JP2010151110A - Catalyst deterioration determination device for internal combustion engine - Google Patents

Catalyst deterioration determination device for internal combustion engine Download PDF

Info

Publication number
JP2010151110A
JP2010151110A JP2008333238A JP2008333238A JP2010151110A JP 2010151110 A JP2010151110 A JP 2010151110A JP 2008333238 A JP2008333238 A JP 2008333238A JP 2008333238 A JP2008333238 A JP 2008333238A JP 2010151110 A JP2010151110 A JP 2010151110A
Authority
JP
Japan
Prior art keywords
purification rate
amount
air amount
characteristic
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008333238A
Other languages
Japanese (ja)
Inventor
Taiga Hagimoto
大河 萩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008333238A priority Critical patent/JP2010151110A/en
Publication of JP2010151110A publication Critical patent/JP2010151110A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide technology discriminatedly determining deterioration of a catalyst and deterioration of dispersion of a reducing agent and accurately determining the deterioration of the catalyst, in a catalyst deterioration device for an internal combustion engine. <P>SOLUTION: The catalyst deterioration determination device for the internal combustion engine is provided with the SCR catalyst arranged in an exhaust passage of the internal combustion engine and cleaning NOx in the exhaust gas by feeding of urea; and a urea addition valve for adding the urea to the SCR catalyst. When the deterioration of the catalyst and the deterioration of dispersion of the urea are discriminatedly determined by comparing an air amount-a cleaning ratio reference characteristic with the present air amount-a cleaning ratio present characteristic, the air amount-a cleaning ratio reference characteristic is calculated when the optimum addition amount determined from the reducing agent amount-the cleaning ratio characteristic is more than a predetermined amount or the highest cleaning ratio is higher than the predetermined value and when the air amount-the cleaning ratio reference characteristic is not calculated at the past. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の触媒劣化判定装置に関する。   The present invention relates to a catalyst deterioration determination device for an internal combustion engine.

従来、アンモニア又はその前駆体である還元剤が供給されることで排気中のNOxを浄化する触媒を内燃機関の排気通路に配置することが行われている。そして、触媒下流のアンモニア濃度を推定すると共に触媒下流のアンモニア濃度を実際に測定し、推定アンモニア濃度と実測アンモニア濃度との乖離に基づき触媒劣化を判定する技術が開示されている(例えば、特許文献1参照)。
特開2006−125323号公報
Conventionally, a catalyst that purifies NOx in exhaust gas by supplying ammonia or a reducing agent that is a precursor thereof is disposed in an exhaust passage of an internal combustion engine. A technique is disclosed in which the ammonia concentration downstream of the catalyst is estimated, the ammonia concentration downstream of the catalyst is actually measured, and the catalyst deterioration is determined based on the difference between the estimated ammonia concentration and the actually measured ammonia concentration (for example, Patent Documents). 1).
JP 2006-125323 A

しかしながら、触媒下流の推定アンモニア濃度と実測アンモニア濃度との乖離は、触媒劣化によって生じるだけでなく、還元剤を添加する還元剤添加弁の異常や還元剤を添加した排気通路の破損等により生じる還元剤分散悪化によっても生じる。そのため、特許文献1の技術では、触媒劣化と判定しても、触媒劣化が生じておらず還元剤分散悪化が生じている場合があり、触媒劣化を正確に判定できるものではなかった。   However, the discrepancy between the estimated ammonia concentration downstream of the catalyst and the measured ammonia concentration is not only caused by catalyst deterioration, but also caused by abnormalities in the reducing agent addition valve to which the reducing agent is added or damage to the exhaust passage to which the reducing agent is added. It is also caused by the deterioration of agent dispersion. Therefore, in the technique of Patent Document 1, even if it is determined that the catalyst is deteriorated, there is a case where the catalyst is not deteriorated and the reducing agent dispersion is deteriorated, and the catalyst deterioration cannot be accurately determined.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、内燃機関の触媒劣化判定装置において、触媒劣化と還元剤分散悪化とを区別して判定し、触媒劣化を正確に判定する技術を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to accurately determine catalyst deterioration by distinguishing between catalyst deterioration and reducing agent dispersion deterioration in an internal combustion engine catalyst deterioration determination device. It is to provide technology to do.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
内燃機関の排気通路に配置され、還元剤が供給されることで排気中のNOxを浄化する触媒と、
前記触媒に還元剤を添加する還元剤添加手段と、
前記触媒よりも下流の前記排気通路に配置され、前記触媒から排出される排気中のNOx濃度を検出するNOx濃度検出手段と、
前記還元剤添加手段から添加される還元剤量を変化させながら前記NOx濃度検出手段によってNOx濃度を検出し、前記還元剤添加手段から添加される還元剤量に対する前記触媒の浄化率の特性(還元剤量−浄化率特性)を算出する還元剤量−浄化率特性算出手段と、
前記還元剤量−浄化率特性算出手段によって算出された還元剤量−浄化率特性から求められる最適添加量を前記還元剤添加手段から添加しつつ、前記触媒を流通する空気量を変化させながら前記NOx濃度検出手段によってNOx濃度を検出し、前記触媒を流通する空気量に対する前記触媒の浄化率の特性(空気量−浄化率特性)を算出する空気量−浄化率特性算出手段と、
過去に前記空気量−浄化率特性算出手段によって算出された空気量−浄化率基準特性と、現在の前記空気量−浄化率特性算出手段によって算出される空気量−浄化率現行特性と、を比較することで、触媒劣化と還元剤分散悪化とを区別して判定する判定手段と、
を備え、
空気量−浄化率基準特性は、前記還元剤量−浄化率特性算出手段によって算出された還元剤量−浄化率特性から求められる最適添加量が所定量よりも高い場合又は最高浄化率が所定値よりも高い場合、且つ、当該空気量−浄化率基準特性が過去に取得されていない場合に、前記空気量−浄化率特性算出手段によって算出されることを特徴とする内燃機関の
触媒劣化判定装置である。
In the present invention, the following configuration is adopted. That is, the present invention
A catalyst that is disposed in an exhaust passage of the internal combustion engine and purifies NOx in the exhaust by being supplied with a reducing agent;
Reducing agent addition means for adding a reducing agent to the catalyst;
NOx concentration detection means that is disposed in the exhaust passage downstream of the catalyst and detects the NOx concentration in the exhaust discharged from the catalyst;
The NOx concentration is detected by the NOx concentration detecting means while changing the amount of reducing agent added from the reducing agent adding means, and the purification rate characteristic of the catalyst with respect to the amount of reducing agent added from the reducing agent adding means (reduction) Reducing agent amount-purification rate characteristic calculating means for calculating (agent amount-purification rate characteristic);
While adding the optimum addition amount calculated from the reducing agent amount-purification rate characteristic calculated by the reducing agent amount-purification rate characteristic calculating unit from the reducing agent adding unit, the amount of air flowing through the catalyst is changed. An air amount-purification rate characteristic calculating unit that detects a NOx concentration by a NOx concentration detecting unit and calculates a purification rate characteristic (air amount-purification rate characteristic) of the catalyst with respect to the amount of air flowing through the catalyst;
Comparison between the air amount-purification rate reference characteristic calculated by the air amount-purification rate characteristic calculating unit in the past and the current air amount-purification rate current characteristic calculated by the air amount-purification rate characteristic calculating unit. Determination means for distinguishing between catalyst deterioration and reducing agent dispersion deterioration,
With
The air amount-purification rate reference characteristic is obtained when the optimum addition amount obtained from the reducing agent amount-purification rate characteristic calculated by the reducing agent amount-purification rate characteristic calculating means is higher than a predetermined amount or when the maximum purification rate is a predetermined value. And when the air amount-purification rate reference characteristic has not been acquired in the past, the air amount-purification rate characteristic calculating unit calculates the catalyst deterioration determining device for an internal combustion engine. It is.

触媒劣化と還元剤分散悪化とを区別して判定するため、空気量−浄化率基準特性と、現在の空気量−浄化率特性算出手段によって算出される空気量−浄化率現行特性と、を比較する。ここで、内燃機関や内燃機関に搭載される触媒等には、個体差がある。このため、空気量−浄化率基準特性を一律に定め、一律な空気量−浄化率基準特性と空気量−浄化率現行特性とを比較すると、個体差の影響により装置使用当初から、一律な空気量−浄化率基準特性と空気量−浄化率現行特性との間に乖離が生じてしまうことがある。これにより、触媒劣化や還元剤分散悪化が実際に生じていなくても、触媒劣化や還元剤分散悪化と誤判定してしまう場合がある。   In order to distinguish between the deterioration of the catalyst and the deterioration of the reducing agent dispersion, the air amount-purification rate reference characteristic is compared with the current air amount-purification rate characteristic calculation means calculated by the current air amount-purification rate characteristic calculating means. . Here, there are individual differences between the internal combustion engine and the catalyst mounted on the internal combustion engine. For this reason, when the air amount-purification rate reference characteristic is uniformly determined and the uniform air amount-purification rate reference characteristic is compared with the current air amount-purification rate current characteristic, uniform air has been introduced from the beginning of use of the device due to the influence of individual differences. There may be a discrepancy between the amount-purification rate reference characteristic and the air amount-purification rate current characteristic. Thereby, even if catalyst deterioration or reducing agent dispersion deterioration does not actually occur, it may be erroneously determined as catalyst deterioration or reducing agent dispersion deterioration.

そこで、本発明では、空気量−浄化率基準特性は、還元剤量−浄化率特性算出手段によって算出された還元剤量−浄化率特性から求められる最適添加量が所定量よりも多い場合又は最高浄化率が所定値よりも高い場合、且つ、当該空気量−浄化率基準特性が過去に取得されていない場合に、空気量−浄化率特性算出手段によって算出されるようにした。   Therefore, in the present invention, the air amount-purification rate reference characteristic is determined when the optimum addition amount obtained from the reducing agent amount-purification rate characteristic calculated by the reducing agent amount-purification rate characteristic calculating means is greater than a predetermined amount or the highest. When the purification rate is higher than a predetermined value, and when the air amount-purification rate reference characteristic has not been acquired in the past, it is calculated by the air amount-purification rate characteristic calculating means.

ここで、最適添加量の所定量とは、それよりも多い還元剤量であると、未だ触媒劣化が生じず、且つ、未だ還元剤分散悪化が生じていないと判断できる量である。また、最高浄化率の所定値とは、それよりも高い浄化率であると、未だ触媒劣化が生じず、且つ、未だ還元剤分散悪化が生じていないと判断できる値である。   Here, the predetermined amount of the optimum addition amount is an amount by which it can be determined that if the amount of the reducing agent is larger than that, the catalyst has not deteriorated yet and the reducing agent dispersion has not deteriorated yet. Further, the predetermined value of the maximum purification rate is a value by which it can be determined that if the purification rate is higher than that, the catalyst has not deteriorated yet and the reducing agent dispersion has not deteriorated yet.

最適添加量が所定量よりも高い場合又は最高浄化率が所定値よりも高い場合には、未だ触媒劣化が生じず、且つ、未だ還元剤分散悪化が生じていない場合である。また、空気量−浄化率基準特性が過去に取得されていない場合には、内燃機関や触媒が新品等の装置使用当初の場合である。よって、このような場合に、空気量−浄化率基準特性を取得することで、内燃機関や内燃機関に搭載される触媒等の個体差を加味したその装置に固有の空気量−浄化率基準特性が算出できる。したがって、固有の空気量−浄化率基準特性と、この固有の空気量−浄化率基準特性から変化した現在の空気量−浄化率現行特性と、を比較することで、触媒劣化と還元剤分散悪化とを区別して判定することができ、触媒劣化を正確に判定することができる。   When the optimum addition amount is higher than the predetermined amount or when the maximum purification rate is higher than the predetermined value, the catalyst has not deteriorated yet and the reducing agent dispersion has not deteriorated yet. Further, when the air amount-purification rate reference characteristic has not been acquired in the past, the internal combustion engine and the catalyst are in the initial stage of use of a new device or the like. Therefore, in such a case, by obtaining the air amount-purification rate reference characteristic, the air amount-purification rate reference characteristic specific to the device taking into account individual differences such as the internal combustion engine and the catalyst mounted on the internal combustion engine. Can be calculated. Therefore, by comparing the inherent air amount-purification rate reference characteristic with the current air amount-purification rate current characteristic changed from the inherent air amount-purification rate reference characteristic, catalyst deterioration and reducing agent dispersion deterioration And the catalyst deterioration can be accurately determined.

前記内燃機関の運転状態が前記触媒を流通する空気量が少ない低空気量領域に留まる場合には、前記判定手段は、過去に前記空気量−浄化率特性算出手段によって算出された空気量−浄化率基準特性内の低空気量領域の範囲の特性である低空気量領域基準特性と、現在の前記空気量−浄化率特性算出手段によって前記低空気量領域のみ算出される空気量−浄化率現行特性内の前記低空気量領域の範囲の特性である低空気量領域現行特性と、を比較することで、還元剤分散悪化か否かを判定するとよい。   When the operating state of the internal combustion engine remains in the low air amount region where the amount of air flowing through the catalyst is small, the determination means is the air amount-purification previously calculated by the air amount-purification rate characteristic calculating means. A low air amount region reference characteristic which is a characteristic of the range of the low air amount region in the rate reference characteristic, and an air amount−purification rate currently calculated only by the current air amount−purification rate characteristic calculating means. It is preferable to determine whether or not the reducing agent dispersion is deteriorated by comparing the current characteristics of the low air amount region, which is a property of the range of the low air amount region within the characteristics.

内燃機関の運転状態が触媒を流通する空気量が少ない低空気量領域に留まる場合には、触媒を流通する空気量を変化させることができない。このため、この場合には空気量−浄化率特性算出手段によって空気量−浄化率現行特性を算出することができない。よって、触媒劣化と還元剤分散悪化とを区別して判定することができなくなる。しかしながら、空気量−浄化率特性内の低空気量領域の範囲では、正常時及び触媒劣化時は、特性が類似するものの、還元剤分散悪化時は、正常時及び触媒劣化時とは明らかに特性が異なる。そこで、本発明では、内燃機関の運転状態が触媒を流通する空気量が少ない低空気量領域に留まる場合には、還元剤分散悪化か否かを判定するようにした。本発明によると、空気量−浄化率現行特性を算出できず触媒劣化と還元剤分散悪化とを区別して判定することができない内燃機関の運転状態が低空気量領域に留まる場合であっても、還元剤分散悪化か否かだけは速やかに判定できる。   When the operating state of the internal combustion engine remains in a low air amount region where the amount of air flowing through the catalyst is small, the amount of air flowing through the catalyst cannot be changed. For this reason, in this case, the air amount-purification rate current characteristic cannot be calculated by the air amount-purification rate characteristic calculating means. Therefore, it becomes impossible to distinguish between catalyst deterioration and reducing agent dispersion deterioration. However, in the range of the low air volume within the air volume-purification rate characteristics, the characteristics are similar when normal and when the catalyst is deteriorated. Is different. Therefore, in the present invention, when the operating state of the internal combustion engine remains in the low air amount region where the amount of air flowing through the catalyst is small, it is determined whether or not the reducing agent dispersion has deteriorated. According to the present invention, even when the operating state of the internal combustion engine remains in the low air amount region where the current characteristic of the air amount-purification rate cannot be calculated and the catalyst deterioration and the reducing agent dispersion deterioration cannot be distinguished and determined. Whether or not the reducing agent dispersion has deteriorated can be determined quickly.

前記判定手段は、過去に前記空気量−浄化率特性算出手段によって算出された空気量−浄化率基準特性と、現在の前記空気量−浄化率特性算出手段によって算出される空気量−浄化率現行特性と、を比較し、触媒劣化ではないと判定した場合に、前回判定時から現在への前記還元剤量−浄化率特性算出手段によって算出される還元剤量−浄化率特性の変化に基づいて、触媒劣化と還元剤分散悪化とを区別して判定するとよい。   The determination means includes an air amount-purification rate reference characteristic previously calculated by the air amount-purification rate characteristic calculating means, and an air amount-purification rate current characteristic calculated by the current air amount-purification rate characteristic calculating means. And when it is determined that the catalyst is not deteriorated, based on a change in the reducing agent amount-purification rate characteristic calculated by the reducing agent amount-purification rate characteristic calculating means from the previous determination to the present. It is better to distinguish between catalyst deterioration and reducing agent dispersion deterioration.

空気量−浄化率基準特性と空気量−浄化率現行特性とを比較し、触媒劣化ではなく還元剤分散悪化であると判定できる場合であっても、実際には還元剤分散悪化ではなく触媒劣化である場合がある。そこで、本発明では、空気量−浄化率基準特性と空気量−浄化率現行特性とを比較し、触媒劣化ではないと判定した場合に、前回判定時から現在への還元剤量−浄化率特性の変化に基づいて、触媒劣化と還元剤分散悪化とを区別して判定するようにした。本発明によると、より詳細に触媒劣化と還元剤分散悪化とを区別して判定することができ、触媒劣化をより正確に判定することができる。   Even if it is possible to compare the air quantity-purification rate reference characteristic and the air quantity-purification rate current characteristic and determine that the reduction of the reducing agent dispersion is not the catalyst deterioration, the catalyst deterioration is actually not the deterioration of the reducing agent dispersion. It may be. Therefore, in the present invention, when the air amount-purification rate reference characteristic and the air amount-purification rate current characteristic are compared and it is determined that the catalyst is not deteriorated, the reducing agent amount-purification rate characteristic from the previous determination to the present is determined. Based on this change, the catalyst deterioration and the reducing agent dispersion deterioration are distinguished and judged. According to the present invention, catalyst deterioration and reducing agent dispersion deterioration can be distinguished and determined in more detail, and catalyst deterioration can be determined more accurately.

本発明によると、内燃機関の触媒劣化判定装置において、触媒劣化と還元剤分散悪化とを区別して判定することができ、触媒劣化を正確に判定することができる。   According to the present invention, in a catalyst deterioration determination device for an internal combustion engine, catalyst deterioration and reducing agent dispersion deterioration can be distinguished and determined, and catalyst deterioration can be accurately determined.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
図1は、本実施例に係る内燃機関の触媒劣化判定装置を適用する内燃機関及びその排気系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒を有する水冷式の4ストロークサイクル・ディーゼルエンジンである。内燃機関1は車両に搭載されている。
<Example 1>
FIG. 1 is a diagram illustrating a schematic configuration of an internal combustion engine to which the catalyst deterioration determination device for an internal combustion engine according to the present embodiment is applied and an exhaust system thereof. An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-stroke cycle diesel engine having four cylinders. The internal combustion engine 1 is mounted on a vehicle.

内燃機関1には、排気通路2が接続されている。排気通路2には、SCR触媒3が配置されている。SCR触媒3は、当該SCR触媒3に還元剤としての尿素が供給されることで排気通路2を流通する排気中のNOxを浄化する。本実施例のSCR触媒3が本発明の触媒に相当する。なお、本実施例では還元剤として尿素を用いるが、本発明の還元剤としてはこれに限られるものではない。   An exhaust passage 2 is connected to the internal combustion engine 1. An SCR catalyst 3 is disposed in the exhaust passage 2. The SCR catalyst 3 purifies NOx in the exhaust gas flowing through the exhaust passage 2 by supplying urea as a reducing agent to the SCR catalyst 3. The SCR catalyst 3 of this example corresponds to the catalyst of the present invention. In this embodiment, urea is used as the reducing agent, but the reducing agent of the present invention is not limited to this.

SCR触媒3よりも上流側の排気通路2には、排気通路2内へ尿素を添加する尿素添加弁4が配置されている。尿素タンク5から尿素添加弁4へ尿素が供給される。尿素添加弁4から添加された尿素は、排気通路2内を流通してSCR触媒3へ供給される。本実施例の尿素添加弁4が本発明の還元剤添加手段に相当する。   A urea addition valve 4 that adds urea into the exhaust passage 2 is disposed in the exhaust passage 2 upstream of the SCR catalyst 3. Urea is supplied from the urea tank 5 to the urea addition valve 4. Urea added from the urea addition valve 4 flows through the exhaust passage 2 and is supplied to the SCR catalyst 3. The urea addition valve 4 of this embodiment corresponds to the reducing agent addition means of the present invention.

そして、尿素添加弁4の下流側且つSCR触媒3の上流側の排気通路には、尿素添加弁4から添加された尿素を分散させる分散板6が配置されている。排気通路2は、分散板6を境にして、分散板6よりも上流側が一定の狭い通路面積であり、分散板6よりも下流側がSCR触媒3に近づくにつれ通路面積が広くなっている。   A dispersion plate 6 that disperses urea added from the urea addition valve 4 is disposed in the exhaust passage downstream of the urea addition valve 4 and upstream of the SCR catalyst 3. The exhaust passage 2 has a certain narrow passage area upstream from the dispersion plate 6 with the dispersion plate 6 as a boundary, and the passage area becomes wider as the downstream side approaches the SCR catalyst 3 than the dispersion plate 6.

SCR触媒3の直下流側の排気通路2には、SCR触媒3から流出した排気中のNOx濃度を検出するNOxセンサ7が配置されている。本実施例のNOxセンサ7が本発明のNOx濃度検出手段に相当する。排気通路2及び上記排気通路2に配置される機器が内燃機関1の排気系を構成している。   A NOx sensor 7 for detecting the NOx concentration in the exhaust gas flowing out from the SCR catalyst 3 is disposed in the exhaust passage 2 immediately downstream of the SCR catalyst 3. The NOx sensor 7 of this embodiment corresponds to the NOx concentration detecting means of the present invention. The exhaust passage 2 and the devices arranged in the exhaust passage 2 constitute an exhaust system of the internal combustion engine 1.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU8が併設されている。このECU8は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。   The internal combustion engine 1 configured as described above is provided with an ECU 8 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 8 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.

ECU8には、NOxセンサ7の他に、アクセルペダルの踏み込み量に応じた電気信号を出力するアクセル開度センサ9、及び内燃機関1の機関回転数を検出するクランクポジションセンサ10が電気配線を介して接続され、これら各種センサの出力信号がECU8に入力される。   In addition to the NOx sensor 7, the ECU 8 includes an accelerator opening sensor 9 that outputs an electric signal corresponding to the amount of depression of the accelerator pedal, and a crank position sensor 10 that detects the engine speed of the internal combustion engine 1 via electric wiring. The output signals of these various sensors are input to the ECU 8.

一方、ECU8には、尿素添加弁4が電気配線を介して接続されており、該ECU8により尿素添加弁4が制御され、添加尿素量や添加タイミング等が指示される。   On the other hand, the urea addition valve 4 is connected to the ECU 8 via electric wiring, and the urea addition valve 4 is controlled by the ECU 8 to instruct the added urea amount, the addition timing, and the like.

ところで、従来、尿素添加弁4から添加される尿素量を変化させながら、NOxセンサ7によってNOx濃度を検出し、図2に示す尿素添加弁4から添加される尿素量に対するSCR触媒3の浄化率の特性(以下、尿素量−浄化率特性)を算出していた。そして、尿素量−浄化率特性の違いから、触媒劣化を判定していた。なお、尿素量−浄化率特性は、本発明における還元剤量−浄化率特性に相当する。また、SCR触媒3よりも上流側のNOx濃度はECU8により推定されている。   Conventionally, the NOx concentration is detected by the NOx sensor 7 while changing the urea amount added from the urea addition valve 4, and the purification rate of the SCR catalyst 3 with respect to the urea amount added from the urea addition valve 4 shown in FIG. (Hereinafter, urea amount-purification rate characteristic) was calculated. Then, catalyst deterioration is determined from the difference in urea amount-purification rate characteristics. The urea amount-purification rate characteristic corresponds to the reducing agent amount-purification rate characteristic in the present invention. Further, the NOx concentration upstream of the SCR catalyst 3 is estimated by the ECU 8.

図3は尿素量−浄化率特性が異なる3つの場合を示している。図3に示す実線の尿素量−浄化率特性は、SCR触媒3が正常である場合の特性である。図3に示す破線の尿素量−浄化率特性は、SCR触媒3が劣化して50%浄化率が悪化した場合の特性である。図3に示す一点鎖線の尿素量−浄化率特性は、尿素添加弁4からは尿素を添加しているもののSCR触媒3に供給される尿素量が50%不足した場合の特性である。従来においては、図3に示す破線の特性となることで、SCR触媒3が劣化したと判定していた。   FIG. 3 shows three cases with different urea amount-purification rate characteristics. The urea amount-purification rate characteristic shown by the solid line in FIG. 3 is a characteristic when the SCR catalyst 3 is normal. The urea amount-purification rate characteristic indicated by the broken line in FIG. 3 is a characteristic when the SCR catalyst 3 deteriorates and the 50% purification rate deteriorates. The urea amount-purification rate characteristic of the alternate long and short dash line shown in FIG. 3 is a characteristic when the urea amount supplied to the SCR catalyst 3 is insufficient by 50% although urea is added from the urea addition valve 4. Conventionally, it has been determined that the SCR catalyst 3 has deteriorated due to the broken line characteristics shown in FIG.

しかしながら、図4に示すように、尿素添加弁4の異常や排気通路2又は分散板6の破損等により尿素添加弁4から添加される尿素が一部分に集中し、SCR触媒3への尿素の分散が悪化する場合がある。この場合にも、図3に示す破線の尿素量−浄化率特性となることが判明した。つまり、尿素添加弁4からSCR触媒3への尿素の分散が悪化して50%浄化率が悪化した場合も、図3に示す破線の尿素量−浄化率特性となる。   However, as shown in FIG. 4, urea added from the urea addition valve 4 is concentrated in part due to abnormality of the urea addition valve 4, breakage of the exhaust passage 2 or the dispersion plate 6, etc., so that urea is dispersed in the SCR catalyst 3. May get worse. Also in this case, it has been found that the urea amount-purification rate characteristic indicated by the broken line in FIG. 3 is obtained. That is, even when the dispersion of urea from the urea addition valve 4 to the SCR catalyst 3 is deteriorated and the 50% purification rate is deteriorated, the urea amount-purification rate characteristic of the broken line shown in FIG. 3 is obtained.

すなわち、SCR触媒3への尿素の分散が悪化すると、SCR触媒3の一部分に尿素が反応することで発生したNHが集中してしまう。このため、尿素の分散が正常のときの尿素量を添加してしまうと、SCR触媒3のNHが集中した部分からNHのすり抜けが生じる。よって、SCR触媒3への尿素の分散が悪化した場合には、SCR触媒3が劣化していないにもかかわらず、図3に示す破線の尿素量−浄化率特性のように特性が算出されてしまう。 That is, when the dispersion of urea in the SCR catalyst 3 is deteriorated, NH 3 generated by the reaction of urea with a part of the SCR catalyst 3 is concentrated. Therefore, the dispersion of the urea resulting in the addition of urea amount when normal, slipping from the portion where NH 3 in the SCR catalyst 3 is concentrated in the NH 3 occurs. Therefore, when the dispersion of urea in the SCR catalyst 3 deteriorates, the characteristic is calculated like the urea amount-purification rate characteristic of the broken line shown in FIG. 3 even though the SCR catalyst 3 is not deteriorated. End up.

以上のことから、尿素量−浄化率特性の違いからSCR触媒3の劣化を判定しても、SCR触媒3の劣化が生じておらず尿素分散悪化が生じている場合があり、SCR触媒3の劣化を正確に判定できるものではなかった。   From the above, even if the deterioration of the SCR catalyst 3 is determined from the difference in the urea amount-purification rate characteristics, the deterioration of the SCR catalyst 3 does not occur and the urea dispersion deteriorates. It was not possible to accurately determine deterioration.

ところで、尿素量−浄化率特性から求まる最適添加量の尿素を添加しつつ、SCR触媒3を流通する空気量を変化させながらNOxセンサ7によってNOx濃度を検出し、SCR触媒3を流通する空気量に対するSCR触媒3の浄化率の特性(以下、空気量−浄化率特性という)を算出することもできる。本実施例では、内燃機関1の運転状態を変更することで、SCR触媒3を流通する空気量を変化させるようにしている。また、SCR触媒3よりも上流側のNOx濃度はECU8により推定されている。本発明者の鋭意検討によって、空気量−浄化率特性は、正常時と、触媒劣化時と、尿素分散悪化時との各々で描く特性が異なることを見出した。   By the way, the NOx concentration is detected by the NOx sensor 7 while changing the amount of air flowing through the SCR catalyst 3 while adding the optimum addition amount of urea obtained from the urea amount-purification rate characteristic, and the amount of air flowing through the SCR catalyst 3 It is also possible to calculate the characteristic of the purification rate of the SCR catalyst 3 (hereinafter referred to as the air amount-purification rate characteristic). In this embodiment, the amount of air flowing through the SCR catalyst 3 is changed by changing the operating state of the internal combustion engine 1. Further, the NOx concentration upstream of the SCR catalyst 3 is estimated by the ECU 8. As a result of intensive studies by the present inventors, it has been found that the air amount-purification rate characteristics are different when drawn in normal, when the catalyst is deteriorated, and when urea dispersion is deteriorated.

具体的には、触媒劣化も尿素分散悪化も生じていない正常時では、図5に示す実線の空
気量−浄化率特性のように、SCR触媒3を流通する空気量が少ない低空気量領域では、高い一定の浄化率を示し、低空気量領域から空気量が増加するに従って浄化率が緩やかに下降していく。浄化率が下降していく途中には、吸気量が変化しても一時的に浄化率が変化しない部分を有する。浄化率が下降していく際、空気量が増加するに従って緩やかに下降する浄化率の傾きは、ほぼ一定のままである。
Specifically, in a normal time in which neither catalyst deterioration nor urea dispersion deterioration occurs, in a low air amount region where the amount of air flowing through the SCR catalyst 3 is small, as shown by the solid air amount-purification rate characteristic shown in FIG. It shows a high and constant purification rate, and the purification rate gradually decreases as the air amount increases from the low air amount region. In the middle of the reduction of the purification rate, there is a portion where the purification rate does not change temporarily even if the intake air amount changes. As the purification rate decreases, the gradient of the purification rate that gradually decreases as the air amount increases remains substantially constant.

触媒劣化時では、図5に示す細破線の空気量−浄化率特性のように、SCR触媒3を流通する空気量が少ない低空気量領域では、正常時と同じ高い一定の浄化率を示し、低空気量領域から空気量が増加するに従って浄化率が正常時よりも急激に下降していく。浄化率が下降していく途中には、吸気量が変化しても一時的に浄化率が変化しない部分を有する。つまり、触媒劣化時は、特性全体が正常時に比べて左側にシフトし、且つ、空気量が増加するに従って下降する浄化率の傾きも正常に比べて急になる。浄化率が下降していく際、空気量が増加するに従って急激に下降する浄化率の傾きは、ほぼ一定のままである。   When the catalyst is deteriorated, as in the air amount-purification rate characteristic indicated by a thin broken line in FIG. 5, in the low air amount region where the amount of air flowing through the SCR catalyst 3 is small, the same high purification rate as in the normal state is shown. As the air amount increases from the low air amount region, the purification rate decreases more rapidly than normal. While the purification rate is decreasing, there is a portion where the purification rate does not change temporarily even if the intake air amount changes. That is, when the catalyst is deteriorated, the entire characteristic is shifted to the left as compared with the normal state, and the inclination of the purification rate that decreases as the air amount increases is steeper than the normal state. As the purification rate decreases, the gradient of the purification rate that rapidly decreases as the amount of air increases remains substantially constant.

尿素分散悪化時では、図5に示す粗破線の空気量−浄化率特性のように、SCR触媒3を流通する空気量が少ない低空気量領域では、正常時や触媒劣化時に比べて低い一定の浄化率を示し、低空気量領域から空気量が増加するに従って浄化率が正常時よりも緩やかに下降していく。浄化率が下降していく際、空気量が増加するに従って下降する浄化率の傾きは、細かく変動する。   When the urea dispersion deteriorates, the low air amount region in which the amount of air flowing through the SCR catalyst 3 is small, as shown by the rough dashed air amount-purification rate characteristic shown in FIG. The purification rate is shown, and as the air amount increases from the low air amount region, the purification rate falls more slowly than normal. As the purification rate decreases, the slope of the purification rate that falls as the air amount increases varies finely.

上記の特性を反映し、触媒劣化と尿素分散悪化とを区別して判定するため、正常時の空気量−浄化率特性を示す空気量−浄化率基準特性と、現在のSCR触媒3の空気量−浄化率特性を示す空気量−浄化率現行特性と、を比較することが考えられる。これにより、例えば、空気量−浄化率現行特性が、空気量−浄化率基準特性とほぼ等しい場合には、正常であると判定できる。例えば、空気量−浄化率現行特性が、空気量−浄化率基準特性に比して、特性全体が左側にシフトし、且つ、空気量が増加するに従って下降する浄化率の傾きが急になる場合には、触媒劣化であると判定できる。例えば、空気量−浄化率現行特性が、空気量−浄化率基準特性に比して、低空気量領域で低い一定の浄化率を示し、低空気量領域から空気量が増加するに従って浄化率が緩やかに下降し、浄化率が下降していく際、空気量が増加するに従って下降する浄化率の傾きが細かく変動する場合には、尿素分散悪化であると判定できる。   Reflecting the above characteristics and distinguishing between catalyst deterioration and urea dispersion deterioration, the normal air amount-air amount indicating the purification rate characteristic-purification rate reference characteristic and the current air amount of the SCR catalyst 3- It is conceivable to compare the air amount indicating the purification rate characteristic with the current characteristic of the purification rate. Accordingly, for example, when the air amount-purification rate current characteristic is substantially equal to the air amount-purification rate reference characteristic, it can be determined that the air is normal. For example, when the current characteristic of air amount-purification rate is shifted to the left as a whole, and the slope of the purification rate that decreases as the air amount increases becomes steep compared to the reference characteristic of air amount-purification rate Can be determined as catalyst degradation. For example, the current air amount-purification rate characteristic shows a lower constant purification rate in the low air amount region than the air amount-purification rate reference characteristic, and the purification rate increases as the air amount increases from the low air amount region. When the purification rate gradually decreases and the purification rate decreases, if the slope of the purification rate that decreases as the air amount increases finely, it can be determined that the urea dispersion has deteriorated.

ここで、内燃機関1や内燃機関1に搭載されるSCR触媒3等には、個体差がある。このため、空気量−浄化率基準特性を予め一律に定め、この一律な空気量−浄化率基準特性と空気量−浄化率現行特性とを比較すると、個体差の影響により装置使用当初から一律な空気量−浄化率基準特性と空気量−浄化率現行特性との間に乖離が生じてしまうことがある。これにより、触媒劣化や尿素分散悪化が実際に生じていなくても、触媒劣化や尿素分散悪化と誤判定してしまう場合がある。   Here, there are individual differences between the internal combustion engine 1 and the SCR catalyst 3 mounted on the internal combustion engine 1. For this reason, the air amount-purification rate reference characteristic is uniformly determined in advance, and the uniform air amount-purification rate reference characteristic is compared with the current air amount-purification rate current characteristic. There may be a discrepancy between the air amount-purification rate reference characteristic and the air amount-purification rate current characteristic. Thereby, even if catalyst deterioration or urea dispersion deterioration does not actually occur, it may be erroneously determined as catalyst deterioration or urea dispersion deterioration.

そこで、本実施例では、空気量−浄化率基準特性は、算出された尿素量−浄化率特性から求められる最適添加量が所定量よりも多い場合又は最高浄化率が所定値よりも高い場合、且つ、当該空気量−浄化率基準特性が過去に取得されていない場合に、算出されるようにした。   Therefore, in this embodiment, the air amount-purification rate reference characteristic is determined when the optimum addition amount obtained from the calculated urea amount-purification rate characteristic is larger than a predetermined amount or when the maximum purification rate is higher than a predetermined value. And when the said air quantity-purification rate reference | standard characteristic was not acquired in the past, it was made to calculate.

ここで、最適添加量の所定量とは、それよりも多い還元剤量であると、未だ触媒劣化が生じず、且つ、未だ尿素分散悪化が生じていないと判断できる量である。また、最高浄化率の所定値とは、それよりも高い浄化率であると、未だ触媒劣化が生じず、且つ、未だ尿素分散悪化が生じていないと判断できる値である。   Here, the predetermined amount of the optimum addition amount is an amount that can be determined that catalyst deterioration has not occurred yet and urea dispersion deterioration has not yet occurred if the amount of reducing agent is larger than that. The predetermined value of the maximum purification rate is a value at which it can be determined that if the purification rate is higher than that, catalyst deterioration has not yet occurred and urea dispersion deterioration has not yet occurred.

最適添加量が所定量よりも高い場合又は最高浄化率が所定値よりも高い場合には、未だ
触媒劣化が生じず、且つ、未だ尿素分散悪化が生じていない場合である。また、空気量−浄化率基準特性が過去に取得されていない場合には、内燃機関1やSCR触媒3が新品等の装置使用当初の場合である。よって、このような場合に、空気量−浄化率基準特性を取得することで、内燃機関1や内燃機関1に搭載されるSCR触媒3等の個体差を加味したその装置に固有の空気量−浄化率基準特性が取得できる。したがって、固有の空気量−浄化率基準特性と、この固有の空気量−浄化率基準特性から変化した現在の空気量−浄化率現行特性と、を比較することで、触媒劣化と尿素分散悪化とを区別して判定することができ、触媒劣化を正確に判定することができる。
When the optimum addition amount is higher than the predetermined amount or when the maximum purification rate is higher than the predetermined value, catalyst deterioration has not yet occurred and urea dispersion deterioration has not yet occurred. Further, when the air amount-purification rate reference characteristic has not been acquired in the past, the internal combustion engine 1 and the SCR catalyst 3 are in the initial stage of use of a new device or the like. Therefore, in such a case, by acquiring the air amount-purification rate reference characteristic, the air amount inherent to the device in consideration of individual differences such as the internal combustion engine 1 and the SCR catalyst 3 mounted on the internal combustion engine 1- Purification rate reference characteristics can be acquired. Therefore, by comparing the inherent air amount-purification rate reference characteristic with the current air amount-purification rate current characteristic changed from this inherent air amount-purification rate reference characteristic, catalyst deterioration and urea dispersion deterioration Thus, it is possible to determine the catalyst deterioration accurately.

次に、本実施例による触媒劣化判定制御ルーチン1について説明する。図6は、本実施例による触媒劣化判定制御ルーチン1を示したフローチャートである。本ルーチンは、所定の時間毎に繰り返しECU8により実行される。   Next, the catalyst deterioration determination control routine 1 according to this embodiment will be described. FIG. 6 is a flowchart showing a catalyst deterioration determination control routine 1 according to this embodiment. This routine is repeatedly executed by the ECU 8 every predetermined time.

ステップS101では、SCR触媒3の尿素量−浄化率特性を算出する。当該尿素量−浄化率特性は、空気量が一定の状態で尿素添加弁4から添加される尿素量を変化させながらNOxセンサ7によってNOx濃度を検出し、算出される。本ステップを実行するECU8が本発明の還元剤量−浄化率特性算出手段に相当する。   In step S101, the urea amount-purification rate characteristic of the SCR catalyst 3 is calculated. The urea amount-purification rate characteristic is calculated by detecting the NOx concentration by the NOx sensor 7 while changing the amount of urea added from the urea addition valve 4 while the air amount is constant. The ECU 8 that executes this step corresponds to the reducing agent amount-purification rate characteristic calculating means of the present invention.

ステップS102では、ステップS101で算出した尿素量−浄化率特性から求められる最適添加量が所定量以下、且つ、尿素量−浄化率特性から求められる最高浄化率が所定値以下であるか否かを判別する。最適添加量は、図2に示す尿素量−浄化率特性のうち、浄化率が最も高くなるときの尿素量である。最高浄化率は、図2に示す尿素量−浄化率特性のうち、最適添加量を添加したときの浄化率である。   In step S102, it is determined whether the optimum addition amount obtained from the urea amount-purification rate characteristic calculated in step S101 is equal to or less than a predetermined amount, and whether the maximum purification rate obtained from the urea amount-purification rate characteristic is equal to or less than a predetermined value. Determine. The optimum addition amount is the urea amount when the purification rate becomes the highest among the urea amount-purification rate characteristics shown in FIG. The maximum purification rate is the purification rate when the optimum addition amount is added among the urea amount-purification rate characteristics shown in FIG.

ステップS102において、最適添加量が所定量以下、且つ、最高浄化率が所定値以下であると肯定判定された場合には、ステップS106へ移行する。これにより、ステップS106へ移行する場合は、SCR触媒3が劣化した触媒劣化の場合、及び、SCR触媒3の劣化が生じていない尿素分散悪化の場合のいずれかに限られる。ステップS102において、最適添加量が所定量よりも多い、又は、最高浄化率が所定値よりも高いと否定判定された場合には、ステップS103へ移行する。   If it is determined in step S102 that the optimum addition amount is not more than the predetermined amount and the maximum purification rate is not more than the predetermined value, the process proceeds to step S106. As a result, the process proceeds to step S106 only in the case of catalyst deterioration in which the SCR catalyst 3 has deteriorated or in the case of urea dispersion deterioration in which the SCR catalyst 3 has not deteriorated. If it is determined in step S102 that the optimum addition amount is greater than the predetermined amount or the maximum purification rate is higher than the predetermined value, the process proceeds to step S103.

ステップS103では、空気量−浄化率基準特性取得済みか否かを判別する。空気量−浄化率基準特性は、取得した場合にECU8に記憶させておくので、ECU8に空気量−浄化率基準特性が記憶されている場合に取得済みと判断される。なお、SCR触媒3を交換した場合等には、取得した空気量−浄化率基準特性をECU8から削除し、未記憶状態にリセットするようにしてもよい。   In step S103, it is determined whether or not the air amount-purification rate reference characteristic has been acquired. Since the air amount-purification rate reference characteristic is stored in the ECU 8 when acquired, it is determined that the air amount-purification rate reference characteristic has been acquired when the ECU 8 stores the air amount-purification rate reference characteristic. When the SCR catalyst 3 is replaced, the acquired air amount-purification rate reference characteristic may be deleted from the ECU 8 and reset to an unstored state.

ステップS103において、空気量−浄化率基準特性を取得済みであると肯定判定された場合には、本ルーチンを一旦終了する。ステップS103において、空気量−浄化率基準特性を取得済みでないと否定判定された場合には、ステップS104へ移行する。これにより、ステップS104へ移行する場合は、最適添加量が所定量よりも多い場合又は最高浄化率が所定値よりも高い場合、且つ、空気量−浄化率基準特性が過去に算出されていない場合に限られる。   In step S103, when an affirmative determination is made that the air amount-purification rate reference characteristic has been acquired, this routine is temporarily terminated. If it is determined in step S103 that the air amount-purification rate reference characteristic has not been acquired, the process proceeds to step S104. Accordingly, when the process proceeds to step S104, the optimum addition amount is greater than the predetermined amount or the maximum purification rate is higher than the predetermined value, and the air amount-purification rate reference characteristic has not been calculated in the past. Limited to.

ステップS104では、SCR触媒3が正常と判定する。そして、ステップS105へ移行する。   In step S104, it is determined that the SCR catalyst 3 is normal. Then, the process proceeds to step S105.

ステップS105では、SCR触媒3の空気量−浄化率基準特性を算出し取得する。当該空気量−浄化率基準特性は、ステップS101で算出した尿素量−浄化率特性から求められる最適添加量を尿素添加弁4から添加しつつ、SCR触媒3を流通する空気量を変化
させながらNOxセンサ7によってNOx濃度を検出し、算出される。本ステップを実行するECU8が本発明の空気量−浄化率特性算出手段に相当する。ここでは、本ステップに移行するのが、SCR触媒3が正常の場合であるので、図5の実線に示すようにSCR触媒3の空気量−浄化率基準特性が算出される。そして、SCR触媒3の空気量−浄化率基準特性は、ECU8に記憶される。本ステップの処理の後、本ルーチンを一旦終了する。
In step S105, the air amount-purification rate reference characteristic of the SCR catalyst 3 is calculated and acquired. The air amount-purification rate reference characteristic is obtained by adding the optimum addition amount obtained from the urea amount-purification rate characteristic calculated in step S101 from the urea addition valve 4 while changing the amount of air flowing through the SCR catalyst 3. The sensor 7 detects and calculates the NOx concentration. The ECU 8 that executes this step corresponds to the air amount-purification rate characteristic calculating means of the present invention. Here, since this step is when the SCR catalyst 3 is normal, the air amount-purification rate reference characteristic of the SCR catalyst 3 is calculated as shown by the solid line in FIG. The air amount-purification rate reference characteristic of the SCR catalyst 3 is stored in the ECU 8. After the processing of this step, this routine is once ended.

一方、ステップS106では、SCR触媒3の空気量−浄化率現行特性を算出する。当該空気量−浄化率現行特性は、ステップS101で算出した尿素量−浄化率特性から求められる最適添加量を尿素添加弁4から添加しつつ、SCR触媒3を流通する空気量を変化させながらNOxセンサ7によってNOx濃度を検出し、算出される。本ステップを実行するECU8が本発明の空気量−浄化率特性算出手段に相当する。ここでは、本ステップに移行するのが、触媒劣化又は尿素分散悪化の場合であるので、図5の細破線又は粗破線に示すようにSCR触媒3の空気量−浄化率現行特性が算出される。   On the other hand, in step S106, the air amount-purification rate current characteristic of the SCR catalyst 3 is calculated. The air amount-purification rate current characteristic is obtained by adding the optimum addition amount obtained from the urea amount-purification rate characteristic calculated in step S101 from the urea addition valve 4 while changing the amount of air flowing through the SCR catalyst 3. The sensor 7 detects and calculates the NOx concentration. The ECU 8 that executes this step corresponds to the air amount-purification rate characteristic calculating means of the present invention. Here, since it is the case of catalyst deterioration or urea dispersion deterioration that shifts to this step, the air amount-purification rate current characteristic of the SCR catalyst 3 is calculated as shown by a thin broken line or a rough broken line in FIG. .

ステップS107では、触媒劣化基準を満たすか否かを判別する。本ステップを実行するECU8が本発明の判定手段に相当する。空気量−浄化率現行特性が、空気量−浄化率基準特性に比して、特性全体が左側にシフトし、且つ、空気量が増加するに従って下降する浄化率の傾きが急になる場合には、触媒劣化基準を満たすと判定し、それ以外の場合は、触媒劣化基準満たさないと判定する。また、前記の基準に加えて、空気量−浄化率現行特性が、空気量−浄化率基準特性に比して、低空気量領域で低い一定の浄化率を示し、低空気量領域から空気量が増加するに従って浄化率が緩やかに下降し、浄化率が下降していく際、空気量が増加するに従って下降する浄化率の傾きが細かく変動する場合には、触媒劣化基準を満たさないと判定してもよい。また、これらの基準に加えて、空気量−浄化率現行特性と、空気量−浄化率基準特性とを比較して、空気量を変化させた時の浄化率が平坦になる部分が同じ数だけ存在する場合には、触媒劣化基準を満たすと判定してもよい。また、これらの基準に加えて、空気量−浄化率現行特性が、空気量が増加するに従って下降する浄化率の傾きが複数の点で一定である場合には、触媒劣化基準を満たすと判定してもよい。   In step S107, it is determined whether or not a catalyst deterioration criterion is satisfied. The ECU 8 that executes this step corresponds to the determination means of the present invention. When the current characteristic of the air quantity-purification rate is shifted to the left as compared with the air quantity-purification rate reference characteristic, and the slope of the purification rate that decreases as the air quantity increases becomes steep. It is determined that the catalyst deterioration standard is satisfied, and otherwise, it is determined that the catalyst deterioration standard is not satisfied. In addition to the above-mentioned criteria, the air amount-purification rate current characteristic shows a constant purification rate lower in the low air amount region than the air amount-purification rate reference property, and the air amount from the low air amount region When the purification rate gradually decreases as the air flow increases and the purification rate decreases, if the slope of the purification rate that decreases as the air volume increases varies finely, it is determined that the catalyst deterioration criterion is not satisfied. May be. In addition to these standards, the current amount-purification rate characteristics and the air amount-purification rate reference characteristics are compared, and the same number of parts where the purification rate becomes flat when the air amount is changed. If present, it may be determined that the catalyst deterioration criterion is satisfied. In addition to these criteria, if the current characteristic of the air amount-purification rate is constant at a plurality of points with the slope of the purification rate decreasing as the air amount increases, it is determined that the catalyst deterioration criterion is satisfied. May be.

ステップS107において、空気量−浄化率現行特性が図5の細破線に示すような特性であり、触媒劣化基準を満たすと肯定判定された場合には、ステップS108へ移行する。ステップS107において、空気量−浄化率現行特性が図5に示す粗破線のような特性であり、触媒劣化基準を満たさないと否定判定された場合には、ステップS109へ移行する。   If it is determined in step S107 that the air amount-purification rate current characteristic is the characteristic shown by the thin broken line in FIG. 5 and the catalyst deterioration criterion is satisfied, the process proceeds to step S108. If it is determined in step S107 that the air amount-purification rate current characteristic is a characteristic as shown by a rough broken line in FIG. 5 and the catalyst deterioration criterion is not satisfied, the process proceeds to step S109.

ステップS108では、SCR触媒3の劣化である触媒劣化と判定する。そして、本ルーチンを一旦終了する。   In step S108, it is determined that the SCR catalyst 3 is deteriorated. Then, this routine is temporarily terminated.

ステップS109では、尿素添加弁4の異常や排気通路2又は分散板6の破損等による尿素分散悪化と判定する。そして、本ルーチンを一旦終了する。   In step S109, it is determined that urea dispersion has deteriorated due to abnormality of the urea addition valve 4 or damage to the exhaust passage 2 or the dispersion plate 6. Then, this routine is temporarily terminated.

以上説明した本ルーチンによれば、固有の空気量−浄化率基準特性を取得することができ、この固有の空気量−浄化率基準特性と現在の空気量−浄化率現行特性とを比較することで、触媒劣化と尿素分散悪化とを区別して判定することができる。   According to this routine described above, the unique air amount-purification rate reference characteristic can be acquired, and the unique air amount-purification rate reference characteristic is compared with the current air amount-purification rate current characteristic. Thus, it is possible to distinguish and determine catalyst deterioration and urea dispersion deterioration.

<実施例2>
本実施例では、その特徴部分だけを説明し、上記実施例と同構成のものについては同符号を付して説明を省略する。
<Example 2>
In the present embodiment, only the characteristic part will be described, and the same components as those in the above embodiment will be denoted by the same reference numerals and description thereof will be omitted.

上記実施例1では、空気量−浄化率現行特性を算出し、固有の空気量−浄化率基準特性と現在の空気量−浄化率現行特性とを比較することで、触媒劣化と尿素分散悪化とを区別して判定する。ところが、内燃機関1の運転状態がSCR触媒3を流通する空気量が少ない低空気量領域に留まる場合には、SCR触媒3を流通する空気量を変化させることができない。このため、この場合には図6のステップS106のように空気量−浄化率現行特性を算出することができない。よって、触媒劣化と尿素分散悪化とを区別して判定することができなくなる。   In the first embodiment, the air amount-purification rate current characteristic is calculated, and the inherent air amount-purification rate reference characteristic is compared with the current air amount-purification rate current characteristic. Judgment is made with distinction. However, when the operating state of the internal combustion engine 1 remains in the low air amount region where the amount of air flowing through the SCR catalyst 3 is small, the amount of air flowing through the SCR catalyst 3 cannot be changed. For this reason, in this case, the air amount-purification rate current characteristic cannot be calculated as in step S106 of FIG. Therefore, it becomes impossible to distinguish between catalyst deterioration and urea dispersion deterioration.

しかしながら、空気量−浄化率特性内の低空気量領域の範囲では、図5に示す実線及び細破線のように、正常時及び触媒劣化時は、特性が類似するものの、図5に示す粗破線のように、尿素分散悪化時は、正常時及び触媒劣化時とは明らかに特性が異なる。つまり、尿素分散悪化時は、正常時及び触媒劣化時に比して明らかに浄化率が低くなる。   However, in the range of the low air amount region within the air amount-purification rate characteristic, although the characteristics are similar at normal time and when the catalyst is deteriorated as shown by the solid line and the thin broken line in FIG. 5, the rough broken line shown in FIG. As described above, when the urea dispersion is deteriorated, the characteristics are clearly different from those at the normal time and when the catalyst is deteriorated. In other words, the purification rate is clearly lower when urea dispersion is worse than when it is normal and when the catalyst is deteriorated.

そこで、本実施例では、内燃機関1の運転状態がSCR触媒3を流通する空気量が少ない低空気量領域に留まる場合には、過去に算出された空気量−浄化率基準特性内の低空気量領域の範囲の特性である低空気量領域基準特性と、現在の低空気量領域のみ算出される空気量−浄化率現行特性内の低空気量領域の範囲の特性である低空気量領域現行特性と、を比較することで、尿素分散悪化か否かを判定するようにした。   Therefore, in the present embodiment, when the operating state of the internal combustion engine 1 remains in the low air amount region where the amount of air flowing through the SCR catalyst 3 is small, the low air within the air amount-purification rate reference characteristics calculated in the past. Low air volume area reference characteristics that are characteristics of the volume area range, and low air volume area current characteristics that are the characteristics of the low air volume area within the current air volume-purification rate current characteristics that are calculated only for the current low air volume area By comparing the characteristics, it was determined whether or not the urea dispersion was deteriorated.

本実施例によると、空気量−浄化率現行特性を算出できず触媒劣化と尿素分散悪化とを区別して判定することができない内燃機関1の運転状態が低空気量領域に留まる場合であっても、尿素分散悪化か否かだけは速やかに判定できる。   According to the present embodiment, even if the operating state of the internal combustion engine 1 remains in the low air amount region, the current characteristic of the air amount-purification rate cannot be calculated and the catalyst deterioration and the urea dispersion deterioration cannot be distinguished and determined. Whether or not the urea dispersion is deteriorated can be quickly determined.

次に、本実施例による触媒劣化判定制御ルーチン2について説明する。図7は、本実施例による触媒劣化判定制御ルーチン2を示したフローチャートである。本ルーチンは、所定の時間毎に繰り返しECU8により実行される。なお、図6に示すルーチンと同処理については説明を省略する。   Next, the catalyst deterioration determination control routine 2 according to this embodiment will be described. FIG. 7 is a flowchart showing a catalyst deterioration determination control routine 2 according to this embodiment. This routine is repeatedly executed by the ECU 8 every predetermined time. Note that description of the same processing as the routine shown in FIG. 6 is omitted.

ステップS102において、最適添加量が所定量以下、且つ、最高浄化率が所定値以下であると肯定判定された場合には、ステップS201へ移行する。これにより、ステップS201へ移行する場合は、SCR触媒3が劣化した触媒劣化の場合、及び、SCR触媒3の劣化が生じていない尿素分散悪化の場合のいずれかに限られる。   If it is determined in step S102 that the optimum addition amount is equal to or less than the predetermined amount and the maximum purification rate is equal to or less than the predetermined value, the process proceeds to step S201. As a result, the process proceeds to step S201 only in the case of catalyst deterioration in which the SCR catalyst 3 has deteriorated or in the case of urea dispersion deterioration in which the SCR catalyst 3 has not deteriorated.

ステップS201では、内燃機関1の運転状態が所定時間以上低空気量領域に留まるか否かを判別する。所定時間は、それ以上長時間であると、空気量−浄化率現行特性を算出できず触媒劣化と尿素分散悪化とを区別して判定することができなくなる時間である。例えば、アイドル運転が長時間継続する場合等に内燃機関1の運転状態が所定時間以上低空気量領域に留まると判断される。   In step S201, it is determined whether or not the operating state of the internal combustion engine 1 remains in the low air amount region for a predetermined time or more. If the predetermined time is longer than that, the current amount-purification rate current characteristic cannot be calculated, and the catalyst deterioration and the urea dispersion deterioration cannot be distinguished and determined. For example, when the idling operation is continued for a long time, it is determined that the operation state of the internal combustion engine 1 remains in the low air amount region for a predetermined time or more.

ステップS201において、内燃機関1の運転状態が所定時間以上低空気量領域に留まると肯定判定された場合には、ステップS202へ移行する。ステップS201において、内燃機関1の運転状態が所定時間以上低空気量領域に留まらないと否定判定された場合には、ステップS106へ移行する。   If it is determined in step S201 that the operating state of the internal combustion engine 1 remains in the low air amount region for a predetermined time or longer, the process proceeds to step S202. If it is determined in step S201 that the operating state of the internal combustion engine 1 does not remain in the low air amount region for a predetermined time or longer, the process proceeds to step S106.

ステップS202では、SCR触媒3の低空気量領域現行特性を算出する。低空気量領域現行特性は、ステップS101で算出した尿素量−浄化率特性から求められる最適添加量を尿素添加弁4から添加しつつ、SCR触媒3を流通する空気量を低空気量領域のみの間において変化させながらNOxセンサ7によってNOx濃度を検出し、算出される。このため、低空気量領域現行特性は、空気量−浄化率現行特性内の低空気量領域の範囲の特性である。本ステップを実行するECU8が本発明の空気量−浄化率特性算出手段に相当
する。ここでは、本ステップに移行するのが、触媒劣化又は尿素分散悪化の場合であるので、図5の低空気量領域内の細破線又は粗破線に示すようにほぼ一定の浄化率のSCR触媒3の低空気量領域現行特性が算出される。
In step S202, the low air amount region current characteristics of the SCR catalyst 3 are calculated. The current characteristic of the low air amount region is that the amount of air flowing through the SCR catalyst 3 is added only to the low air amount region while the optimum addition amount obtained from the urea amount-purification rate characteristic calculated in step S101 is added from the urea addition valve 4. The NOx concentration is detected and calculated by the NOx sensor 7 while being changed. For this reason, the current characteristic of the low air amount region is a property in the range of the low air amount region within the current amount of air amount-purification rate. The ECU 8 that executes this step corresponds to the air amount-purification rate characteristic calculating means of the present invention. Here, since this step is a case of catalyst deterioration or urea dispersion deterioration, the SCR catalyst 3 having a substantially constant purification rate as shown by a thin broken line or a rough broken line in the low air amount region of FIG. The current characteristic of the low air amount region is calculated.

ステップS203では、低空気量領域現行特性と低空気量領域基準特性とを比較し、低空気量領域での浄化率の差が基準値以上か否かを判別する。本ステップを実行するECU8が本発明の判定手段に相当する。低空気量領域基準特性は、過去に算出された空気量−浄化率基準特性内の低空気量領域の範囲の特性である。ここでは、ECU8に記憶された空気量−浄化率基準特性を呼び出し、低空気量領域の範囲の特性だけを取り込む。このため、図5の低空気量領域内の実線に示すようにほぼ一定の浄化率のSCR触媒3の低空気量領域基準特性が算出される。そして、低空気量領域現行特性と低空気量領域基準特性とを比較し、浄化率の差を求める。この浄化率の差が、基準値以上であると、尿素分散悪化と判断できる。なお、浄化率の差の基準値とは、それ以上の値であると、尿素分散悪化と判断できる閾値であり、予め実験等により求められている。   In step S203, the low air amount region current characteristic and the low air amount region reference characteristic are compared, and it is determined whether or not the difference in the purification rate in the low air amount region is greater than or equal to a reference value. The ECU 8 that executes this step corresponds to the determination means of the present invention. The low air amount region reference characteristic is a characteristic in the range of the low air amount region within the air amount-purification rate reference characteristic calculated in the past. Here, the air amount-purification rate reference characteristic stored in the ECU 8 is called, and only the characteristic in the range of the low air amount region is captured. Therefore, the low air amount region reference characteristic of the SCR catalyst 3 having a substantially constant purification rate is calculated as shown by the solid line in the low air amount region of FIG. Then, the current characteristic of the low air amount region and the reference characteristic of the low air amount region are compared to determine the difference in the purification rate. If the difference in the purification rates is greater than or equal to the reference value, it can be determined that urea dispersion has deteriorated. Note that the reference value for the difference in purification rate is a threshold value that can be determined as deterioration of urea dispersion when the value is larger than that, and is obtained in advance through experiments or the like.

ステップS203において、浄化率の差が基準値以上と肯定判定された場合には、ステップS109へ移行する。ステップS203において、浄化率の差が基準値以上とならないと否定判定された場合には、本ルーチンを一旦終了する。なお、ステップS203において、浄化率の差が基準値以上とならないと否定判定された場合には、触媒劣化と判断してもよい。これは、ステップS102において触媒劣化か尿素分散劣化と判断されているので、ステップS203において否定判定された場合には触媒劣化と消去法的に判断できるためである。   If it is determined in step S203 that the purification rate difference is greater than or equal to the reference value, the process proceeds to step S109. If it is determined in step S203 that the difference in the purification rates does not exceed the reference value, this routine is temporarily terminated. In step S203, if it is determined that the difference in the purification rates does not exceed the reference value, it may be determined that the catalyst has deteriorated. This is because, in step S102, it is determined that the catalyst has deteriorated or urea dispersion has deteriorated, and if a negative determination is made in step S203, it can be determined that the catalyst has deteriorated and is eliminated.

以上説明した本ルーチンによれば、内燃機関1の運転状態が低空気量領域に留まる場合であっても、尿素分散悪化か否かだけは速やかに判定できる。   According to this routine described above, even if the operation state of the internal combustion engine 1 remains in the low air amount region, it can be quickly determined only whether the urea dispersion has deteriorated.

<実施例3>
本実施例では、その特徴部分だけを説明し、上記実施例と同構成のものについては同符号を付して説明を省略する。
<Example 3>
In the present embodiment, only the characteristic part will be described, and the same components as those in the above embodiment will be denoted by the same reference numerals and description thereof will be omitted.

上記実施例1では、空気量−浄化率現行特性を算出し、固有の空気量−浄化率基準特性と現在の空気量−浄化率現行特性とを比較することで、触媒劣化と尿素分散悪化とを区別して判定する。ところが、固有の空気量−浄化率基準特性と現在の空気量−浄化率現行特性とを比較して尿素分散悪化であると判定できる場合であっても、実際には尿素分散悪化ではなく触媒劣化である場合がある。   In the first embodiment, the air amount-purification rate current characteristic is calculated, and the inherent air amount-purification rate reference characteristic is compared with the current air amount-purification rate current characteristic. Judgment is made with distinction. However, even if it is possible to determine that the urea dispersion deterioration has been made by comparing the inherent air amount-purification rate reference characteristic and the current air amount-purification rate current characteristic, the catalyst degradation actually does not deteriorate the urea dispersion. It may be.

そこで、本実施例では、空気量−浄化率基準特性と空気量−浄化率現行特性とを比較し、触媒劣化ではないと判定した場合に、前回判定時から現在への尿素量−浄化率特性の変化に基づいて、触媒劣化と尿素分散悪化とをより詳細に区別して判定するようにした。   Therefore, in this embodiment, the air amount-purification rate reference characteristic and the air amount-purification rate current characteristic are compared, and when it is determined that the catalyst is not deteriorated, the urea amount-purification rate characteristic from the previous determination to the present is determined. Based on this change, the catalyst deterioration and the urea dispersion deterioration were distinguished and judged in more detail.

本実施例によると、より詳細に触媒劣化と尿素分散悪化とを区別して判定することができ、触媒劣化をより正確に判定することができる。   According to this embodiment, the catalyst deterioration and the urea dispersion deterioration can be distinguished and determined in more detail, and the catalyst deterioration can be determined more accurately.

次に、本実施例による触媒劣化判定制御ルーチン3について説明する。図8は、本実施例による触媒劣化判定制御ルーチン3を示したフローチャートである。本ルーチンは、所定の時間毎に繰り返しECU8により実行される。なお、図6に示すルーチンと同処理については説明を省略する。   Next, the catalyst deterioration determination control routine 3 according to this embodiment will be described. FIG. 8 is a flowchart showing the catalyst deterioration determination control routine 3 according to this embodiment. This routine is repeatedly executed by the ECU 8 every predetermined time. Note that description of the same processing as the routine shown in FIG. 6 is omitted.

ステップS301では、上記実施例のステップS101と同様にSCR触媒3の尿素量−浄化率特性を算出する。また、これと共に、算出した尿素量−浄化率特性をECU8に
記憶する。
In step S301, the urea amount-purification rate characteristic of the SCR catalyst 3 is calculated as in step S101 of the above embodiment. At the same time, the calculated urea amount-purification rate characteristic is stored in the ECU 8.

ステップS107において、空気量−浄化率現行特性が図5に示す粗破線のような特性であり、触媒劣化基準を満たさないと否定判定された場合には、ステップS302へ移行する。   If it is determined in step S107 that the current air amount-purification rate current characteristic is a characteristic as shown by a rough broken line in FIG. 5 and the catalyst deterioration standard is not satisfied, the process proceeds to step S302.

ステップS302では、熱劣化基準を満たすか否かを判別する。本ステップを実行するECU8が本発明の判定手段に相当する。熱劣化基準は、尿素量−浄化率特性が徐々に悪化(熱劣化)したのか、尿素量−浄化率特性が急激に悪化したかの判定基準である。前回判定時から現在のステップS301で算出された尿素量−浄化率特性の変化が徐々に悪化した場合には、熱劣化基準を満たすと判定し、当該変化が急激に悪化した場合には、熱劣化基準を満たさないと判定する。例えば、前回判定時の尿素量−浄化率特性及び現在の尿素量−浄化率特性の各々の最大浄化率の差分をSCR触媒3に流入するエネルギーで割った値が所定値以下である場合に、熱劣化基準を満たすと判定する。図9に示すように、尿素量−浄化率特性は、触媒劣化時では、熱エネルギー量に応じて(c)の特性から(d)の特性へ徐々に悪化するのに対し、尿素分散悪化時では、尿素添加弁4の異常や排気通路2又は分散板6の破損等により(a)の特性から(d)の特性へ急激に悪化するため、判別の基準にできる。   In step S302, it is determined whether or not the thermal deterioration criterion is satisfied. The ECU 8 that executes this step corresponds to the determination means of the present invention. The thermal deterioration criterion is a criterion for determining whether the urea amount-purification rate characteristic is gradually deteriorated (thermal deterioration) or whether the urea amount-purification rate characteristic is abruptly deteriorated. When the change in the urea amount-purification rate characteristic calculated in the current step S301 from the previous determination gradually deteriorates, it is determined that the heat deterioration criterion is satisfied, and when the change rapidly deteriorates, the heat It is determined that the deterioration standard is not satisfied. For example, when the difference between the maximum purification rate of the urea amount-purification rate characteristic at the previous determination and the current urea amount-purification rate characteristic divided by the energy flowing into the SCR catalyst 3 is a predetermined value or less, It is determined that the heat deterioration standard is satisfied. As shown in FIG. 9, the urea amount-purification rate characteristic gradually deteriorates from the characteristic of (c) to the characteristic of (d) according to the amount of heat energy when the catalyst is deteriorated, whereas when the urea dispersion deteriorates. Then, since the characteristic of (a) rapidly deteriorates to the characteristic of (d) due to abnormality of the urea addition valve 4 or damage of the exhaust passage 2 or the dispersion plate 6, it can be used as a criterion for discrimination.

ステップS301において、熱劣化基準を満たすと肯定判定された場合には、ステップS108へ移行する。ステップS301において、熱劣化基準を満たさないと否定判定された場合には、ステップS109へ移行する。   If it is determined in step S301 that the heat deterioration criterion is satisfied, the process proceeds to step S108. If it is determined in step S301 that the heat deterioration criterion is not satisfied, the process proceeds to step S109.

以上説明した本ルーチンによれば、触媒劣化基準に加えて熱劣化基準によってより詳細に触媒劣化と尿素分散悪化とを区別して判定することができ、触媒劣化が生じているのに尿素分散悪化と誤判定されてしまうことが回避できる。   According to the routine described above, the catalyst deterioration and the urea dispersion deterioration can be distinguished and determined in more detail by the thermal deterioration reference in addition to the catalyst deterioration reference. An erroneous determination can be avoided.

本発明に係る内燃機関の触媒劣化判定装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。   The catalyst deterioration determination device for an internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the scope of the present invention.

実施例1に係る内燃機関及びその排気系の概略構成を示す図。1 is a diagram illustrating a schematic configuration of an internal combustion engine and an exhaust system thereof according to Embodiment 1. FIG. 実施例1に係る尿素量−浄化率特性を示す図。FIG. 3 is a diagram illustrating urea amount-purification rate characteristics according to the first embodiment. 実施例1に係る尿素量−浄化率特性が異なる3つの場合を示す図。The figure which shows three cases from which the urea amount-purification rate characteristic which concerns on Example 1 differs. 実施例1に係るSCR触媒の一部分に尿素が集中して添加される尿素分散悪化の場合を示す図。The figure which shows the case of urea dispersion | distribution deterioration in which urea is concentrated and added to a part of SCR catalyst which concerns on Example 1. FIG. 実施例1に係る正常時、触媒劣化時及び尿素分散悪化時の空気量−浄化率特性を示す図。The figure which shows the air quantity-purification rate characteristic at the time of normal time, catalyst deterioration, and urea dispersion deterioration which concern on Example 1. FIG. 実施例1に係る触媒劣化判定制御ルーチン1を示すフローチャート。3 is a flowchart showing a catalyst deterioration determination control routine 1 according to the first embodiment. 実施例2に係る触媒劣化判定制御ルーチン2を示すフローチャート。7 is a flowchart showing a catalyst deterioration determination control routine 2 according to the second embodiment. 実施例3に係る触媒劣化判定制御ルーチン3を示すフローチャート。10 is a flowchart showing a catalyst deterioration determination control routine 3 according to the third embodiment. 実施例3に係る触媒劣化又は尿素分散悪化により尿素量−浄化率特性が変化していく場合を示す図。The figure which shows the case where the urea amount-purification rate characteristic changes by catalyst deterioration or the urea dispersion | distribution deterioration which concerns on Example 3. FIG.

符号の説明Explanation of symbols

1 内燃機関
2 排気通路
3 SCR触媒
4 尿素添加弁
5 尿素タンク
6 分散板
7 NOxセンサ
8 ECU
9 アクセル開度センサ
10 クランクポジションセンサ
1 Internal combustion engine 2 Exhaust passage 3 SCR catalyst 4 Urea addition valve 5 Urea tank 6 Dispersion plate 7 NOx sensor 8 ECU
9 Accelerator opening sensor 10 Crank position sensor

Claims (3)

内燃機関の排気通路に配置され、還元剤が供給されることで排気中のNOxを浄化する触媒と、
前記触媒に還元剤を添加する還元剤添加手段と、
前記触媒よりも下流の前記排気通路に配置され、前記触媒から排出される排気中のNOx濃度を検出するNOx濃度検出手段と、
前記還元剤添加手段から添加される還元剤量を変化させながら前記NOx濃度検出手段によってNOx濃度を検出し、前記還元剤添加手段から添加される還元剤量に対する前記触媒の浄化率の特性(還元剤量−浄化率特性)を算出する還元剤量−浄化率特性算出手段と、
前記還元剤量−浄化率特性算出手段によって算出された還元剤量−浄化率特性から求められる最適添加量を前記還元剤添加手段から添加しつつ、前記触媒を流通する空気量を変化させながら前記NOx濃度検出手段によってNOx濃度を検出し、前記触媒を流通する空気量に対する前記触媒の浄化率の特性(空気量−浄化率特性)を算出する空気量−浄化率特性算出手段と、
過去に前記空気量−浄化率特性算出手段によって算出された空気量−浄化率基準特性と、現在の前記空気量−浄化率特性算出手段によって算出される空気量−浄化率現行特性と、を比較することで、触媒劣化と還元剤分散悪化とを区別して判定する判定手段と、
を備え、
空気量−浄化率基準特性は、前記還元剤量−浄化率特性算出手段によって算出された還元剤量−浄化率特性から求められる最適添加量が所定量よりも多い場合又は最高浄化率が所定値よりも高い場合、且つ、当該空気量−浄化率基準特性が過去に取得されていない場合に、前記空気量−浄化率特性算出手段によって算出されることを特徴とする内燃機関の触媒劣化判定装置。
A catalyst that is disposed in an exhaust passage of the internal combustion engine and purifies NOx in the exhaust by being supplied with a reducing agent;
Reducing agent addition means for adding a reducing agent to the catalyst;
NOx concentration detection means that is disposed in the exhaust passage downstream of the catalyst and detects the NOx concentration in the exhaust discharged from the catalyst;
The NOx concentration is detected by the NOx concentration detecting means while changing the amount of reducing agent added from the reducing agent adding means, and the characteristic of the purification rate of the catalyst with respect to the amount of reducing agent added from the reducing agent adding means (reduction) Reducing agent amount-purification rate characteristic calculating means for calculating (agent amount-purification rate characteristic);
While adding the optimum addition amount calculated from the reducing agent amount-purification rate characteristic calculated by the reducing agent amount-purification rate characteristic calculating unit from the reducing agent adding unit, the amount of air flowing through the catalyst is changed. An air amount-purification rate characteristic calculating unit that detects a NOx concentration by a NOx concentration detecting unit and calculates a purification rate characteristic (air amount-purification rate characteristic) of the catalyst with respect to the amount of air flowing through the catalyst;
Comparison between the air amount-purification rate reference characteristic calculated by the air amount-purification rate characteristic calculating unit in the past and the current air amount-purification rate current characteristic calculated by the air amount-purification rate characteristic calculating unit. Determination means for distinguishing between catalyst deterioration and reducing agent dispersion deterioration,
With
The air amount-purification rate reference characteristic is obtained when the optimum addition amount obtained from the reducing agent amount-purification rate characteristic calculated by the reducing agent amount-purification rate characteristic calculating means is larger than a predetermined amount or when the maximum purification rate is a predetermined value. And when the air amount-purification rate reference characteristic has not been acquired in the past, the air amount-purification rate characteristic calculating means calculates the catalyst deterioration determining device for an internal combustion engine. .
前記内燃機関の運転状態が前記触媒を流通する空気量が少ない低空気量領域に留まる場合には、前記判定手段は、過去に前記空気量−浄化率特性算出手段によって算出された空気量−浄化率基準特性内の低空気量領域の範囲の特性である低空気量領域基準特性と、現在の前記空気量−浄化率特性算出手段によって前記低空気量領域のみ算出される空気量−浄化率現行特性内の前記低空気量領域の範囲の特性である低空気量領域現行特性と、を比較することで、還元剤分散悪化か否かを判定することを特徴とする請求項1に記載の内燃機関の触媒劣化判定装置。   When the operating state of the internal combustion engine remains in the low air amount region where the amount of air flowing through the catalyst is small, the determination means is the air amount-purification previously calculated by the air amount-purification rate characteristic calculating means. A low air amount region reference characteristic which is a characteristic of the range of the low air amount region in the rate reference characteristic, and an air amount−purification rate currently calculated only by the current air amount−purification rate characteristic calculating means. 2. The internal combustion engine according to claim 1, wherein whether or not the reducing agent dispersion is deteriorated is determined by comparing a current characteristic of the low air amount region that is a property of the range of the low air amount region within the characteristic. Engine catalyst deterioration judgment device. 前記判定手段は、過去に前記空気量−浄化率特性算出手段によって算出された空気量−浄化率基準特性と、現在の前記空気量−浄化率特性算出手段によって算出される空気量−浄化率現行特性と、を比較し、触媒劣化ではないと判定した場合に、前回判定時から現在への前記還元剤量−浄化率特性算出手段によって算出される還元剤量−浄化率特性の変化に基づいて、触媒劣化と還元剤分散悪化とを区別して判定することを特徴とする請求項1に記載の内燃機関の触媒劣化判定装置。   The determination means includes an air amount-purification rate reference characteristic previously calculated by the air amount-purification rate characteristic calculating means, and an air amount-purification rate current characteristic calculated by the current air amount-purification rate characteristic calculating means. And when it is determined that the catalyst is not deteriorated, based on a change in the reducing agent amount-purification rate characteristic calculated by the reducing agent amount-purification rate characteristic calculating means from the previous determination to the present. 2. The catalyst deterioration determination device for an internal combustion engine according to claim 1, wherein the determination is made by distinguishing between catalyst deterioration and reducing agent dispersion deterioration.
JP2008333238A 2008-12-26 2008-12-26 Catalyst deterioration determination device for internal combustion engine Withdrawn JP2010151110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333238A JP2010151110A (en) 2008-12-26 2008-12-26 Catalyst deterioration determination device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333238A JP2010151110A (en) 2008-12-26 2008-12-26 Catalyst deterioration determination device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010151110A true JP2010151110A (en) 2010-07-08

Family

ID=42570461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333238A Withdrawn JP2010151110A (en) 2008-12-26 2008-12-26 Catalyst deterioration determination device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010151110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100729A (en) * 2011-11-07 2013-05-23 Toyota Motor Corp Exhaust emission control device for internal combustion engine
DE112014000499B4 (en) 2013-02-13 2018-09-13 Scania Cv Ab Device and method for troubleshooting an SCR system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100729A (en) * 2011-11-07 2013-05-23 Toyota Motor Corp Exhaust emission control device for internal combustion engine
DE102012219767B4 (en) * 2011-11-07 2016-05-04 Toyota Jidosha Kabushiki Kaisha EXHAUST CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE
DE112014000499B4 (en) 2013-02-13 2018-09-13 Scania Cv Ab Device and method for troubleshooting an SCR system

Similar Documents

Publication Publication Date Title
JP5120464B2 (en) Exhaust purification device abnormality detection device and exhaust purification device abnormality detection method
KR100957138B1 (en) Method for determining malfunction of nitrogen oxide sensor and selective catalytic reduction system operating the same
JP4985849B2 (en) Catalyst deterioration determination device and catalyst deterioration determination method
US7610749B2 (en) Exhaust gas cleaning apparatus having particulate collector for use in automotive vehicle
WO2018097246A1 (en) Exhaust gas purifying device abnormality diagnosing system
JP5382129B2 (en) Exhaust purification device and exhaust purification method for internal combustion engine
US8806928B2 (en) Catalyst deterioration detection apparatus and catalyst deterioration detection method for internal combustion engine
JP2009156206A (en) NOx SENSOR ABNORMALITY DETECTION DEVICE AND EXHAUST EMISSION CONTROL SYSTEM USING IT
JP2012031826A (en) Failure detection system for exhaust emission control device
JP2011226293A (en) Failure detecting device of exhaust gas purification device
JP5240065B2 (en) Failure detection device for exhaust gas purification device
WO2013161032A1 (en) System for determining abnormality in exhaust emission control device for internal combustion engine
JP2016079852A (en) Abnormality determination system of exhaust emission control device of internal combustion engine
JP4781151B2 (en) Exhaust gas purification system for internal combustion engine
JP2010151110A (en) Catalyst deterioration determination device for internal combustion engine
JP2008261302A (en) Exhaust emission control device for internal combustion engine
JP2007040130A (en) Exhaust emission control device of internal combustion engine
JP3969417B2 (en) An exhaust purification system for an internal combustion engine.
JP2005171809A (en) Exhaust emission control device for internal combustion engine
JP2015004352A (en) Filter abnormality determination device
JP7283444B2 (en) engine system
JP5821717B2 (en) Catalyst abnormality judgment system
JP2020023922A (en) Exhaust emission control device of internal combustion engine
JP2013092055A (en) Abnormality detection apparatus for exhaust emission control system
JP2010048115A (en) Catalyst deterioration determination device for internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306