JP2010151327A - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus Download PDF

Info

Publication number
JP2010151327A
JP2010151327A JP2007084566A JP2007084566A JP2010151327A JP 2010151327 A JP2010151327 A JP 2010151327A JP 2007084566 A JP2007084566 A JP 2007084566A JP 2007084566 A JP2007084566 A JP 2007084566A JP 2010151327 A JP2010151327 A JP 2010151327A
Authority
JP
Japan
Prior art keywords
stainless steel
refrigeration cycle
pipe
cycle apparatus
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007084566A
Other languages
Japanese (ja)
Inventor
Tomoshi Shimizu
知史 清水
Hidekazu Aikawa
英一 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2007084566A priority Critical patent/JP2010151327A/en
Priority to PCT/JP2008/053832 priority patent/WO2008117636A1/en
Publication of JP2010151327A publication Critical patent/JP2010151327A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive and durable refrigeration cycle apparatus including refrigerant pipes low in cost and excelling in pressure resisting characteristics and corrosion resisting characteristics. <P>SOLUTION: The refrigeration cycle apparatus comprises: a compressor; a first heat exchanger; a decompressor, and a second heat exchanger, which are communicatd with one another through the refrigerant pipes, wherein the refrigerant pipes at least partially consist of a ferrite stainless welded pipes having a nickel content of 0.6% or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、空気調和機やヒートポンプ式給湯機等に用いる冷凍サイクル装置に係り、特に冷媒配管の材質を改良した冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus used for an air conditioner, a heat pump type hot water heater, and the like, and more particularly, to a refrigeration cycle apparatus having an improved material for refrigerant piping.

従来、空気調和機やヒートポンプ式給湯機等に用いる冷凍サイクル装置の冷媒配管は、加工性が良く、熱伝導性の良い銅管が使用されていた。   Conventionally, a refrigerant pipe of a refrigeration cycle apparatus used for an air conditioner, a heat pump type hot water heater or the like has a good workability and a copper pipe having a good thermal conductivity.

しかしながら、冷凍サイクル装置の冷媒としてR410Aや二酸化炭素等の高圧冷媒が用いられるようになったことから、ロー付け等の熱により加熱部分の材料強度が低下したり、あるいは、価格が高騰している銅管に替わる配管の採用が検討されている。   However, since a high-pressure refrigerant such as R410A or carbon dioxide has come to be used as a refrigerant for the refrigeration cycle apparatus, the material strength of the heated portion is reduced by heat such as brazing or the price is rising. Adoption of pipes to replace copper pipes is being studied.

従来、冷媒配管などとして、オーステナイト系ステンレスのSUS304が用いられているが、曲げ加工、拡管加工、フレア加工等によって、配管に応力が生じ、R410Aや二酸化炭素等の高圧冷媒を流す冷媒配管として用いると、加工時の残留応力に起因する応力腐食により、冷媒配管に割れ等が発生するおそれがある。   Conventionally, austenitic stainless steel SUS304 is used as a refrigerant pipe, etc., but it is used as a refrigerant pipe through which stress is generated in the pipe by bending, expanding, flaring, etc., and a high-pressure refrigerant such as R410A or carbon dioxide flows. In addition, there is a risk that cracks or the like may occur in the refrigerant piping due to stress corrosion caused by residual stress during processing.

なお、特許文献1には、冷媒配管が一般的なアルミニウム、ステンレス、銅、それらを含む合金の内の少なくとも1種からなるCO冷媒回路が開示されている。
特開2001−141316号公報
Patent Document 1 discloses a CO 2 refrigerant circuit in which the refrigerant pipe is made of at least one of general aluminum, stainless steel, copper, and alloys containing them.
JP 2001-141316 A

本発明は上述した事情を考慮してなされたもので、安価で耐圧特性と耐食特性が優れる冷媒配管を備え、安価で耐久性ある冷凍サイクル装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an inexpensive and durable refrigeration cycle apparatus including a refrigerant pipe that is inexpensive and excellent in pressure resistance and corrosion resistance.

上述した目的を達成するため、本発明に係る冷凍サイクル装置は、圧縮機、第1の熱交換器、減圧装置、第2の熱交換器を冷媒配管により連通してなる冷凍サイクル装置において、前記冷媒配管の少なくとも一部をニッケルの含有量が0.6mass%以下であるフェライト系ステンレス溶接管で形成したことを特徴とする。   In order to achieve the above-described object, a refrigeration cycle apparatus according to the present invention includes a compressor, a first heat exchanger, a decompression apparatus, and a second heat exchanger that are communicated with each other through a refrigerant pipe. At least a part of the refrigerant pipe is formed of a ferritic stainless steel welded pipe having a nickel content of 0.6 mass% or less.

本発明に係る冷凍サイクル装置によれば、安価で耐圧特性と耐食特性が優れる冷媒配管を備え、安価で耐久性ある冷凍サイクル装置を提供することができる。   According to the refrigeration cycle apparatus according to the present invention, it is possible to provide an inexpensive and durable refrigeration cycle apparatus including a refrigerant pipe that is inexpensive and excellent in pressure resistance and corrosion resistance.

本発明に係る冷凍サイクル装置の一実施形態について添付図面を参照して説明する。   An embodiment of a refrigeration cycle apparatus according to the present invention will be described with reference to the accompanying drawings.

図1は本発明の一実施形態に係る冷凍サイクル装置の冷凍サイクル図である。   FIG. 1 is a refrigeration cycle diagram of a refrigeration cycle apparatus according to an embodiment of the present invention.

図1に示すように、本実施形態の冷凍サイクル装置1は、例えば空気調和装置に組み込まれて使用され、圧縮機2、冷媒配管3、四方弁4、冷媒配管5、パックトバルブ6、冷媒配管7、第1の熱交換器としての室内熱交換器8、冷媒配管9、パックトバルブ10、冷媒配管11、電子膨張弁12、第2の熱交換器としての室外熱交換器13、冷媒配管14、四方弁4、冷媒配管15、圧縮機2に設けるアキュムレータ2aを順次接続して形成する。   As shown in FIG. 1, the refrigeration cycle apparatus 1 of the present embodiment is used by being incorporated in, for example, an air conditioner, and includes a compressor 2, a refrigerant pipe 3, a four-way valve 4, a refrigerant pipe 5, a packed valve 6, and a refrigerant. Pipe 7, indoor heat exchanger 8 as a first heat exchanger, refrigerant pipe 9, packed valve 10, refrigerant pipe 11, electronic expansion valve 12, outdoor heat exchanger 13 as a second heat exchanger, refrigerant The pipe 14, the four-way valve 4, the refrigerant pipe 15, and the accumulator 2a provided in the compressor 2 are sequentially connected and formed.

室内熱交換器8はフィンチューブ型の熱交換器であり、室内用送風ファン16が近接して配され、室内熱交換器8および室内用送風ファン16を、室内ユニット本体(図示せず)に収容して、室内ユニットを形成する。   The indoor heat exchanger 8 is a fin-tube heat exchanger, and an indoor blower fan 16 is disposed in proximity to the indoor heat exchanger 8 and the indoor blower fan 16 in an indoor unit main body (not shown). Accommodates and forms an indoor unit.

一方、室外熱交換器13はフィンチューブ型の熱交換器であり、室外用送風ファン17が近接して配され、室外熱交換器13および室外用送風ファン17を含み、室内熱交換器8および室内用送風ファン16を除く冷凍サイクル構成要素2−6、10−14を室外ユニット本体(図示せず)に収容して、室外ユニットを形成する。   On the other hand, the outdoor heat exchanger 13 is a fin-tube heat exchanger, and is provided with an outdoor fan 17 in close proximity, including the outdoor heat exchanger 13 and the outdoor fan 17, and the indoor heat exchanger 8 and The refrigeration cycle components 2-6 and 10-14 excluding the indoor blower fan 16 are accommodated in an outdoor unit main body (not shown) to form an outdoor unit.

上記冷凍サイクル構成要素のうち、室外ユニット本体に収容される冷媒配管、すなわち圧縮機2と四方弁4を接続する冷媒配管(吐出管)3、四方弁4とパックトバルブ6の間を接続する冷媒配管5、四方弁4と室外熱交換器13を接続する冷媒配管14、四方弁4と圧縮機2に設けるアキュムレータ2aを接続する冷媒配管(吸込管)15には、ステンレス溶接管を用いる。   Among the refrigeration cycle components, the refrigerant pipe accommodated in the outdoor unit main body, that is, the refrigerant pipe (discharge pipe) 3 that connects the compressor 2 and the four-way valve 4, and the four-way valve 4 and the packed valve 6 are connected. Stainless steel welded pipes are used for the refrigerant pipe 5, the refrigerant pipe 14 connecting the four-way valve 4 and the outdoor heat exchanger 13, and the refrigerant pipe (suction pipe) 15 connecting the four-way valve 4 and the accumulator 2 a provided in the compressor 2.

この本発明の冷凍サイクル装置に用いるステンレス溶接管には、Ni含有量が0.6mass%以下のフェライト系ステンレス(材)を用いる。   For the stainless steel welded pipe used in the refrigeration cycle apparatus of the present invention, ferritic stainless steel (material) having a Ni content of 0.6 mass% or less is used.

このフェライト系ステンレスとして、表1に示すような化学組成を有する本発明に最適なステンレス(以下、本ステンレスという。)、SUS430およびSUS434などが挙げられる。   Examples of the ferritic stainless steel include stainless steel (hereinafter, referred to as the present stainless steel) having the chemical composition as shown in Table 1 and SUS430 and SUS434.

本ステンレスは、Ni含有量が0.6mass%以下で、Cr含有量が19.00−21.00mass%であるのが好ましい。Nb含有量が(C含有率+N含有率)の10倍以上でかつ0.03−0.08mass%、Cu含有量が0.3−0.6mass%であるのがより好ましい。

Figure 2010151327
The stainless steel preferably has a Ni content of 0.6 mass% or less and a Cr content of 19.00-21.00 mass%. It is more preferable that the Nb content is 10 times or more of (C content + N content), 0.03-0.08 mass%, and the Cu content is 0.3-0.6 mass%.
Figure 2010151327

フェライト系ステンレスは、SUS430(Cr=17%クロム、C=0.12%以下)で代表されるCr系ステンレス鋼であり、熱処理によって硬化しないように、炭素量を低くしたものであり、特に本ステンレスはC含有量が0.02%以下と少なく、加工硬化性が小さい。   Ferritic stainless steel is a Cr stainless steel represented by SUS430 (Cr = 17% chromium, C = 0.12% or less), and has a low carbon content so as not to be hardened by heat treatment. Stainless steel has a low C content of 0.02% or less, and has low work curability.

また、フェライト系ステンレスの成分は、鉄−クロム系が基本であり、JIS鋼種はクロム量11〜32%で、炭素量は0.12%以下であり、耐食性を増すため、モリブデンを含むものもある。   In addition, the ferritic stainless steel is basically composed of iron-chromium, the JIS steel grade has a chromium content of 11 to 32%, a carbon content of 0.12% or less, and some contain molybdenum to increase corrosion resistance. is there.

また、フェライト系ステンレスは、Crを13%以上含む鉄−クロム合金はフェライト組織となり、結晶構造は体心立方であり、SUS304などのオーステナイト系ステンレスに比べて錆びにくい特性を有し、Ni含有量が0.6mass%以下とNiを多く含まない分、SUS304および銅に比べて安価である。さらに、本ステンレスはCr含有量が19.00−21.00mass%であり、Cr含有量が多く、耐腐食性に優れる。   Ferritic stainless steel is an iron-chromium alloy containing 13% or more of Cr, and has a ferrite structure. The crystal structure is body-centered cubic, and has a characteristic that it is less likely to rust than austenitic stainless steel such as SUS304. Is less than 0.6 mass% and less expensive than SUS304 and copper because it does not contain much Ni. Further, the stainless steel has a Cr content of 19.00-21.00 mass%, a high Cr content, and excellent corrosion resistance.

また、表2に示すように、フェライト系ステンレスはマルテンサイト系ステンレスに比べて、加工性は優れ、クロムの量を増やしたものは、耐食性に優れ、また、熱伝導率、線膨張係数、引張強さおよび伸びなどは、普通の低炭素鋼並みであり、SUS304などのオーステナイト系に比べて熱伝導率にもすぐれ、加工硬化性が小さい。

Figure 2010151327
In addition, as shown in Table 2, ferritic stainless steel is superior in workability compared to martensitic stainless steel, and the one with increased chromium content has excellent corrosion resistance, and also has thermal conductivity, linear expansion coefficient, tensile strength. Strength, elongation, and the like are the same as those of ordinary low carbon steel, and are superior in thermal conductivity as compared to austenite such as SUS304, and have low work hardening.
Figure 2010151327

本発明の冷凍サイクル装置に用いるステンレス溶接管は本ステンレスを用い、肉厚が外径の5%以下になるよう円筒状に成形し、シーム溶接する。   The stainless steel welded pipe used in the refrigeration cycle apparatus of the present invention uses this stainless steel, is formed into a cylindrical shape so that the thickness is 5% or less of the outer diameter, and is seam welded.

これにより、銅管およびSUS304を用いたステンレス溶接管に比べて安価で、耐圧特性と耐食特性に優れた冷媒配管が得られ、また、肉厚が外径の5%以下にすることで、可撓性が向上し、曲げ加工などの加工時の取り扱いが容易になる。   This makes it possible to obtain a refrigerant pipe that is cheaper and superior in pressure resistance and corrosion resistance compared to a stainless steel welded pipe using copper pipe and SUS304, and is possible by making the wall thickness 5% or less of the outer diameter. Flexibility is improved, and handling during processing such as bending becomes easy.

本ステンレス溶接管同士あるいは本ステンレス溶接管と銅管の接合は、炎ロー付けまたは接着により行う。   The stainless steel welded pipes or the stainless steel welded pipe and the copper pipe are joined by flame brazing or bonding.

本ステンレスは、銅よりも材料強度が強く、薄肉にしても耐圧強度を確保でき、銅に比べると1/2の肉厚で同一耐圧を得ることが可能である。   This stainless steel has a material strength stronger than copper, and even if it is thin, it can secure a pressure resistance, and it can obtain the same pressure resistance with a thickness of 1/2 that of copper.

なお、冷媒配管7および冷媒配管9は、室内ユニットと室外ユニット間に設けられる接続配管であり、空気調和装置の据付時などに可撓性が必要であり、従来の脱酸銅管を用いてもよい。   In addition, the refrigerant | coolant piping 7 and the refrigerant | coolant piping 9 are connection piping provided between an indoor unit and an outdoor unit, and flexibility is required at the time of installation of an air conditioning apparatus, etc., using the conventional deoxidation copper pipe | tube. Also good.

次に、本ステンレスが応力腐食に優れることを説明する。   Next, it will be explained that this stainless steel is excellent in stress corrosion.

図2は表1に示す化学組成の本ステンレスとSUS304のMgCl溶液中の耐応力腐食割れ試験の結果を示す特性線図である。この特性はMgCl(塩化マグネシウム溶液)中での応力負荷に対する応力腐食割れの発生応力と時間の関係を示す。 FIG. 2 is a characteristic diagram showing the results of a stress corrosion cracking test in a stainless steel and SUS304 MgCl 2 solution having the chemical composition shown in Table 1. This characteristic shows the relationship between stress occurrence stress stress and time with respect to stress load in MgCl 2 (magnesium chloride solution).

負荷応力300N/mmの場合、SUS304が約0.7時間で破断を生じるのに対して、本ステンレスは約7時間と10倍の腐食強度を有し、負荷応力250N/mmの場合、SUS304が約1時間で破断を生じるのに対して、本ステンレスは約10時間と10倍の腐食強度を有する。 In the case of a load stress of 300 N / mm 2 , SUS304 breaks in about 0.7 hours, whereas this stainless steel has a corrosion strength of about 7 hours and 10 times, and in the case of a load stress of 250 N / mm 2 , While SUS304 breaks in about 1 hour, this stainless steel has about 10 hours and 10 times the corrosion strength.

また、SUS304は負荷応力200N/mmの場合、約3時間、負荷応力150N/mmの場合、約5時間、負荷応力100N/mmの場合、約10時間であるのに対して、本ステンレスは負荷応力約190N/mmの場合、約50時間、約100時間、約700時間といずれも、SUS304の破断時間を大幅に上回り、大きな腐食強度を有することがわかる。 SUS304 has a load stress of 200 N / mm 2 for about 3 hours, a load stress of 150 N / mm 2 for about 5 hours, and a load stress of 100 N / mm 2 for about 10 hours. It can be seen that stainless steel has a large corrosion strength at a load stress of about 190 N / mm 2 which is significantly longer than the fracture time of SUS304 at about 50 hours, about 100 hours, and about 700 hours.

上記のことから、本ステンレス溶接管を用いることで、曲げ加工、拡管加工、フレア加工により発生する応力に対して、応力腐食の問題を解決できる。   From the above, by using this stainless steel welded tube, the problem of stress corrosion can be solved with respect to the stress generated by bending, tube expansion, and flare processing.

本試験では、本ステンレスを用いたが、他にSUS430、SUS434を用いても同様の結果が得られる。   Although this stainless steel was used in this test, the same result can be obtained by using SUS430 and SUS434.

また、本ステンレス管は、ロー付けや溶接接合しても、銅のように加熱部分の材料強度低下が少なく、接合後の信頼性が高い。さらに、耐腐食に優れ、安価で信頼性に優れた冷媒配管を提供できる。   Moreover, even if this stainless steel pipe is brazed or welded, there is little decrease in the material strength of the heated portion like copper, and the reliability after joining is high. Furthermore, it is possible to provide a refrigerant pipe excellent in corrosion resistance, inexpensive and excellent in reliability.

多くの熱交換器に用いる管は、ステンレス、アルミニウム、銅、鋼製であるが、本ステンレス管は、銅、アルミに対しての電食の発生が少なく、室内熱交換器、室外熱交換器をはじめ、いかなる熱交換器にも適用できる。   The tubes used in many heat exchangers are made of stainless steel, aluminum, copper, and steel. However, this stainless steel tube generates less electric corrosion on copper and aluminum, and is an indoor heat exchanger and outdoor heat exchanger. It can be applied to any heat exchanger.

また、図3に示すように、室外熱交換器13あるいは室内熱交換器のヘアピン状で複数枚の伝熱フィン13aと嵌合、貫通するU管13bに本ステンレス管や鋼管を用いる場合、U管13bを接続するリターンベンド13cには、異種の銅管または、アルミニウム管を使うのが好ましい。これにより、リターンベンドのように直線部の短い管部品は、加工性のよい異種材を併用することにより、製造性を向上させることができて、熱交換器全体としての製造コストを低減できる。   Moreover, as shown in FIG. 3, when using this stainless steel tube or a steel pipe for the U pipe 13b which fits and penetrates the heat transfer fin 13a in the hairpin shape of the outdoor heat exchanger 13 or the indoor heat exchanger, It is preferable to use a different kind of copper pipe or aluminum pipe for the return bend 13c connecting the pipe 13b. Thereby, a pipe part with a short straight portion such as a return bend can improve the manufacturability by using a dissimilar material having a good workability, and the manufacturing cost of the entire heat exchanger can be reduced.

上記のように、室外ユニット本体に収容される冷媒配管に本ステンレス溶接管を用いることで、本ステンレス溶接管が大気中の亜硫酸ガスなどに曝されても腐食がなく、耐久性がある。   As described above, by using the stainless steel welded pipe for the refrigerant pipe accommodated in the outdoor unit main body, even if the stainless welded pipe is exposed to sulfurous acid gas in the atmosphere, there is no corrosion and durability.

本実施形態に係る冷凍サイクル装置によれば、安価で耐圧特性と耐食特性が優れる冷媒配管を備え、安価で耐久性ある冷凍サイクル装置が実現する。   According to the refrigeration cycle apparatus according to the present embodiment, a low-cost and durable refrigeration cycle apparatus is realized that includes a refrigerant pipe that is inexpensive and has excellent pressure resistance and corrosion resistance.

本発明の一実施形態に係る冷凍サイクル装置の冷凍サイクル図。The refrigeration cycle figure of the refrigeration cycle apparatus which concerns on one Embodiment of this invention. 本発明に用いるステンレスと従来のSUS304の応力腐食強度特性線図。The stress corrosion strength characteristic diagram of stainless steel used in the present invention and conventional SUS304. 本発明の一実施形態に係る冷凍サイクル装置に用いる室外熱交換器の概念図。The conceptual diagram of the outdoor heat exchanger used for the refrigerating-cycle apparatus which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1…冷凍サイクル装置、2…圧縮機、3…冷媒配管、4…四方弁、5…冷媒配管、6…パックトバルブ、7…冷媒配管、8…室内熱交換器、9…冷媒配管、10…パックトバルブ、11…冷媒配管、12…電子膨張弁、13…室外熱交換器、14…冷媒配管、15…冷媒配管。   DESCRIPTION OF SYMBOLS 1 ... Refrigeration cycle apparatus, 2 ... Compressor, 3 ... Refrigerant piping, 4 ... Four-way valve, 5 ... Refrigerant piping, 6 ... Packed valve, 7 ... Refrigerant piping, 8 ... Indoor heat exchanger, 9 ... Refrigerant piping, 10 DESCRIPTION OF SYMBOLS ... Packed valve, 11 ... Refrigerant piping, 12 ... Electronic expansion valve, 13 ... Outdoor heat exchanger, 14 ... Refrigerant piping, 15 ... Refrigerant piping.

Claims (3)

圧縮機、第1の熱交換器、減圧装置、第2の熱交換器を冷媒配管により連通してなる冷凍サイクル装置において、前記冷媒配管の少なくとも一部をNi含有量が0.6mass%以下であるフェライト系ステンレス溶接管で形成したことを特徴とする冷凍サイクル装置。 In the refrigeration cycle apparatus in which the compressor, the first heat exchanger, the decompression device, and the second heat exchanger are communicated with each other through a refrigerant pipe, at least a part of the refrigerant pipe has an Ni content of 0.6 mass% or less. A refrigeration cycle apparatus formed of a ferritic stainless steel welded pipe. 前記ステンレス溶接管は、Cr含有量が19.00−21.00mass%であることを特徴とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the stainless steel welded pipe has a Cr content of 19.00-21.00 mass%. 前記ステンレス溶接管は肉厚が管外径の5%以下であることを特徴とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the stainless steel welded pipe has a wall thickness of 5% or less of the outer diameter of the pipe.
JP2007084566A 2007-03-28 2007-03-28 Refrigeration cycle apparatus Pending JP2010151327A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007084566A JP2010151327A (en) 2007-03-28 2007-03-28 Refrigeration cycle apparatus
PCT/JP2008/053832 WO2008117636A1 (en) 2007-03-28 2008-03-04 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084566A JP2010151327A (en) 2007-03-28 2007-03-28 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
JP2010151327A true JP2010151327A (en) 2010-07-08

Family

ID=39788372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084566A Pending JP2010151327A (en) 2007-03-28 2007-03-28 Refrigeration cycle apparatus

Country Status (2)

Country Link
JP (1) JP2010151327A (en)
WO (1) WO2008117636A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180259226A1 (en) * 2017-03-13 2018-09-13 Lg Electronics Inc. Air conditioner
JP2020109346A (en) * 2018-12-28 2020-07-16 ダイキン工業株式会社 Refrigerant piping and air conditioning device
EP3598030A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598031A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598034A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598029A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598028A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598036A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598032A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598027A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598033A4 (en) * 2017-03-13 2021-01-13 LG Electronics Inc. Air conditioner
EP3598035A4 (en) * 2017-03-13 2021-01-13 LG Electronics Inc. Air conditioner
WO2021019960A1 (en) 2019-07-31 2021-02-04 ダイキン工業株式会社 Refrigerant piping and refrigeration device
WO2021019961A1 (en) 2019-07-31 2021-02-04 ダイキン工業株式会社 Refrigerant pipeline, and refrigeration device
WO2021019881A1 (en) 2019-07-31 2021-02-04 ダイキン工業株式会社 Refrigeration apparatus, and refrigerant piping of refrigeration apparatus
JP2021025647A (en) * 2019-07-31 2021-02-22 ダイキン工業株式会社 Refrigerant pipe and refrigerating device
JP2021025757A (en) * 2019-07-31 2021-02-22 ダイキン工業株式会社 Refrigerant pipe and refrigerating device
WO2021234999A1 (en) 2020-05-21 2021-11-25 ダイキン工業株式会社 Pressure vessel and refrigeration device
CN114207364A (en) * 2019-07-31 2022-03-18 大金工业株式会社 Refrigerating device
US11293650B2 (en) * 2017-03-13 2022-04-05 Lg Electronics Inc. Air conditioner
US11457783B2 (en) 2019-06-05 2022-10-04 Lg Electronics Inc. Cleaner
US12031757B2 (en) 2019-07-31 2024-07-09 Daikin Industries, Ltd. Refrigerant pipe and refrigeration apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180111416A (en) * 2017-03-31 2018-10-11 엘지전자 주식회사 Ductile stainless steel pipe
JP7049310B2 (en) * 2019-12-25 2022-04-06 ダイキン工業株式会社 Refrigeration equipment
JP6924888B1 (en) * 2020-12-04 2021-08-25 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168548A (en) * 1996-12-10 1998-06-23 Nippon Steel Corp Heat exchanger for ammonia absorbing heat pump
JPH10306350A (en) * 1997-04-28 1998-11-17 Nippon Steel Corp Ammonia-type absorption heat pump
JP2001141316A (en) * 1999-11-17 2001-05-25 Sanden Corp Control mechanism for co2 refrigerating circuit
JP2006274436A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Ferritic stainless sheet sheet and steel tube for bent tube having sectional shape for components
JP4544589B2 (en) * 2005-04-11 2010-09-15 日新製鋼株式会社 Ferritic stainless steel sheet with excellent spinning processability and spinning process

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3598033A4 (en) * 2017-03-13 2021-01-13 LG Electronics Inc. Air conditioner
US11365893B2 (en) 2017-03-13 2022-06-21 Lg Electronics Inc. Air conditioner
US11408691B2 (en) 2017-03-13 2022-08-09 Lg Electronics Inc. Air conditioner
US10830498B2 (en) * 2017-03-13 2020-11-10 Lg Electronics Inc. Air conditioner
EP3598030A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598031A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598034A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598029A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598028A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598036A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598032A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598027A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598035A4 (en) * 2017-03-13 2021-01-13 LG Electronics Inc. Air conditioner
CN108571839A (en) * 2017-03-13 2018-09-25 Lg电子株式会社 Air conditioner
US11421308B2 (en) 2017-03-13 2022-08-23 Lg Electronics Inc. Air conditioner
US11486013B2 (en) 2017-03-13 2022-11-01 Lg Electronics Inc. Air conditioner
US11293650B2 (en) * 2017-03-13 2022-04-05 Lg Electronics Inc. Air conditioner
US11447839B2 (en) 2017-03-13 2022-09-20 Lg Electronics Inc. Air conditioner
US11421293B2 (en) 2017-03-13 2022-08-23 Lg Electronics Inc. Air conditioner
US11421292B2 (en) 2017-03-13 2022-08-23 Lg Electronics Inc. Air conditioner
CN108571839B (en) * 2017-03-13 2021-08-13 Lg电子株式会社 Air conditioner
US11608539B2 (en) 2017-03-13 2023-03-21 Lg Electronics Inc. Air conditioner
US20180259226A1 (en) * 2017-03-13 2018-09-13 Lg Electronics Inc. Air conditioner
US11413713B2 (en) 2017-03-13 2022-08-16 Lg Electronics Inc. Air conditioner
US11287146B2 (en) 2017-03-13 2022-03-29 Lg Electronics Inc. Air conditioner
JP2020109346A (en) * 2018-12-28 2020-07-16 ダイキン工業株式会社 Refrigerant piping and air conditioning device
US11457783B2 (en) 2019-06-05 2022-10-04 Lg Electronics Inc. Cleaner
CN114174738A (en) * 2019-07-31 2022-03-11 大金工业株式会社 Refrigerant pipe and refrigeration device
WO2021019961A1 (en) 2019-07-31 2021-02-04 ダイキン工業株式会社 Refrigerant pipeline, and refrigeration device
US12031757B2 (en) 2019-07-31 2024-07-09 Daikin Industries, Ltd. Refrigerant pipe and refrigeration apparatus
JP2021025766A (en) * 2019-07-31 2021-02-22 ダイキン工業株式会社 Refrigeration device and refrigerant piping of refrigeration device
JP2021025757A (en) * 2019-07-31 2021-02-22 ダイキン工業株式会社 Refrigerant pipe and refrigerating device
EP4005718A4 (en) * 2019-07-31 2022-08-31 Daikin Industries, Ltd. Refrigerant pipeline, and refrigeration device
EP4006449A4 (en) * 2019-07-31 2022-09-14 Daikin Industries, Ltd. Freezing apparatus
JP2021025647A (en) * 2019-07-31 2021-02-22 ダイキン工業株式会社 Refrigerant pipe and refrigerating device
WO2021019881A1 (en) 2019-07-31 2021-02-04 ダイキン工業株式会社 Refrigeration apparatus, and refrigerant piping of refrigeration apparatus
CN114207364A (en) * 2019-07-31 2022-03-18 大金工业株式会社 Refrigerating device
WO2021019960A1 (en) 2019-07-31 2021-02-04 ダイキン工業株式会社 Refrigerant piping and refrigeration device
AU2020320527B2 (en) * 2019-07-31 2023-08-10 Daikin Industries, Ltd. Freezing apparatus
AU2020320527B9 (en) * 2019-07-31 2023-08-24 Daikin Industries, Ltd. Freezing apparatus
AU2020323276B2 (en) * 2019-07-31 2023-10-19 Daikin Industries, Ltd. Refrigerant piping and refrigeration device
CN114174738B (en) * 2019-07-31 2024-04-26 大金工业株式会社 Refrigerant piping and refrigerating apparatus
JP7477777B2 (en) 2019-07-31 2024-05-02 ダイキン工業株式会社 Refrigerant piping and refrigeration equipment
JP7477775B2 (en) 2019-07-31 2024-05-02 ダイキン工業株式会社 Refrigerant piping and refrigeration equipment
WO2021234999A1 (en) 2020-05-21 2021-11-25 ダイキン工業株式会社 Pressure vessel and refrigeration device

Also Published As

Publication number Publication date
WO2008117636A1 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP2010151327A (en) Refrigeration cycle apparatus
JP6087982B2 (en) Copper alloy for heat exchange tubes
CN107965867B (en) Air conditioner
US10627168B2 (en) Stainless steel and pipe made thereof
EP3670683B1 (en) Air conditioner and method of manufacturing
KR20070065887A (en) A heat exchanger
JP2009185351A (en) Flexible tube made of ferritic stainless steel
JP2013169576A (en) Brazing method for stainless steel tube
JP2011202838A (en) Stainless steel refrigerant piping for heat exchanger
JP2009530581A (en) How to use heat exchanger tubes
JP2016032837A (en) Joint pipe body and method for producing the same
JP2013512341A (en) Copper alloy and heat exchange tube
JP4634357B2 (en) Heat pump water heater
JP2006242553A (en) Heat transfer tube, heat exchanger for supplying hot water, and heat pump water heater
JP4222354B2 (en) Welding structure and welding method of aluminum accumulator and heat exchanger
WO2010032417A1 (en) Refrigerant heating device assembly and mounting structure for same
TW201130579A (en) Flexible stainless steel tube
JP2002147981A (en) Heat exchanger tube and finned tube heat exchanger
JP2007093035A5 (en)
KR20180104520A (en) Air conditioner
KR20180104521A (en) Air conditioner
JP6207833B2 (en) Heat exchanger
JP2006234353A (en) Welding structure and welding method of aluminum accumulator, and heat exchanger
JP2010085064A (en) Manufacturing method of mechanical device, and refrigerating cycle device manufactured by the method
JP2009198132A (en) Tube for heat exchanger