面に形成された内輪軌道6、及び、外輪7の内側面に形成された外輪軌道8の各軌道溝に沿う外面形状を有し、その大部分を、これら各軌道溝の内側に入り込ませている。   In particular, in the case of this example, the pockets adjacent in the circumferential direction in the diametrically intermediate portion (the portion sandwiched between the inner peripheral edge portion 18 and the outer peripheral edge portion 19) on both axial sides of the main body 11a. Protrusions 24 and 24 bulging in the axial direction of the main body 11a are respectively provided between the portions 12 and 12. Each of the convex portions 24, 24 has a circumferential side surface thereof as a concave surface having a partial cylindrical surface, and is continuous with the inner surfaces of the pockets 12, 12. Each of the convex portions 24, 24 has an outer surface shape along each track groove of the inner ring raceway 6 formed on the outer side surface of the power roller 3 and the outer ring raceway 8 formed on the inner side surface of the outer ring 7. Most of them are inserted inside each of the track grooves.

この為に、本例の場合には、上記各凸部24、24の母線形状を単一円弧状とし、これら各凸部24、24の母線形状の曲率半径r24を、上記内輪軌道6の母線形状の曲率半径r6 及び上記外輪軌道8の母線形状の曲率半径r8 よりも、隙間t分だけ小さくしている(r24+t=r6 =r8 )。更に、上記各凸部24、24のピッチ円直径を、上記内輪軌道6と上記外輪軌道8との間に設けられた各玉9、9のピッチ円直径に一致させている。これにより、上記保持器10aを、上記パワーローラ3の外側面と上記外輪7の内側面との間の軸方向中央に位置させた状態で、上記各凸部24、24の先端面と上記内輪軌道6及び上記外輪軌道8とが、これら各軌道6、8の幅方向に亙り、一定の隙間tを介して対向する様にしている。 For this reason, in the case of this example, the bus bar shape of each of the convex portions 24 and 24 is a single arc, and the radius of curvature r 24 of the bus bar shape of each of the convex portions 24 and 24 is set to the inner ring raceway 6. than the radius of curvature r 8 generatrix shape of radius of curvature r 6 and the outer ring raceway 8 of the bus configuration, it is smaller by a gap t minutes (r 24 + t = r 6 = r 8). Further, the pitch circle diameters of the convex portions 24 and 24 are made to coincide with the pitch circle diameters of the balls 9 and 9 provided between the inner ring raceway 6 and the outer ring raceway 8. As a result, in the state where the cage 10a is positioned at the center in the axial direction between the outer side surface of the power roller 3 and the inner side surface of the outer ring 7, the tip surfaces of the convex portions 24, 24 and the inner ring The track 6 and the outer ring track 8 are arranged so as to face each other through a certain gap t in the width direction of the tracks 6 and 8.

又、本例の場合には、上記保持器10aを、上記パワーローラ3の外側面と上記外輪7の内側面との間に組み込んだ状態で、上記各凸部24、24の大部分を、上記内輪軌道6及び上記外輪軌道8の各軌道溝の内側に入り込ませるべく、上記隙間tの大きさ(凸部24、24の突出量)を規制している。具体的には、この隙間tの大きさを、上記主体11aの軸方向両側に設けられた1対の凸部24、24の先端部同士の間隔Dが、上記内輪軌道6及び上記外輪軌道8の溝底同士の間隔L(≒各玉9、9の直径)の約80〜90%程度となる様に規制したり、或いは、上記各凸部24、24のうちで、上記各軌道溝の内側に入り込んだ部分の断面積が、これら各軌道溝の断面積の約70〜90%程度を占める様に規制している。   In the case of this example, most of the convex portions 24 and 24 are mounted in a state where the cage 10a is assembled between the outer surface of the power roller 3 and the inner surface of the outer ring 7. The size of the gap t (the amount of protrusion of the convex portions 24, 24) is restricted so that the inner ring raceway 6 and the outer ring raceway 8 can enter inside the raceway grooves. Specifically, the size of the gap t is set such that the distance D between the tip portions of the pair of convex portions 24, 24 provided on both axial sides of the main body 11 a is the inner ring track 6 and the outer ring track 8. Or about 80 to 90% of the distance L between the groove bottoms (≈the diameters of the balls 9, 9), or, among the protrusions 24, 24, The cross-sectional area of the portion that has entered the inside is regulated so as to occupy about 70 to 90% of the cross-sectional area of each track groove.

但し、上記隙間tの大きさは、上記主体11aの内周縁部分18と相手面(パワーローラ3の内径側肩部21a及び外輪7の内径側肩部20a)との間の隙間と、同じく外周縁部分19と相手面(パワーローラ3の外径側肩部21b及び外輪7の外径側肩部20b)との間の隙間との、少なくとも何れか一方の隙間よりも大きくする。これにより、上記保持器10aが軸方向に変位した際に、上記各凸部24、24が、上記内輪軌道6及び上記外輪軌道8に干渉する(擦れ合う)事を防止する。又、上記隙間tの大きさは、上記各凸部24、24と上記内輪軌道6及び上記外輪軌道8との間に流入した潤滑油の剪断抵抗を小さく抑える面からも、或る程度の大きさを確保する。   However, the size of the gap t is the same as the gap between the inner peripheral edge portion 18 of the main body 11a and the mating surface (the inner diameter side shoulder portion 21a of the power roller 3 and the inner diameter side shoulder portion 20a of the outer ring 7). The gap between the peripheral edge portion 19 and the mating surface (the outer diameter side shoulder portion 21b of the power roller 3 and the outer diameter side shoulder portion 20b of the outer ring 7) is made larger than at least one of the gaps. Thereby, when the cage 10a is displaced in the axial direction, the convex portions 24, 24 are prevented from interfering with (rub against) the inner ring raceway 6 and the outer ring raceway 8. Also, the size of the gap t is somewhat large from the viewpoint of suppressing the shearing resistance of the lubricating oil flowing between the convex portions 24, 24 and the inner ring raceway 6 and the outer ring raceway 8 to a low level. Secure.

何れにしても、本例の場合には、上記主体11aの軸方向両側面の直径方向中間部のうちで、円周方向に隣り合うポケット12、12同士の間部分に、上述した様な形状を有する上記各凸部24、24を設ける事により、これら各凸部24、24と、上記内輪軌道6及び上記外輪軌道8との間に形成される転動体間空間23a、23aの容積を、上記各凸部24、24を設けない場合(単に平坦面とした場合、図20参照)の転動体間空間23、23の容積に比べて、十分(少なくとも30%、好ましくは10%程度)に小さくできる。この為、上記各転動体空間23a、23a内に滞留可能な潤滑油量自体を少なくできる。従って、スラスト玉軸受5aの内径側に供給される潤滑油量が多くなった場合にも、上記各転動体空間23a、23a内に流入する(滞留する)潤滑油量を少なく抑えられる。又、上記各ポケット12、12内に流入した潤滑油が、上記各転動体間空間23a、23a内に流失する事も防止できる。更に、本例の場合には、上記スラスト玉軸受5aの内径側に供給された潤滑油を、前記各凹溝17、17を通じて上記各ポケット12、12内に送り込む事ができる為、上記各転動体間空間23a、23a内に流入する潤滑油量を少なくできる。この結果、上記スラスト玉軸受5aの運転時に、上記各転動体空間23a、23aを上記各玉9、9が横切る場合に於ける、潤滑油の攪拌抵抗を低減して、上記スラスト玉軸受5aのトルク損失(回転抵抗)を低減できる。   In any case, in the case of the present example, the shape as described above is formed in the portion between the circumferentially adjacent pockets 12 and 12 in the diametrically intermediate portion on both axial sides of the main body 11a. By providing the convex portions 24 and 24 having the above, the volume of the inter-rolling member spaces 23a and 23a formed between the convex portions 24 and 24 and the inner ring raceway 6 and the outer ring raceway 8 is reduced. Compared to the volume of the inter-roller spaces 23 and 23 in the case where the convex portions 24 and 24 are not provided (in the case of simply flat surfaces, refer to FIG. 20), the volume is sufficient (at least 30%, preferably about 10%). Can be small. Therefore, the amount of lubricating oil that can stay in the rolling element spaces 23a and 23a can be reduced. Therefore, even when the amount of lubricating oil supplied to the inner diameter side of the thrust ball bearing 5a increases, the amount of lubricating oil flowing into (retaining) the rolling element spaces 23a, 23a can be suppressed to a small amount. In addition, it is possible to prevent the lubricating oil flowing into the pockets 12 and 12 from flowing into the spaces between the rolling elements 23a and 23a. Further, in the case of this example, the lubricating oil supplied to the inner diameter side of the thrust ball bearing 5a can be fed into the pockets 12 and 12 through the concave grooves 17 and 17, respectively. The amount of lubricating oil flowing into the space between moving bodies 23a, 23a can be reduced. As a result, during the operation of the thrust ball bearing 5a, the stirring resistance of the lubricating oil when the balls 9, 9 cross the rolling element spaces 23a, 23a is reduced, so that the thrust ball bearing 5a Torque loss (rotational resistance) can be reduced.

更に、上記各転動体間空間23a、23a内に流入する潤滑油量を少なく抑えられる事に伴い、上記各ポケット12、12内に供給して、上記各玉9、9の転動面と上記内輪軌道6及び上記外輪軌道8との転がり接触部の潤滑に供される潤滑油の量を増やす事もできる。この様に、本例の場合には、上記各玉9、9を保持した上記各ポケット12、12内に十分量の潤滑油を効率良く供給できる為、従来構造の場合と同程度の冷却効率を、従来構造の場合に比べて少ない量の潤滑油(スラスト玉軸受5aの内径側に供給する潤滑油)により得る事ができる。又は、従来構造の場合と同程度の量の潤滑油を供給する事により、より一層の冷却効率を得る事ができる。   Further, as the amount of lubricating oil flowing into the spaces between the rolling elements 23a, 23a is reduced, the lubricant is supplied into the pockets 12, 12, and the rolling surfaces of the balls 9, 9 and It is also possible to increase the amount of lubricating oil used for lubricating the rolling contact portion between the inner ring raceway 6 and the outer ring raceway 8. Thus, in the case of this example, since a sufficient amount of lubricating oil can be efficiently supplied into the pockets 12 and 12 holding the balls 9 and 9, the cooling efficiency is comparable to that of the conventional structure. Can be obtained with a smaller amount of lubricating oil (lubricating oil supplied to the inner diameter side of the thrust ball bearing 5a) than in the case of the conventional structure. Alternatively, further cooling efficiency can be obtained by supplying the same amount of lubricating oil as in the conventional structure.

尚、本例の保持器10aを製造する場合には、上記主体11aと上記各凸部24、24とを一体に形成する事もできるし、それぞれ別個に造った後に接合する事もできる。即ち、上記保持器10aを、銅系合金や鉄系合金等の金属材料から造る場合には、上記各凸部24、24の厚さ寸法(突出量)を含めた厚さ寸法を有する円輪状の主体を造った後、切削加工乃至研削加工を施す事により、上記各ポケット12、12を形成すると共に、上記各凸部24、24を形成する事ができる。又、上記保持器10aを合成樹脂から造る場合にも、射出成型により、上記主体11aと上記各凸部24、24とを一体に形成する事ができる。更に、図7に示した様に、直径方向に亙り肉厚が均一な主体11と、上記各凸部24、24とをそれぞれ別個に造った後、これら各凸部24、24を、上記主体11のうちで、円周方向に隣り合うポケット12、12同士の間部分(平坦面部22、22)に、溶接、ろう付け、或いは、接着剤により接着する事により接合して、上記保持器10aとする事もできる。   In the case of manufacturing the cage 10a of this example, the main body 11a and the projections 24 and 24 can be formed integrally, or can be joined after being made separately. That is, when the cage 10a is made of a metal material such as a copper-based alloy or an iron-based alloy, an annular shape having a thickness dimension including the thickness dimension (protrusion amount) of each of the protrusions 24, 24 is used. After forming the main body, the pockets 12 and 12 can be formed and the convex portions 24 and 24 can be formed by cutting or grinding. Even when the cage 10a is made of a synthetic resin, the main body 11a and the convex portions 24 and 24 can be integrally formed by injection molding. Further, as shown in FIG. 7, after the main body 11 having a uniform wall thickness in the diametrical direction and the convex portions 24 and 24 are separately formed, the convex portions 24 and 24 are formed on the main body. 11, the cage 10 a is joined by welding, brazing, or bonding with an adhesive to a portion between the pockets 12, 12 adjacent to each other in the circumferential direction (flat surface portions 22, 22). It can also be.

[本発明の実施の形態の第2例]
図8〜11は、請求項1、3、5、7に対応する、本発明の実施の形態の第2例を示している。本例の特徴は、保持器10bを構成する各ポケット12a、12aの内面形状を工夫した点にある。具体的には、これら各ポケット12a、12aの内面のうちで、主体11bの軸方向に関する両側部分を、各凸部24a、24aの円周方向側面により構成すると共に、上記各ポケット12a、12aの内面を、上記主体11bの直径方向に関して、内側の球面部25、25と、外側の円筒面部26、26とを中間部で滑らかに連続させた構成としている。
[Second example of the embodiment of the present invention]
FIGS. 8-11 has shown the 2nd example of embodiment of this invention corresponding to Claim 1,3,5,7. The feature of this example is that the inner surface shape of each pocket 12a, 12a constituting the cage 10b is devised. Specifically, among the inner surfaces of these pockets 12a, 12a, both side portions in the axial direction of the main body 11b are constituted by the circumferential side surfaces of the respective convex portions 24a, 24a, and the pockets 12a, 12a The inner surface has a configuration in which the inner spherical surface portions 25 and 25 and the outer cylindrical surface portions 26 and 26 are smoothly connected at the intermediate portion with respect to the diameter direction of the main body 11b.

上記各球面部25、25は、単一中心を有する部分球状凹面で、それぞれの曲率半径を、上記各ポケット12a、12a内に保持する各玉9、9の転動面の曲率半径よりも、ポケット隙間分だけ僅かに大きくしている。又、上記各球面部25、25の曲率中心は、上記各ポケット12a、12a内に保持されるべき上記各玉9、9の中心と一致させている。一方、上記各円筒面部26、26は、上記保持器10bの放射方向に存在する軸をその中心とする、単一円筒面上に存在し、それぞれの曲率半径は、上記各球面部25、25の曲率半径と同じとしている。   Each of the spherical surface portions 25, 25 is a partial spherical concave surface having a single center, and the radius of curvature of each of the spherical portions 25, 25 is larger than the radius of curvature of the rolling surface of each ball 9, 9 held in each of the pockets 12a, 12a. Slightly larger than the pocket gap. Further, the centers of curvature of the spherical portions 25, 25 are made to coincide with the centers of the balls 9, 9 to be held in the pockets 12a, 12a. On the other hand, each of the cylindrical surface portions 26, 26 exists on a single cylindrical surface centered on an axis existing in the radial direction of the cage 10b, and the respective curvature radii thereof are the spherical surface portions 25, 25. It is the same as the radius of curvature.

更に、本例の場合には、上記各円筒面部26、26を、上記主体11bの外周面に連通(開口)させる事により、上記各ポケット12a、12aを、上記保持器10bの外径側に開口させている。従って、本例の場合には、これら各ポケット12a、12a内に潤滑油を導く為の凹溝17、17を、上記主体11aの内周縁とこれら各ポケット12a、12aとの間部分(内周縁部分18)にのみ形成している。この様な構成を有する本例の場合には、上記各玉9、9を、上記保持器10bの外径側から上記各ポケット12a、12a内に組み付ける(挿入する)。   Further, in the case of this example, the pockets 12a and 12a are connected to the outer diameter side of the cage 10b by communicating (opening) the cylindrical surface portions 26 and 26 with the outer peripheral surface of the main body 11b. Open. Therefore, in the case of this example, the concave grooves 17 and 17 for guiding the lubricating oil into the pockets 12a and 12a are provided between the inner peripheral edge of the main body 11a and the pockets 12a and 12a (inner peripheral edge). Only part 18) is formed. In the case of this example having such a configuration, the balls 9 and 9 are assembled (inserted) into the pockets 12a and 12a from the outer diameter side of the cage 10b.

以上の様な構成を有する本例の場合には、上述した実施の形態の第1例の場合に比べて、上記各凸部24a、24aの円周方向両側部分を、上記各玉9、9の転動面の近傍(ポケット隙間を残した位置)まで拡大できる。言い換えれば、上記第1例の構造の場合には、前記各凸部24、24の円周方向側面を部分円筒面状の凹面としていた為、上記各玉9、9の転動面との間には、転動体間空間23a、23aの一部である隙間27、27(図6参照)が存在していたが、本例の場合には、これら各隙間27、27を上記各凸部24a、24aの円周方向両側部分により小さくできる。この為、これら各凸部24a、24aと内輪軌道6及び外輪軌道8との間にそれぞれ形成される転動体間空間23b、23bの容積を、上記第1例の場合に比べて、更に小さくする事ができる。この結果、これら各転動体間空間23b、23b内に滞留する潤滑油量を更に少なくできる為、潤滑油の攪拌抵抗、更にはスラスト玉軸受5aのトルク損失(回転抵抗)を更に低減できる。   In the case of this example having the above-described configuration, both the circumferential portions of the convex portions 24a and 24a are connected to the balls 9 and 9 as compared with the case of the first example of the embodiment described above. Can be enlarged to the vicinity of the rolling surface (position where the pocket gap is left). In other words, in the case of the structure of the first example, the circumferential side surfaces of the convex portions 24 and 24 are partially cylindrical concave surfaces, and therefore, between the rolling surfaces of the balls 9 and 9. In FIG. 6, there are gaps 27 and 27 (see FIG. 6) that are part of the spaces between the rolling elements 23a and 23a. In the present example, these gaps 27 and 27 are connected to the projections 24a. 24a can be made smaller on both sides in the circumferential direction. For this reason, the volume of the inter-roller space 23b, 23b formed between each of the convex portions 24a, 24a and the inner ring raceway 6 and the outer ring raceway 8 is further reduced as compared with the case of the first example. I can do things. As a result, the amount of lubricating oil staying in the spaces between the rolling elements 23b and 23b can be further reduced, so that the stirring resistance of the lubricating oil and the torque loss (rotational resistance) of the thrust ball bearing 5a can be further reduced.

又、上記各ポケット12a、12aの内面を構成する上記各円筒面部26、26を、上記主体11bの外周面に連通させている為、上記各ポケット12a、12a内に供給された潤滑油を効率良く排出する事ができる。この為、これら各ポケット12a、12a内に潤滑油が滞留しにくくなり、この面からも潤滑油の攪拌抵抗の低減を図れる。   Further, since the cylindrical surface portions 26 and 26 constituting the inner surfaces of the pockets 12a and 12a are communicated with the outer peripheral surface of the main body 11b, the lubricating oil supplied into the pockets 12a and 12a is efficiently used. We can discharge well. For this reason, the lubricating oil does not easily stay in the pockets 12a and 12a, and the stirring resistance of the lubricating oil can be reduced also from this surface.

更に、本例の場合には、上記保持器10bの軸方向に関する位置決めを、所謂玉案内により規制できる。この為、上記主体11bの軸方向側面(内外両側面)と、相手面となるパワーローラ3の外側面及び外輪7の内側面とが干渉する(擦れ合う)事を有効に防止できる。   Furthermore, in the case of this example, the positioning of the cage 10b in the axial direction can be restricted by so-called ball guidance. For this reason, it is possible to effectively prevent interference (rubbing) between the axial side surface (both inner and outer side surfaces) of the main body 11b and the outer surface of the power roller 3 and the inner surface of the outer ring 7 as the mating surface.

又、上述の様な構成を有する本例の保持器10bを製造する場合に、例えばこの保持器10bを金属材料から造る場合には、円周方向に隣り合うポケット12a、12a同士の間部分の円周方向に関する幅寸法を、完成品に比べて幅広に形成した中間素材を形成した後、回転式の削り工具により、円周方向側面を切削乃至は研削する事により形成する事ができる。又、上記保持器10bを合成樹脂により造る場合には、上記各ポケット12a、12aの内面形状に整合する外面形状を有する金型を使用し、射出成型後にこの金型をこれら各ポケット12a、12aの内側から上記保持器10bの外径側に引き抜く事により形成する事ができる。但し、本例の場合にも、直径方向に亙り肉厚が一定である主体11(図7参照)と上記各凸部24a、24aとを別個に造った後、これらを接合して、上記保持器10bとする事もできる。   Further, when manufacturing the cage 10b of this example having the above-described configuration, for example, when the cage 10b is made of a metal material, the portion between the pockets 12a and 12a adjacent to each other in the circumferential direction is formed. After forming an intermediate material having a width dimension in the circumferential direction wider than that of the finished product, it can be formed by cutting or grinding the circumferential side surface with a rotary cutting tool. Further, when the cage 10b is made of a synthetic resin, a mold having an outer surface shape that matches the inner surface shape of each of the pockets 12a and 12a is used, and after the injection molding, the mold is attached to each of the pockets 12a and 12a. It can be formed by pulling out from the inside to the outer diameter side of the cage 10b. However, also in the case of this example, the main body 11 (see FIG. 7) whose wall thickness is constant in the diametrical direction and the projections 24a and 24a are separately made, and then joined together to hold the holding. It can also be set as the vessel 10b.

尚、本例の関連する先行技術文献として、前記特許文献6に記載された発明があるが、この特許文献6に係る発明は、本例の場合とは異なり、各ポケットの内面を、主体の軸方向に関して球面部と円筒面部とを連続させる事により構成するものであり、本例の様に、上記各凸部24a、24aを大きくする事を意図したものではない。
その他の構成及び作用効果に就いては、上述した実施の形態の第1例の場合と同様である。
In addition, as a prior art document related to this example, there is an invention described in the above-mentioned patent document 6, but the invention according to this patent document 6 is different from the case of this example in that the inner surface of each pocket is mainly used. It is configured by making the spherical surface portion and the cylindrical surface portion continuous in the axial direction, and is not intended to enlarge each of the convex portions 24a and 24a as in this example.
About another structure and an effect, it is the same as that of the case of the 1st example of embodiment mentioned above.

[本発明の実施の形態の第3例]
図12は、請求項1、2、5、7に対応する、本発明の実施の形態の第3例を示している。本例の特徴は、前述した実施の形態の第1例の構造に関して、保持器10cを構成する主体11cの軸方向両側面と、パワーローラ3の外側面及び外輪7の内側面との間にそれぞれ形成される隙間の和を、上記主体11cの直径方向位置に応じて規制した点にある。具体的には、この主体11cの内周縁部分18と、上記パワーローラ3の内径側肩部21a及び上記外輪7の内径側肩部20aとの間にそれぞれ形成される隙間(の軸方向に関する厚さ)の和(ain +aout =Wi )を、上記主体11cの外周縁部分19と、上記パワーローラ3の外径側肩部21b及び上記外輪7の外径側肩部20bとの間にそれぞれ形成される隙間(の軸方向に関する厚さ)の和(bin +bout =Wo )よりも小さくしている(Wi <Wo )。
[Third example of the embodiment of the present invention]
FIG. 12 shows a third example of an embodiment of the present invention corresponding to claims 1, 2, 5, and 7. The feature of this example is that, with respect to the structure of the first example of the above-described embodiment, between the axially opposite side surfaces of the main body 11c constituting the cage 10c, and the outer surface of the power roller 3 and the inner surface of the outer ring 7. The sum of the gaps formed is regulated according to the diameter direction position of the main body 11c. Specifically, gaps (thickness in the axial direction) formed between the inner peripheral edge portion 18 of the main body 11c and the inner diameter side shoulder portion 21a of the power roller 3 and the inner diameter side shoulder portion 20a of the outer ring 7 respectively. the sum (a in + a out = W i) of Is), between the outer edge portion 19 of the main 11c, the outer diameter shoulder portion 20b of the outer diameter side shoulders 21b and the outer ring 7 of the power roller 3 Are smaller than the sum of the gaps (thickness in the axial direction) (b in + b out = W o ) (W i <W o ).

更に、本例の場合には、上記主体11cの軸方向両側面の直径方向中間部のうち、円周方向に隣り合うポケット12同士の間部分に形成した各凸部24、24と、内輪軌道6との間に形成される隙間(tin)と、同じく外輪軌道8との間に形成される隙間(tout )との和(tin+tout =Wm )を、Wi <Wm <Wo の関係を満たす様に規制している。 Further, in the case of the present example, among the intermediate portions in the diameter direction on both side surfaces in the axial direction of the main body 11c, the convex portions 24, 24 formed in the portion between the pockets 12 adjacent in the circumferential direction, The sum (t in + t out = W m ) of the gap (t in ) formed between the inner ring 6 and the gap (t out ) formed between the outer ring raceway 8 and W i <W m <are regulated so as to satisfy the relation of W o.

上述の様な構成を有する本例の場合、次の様な問題を解決できる。即ち、トロイダル型無段変速の運転時、上記パワーローラ3が受けるスラスト荷重に伴い前記各トラニオン4(図19参照)は、その内側面を凹面とする方向に弾性変形する。この為、本例の様に、上記主体11cの軸方向両側面と相手面との間に形成される隙間の大きさを規制していない場合には、上記主体11cの外周縁部分19が、上記パワーローラ3の外径側肩部21b或いは上記外輪7の外径側肩部20bに干渉する(擦れ合う)可能性を生じる。そして、上記外周縁部分19は、上記主体11cのうちで回転中心からの距離が長い(回転半径が大きい)部分である為、その他の部分が相手面に摺接或いは近接対向した場合に比べて、トルク損失、並びに、潤滑油の剪断抵抗が大きくなると言った問題を招く。   In the case of this example having the configuration as described above, the following problems can be solved. That is, during the operation of the toroidal-type continuously variable transmission, each trunnion 4 (see FIG. 19) is elastically deformed in a direction in which the inner surface thereof is a concave surface in accordance with the thrust load received by the power roller 3. Therefore, as in this example, when the size of the gap formed between the axially opposite side surfaces of the main body 11c and the mating surface is not restricted, the outer peripheral edge portion 19 of the main body 11c is There is a possibility that the power roller 3 may interfere with (rub against) the outer diameter side shoulder portion 21b of the power roller 3 or the outer diameter side shoulder portion 20b of the outer ring 7. And since the said outer periphery part 19 is a part with the long distance from a rotation center (the rotation radius is large) among the said main bodies 11c, compared with the case where other parts are slidably contacted or closely opposed to the other surface. Torque loss, and the problem of increased shear resistance of the lubricating oil.

これに対して、本例の場合には、上記各トラニオン4が弾性変形した場合にも、上記主体11cのうちで回転中心からの距離が短い(回転半径が小さい)部分である内周縁部分18が、上記パワーローラ3の内径側肩部21a或いは上記外輪7の内径側肩部20aに摺接或いは近接対向し、上記外周縁部分19が相手面に摺接或いは近接対向する事はない。この為、スラスト玉軸受5cの損失トルク、並びに、潤滑油の剪断抵抗の低減を図れる。又、本例の場合には、上記各凸部24、24と、上記内輪軌道6及び上記外輪軌道8とが干渉する事を防止できる為、スラスト玉軸受5aの耐久性が低下する事も防止できる。更に、上記外周縁部分19と上記各外径側肩部21b、20bとの間の隙間(bin 、bout )を大きく確保できる為、上記各ポケット12内に供給された潤滑油の排出性を向上する事もできる。 On the other hand, in the case of this example, even when each trunnion 4 is elastically deformed, the inner peripheral edge portion 18 that is a portion of the main body 11c that is short from the rotation center (small in rotation radius). However, the inner peripheral shoulder portion 21a of the power roller 3 or the inner peripheral shoulder portion 20a of the outer ring 7 is slidably contacted or closely opposed, and the outer peripheral edge portion 19 is not slidably contacted or closely opposed. For this reason, the loss torque of the thrust ball bearing 5c and the shear resistance of the lubricating oil can be reduced. In the case of this example, the projections 24, 24 can be prevented from interfering with the inner ring raceway 6 and the outer ring raceway 8, so that the durability of the thrust ball bearing 5a is also prevented from being lowered. it can. Further, since the gaps (b in , b out ) between the outer peripheral edge portion 19 and the respective outer diameter side shoulders 21b, 20b can be ensured, the drainage of the lubricating oil supplied into the respective pockets 12 can be ensured. Can also be improved.

尚、本例に関連する先行技術文献として、前記特許文献7に記載された発明があるが、この特許文献7に係る発明は、本例の場合とは、隙間の大小関係が逆であり、上述の様な問題を解決する事を意図したものではないし、解決できるものでもない。
その他の構成及び作用効果に就いては、前述した実施の形態の第1例の場合と同様である。
Incidentally, as a prior art document related to this example, there is an invention described in Patent Document 7, but the invention according to this Patent Document 7 is opposite in the size relationship of the gap from the case of this example, It is not intended to solve the above problems, nor can it be solved.
About another structure and an effect, it is the same as that of the case of the 1st example of embodiment mentioned above.

[本発明の実施の形態の第4例]
図13は、請求項1〜3、5、7に対応する、本発明の実施の形態の第4例を示している。本例の場合には、前述した実施の形態の第2例の構造に関して、主体11dの軸方向両側面と、パワーローラ3の外側面及び外輪7の内側面との間にそれぞれ形成される隙間の和を、上述した実施の形態の第3例の場合と同様に、上記主体11dの径方向位置に応じて規制している。
その他の構成及び作用効果に就いては、上述した実施の形態の第3例及び前述した実施の形態の第2例の場合と同様である。
[Fourth Example of the Embodiment of the Present Invention]
FIG. 13 shows a fourth example of an embodiment of the present invention corresponding to claims 1 to 3, 5, and 7. In the case of this example, with respect to the structure of the second example of the above-described embodiment, gaps formed between both axial side surfaces of the main body 11d and the outer surface of the power roller 3 and the inner surface of the outer ring 7 respectively. As in the case of the third example of the above-described embodiment, the sum is controlled according to the radial position of the main body 11d.
About another structure and an effect, it is the same as that of the case of the 3rd example of embodiment mentioned above, and the 2nd example of embodiment mentioned above.

[本発明の実施の形態の第5例]
図14、15は、請求項1、3〜5、7に対応する、本発明の実施の形態の第5例を示している。本例の場合には、前述した実施の形態の第2例の構造に関して、各ポケット12b、12bの内面を構成する球面部25a、25aのピッチ円直径(PCD25a )を、内輪軌道6と外輪軌道8との間に設けられる玉9、9(図1等参照)のピッチ円直径(PCD9 )よりも小さくしている(PCD25a <PCD9 )。この為に、本例の場合には、上記各球面部25a、25aの曲率中心を、上記第2例の場合に比べて、主体11dの直径方向内側に位置させている。
[Fifth example of the embodiment of the present invention]
14 and 15 show a fifth example of an embodiment of the present invention corresponding to claims 1, 3 to 5, and 7. FIG. In the case of this example, with respect to the structure of the second example of the embodiment described above, the pitch circle diameters (PCD 25a ) of the spherical portions 25a, 25a constituting the inner surfaces of the pockets 12b, 12b are set as the inner ring raceway 6 and the outer ring. It is made smaller than the pitch circle diameter (PCD 9 ) of balls 9, 9 (see FIG. 1 etc.) provided between the tracks 8 (PCD 25a <PCD 9 ). For this reason, in the case of this example, the center of curvature of each of the spherical portions 25a, 25a is positioned on the inner side in the diameter direction of the main body 11d as compared with the case of the second example.

この様な構成を有する本例の場合、上記第2例の構造に比べて、次の様な作用効果を得られる。即ち、この第2例の構造の場合、所謂玉案内の構成を採用している為、所謂軌道輪案内の構成を採用した場合に比べて、上記各ポケット12b、12bの内面により各玉9、9(図7等参照)の転動面を覆う面積の割合が高くなる。この為、例えば、トロイダル型無段変速機の運転時に、スラスト玉軸受に加わるラジアル荷重によって、上記各玉9、9の公転速度にばらつきが生じた場合に、トルク損失が増大し易くなる。   In the case of this example having such a configuration, the following effects can be obtained as compared with the structure of the second example. That is, in the case of the structure of the second example, a so-called ball guide configuration is adopted, so that compared with a case where a so-called track ring guide configuration is adopted, each ball 9, The ratio of the area covering the rolling contact surface 9 (see FIG. 7 and the like) increases. For this reason, for example, when the toroidal type continuously variable transmission is operated, if the radial speed applied to the thrust ball bearing causes variations in the revolution speed of the balls 9, 9, torque loss is likely to increase.

これに対して、本例の場合には、上記各球面部25a、25aのピッチ円直径を、上記各玉9、9のピッチ円直径よりも小さくする事により、上記各ポケット12b、12bの内面のうちで、上記主体11dの直径方向に関する内端寄り部分と、上記各玉9、9の転動面との間に、ポケット隙間以上の大きさ(例えばポケット隙間の2倍の大きさ)の隙間を形成できる。この為、上記各玉9、9の公転速度にばらつきが生じた場合にも、上記各ポケット12b、12bの内面のうちで上記主体11dの直径方向に関する内端寄り部分と、上記各玉9、9の転動面とが干渉する(擦れ合う)事を有効に防止できる。従って、本例の場合には、上記第2例の構造に比べて、トルク損失を低減できる。   On the other hand, in the case of this example, by making the pitch circle diameter of each spherical surface portion 25a, 25a smaller than the pitch circle diameter of each ball 9, 9, the inner surface of each pocket 12b, 12b. Among them, a size larger than the pocket gap (for example, twice the size of the pocket gap) between the portion near the inner end in the diameter direction of the main body 11d and the rolling surface of each of the balls 9,9. A gap can be formed. For this reason, even when variations occur in the revolution speed of the balls 9, 9, the inner end portion of the inner surface of each of the pockets 12b, 12b in the diameter direction of the main body 11d and the balls 9, It is possible to effectively prevent the 9 rolling surfaces from interfering with each other. Therefore, in this example, torque loss can be reduced as compared with the structure of the second example.

尚、本例に関連する先行技術文献として、前記特許文献8に記載された発明があるが、この特許文献8に係る発明の場合には、本例の様に、上記各ポケット12b、12bの内面を球面部と円筒面部とにより構成するものではない。
その他の構成及び作用効果に就いては、前述した実施の形態の第2例の場合と同様である。
In addition, as a prior art document related to this example, there is an invention described in the above-mentioned patent document 8, but in the case of the invention according to this patent document 8, as in this example, the pockets 12b, 12b The inner surface is not constituted by a spherical surface portion and a cylindrical surface portion.
About another structure and an effect, it is the same as that of the case of the 2nd example of embodiment mentioned above.

[本発明の実施の形態の第6例]
図16〜18は、請求項1、3、4、6、7に対応する、本発明の実施の形態の第6例を示している。本例の場合には、上述した実施の形態の第5例の構造に関して、主体11eの軸方向に関する各凸部24a、24aの先端部に、この主体11eの軸方向に直交する仮想平面に対して平行な平坦面28、28を形成している。
[Sixth example of embodiment of the present invention]
16 to 18 show a sixth example of the embodiment of the invention corresponding to claims 1, 3, 4, 6, and 7. FIG. In the case of this example, with respect to the structure of the fifth example of the above-described embodiment, the tip of each convex portion 24a, 24a with respect to the axial direction of the main body 11e is in a virtual plane perpendicular to the axial direction of the main body 11e. Parallel flat surfaces 28, 28 are formed.

この様な構成を有する本例の場合、上記各凸部24a、24aの高さ寸法の管理を行い易くなる。即ち、前述した各例の場合の様に、各凸部24、24aの母線形状を単一円弧状とした場合には、例えばノギス等の測定工具を用いて検査工程等を行う場合に、上記各凸部24、24aの高さ寸法(突出量)を正確に測定する事は難しくなる。これに対して本例の場合には、上記各凸部24a、24aの先端部に上記各平坦面28、28を形成している為、これら各凸部24a、24aの高さ寸法を容易に、且つ、正確に測定できる。   In the case of this example having such a configuration, it becomes easy to manage the height of each of the convex portions 24a and 24a. That is, when the bus bar shape of each convex portion 24, 24a is a single arc shape as in the case of each example described above, for example, when performing an inspection process using a measuring tool such as a caliper, It is difficult to accurately measure the height dimension (projection amount) of each convex portion 24, 24a. On the other hand, in the case of this example, since the flat surfaces 28 and 28 are formed at the tips of the convex portions 24a and 24a, the height of the convex portions 24a and 24a can be easily set. And it can measure accurately.

更に、上記各平面部28、28を形成する事により、これら各平面部28、28を形成しない場合に比べて、保持器10bが軸方向に変位した場合に、上記各凸部24a、24aが内輪軌道6及び外輪軌道8に干渉しにくくできる。更に、各凸部の形状によっては(例えば大きくオフセットさせた形状の場合)、保持器が直径方向に移動した場合に、これら各凸部と内輪軌道6及び外輪軌道8とを接触しにくくする事もできる。又、本例の場合には、上記保持器10bの軽量化、材料費の削減等を図る事もできる。
その他の構成及び作用効果に就いては、前述した実施の形態の第5例の場合と同様である。
Further, by forming the flat portions 28, 28, the convex portions 24a, 24a are more easily displaced when the cage 10b is displaced in the axial direction than when the flat portions 28, 28 are not formed. Interference with the inner ring raceway 6 and the outer ring raceway 8 can be made difficult. Furthermore, depending on the shape of each convex portion (for example, in the case of a greatly offset shape), when the cage moves in the diametrical direction, it is difficult to make these convex portions contact the inner ring raceway 6 and the outer ring raceway 8. You can also. Further, in the case of this example, it is possible to reduce the weight of the cage 10b and reduce the material cost.
About another structure and an effect, it is the same as that of the case of the 5th example of embodiment mentioned above.

上述した実施の形態の各例は何れも、転動体として玉を使用した場合に就いて説明したが、前述した実施の形態の第1例及び第3例の構造に関しては、転動体として円すいころ(テーパころ)を使用する事もできる。尚、この場合には、断面三角形状(或いは断面台形状)の凸部を、円周方向に隣り合うポケット同士の間部分に形成する事ができる。そして、この様に転動体として円すいころを使用した場合にも、転動体として玉を使用した場合と同様の作用効果を得る事ができる。又、各凸部の形状に関しても、上述した実施の形態の各例の形状に限定される事なく、各空間(転動体間空間)の一部を塞ぐ事ができれば、自由に設計する事ができる。   Each example of the embodiment described above has been described for the case where a ball is used as a rolling element. However, with respect to the structures of the first example and the third example of the embodiment described above, a tapered roller is used as the rolling element. (Tapered rollers) can also be used. In this case, convex portions having a triangular cross section (or a trapezoidal cross section) can be formed in a portion between pockets adjacent in the circumferential direction. And also when using a tapered roller as a rolling element in this way, the effect similar to the case where a ball is used as a rolling element can be obtained. In addition, the shape of each convex portion is not limited to the shape of each example of the embodiment described above, and can be freely designed as long as a part of each space (space between rolling elements) can be blocked. it can.

尚、本件は、トロイダル型無段変速機のパワーローラに用いられるスラスト転がり軸受に就いて述べているが、ギヤトレイン又はその他の部分に用いられるスラスト転がり軸受にも適用可能である。即ち、ギヤトレイン又はその他の部分に於いても、スラスト転がり軸受には十分量の潤滑油を供給する必要があり、スラスト転がり軸受の運転時に、潤滑油の攪拌抵抗が大きくなると言った問題が発生する恐れがある。この様な場合にも、外輪軌道と内輪軌道と転動体と保持器とを有するスラスト転がり軸受に於いて、この保持器は円輪状の主体と、この主体の円周方向複数個所に間欠的に形成され、それぞれの内側に各転動体を転動自在に保持するポケットとを備えたものであり、上記主体の軸方向両側面の直径方向中間部のうちで、円周方向に隣り合うポケット同士の間部分に、これら各間部分と上記内輪軌道及び上記外輪軌道との間に存在する空間の一部を塞ぐ凸部を設ける。これにより、上述の様なギヤトレイン又はその他の部分に組み込まれるスラスト転がり軸受に於いても、潤滑油の攪拌抵抗を抑制する事ができる。   Although the present case has been described with reference to a thrust rolling bearing used for a power roller of a toroidal-type continuously variable transmission, the present invention can also be applied to a thrust rolling bearing used for a gear train or other parts. That is, even in the gear train or other parts, it is necessary to supply a sufficient amount of lubricating oil to the thrust rolling bearing, and there is a problem that the agitation resistance of the lubricating oil increases when the thrust rolling bearing is operated. There is a fear. Even in such a case, in a thrust rolling bearing having an outer ring raceway, an inner ring raceway, rolling elements and a cage, the cage is intermittently provided in a ring-shaped main body and a plurality of circumferential directions of the main body. Pockets that are formed and each has a pocket for holding the rolling elements so as to be able to roll freely, and are adjacent to each other in the circumferential direction among the diametrically intermediate portions on both axial sides of the main body. Protrusions that block a part of the space existing between the respective inter-portions and the inner ring raceway and the outer ring raceway are provided at the intermediate portions. Thereby, even in the thrust rolling bearing incorporated in the gear train as described above or other parts, the stirring resistance of the lubricating oil can be suppressed.

本発明の実施の形態の第1例を示す、パワーローラユニットの部分切断斜視図。The partial cutaway perspective view of a power roller unit which shows the 1st example of embodiment of this invention. 同じくパワーローラユニットの断面図。Similarly sectional drawing of a power roller unit. 同じく図2のA部拡大図。The A section enlarged view of FIG. 2 similarly. 同じく保持器を抜き出して示す斜視図。The perspective view which similarly extracts and shows a holder | retainer. 同じく各ポケット内に玉を保持した状態で示す、保持器の正面図。The front view of the holder | retainer shown in the state which similarly hold | maintained the ball in each pocket. 同じく図5のB−B断面図。Similarly BB sectional drawing of FIG. 同じく保持器の製造方法の1例を示す斜視図。The perspective view which similarly shows one example of the manufacturing method of a holder | retainer. 本発明の実施の形態の第2例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 2nd example of embodiment of this invention. 同じく図4と同様の図。The same figure as FIG. 同じく図5と同様の図。The same figure as FIG. 同じく図10のC−C断面図。Similarly CC sectional drawing of FIG. 本発明の実施の形態の第3例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 3rd example of embodiment of this invention. 同じく第4例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 4th example similarly. 同じく第5例を示す、保持器の正面図。The front view of a holder which shows the 5th example similarly. 同じく図14のD−D断面図。Similarly DD sectional drawing of FIG. 本発明の実施の形態の第6例を示す、保持器の斜視図。The perspective view of the holder | retainer which shows the 6th example of embodiment of this invention. 同じく正面図。Similarly front view. 同じく図17のE−E断面図。EE sectional drawing of FIG. 17 similarly. 従来構造の1例を示す断面図。Sectional drawing which shows an example of a conventional structure. パワーローラユニットの別例を示す断面図。Sectional drawing which shows another example of a power roller unit. 同じく各ポケット内に玉を保持した状態で示す、保持器の正面図。The front view of the holder | retainer shown in the state which similarly hold | maintained the ball in each pocket.

符号の説明Explanation of symbols

1 入力ディスク
2 出力ディスク
3 パワーローラ
4 トラニオン
5、5a スラスト玉軸受
6 内輪軌道
7 外輪
8 外輪軌道
9 玉
10、10a、10b 保持器
11、11a〜11e 主体
12、12a、12b ポケット
13 支持軸部
14 枢支軸部
15 給油孔
16 分岐孔
17 凹溝
18 内周縁部分
19 外周縁部分
20a 内径側肩部
20b 外径側肩部
21a 内径側肩部
21b 外径側肩部
22 平坦面部
23、23a、23b 転動体間空間
24、24a 凸部
25、25a 球面部
26 円筒面部
27 隙間
28 平坦面
DESCRIPTION OF SYMBOLS 1 Input disk 2 Output disk 3 Power roller 4 Trunnion 5, 5a Thrust ball bearing 6 Inner ring track 7 Outer ring 8 Outer ring track 9 Ball 10, 10a, 10b Cage 11, 11a-11e Main body 12, 12a, 12b Pocket 13 Support shaft part DESCRIPTION OF SYMBOLS 14 Pivot shaft part 15 Oil supply hole 16 Branch hole 17 Concave groove 18 Inner peripheral edge part 19 Outer peripheral edge part 20a Inner diameter side shoulder part 20b Outer diameter side shoulder part 21a Inner diameter side shoulder part 21b Outer diameter side shoulder part 22 Flat surface part 23, 23a 23b Space between rolling elements 24, 24a Convex portion 25, 25a Spherical surface portion 26 Cylindrical surface portion 27 Gap 28 Flat surface

Claims (7)

相対回転を自在として互いに同心に支持された入力ディスク及び出力ディスクと、これら両ディスクの軸方向に関してこれら両ディスクの間部分に設けられ、それぞれの両端部に互いに同心に、且つ、これら両ディスクの中心軸に対して捩れの位置に設けられた枢軸を中心とする揺動変位を自在とされた複数個のトラニオンと、これら各トラニオンの内側面から突出する状態で、これら各トラニオン毎に1本ずつ設けられた支持軸と、これら各支持軸の周囲に回転自在に支持された状態で上記両ディスク同士の間に挟持された複数個のパワーローラと、これら各パワーローラの外側面と上記各トラニオンの内側面との間に設けられたスラスト転がり軸受とを備え、これら各スラスト転がり軸受は、上記各パワーローラの外側面に形成された内輪軌道と、上記各トラニオンの内側面に設置された外輪の内側面に形成された外輪軌道と、これら内輪軌道と外輪軌道との間に転動自在に設けられた複数個の転動体と、これら各転動体を保持する保持器とから成るものであるトロイダル型無段変速機に於いて、この保持器が、円輪状の主体と、この主体の円周方向複数個所に間欠的に形成され、それぞれの内側に上記各転動体を転動自在に保持するポケットとを備えたものであり、上記主体の軸方向両側面の直径方向中間部のうちで、円周方向に隣り合うポケット同士の間部分に、これら各間部分と上記内輪軌道及び上記外輪軌道との間に存在する空間の一部を塞ぐ凸部が設けられている事を特徴とするトロイダル型無段変速機。   An input disk and an output disk that are supported concentrically so that they can freely rotate relative to each other, and are provided at a portion between these two disks in the axial direction of these two disks. A plurality of trunnions that are swingable about a pivot provided at a position twisted with respect to the central axis, and one for each trunnion in a state protruding from the inner surface of each trunnion A plurality of support shafts, a plurality of power rollers sandwiched between the two disks while being rotatably supported around each of the support shafts, an outer surface of each of the power rollers, and each of the power rollers. A thrust rolling bearing provided between the inner surface of the trunnion and each of the thrust rolling bearings formed on the outer surface of each of the power rollers. A track, an outer ring raceway formed on the inner side surface of the outer ring installed on the inner side surface of each trunnion, a plurality of rolling elements provided between the inner ring raceway and the outer ring raceway so as to roll freely, and In the toroidal-type continuously variable transmission that is composed of a cage that holds each rolling element, the cage is formed intermittently at a plurality of locations in the circumferential direction of the annular main body, A pocket for holding the rolling elements in a freely rollable manner on the inner side, and between the pockets adjacent to each other in the circumferential direction among the diametrically intermediate portions on both axial sides of the main body. A toroidal-type continuously variable transmission, characterized in that a portion is provided with a convex portion that closes a part of the space existing between each of these portions and the inner ring raceway and the outer ring raceway. 主体の軸方向両側面と、パワーローラの外側面及び外輪の内側面との間にそれぞれ形成される隙間の和が、上記主体の外周縁部分よりも内周縁部分で小さい、請求項1に記載したトロイダル型無段変速機。   2. The sum of gaps formed between both axial side surfaces of the main body and the outer surface of the power roller and the inner surface of the outer ring is smaller at the inner peripheral edge portion than at the outer peripheral edge portion of the main body. Toroidal continuously variable transmission. 主体の円周方向に関して各凸部の両側面が、各ポケットの内面の一部を構成しており、これら各ポケットの内面が、上記主体の直径方向に関して、内側の球面部と外側の円筒面部とを中間部で滑らかに連続させて成るものであり、これら各円筒面部が上記主体の外周面に連通している、請求項1〜2のうちの何れか1項に記載したトロイダル型無段変速機。   Both side surfaces of each convex portion in the circumferential direction of the main body constitute a part of the inner surface of each pocket, and the inner surface of each pocket is an inner spherical surface portion and an outer cylindrical surface portion in the diameter direction of the main body. The toroidal stepless device according to any one of claims 1 to 2, wherein each cylindrical surface portion communicates with the outer peripheral surface of the main body. transmission. 各ポケットの内面を構成する球面部のピッチ円直径が、各転動体のピッチ円直径よりも小さい、請求項3に記載したトロイダル型無段変速機。   The toroidal type continuously variable transmission according to claim 3, wherein a pitch circle diameter of a spherical surface portion constituting an inner surface of each pocket is smaller than a pitch circle diameter of each rolling element. 各凸部の母線形状が単一円弧状であり、これら各凸部の母線形状の曲率半径が、内輪軌道及び外輪軌道の曲率半径よりも小さい、請求項1〜4のうちの何れか1項に記載したトロイダル型無段変速機。   The generatrix of each convex part is a single circular arc shape, and the curvature radius of the generatrix shape of each of these convex parts is smaller than the curvature radius of an inner ring track and an outer ring track. The toroidal type continuously variable transmission described in 1. 主体の軸方向に関して各凸部の先端部に、この主体の中心軸に直交する仮想平面に対し平行な平坦面が設けられている、請求項1〜4のうちの何れか1項に記載したトロイダル型無段変速機。   5. The flat surface parallel to a virtual plane perpendicular to the central axis of the main body is provided at the tip of each convex portion with respect to the axial direction of the main body, according to claim 1. Toroidal continuously variable transmission. 主体の軸方向側面に、この主体の内周縁と各ポケットとを連通する潤滑油流路が設けられている、請求項1〜6のうちの何れか1項に記載したトロイダル型無段変速機。   The toroidal-type continuously variable transmission according to any one of claims 1 to 6, wherein a lubricating oil passage that communicates the inner peripheral edge of the main body and each pocket is provided on an axial side surface of the main body. .
JP2008334717A 2008-12-26 2008-12-26 Toroidal continuously variable transmission Active JP5149783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008334717A JP5149783B2 (en) 2008-12-26 2008-12-26 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008334717A JP5149783B2 (en) 2008-12-26 2008-12-26 Toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2010156399A true JP2010156399A (en) 2010-07-15
JP5149783B2 JP5149783B2 (en) 2013-02-20

Family

ID=42574453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008334717A Active JP5149783B2 (en) 2008-12-26 2008-12-26 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5149783B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072802A (en) * 2010-09-28 2012-04-12 Nsk Ltd Toroidal type continuously variable transmission
JP2012112508A (en) * 2010-11-29 2012-06-14 Nsk Ltd Toroidal-type continuously variable transmission
JP2012117588A (en) * 2010-11-30 2012-06-21 Nsk Ltd Toroidal type continuously variable transmission
JP2012132513A (en) * 2010-12-22 2012-07-12 Nsk Ltd Method for manufacturing toroidal type continuously variable transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144261A (en) * 2002-10-28 2004-05-20 Nsk Ltd Toroidal continuously variable transmission
JP2004156738A (en) * 2002-11-07 2004-06-03 Ntn Corp Thrust roller bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144261A (en) * 2002-10-28 2004-05-20 Nsk Ltd Toroidal continuously variable transmission
JP2004156738A (en) * 2002-11-07 2004-06-03 Ntn Corp Thrust roller bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072802A (en) * 2010-09-28 2012-04-12 Nsk Ltd Toroidal type continuously variable transmission
JP2012112508A (en) * 2010-11-29 2012-06-14 Nsk Ltd Toroidal-type continuously variable transmission
JP2012117588A (en) * 2010-11-30 2012-06-21 Nsk Ltd Toroidal type continuously variable transmission
JP2012132513A (en) * 2010-12-22 2012-07-12 Nsk Ltd Method for manufacturing toroidal type continuously variable transmission

Also Published As

Publication number Publication date
JP5149783B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP4985861B2 (en) Spherical roller bearing with cage
KR20080078016A (en) Radial rolling bearing, especially single-row deep groove rolling bearing
KR20080078036A (en) Radial antifriction bearing, especially single-row grooved antifriction bearing
CN105793587A (en) Tapered roller bearing and power transmission apparatus
JP5149783B2 (en) Toroidal continuously variable transmission
JP4844471B2 (en) Cross shaft coupling
JP5187178B2 (en) Toroidal continuously variable transmission
WO2018186346A1 (en) Tapered roller bearing
JP5212075B2 (en) Toroidal continuously variable transmission
US7033302B2 (en) Toroidal-type continuously variable transmission
JP4710402B2 (en) Toroidal continuously variable transmission
JP5909918B2 (en) Roller bearing cage
JP5899628B2 (en) Thrust rolling bearing cage, power roller thrust rolling bearing and toroidal continuously variable transmission
JP2003120683A (en) Thrust roller bearing
JP4258708B2 (en) Toroidal continuously variable transmission
US6800046B2 (en) Toroidal-type continuously variable transmission
JP2014092263A (en) Thrust ball bearing and toroidal type continuously variable transmission
JP2006307891A (en) Toroidal type continuously variable transmission
JP2015117766A (en) Conical roller bearing and power transmission device
JP2014202302A (en) Cage for conical roller bearing and conical roller bearing
JP2008111505A (en) Thrust needle roller bearing
JP4994630B2 (en) Tapered roller bearings
JP5126206B2 (en) Toroidal continuously variable transmission
JP2010060008A (en) Roller bearing of planetary gear mechanism
JP5747486B2 (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

R150 Certificate of patent or registration of utility model

Ref document number: 5149783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350