JP2010048115A - Catalyst deterioration determination device for internal combustion engine - Google Patents

Catalyst deterioration determination device for internal combustion engine Download PDF

Info

Publication number
JP2010048115A
JP2010048115A JP2008211315A JP2008211315A JP2010048115A JP 2010048115 A JP2010048115 A JP 2010048115A JP 2008211315 A JP2008211315 A JP 2008211315A JP 2008211315 A JP2008211315 A JP 2008211315A JP 2010048115 A JP2010048115 A JP 2010048115A
Authority
JP
Japan
Prior art keywords
amount
purification rate
catalyst
reducing agent
rate characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008211315A
Other languages
Japanese (ja)
Inventor
Taiga Hagimoto
大河 萩本
Yutaka Sawada
裕 澤田
Daisuke Shibata
大介 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008211315A priority Critical patent/JP2010048115A/en
Publication of JP2010048115A publication Critical patent/JP2010048115A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide technology distinguishing between deterioration of a catalyst and abnormality of reducer addition means and accurately determining the deterioration of the catalyst in a catalyst deterioration determination device for an internal combustion engine. <P>SOLUTION: This device includes an SCR catalyst disposed at an exhaust passage of the internal combustion engine and converting NOx in exhaust gas by supply of urea, and an urea addition valve adding urea to the SCR catalyst, calculates air quantity-conversion rate characteristics of the SCR catalyst, determines deterioration of SCR catalyst when inclination of the air quantity-conversion rate characteristics in relation to air quantity in a prescribed range is constant, and determines abnormality of the urea addition valve when inclination of the air quantity-conversion rate characteristics in relation to air quantity in the prescribed range is not constant. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の触媒劣化判定装置に関する。   The present invention relates to a catalyst deterioration determination device for an internal combustion engine.

従来、アンモニア又はその前駆体である還元剤が供給されることで排気中のNOxを浄化する触媒を内燃機関の排気通路に配置することが行われている。そして、触媒下流のアンモニア濃度を推定すると共に触媒下流のアンモニア濃度を実際に測定し、推定アンモニア濃度と実測アンモニア濃度との乖離に基づき触媒劣化を判定する技術が開示されている(例えば、特許文献1参照)。
特開2006−125323号公報 特開2008−82201号公報 特開2007−32472号公報
Conventionally, a catalyst that purifies NOx in exhaust gas by supplying ammonia or a reducing agent that is a precursor thereof is disposed in an exhaust passage of an internal combustion engine. A technique is disclosed in which the ammonia concentration downstream of the catalyst is estimated, the ammonia concentration downstream of the catalyst is actually measured, and the catalyst deterioration is determined based on the difference between the estimated ammonia concentration and the actually measured ammonia concentration (for example, Patent Documents). 1).
JP 2006-125323 A JP 2008-82201 A JP 2007-32472 A

しかしながら、触媒下流の推定アンモニア濃度と実測アンモニア濃度との乖離は、触媒劣化によって生じるだけでなく、還元剤を添加する還元剤添加弁の異常によっても生じる。そのため、特許文献1の技術では、触媒劣化と判定しても、触媒劣化が生じておらず還元剤添加弁の異常が生じている場合があり、触媒劣化を正確に判定できるものではなかった。   However, the discrepancy between the estimated ammonia concentration downstream of the catalyst and the measured ammonia concentration is caused not only by the catalyst deterioration but also by the abnormality of the reducing agent addition valve for adding the reducing agent. Therefore, in the technique of Patent Document 1, even if it is determined that the catalyst is deteriorated, there is a case where the catalyst is not deteriorated and the reducing agent addition valve is abnormal, and the catalyst deterioration cannot be accurately determined.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、内燃機関の触媒劣化判定装置において、触媒劣化と還元剤添加手段の異常とを区別して判定し、触媒劣化を正確に判定する技術を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to accurately determine catalyst deterioration by distinguishing between catalyst deterioration and reducing agent addition means abnormality in an internal combustion engine catalyst deterioration determination device. It is to provide a technique for making a determination.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
内燃機関の排気通路に配置され、還元剤が供給されることで排気中のNOxを浄化する触媒と、
前記触媒に還元剤を添加する還元剤添加手段と、
前記触媒を流通する空気量に対する前記触媒の浄化率の特性を算出する空気量−浄化率特性算出手段と、
所定範囲の空気量における前記空気量−浄化率特性算出手段によって算出された空気量−浄化率特性の傾きの変動に基づいて、触媒劣化と前記還元剤添加手段の異常とを区別して判定する判定手段と、
を備えたことを特徴とする内燃機関の触媒劣化判定装置である。
In the present invention, the following configuration is adopted. That is, the present invention
A catalyst that is disposed in an exhaust passage of the internal combustion engine and purifies NOx in the exhaust by being supplied with a reducing agent;
Reducing agent addition means for adding a reducing agent to the catalyst;
An air amount-purification rate characteristic calculating means for calculating a characteristic of the purification rate of the catalyst with respect to the amount of air flowing through the catalyst;
Determination that distinguishes between catalyst deterioration and abnormality of the reducing agent addition unit based on a change in the slope of the air amount-purification rate characteristic calculated by the air amount-purification rate characteristic calculation unit in an air amount within a predetermined range. Means,
An apparatus for determining deterioration of a catalyst for an internal combustion engine, comprising:

ここで、所定範囲の空気量とは、排気中のNOxが触媒をすり抜けることなく触媒で全て浄化される空気量が少なすぎる範囲と、排気中のNOxがほぼ全て触媒をすり抜けてしまう空気量が多すぎる範囲と、の間の空気量である。すなわち、この所定範囲の空気量では、排気中のNOxの一部が触媒で浄化されると共に、排気中のNOxの他の一部が触媒をすり抜ける範囲である。   Here, the amount of air in a predetermined range is a range in which the amount of air that is completely purified by the catalyst without passing through the catalyst by NOx is too small, and the amount of air by which almost all of the NOx in the exhaust passes through the catalyst. This is the amount of air between the excessive range. That is, in this predetermined amount of air, a part of the NOx in the exhaust gas is purified by the catalyst, and another part of the NOx in the exhaust gas passes through the catalyst.

本発明者らの鋭意検討によって、所定範囲の空気量における、触媒を流通する空気量に対する触媒の浄化率の特性、すなわち空気量−浄化率特性の傾きの変動に基づいて、触媒劣化と還元剤添加手段の異常とを区別できることを見出した。したがって、本発明によると、触媒劣化と還元剤添加手段の異常とを区別して判定することができ、触媒劣化を正確
に判定することができる。
Based on the inventors' diligent study, the catalyst deterioration rate and the reducing agent based on the characteristics of the purification rate of the catalyst with respect to the amount of air flowing through the catalyst in a predetermined range of air amount, that is, the slope of the air amount-purification rate characteristic. It has been found that it can be distinguished from abnormality of the adding means. Therefore, according to the present invention, it is possible to distinguish between catalyst deterioration and abnormality of the reducing agent addition means, and it is possible to accurately determine catalyst deterioration.

本発明者らの鋭意検討によって、所定範囲の空気量における、触媒を流通する空気量に対する触媒の浄化率の特性、すなわち空気量−浄化率特性の傾きの変動が所定域内に収まると、触媒劣化が生じていることを見出した。また、所定範囲の空気量における、空気量−浄化率特性の傾きの変動が所定域を超えると、還元剤添加手段の異常が生じていることを見出した。このように、触媒劣化が生じている場合と、還元剤添加手段の異常が生じている場合とでは、所定範囲の空気量における空気量−浄化率特性の傾きの変動が所定域を境界にして異なることを見出した。   As a result of intensive studies by the present inventors, when the variation of the inclination of the air purification rate characteristic of the catalyst with respect to the amount of air flowing through the catalyst within the predetermined amount of air, that is, the variation of the slope of the air amount-purification rate characteristic falls within the predetermined range, the catalyst deterioration occurs. I found out. Further, it has been found that when the fluctuation of the slope of the air amount-purification rate characteristic in a predetermined range of air amount exceeds a predetermined range, an abnormality of the reducing agent adding means occurs. As described above, when the catalyst is deteriorated and when the reducing agent addition unit is abnormal, the variation in the slope of the air amount-purification rate characteristic in the air amount within a predetermined range is bounded by the predetermined region. I found something different.

そこで、前記判定手段は、所定範囲の空気量における前記空気量−浄化率特性算出手段によって算出された空気量−浄化率特性の傾きの変動が所定域内に収まる場合に触媒劣化と判定し、所定範囲の空気量における前記空気量−浄化率特性算出手段によって算出された空気量−浄化率特性の傾きの変動が所定域を超える場合に前記還元剤添加手段の異常と判定するとよい。   Therefore, the determination unit determines that the catalyst has deteriorated when the variation in the slope of the air amount-purification rate characteristic calculated by the air amount-purification rate characteristic calculation unit in a predetermined range of air amount falls within a predetermined range. When the variation in the slope of the air amount-purification rate characteristic calculated by the air amount-purification rate characteristic calculating unit in a range of air amounts exceeds a predetermined range, it may be determined that the reducing agent addition unit is abnormal.

ここで、所定域の傾きの変動とは、それ以内に収まる場合に触媒劣化と判断でき、それを超える場合に還元剤添加手段の異常と判断できる閾値であり、予め実験や検証等で求めることができる。   Here, the fluctuation in the inclination of the predetermined range is a threshold value that can be determined as catalyst deterioration when it falls within that range, and that it can be determined as an abnormality of the reducing agent addition means when exceeding that, and is obtained in advance through experiments and verifications. Can do.

本発明によると、触媒劣化と還元剤添加手段の異常とを区別して判定することができ、触媒劣化を正確に判定することができる。   According to the present invention, it is possible to distinguish between the catalyst deterioration and the abnormality of the reducing agent addition means, and it is possible to accurately determine the catalyst deterioration.

前記触媒よりも下流の前記排気通路に配置され、前記触媒から排出される排気中のNOx濃度を検出するNOx濃度検出手段と、
前記還元剤添加手段から添加される還元剤量を変化させながら前記NOx濃度検出手段によってNOx濃度を検出し、前記還元剤添加手段から添加される還元剤量に対する前記触媒の浄化率の特性を算出する還元剤量−浄化率特性算出手段と、
を備え、
前記空気量−浄化率特性算出手段は、前記還元剤量−浄化率特性算出手段によって算出された還元剤量−浄化率特性から求められる最適添加量を前記還元剤添加手段から添加しつつ、前記触媒を流通する空気量を変化させながら前記NOx濃度検出手段によってNOx濃度を検出し、前記触媒を流通する空気量に対する前記触媒の浄化率の特性を算出するとよい。
NOx concentration detection means that is disposed in the exhaust passage downstream of the catalyst and detects the NOx concentration in the exhaust discharged from the catalyst;
The NOx concentration is detected by the NOx concentration detecting means while changing the amount of reducing agent added from the reducing agent adding means, and the characteristic of the purification rate of the catalyst with respect to the amount of reducing agent added from the reducing agent adding means is calculated. Reducing agent amount-purification rate characteristic calculating means,
With
The air amount-purification rate characteristic calculating means adds the optimum addition amount calculated from the reducing agent amount-purification rate characteristic calculated by the reducing agent amount-purification rate characteristic calculating means from the reducing agent addition means, The NOx concentration may be detected by the NOx concentration detecting means while changing the amount of air flowing through the catalyst, and the purification rate characteristic of the catalyst with respect to the amount of air flowing through the catalyst may be calculated.

本発明によると、空気量−浄化率特性を正確に算出することができ、空気量−浄化率特性に基づき判定される触媒劣化と還元剤添加手段の異常とを正確に区別することができる。   According to the present invention, the air amount-purification rate characteristic can be accurately calculated, and the catalyst deterioration determined based on the air amount-purification rate characteristic and the abnormality of the reducing agent addition means can be accurately distinguished.

前記空気量−浄化率特性算出手段は、前記還元剤量−浄化率特性算出手段によって算出された還元剤量−浄化率特性から求められる最適添加量が所定量以下、且つ、前記還元剤量−浄化率特性算出手段によって算出された還元剤量−浄化率特性から求められる最高浄化率が所定値以下の場合に、前記触媒を流通する空気量に対する前記触媒の浄化率の特性を算出するとよい。   The air amount-purification rate characteristic calculating means is such that the optimum addition amount obtained from the reducing agent amount-reduction rate characteristic calculated by the reducing agent amount-purification rate characteristic calculating means is equal to or less than a predetermined amount, and the reducing agent amount- When the maximum purification rate obtained from the reducing agent amount-purification rate characteristic calculated by the purification rate characteristic calculating means is equal to or less than a predetermined value, the characteristic of the purification rate of the catalyst with respect to the amount of air flowing through the catalyst may be calculated.

ここで、最適添加量の所定量とは、それよりも多い還元剤量であると、他の異常が生じているおそれがある量である。また、最高浄化率の所定値とは、それよりも高い浄化率であると、未だ触媒が劣化していないと判断できる値である。   Here, the predetermined amount of the optimum addition amount is an amount that may cause another abnormality when the amount of the reducing agent is larger than that. Moreover, the predetermined value of the maximum purification rate is a value at which it can be determined that the catalyst has not yet deteriorated if the purification rate is higher than that.

本発明によると、最適添加量が所定量以下、且つ、最高浄化率が所定値以下の場合に、
空気量−浄化率特性算出手段によって空気量−浄化率特性を算出するので、他の異常が生じている場合や触媒が劣化していない場合を排除できる。このため、空気量−浄化率特性を正確に算出することができ、空気量−浄化率特性に基づき判定される触媒劣化と還元剤添加手段の異常とを正確に区別することができる。
According to the present invention, when the optimum addition amount is a predetermined amount or less and the maximum purification rate is a predetermined value or less,
Since the air amount-purification rate characteristic is calculated by the air amount-purification rate characteristic calculating means, it is possible to eliminate the case where another abnormality has occurred or the catalyst has not deteriorated. For this reason, the air amount-purification rate characteristic can be accurately calculated, and the catalyst deterioration determined based on the air amount-purification rate characteristic and the abnormality of the reducing agent addition means can be accurately distinguished.

本発明によると、内燃機関の触媒劣化判定装置において、触媒劣化と還元剤添加手段の異常とを区別して判定することができ、触媒劣化を正確に判定することができる。   According to the present invention, in the catalyst deterioration determination device for an internal combustion engine, it is possible to distinguish between catalyst deterioration and abnormality of the reducing agent addition means, and it is possible to accurately determine catalyst deterioration.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
図1は、本実施例に係る内燃機関の触媒劣化判定装置を適用する内燃機関及びその排気系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒を有する水冷式の4ストロークサイクル・ディーゼルエンジンである。内燃機関1は車両に搭載されている。
<Example 1>
FIG. 1 is a diagram illustrating a schematic configuration of an internal combustion engine to which the catalyst deterioration determination device for an internal combustion engine according to the present embodiment is applied and an exhaust system thereof. An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-stroke cycle diesel engine having four cylinders. The internal combustion engine 1 is mounted on a vehicle.

内燃機関1には、排気通路2が接続されている。排気通路2には、SCR触媒3が配置されている。SCR触媒3は、当該SCR触媒3に還元剤としての尿素が供給されることで排気通路2を流通する排気中のNOxを浄化する。本実施例のSCR触媒3が本発明の触媒に相当する。なお、本実施例では還元剤として尿素を用いるが、本発明の還元剤としてはこれに限られるものではない。   An exhaust passage 2 is connected to the internal combustion engine 1. An SCR catalyst 3 is disposed in the exhaust passage 2. The SCR catalyst 3 purifies NOx in the exhaust gas flowing through the exhaust passage 2 by supplying urea as a reducing agent to the SCR catalyst 3. The SCR catalyst 3 of this example corresponds to the catalyst of the present invention. In this embodiment, urea is used as the reducing agent, but the reducing agent of the present invention is not limited to this.

SCR触媒3よりも上流側の排気通路2には、排気通路2内へ尿素を添加する尿素添加弁4が配置されている。尿素添加弁4から添加された尿素は、SCR触媒3へ供給される。本実施例の尿素添加弁4が本発明の還元剤添加手段に相当する。   A urea addition valve 4 that adds urea into the exhaust passage 2 is disposed in the exhaust passage 2 upstream of the SCR catalyst 3. Urea added from the urea addition valve 4 is supplied to the SCR catalyst 3. The urea addition valve 4 of this embodiment corresponds to the reducing agent addition means of the present invention.

そして、尿素添加弁4の下流側且つSCR触媒3の上流側の排気通路には、尿素添加弁4から添加された尿素を分散させる分散板5が配置されている。排気通路2は、分散板5を境にして、分散板5よりも上流側が一定の狭い通路面積であり、分散板5よりも下流側がSCR触媒3に近づくにつれ通路面積が広くなっている。   In the exhaust passage downstream of the urea addition valve 4 and upstream of the SCR catalyst 3, a dispersion plate 5 for dispersing urea added from the urea addition valve 4 is disposed. The exhaust passage 2 has a constant narrow passage area upstream from the dispersion plate 5 with the dispersion plate 5 as a boundary, and the passage area becomes wider as the downstream side approaches the SCR catalyst 3 than the dispersion plate 5.

SCR触媒3の直下流側の排気通路2には、SCR触媒3から流出した排気中のNOx濃度を検出するNOxセンサ6が配置されている。本実施例のNOxセンサ6が本発明のNOx濃度検出手段に相当する。排気通路2及び上記排気通路2に配置される機器が内燃機関1の排気系を構成している。   A NOx sensor 6 that detects the NOx concentration in the exhaust gas flowing out from the SCR catalyst 3 is disposed in the exhaust passage 2 immediately downstream of the SCR catalyst 3. The NOx sensor 6 of this embodiment corresponds to the NOx concentration detection means of the present invention. The exhaust passage 2 and the devices arranged in the exhaust passage 2 constitute an exhaust system of the internal combustion engine 1.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU7が併設されている。このECU7は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。   The internal combustion engine 1 configured as described above is provided with an ECU 7 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 7 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.

ECU7には、NOxセンサ6の他に、アクセルペダルの踏み込み量に応じた電気信号を出力するアクセル開度センサ8、及び内燃機関1の機関回転数を検出するクランクポジションセンサ9が電気配線を介して接続され、これら各種センサの出力信号がECU7に入力される。   In addition to the NOx sensor 6, the ECU 7 includes an accelerator opening sensor 8 that outputs an electric signal corresponding to the amount of depression of the accelerator pedal, and a crank position sensor 9 that detects the engine speed of the internal combustion engine 1 via electric wiring. The output signals of these various sensors are input to the ECU 7.

一方、ECU7には、尿素添加弁4が電気配線を介して接続されており、該ECU7により尿素添加弁4が制御され、添加尿素量や添加タイミング等が指示される。   On the other hand, the urea addition valve 4 is connected to the ECU 7 through electric wiring, and the urea addition valve 4 is controlled by the ECU 7 to instruct the added urea amount, the addition timing, and the like.

ところで、従来、尿素添加弁4から添加される尿素量を変化させながら、NOxセンサ
6によってNOx濃度を検出し、図2に示す尿素添加弁4から添加される尿素量に対するSCR触媒3の浄化率の特性(以下、尿素量−浄化率特性)を算出していた。そして、尿素量−浄化率特性の違いから、触媒劣化を判定していた。
Conventionally, the NOx concentration is detected by the NOx sensor 6 while changing the amount of urea added from the urea addition valve 4, and the purification rate of the SCR catalyst 3 with respect to the amount of urea added from the urea addition valve 4 shown in FIG. (Hereinafter, urea amount-purification rate characteristic) was calculated. Then, catalyst deterioration is determined from the difference in urea amount-purification rate characteristics.

図3は尿素量−浄化率特性が異なる3つの場合を示している。図3に示す実線の尿素量−浄化率特性は、SCR触媒3が正常である場合の特性である。図3に示す破線の尿素量−浄化率特性は、SCR触媒3が劣化して50%浄化率が悪化した場合の特性である。図3に示す一点鎖線の尿素量−浄化率特性は、尿素添加弁4からは尿素を添加しているもののSCR触媒3に供給される尿素量が50%不足した場合の特性である。従来においては、図3に示す破線の特性となることで、SCR触媒3が劣化したと判定していた。   FIG. 3 shows three cases with different urea amount-purification rate characteristics. The urea amount-purification rate characteristic shown by the solid line in FIG. 3 is a characteristic when the SCR catalyst 3 is normal. The urea amount-purification rate characteristic indicated by the broken line in FIG. 3 is a characteristic when the SCR catalyst 3 deteriorates and the 50% purification rate deteriorates. The urea amount-purification rate characteristic of the alternate long and short dash line shown in FIG. 3 is a characteristic when the urea amount supplied to the SCR catalyst 3 is insufficient by 50% although urea is added from the urea addition valve 4. Conventionally, it has been determined that the SCR catalyst 3 has deteriorated due to the broken line characteristics shown in FIG.

しかしながら、図4に示すように、尿素添加弁4から添加される尿素が一部分に集中し、SCR触媒3への尿素の分散が悪化する場合がある。この場合にも、図3に示す破線の尿素量−浄化率特性となることが判明した。つまり、尿素添加弁4からSCR触媒3への尿素の分散が悪化して50%浄化率が悪化した場合も、図3に示す破線の尿素量−浄化率特性となる。   However, as shown in FIG. 4, urea added from the urea addition valve 4 concentrates on a part, and dispersion of urea in the SCR catalyst 3 may deteriorate. Also in this case, it has been found that the urea amount-purification rate characteristic indicated by the broken line in FIG. 3 is obtained. That is, even when the dispersion of urea from the urea addition valve 4 to the SCR catalyst 3 is deteriorated and the 50% purification rate is deteriorated, the urea amount-purification rate characteristic of the broken line shown in FIG. 3 is obtained.

すなわち、SCR触媒3への尿素の分散が悪化すると、SCR触媒3の一部分に尿素が反応することで発生したNHが集中してしまう。このため、尿素の分散が正常のときの尿素量を添加してしまうと、SCR触媒3のNHが集中した部分からNHのすり抜けが生じる。よって、SCR触媒3への尿素の分散が悪化した場合には、SCR触媒3が劣化していないにもかかわらず、図3に示す破線の尿素量−浄化率特性のように特性が算出されてしまう。 That is, when the dispersion of urea in the SCR catalyst 3 is deteriorated, NH 3 generated by the reaction of urea with a part of the SCR catalyst 3 is concentrated. Therefore, the dispersion of the urea resulting in the addition of urea amount when normal, slipping from the portion where NH 3 in the SCR catalyst 3 is concentrated in the NH 3 occurs. Therefore, when the dispersion of urea in the SCR catalyst 3 deteriorates, the characteristic is calculated like the urea amount-purification rate characteristic of the broken line shown in FIG. 3 even though the SCR catalyst 3 is not deteriorated. End up.

以上のことから、尿素量−浄化率特性の違いからSCR触媒3の劣化を判定しても、SCR触媒3の劣化が生じておらず尿素添加弁4の異常が生じている場合があり、SCR触媒3の劣化を正確に判定できるものではなかった。   From the above, even if the deterioration of the SCR catalyst 3 is determined from the difference in the urea amount-purification rate characteristics, the deterioration of the SCR catalyst 3 does not occur and the abnormality of the urea addition valve 4 may occur. The deterioration of the catalyst 3 could not be accurately determined.

ところで、SCR触媒3を流通する空気量を変化させながらNOxセンサ6によってNOx濃度を検出し、SCR触媒3を流通する空気量に対するSCR触媒3の浄化率の特性(以下、空気量−浄化率特性という)を算出することもできる。本発明者らの鋭意検討によって、空気量−浄化率特性の傾きがある範囲の空気量で一定であると、SCR触媒3の劣化が生じていることを見出した。また、空気量−浄化率特性の傾きがある範囲の空気量で一定でないと、尿素添加弁4の異常が生じていることを見出した。このように、SCR触媒3の劣化と、尿素添加弁4の異常とでは、空気量−浄化率特性の傾きが異なることを見出した。   Incidentally, the NOx concentration is detected by the NOx sensor 6 while changing the amount of air flowing through the SCR catalyst 3, and the characteristic of the purification rate of the SCR catalyst 3 with respect to the amount of air flowing through the SCR catalyst 3 (hereinafter referred to as air amount-purification rate characteristic). Can also be calculated. As a result of diligent studies by the present inventors, it has been found that the SCR catalyst 3 is deteriorated when the air amount-purification rate characteristic has a constant air amount within a certain range. Further, it has been found that the urea addition valve 4 is abnormal if the air amount is not constant within a certain range of the air amount-purification rate characteristics. Thus, it has been found that the slope of the air amount-purification rate characteristic differs between the deterioration of the SCR catalyst 3 and the abnormality of the urea addition valve 4.

ここで、空気量−浄化率特性の傾きが一定とは、空気量−浄化率特性の傾きの変動が所定域内に収まる場合をいい、空気量−浄化率特性の傾きが一定でないとは、空気量−浄化率特性の傾きの変動が所定域を超える場合をいう。また、所定域の傾きの変動とは、それ以内に収まる場合に触媒劣化と判断でき、それを超える場合に還元剤添加手段の異常と判断できる閾値であり、予め実験や検証等で求めておくことができる。   Here, the constant slope of the air amount-purification rate characteristic means that the fluctuation of the slope of the air amount-purification rate characteristic is within a predetermined range, and the slope of the air amount-purification rate characteristic is not constant. This refers to a case where the fluctuation of the slope of the amount-purification rate characteristic exceeds a predetermined range. In addition, the fluctuation in the inclination of the predetermined range is a threshold value that can be determined as catalyst deterioration when it falls within the predetermined range, and can be determined as an abnormality of the reducing agent addition means when exceeding that, and is determined in advance through experiments and verifications. be able to.

まず、SCR触媒3の劣化が生じた場合について説明する。SCR触媒3の劣化が生じた場合には、図5に示すように、SCR触媒3内に中程度のNHが全体に分布して吸着される。そして、SCR触媒3の空気量−浄化率特性を算出すると、図6に示すようになる。図6において、空気量が少ない「あ」の空気量の範囲では、空気量が過剰に少なく、SCR触媒3からNOxがすり抜けることなくSCR触媒3内で全て浄化される。空気量が中程度の「い」の空気量の範囲では、空気量が多く、一部のNOxはSCR触媒3内で十分な還元反応をすることができなくなり、一部のNOxがSCR触媒3からすり抜ける
。「い」の空気量の範囲では、空気量が多くなるにつれ、NOxがSCR触媒3からすり抜ける量が多くなり、浄化率が低下していく。空気量が過剰に多い「う」の空気量の範囲では、空気量が過剰に多くなり、ほぼ全てのNOxがSCR触媒3からすり抜ける。
First, a case where the SCR catalyst 3 is deteriorated will be described. When the degradation of the SCR catalyst 3 occurs, medium NH 3 is distributed and adsorbed throughout the SCR catalyst 3 as shown in FIG. Then, when the air amount-purification rate characteristic of the SCR catalyst 3 is calculated, it is as shown in FIG. In FIG. 6, in the range of the “a” air amount where the air amount is small, the air amount is excessively small, and NOx does not slip through the SCR catalyst 3 and is completely purified in the SCR catalyst 3. In the range of medium air volume “I”, the air volume is large, and some NOx cannot be sufficiently reduced in the SCR catalyst 3, and some NOx becomes SCR catalyst 3. Slip through. In the range of the air amount “I”, as the air amount increases, the amount of NOx passing through the SCR catalyst 3 increases, and the purification rate decreases. In the range of the air amount of “U” where the air amount is excessively large, the air amount is excessively large and almost all NOx passes through the SCR catalyst 3.

ここで、「い」の空気量の範囲であると、SCR触媒3の劣化が生じた場合の空気量−浄化率特性の傾きが一定となる。このことから、本発明者らは、「い」の空気量の範囲における空気量−浄化率特性の傾きが一定であると、SCR触媒3の劣化が生じていることを見出した。   Here, when the air amount is in the range of “I”, the slope of the air amount-purification rate characteristic when the SCR catalyst 3 is deteriorated is constant. From this fact, the present inventors have found that the SCR catalyst 3 is deteriorated when the slope of the air amount-purification rate characteristic in the range of “i” is constant.

一方、尿素添加弁4の異常が生じた場合について説明する。ここでは、SCR触媒3の中心部付近に集中して尿素が添加され、尿素の分散が悪化する場合を挙げる。尿素添加弁4の異常が生じた場合には、図7に示すように、SCR触媒3内の排気流れ方向上流から下流にわたる中心部に大程度のNHが分布して吸着される。また、SCR触媒3内の中心部の周りの縁部に小程度のNHが分布して吸着される。そして、SCR触媒3の空気量−浄化率特性を算出すると、図8に示すようになる。図8において、空気量が最も少ない「か」の空気量の範囲では、空気量が過剰に少なく、SCR触媒3内の中心部及び縁部の両方でNOxがすり抜けることなく浄化される。空気量がやや少ない程度の「き」の空気量の範囲では、空気量がやや多くなり、SCR触媒3内の中心部ではNOxがすり抜けることなく浄化される。一方、SCR触媒3内の縁部では一部のNOxは十分な還元反応をすることができなくなり、一部のNOxがSCR触媒3内の縁部からすり抜ける。空気量が中程度の「く」の空気量の範囲では、空気量が多くなり、SCR触媒3内の中心部ではNOxがすり抜けることなく浄化される。一方、SCR触媒3内の縁部ではほぼ全てのNOxがSCR触媒3内の縁部からすり抜ける。空気量がさらに多い「け」の空気量の範囲では、空気量がさらに多くなり、SCR触媒3内の中心部では一部のNOxは十分な還元反応をすることができなくなり、一部のNOxがSCR触媒3内の中心部からすり抜ける。一方、SCR触媒3内の縁部ではほぼ全てのNOxがSCR触媒3内の縁部からすり抜ける。空気量が過剰に多い「こ」の空気量の範囲では、空気量が過剰に多くなり、ほぼ全てのNOxがSCR触媒3内の中心部及び縁部の両方からすり抜ける。 On the other hand, the case where abnormality of the urea addition valve 4 occurs will be described. Here, a case where urea is concentrated in the vicinity of the center portion of the SCR catalyst 3 and urea dispersion is deteriorated will be exemplified. When abnormality of the urea addition valve 4 occurs, as shown in FIG. 7, a large amount of NH 3 is distributed and adsorbed in the central portion of the SCR catalyst 3 extending from upstream to downstream in the exhaust flow direction. In addition, a small amount of NH 3 is distributed and adsorbed on the edge around the center of the SCR catalyst 3. Then, when the air amount-purification rate characteristic of the SCR catalyst 3 is calculated, it is as shown in FIG. In FIG. 8, in the range of the “ka” air amount with the smallest air amount, the air amount is excessively small, and NOx is purified without slipping through both the center portion and the edge portion in the SCR catalyst 3. In the “ki” air amount range in which the air amount is slightly small, the air amount is slightly increased, and NOx is purified without slipping through the central portion in the SCR catalyst 3. On the other hand, a part of NOx cannot perform a sufficient reduction reaction at the edge in the SCR catalyst 3, and a part of NOx slips through the edge in the SCR catalyst 3. In the air volume range where the air volume is medium, the air volume increases, and NOx is purified without passing through the center of the SCR catalyst 3. On the other hand, almost all NOx passes through the edge in the SCR catalyst 3 at the edge in the SCR catalyst 3. In the range of the air amount of “ke” where the air amount is larger, the air amount is further increased, and some of the NOx cannot perform a sufficient reduction reaction in the center of the SCR catalyst 3, and some of the NOx. Slips through the center of the SCR catalyst 3. On the other hand, almost all NOx passes through the edge in the SCR catalyst 3 at the edge in the SCR catalyst 3. In the range of the “ko” air amount in which the air amount is excessively large, the air amount is excessively large, and almost all NOx slips through both the central portion and the edge portion in the SCR catalyst 3.

ここで、尿素添加弁4の異常が生じた場合に、SCR触媒3の劣化が生じた場合の「い」の空気量の範囲に相当する空気量の範囲は、「き」、「く」、「け」の空気量の範囲である。これらの「き」、「く」、「け」の空気量の範囲では、SCR触媒3の劣化が生じた場合の空気量−浄化率特性の傾きが、「き」、「く」、「け」の空気量の範囲でそれぞれ異なる。よって、これらの範囲での空気量−浄化率特性の傾きは一定とはならず、異なる複数の傾きとなる。このことから、本発明者らは、「い」の空気量の範囲に相当する「き」、「く」、「け」の空気量の範囲おける空気量−浄化率特性の傾きがで一定でないと、尿素添加弁4の異常が生じていることを見出した。   Here, when the abnormality of the urea addition valve 4 occurs, the range of the air amount corresponding to the range of the air amount of “yes” when the deterioration of the SCR catalyst 3 occurs is “ki”, “ku”, It is the range of air volume of “ke”. In these “ki”, “ku”, and “ke” air quantity ranges, the slope of the air quantity-purification rate characteristic when the SCR catalyst 3 deteriorates is “ki”, “ku”, “ke”. ”Differs in the range of air volume. Therefore, the slope of the air amount-purification rate characteristic in these ranges is not constant, and has a plurality of different slopes. Therefore, the inventors of the present invention have a non-constant slope of the air amount-purification rate characteristic in the air amount range of “ki”, “ku”, and “ke” corresponding to the air amount range of “i”. And found that an abnormality of the urea addition valve 4 occurred.

以上のように本発明者らは、SCR触媒3の劣化と、尿素添加弁4の異常とでは、空気量−浄化率特性の傾きが異なることを見出した。   As described above, the present inventors have found that the slope of the air amount-purification rate characteristic differs between the deterioration of the SCR catalyst 3 and the abnormality of the urea addition valve 4.

そこで、本実施例では、所定範囲の空気量における空気量−浄化率特性の傾きの変動に基づいて、SCR触媒3の劣化と、尿素添加弁4の異常とを区別するようにした。つまり、所定範囲の空気量における空気量−浄化率特性の傾きが一定である場合にSCR触媒3の劣化と判定し、所定範囲の空気量における空気量−浄化率特性の傾きが一定でない場合に尿素添加弁4の異常と判定するようにした。   Therefore, in this embodiment, the deterioration of the SCR catalyst 3 and the abnormality of the urea addition valve 4 are distinguished from each other based on the change in the slope of the air amount-purification rate characteristic in the air amount within a predetermined range. That is, it is determined that the SCR catalyst 3 has deteriorated when the slope of the air amount-purification rate characteristic in the air amount in the predetermined range is constant, and when the slope of the air amount-purification rate characteristic in the air amount in the predetermined range is not constant. It was determined that the urea addition valve 4 was abnormal.

ここで、所定範囲の空気量とは、排気中のNOxがSCR触媒3をすり抜けることなくSCR触媒3で全て浄化される空気量が少なすぎる範囲と、排気中のNOxがほぼ全てSCR触媒3をすり抜けてしまう空気量が多すぎる範囲と、の間の空気量である。すなわち
、この所定範囲の空気量では、尿素添加弁4に異常が生じていない場合に、排気中のNOxの一部がSCR触媒3で浄化されると共に、排気中のNOxの他の一部がSCR触媒3をすり抜ける範囲である。本実施例では、図6に示す「い」の空気量の範囲をほぼ含む範囲を所定範囲とした。この空気量の所定範囲は、予め実験や検証等によって求めておくことができる。
Here, the air amount in the predetermined range is a range in which the amount of air that is completely purified by the SCR catalyst 3 without passing through the SCR catalyst 3 without passing through the SCR catalyst 3, and almost all the NOx in the exhaust passes through the SCR catalyst 3. This is the amount of air between the range where too much air passes through. That is, with this amount of air, when no abnormality has occurred in the urea addition valve 4, a part of the NOx in the exhaust is purified by the SCR catalyst 3, and another part of the NOx in the exhaust is removed. This is a range that passes through the SCR catalyst 3. In the present embodiment, the range that substantially includes the range of “い” shown in FIG. 6 is defined as the predetermined range. The predetermined range of the air amount can be obtained in advance by experiment, verification, or the like.

本実施例によると、SCR触媒3の劣化と尿素添加弁4の異常とを区別して判定することができ、SCR触媒3の劣化を正確に判定することができる。   According to the present embodiment, the deterioration of the SCR catalyst 3 and the abnormality of the urea addition valve 4 can be distinguished and determined, and the deterioration of the SCR catalyst 3 can be accurately determined.

ここで、空気量−浄化率特性を算出することは、尿素量−浄化率特性から求められる最適添加量を尿素添加弁4から添加しつつ、SCR触媒3を流通する空気量を変化させながらNOxセンサ6によってNOx濃度を検出し、求めるようにした。   Here, calculating the air amount-purification rate characteristic means that the NOx is obtained while changing the amount of air flowing through the SCR catalyst 3 while adding the optimum addition amount obtained from the urea amount-purification rate characteristic from the urea addition valve 4. The sensor 6 detects and obtains the NOx concentration.

本実施例によると、空気量−浄化率特性を正確に算出することができ、空気量−浄化率特性に基づき判定されるSCE触媒3の劣化と尿素添加弁4の異常とを正確に区別することができる。   According to this embodiment, the air amount-purification rate characteristic can be accurately calculated, and the deterioration of the SCE catalyst 3 determined based on the air amount-purification rate characteristic and the abnormality of the urea addition valve 4 are accurately distinguished. be able to.

また、空気量−浄化率特性を算出することは、尿素量−浄化率特性から求められる最適添加量が所定量以下、且つ、尿素量−浄化率特性から求められる最高浄化率が所定値以下の場合に、求めるようにした。   In addition, calculating the air amount-purification rate characteristic is that the optimum addition amount obtained from the urea amount-purification rate characteristic is not more than a predetermined amount and the maximum purification rate obtained from the urea amount-purification rate characteristic is not more than a predetermined value. In case you asked.

ここで、最適添加量の所定量とは、それよりも多い尿素量であると、他の異常が生じているおそれがある量である。また、最高浄化率の所定値とは、それよりも高い浄化率であると、未だSCR触媒3が劣化していないと判断できる値である。   Here, the predetermined amount of the optimum addition amount is an amount that may cause another abnormality when the urea amount is larger than that. Moreover, the predetermined value of the maximum purification rate is a value at which it can be determined that the SCR catalyst 3 has not yet deteriorated if the purification rate is higher than that.

本実施例によると、最適添加量が所定量以下、且つ、最高浄化率が所定値以下の場合に、空気量−浄化率特性を算出するので、他の異常が生じている場合やSCR触媒3が劣化していない場合を排除できる。このため、空気量−浄化率特性を正確に算出することができ、空気量−浄化率特性に基づき判定されるSCR触媒3の劣化と尿素添加弁4の異常とを正確に区別することができる。   According to the present embodiment, the air amount-purification rate characteristic is calculated when the optimum addition amount is equal to or less than the predetermined amount and the maximum purification rate is equal to or less than the predetermined value. The case where is not deteriorated can be excluded. Therefore, the air amount-purification rate characteristic can be accurately calculated, and the deterioration of the SCR catalyst 3 determined based on the air amount-purification rate characteristic and the abnormality of the urea addition valve 4 can be accurately distinguished. .

次に、本実施例による触媒劣化判定制御ルーチンについて説明する。図9は、本実施例による触媒劣化判定制御ルーチンを示したフローチャートである。本ルーチンは、所定の時間毎に繰り返しECU7により実行される。   Next, the catalyst deterioration determination control routine according to this embodiment will be described. FIG. 9 is a flowchart showing a catalyst deterioration determination control routine according to this embodiment. This routine is repeatedly executed by the ECU 7 every predetermined time.

ステップS101では、SCR触媒3の尿素量−浄化率特性を算出する。当該尿素量−浄化率特性は、空気量が一定の状態で尿素添加弁4から添加される尿素量を変化させながらNOxセンサ6によってNOx濃度を検出し、算出される。本ステップを実行するECU7が本発明の還元剤量−浄化率特性算出手段に相当する。   In step S101, the urea amount-purification rate characteristic of the SCR catalyst 3 is calculated. The urea amount-purification rate characteristic is calculated by detecting the NOx concentration by the NOx sensor 6 while changing the amount of urea added from the urea addition valve 4 while the air amount is constant. The ECU 7 that executes this step corresponds to the reducing agent amount-purification rate characteristic calculating means of the present invention.

ステップS102では、ステップS101で算出した尿素量−浄化率特性から求められる最適添加量が所定量以下、且つ、尿素量−浄化率特性から求められる最高浄化率が所定値以下であるか否かを判別する。最適添加量は、図2に示す尿素量−浄化率特性のうち、浄化率が最も高くなるときの尿素量である。最高浄化率は、図2に示す尿素量−浄化率特性のうち、最適添加量を添加したときの浄化率である。   In step S102, it is determined whether the optimum addition amount obtained from the urea amount-purification rate characteristic calculated in step S101 is equal to or less than a predetermined amount, and whether the maximum purification rate obtained from the urea amount-purification rate characteristic is equal to or less than a predetermined value. Determine. The optimum addition amount is the urea amount when the purification rate becomes the highest among the urea amount-purification rate characteristics shown in FIG. The maximum purification rate is the purification rate when the optimum addition amount is added among the urea amount-purification rate characteristics shown in FIG.

ステップS102において、最適添加量が所定量以下、且つ、最高浄化率が所定値以下であると肯定判定された場合には、ステップS103へ移行する。これにより、ステップS103へ移行する場合は、SCR触媒3が劣化したとき、及び、SCR触媒3の劣化が生じておらず尿素添加弁4の異常が生じているときに限られる。ステップS102におい
て、最適添加量が所定量よりも多い、又は、最高浄化率が所定値よりも高いと否定判定された場合には、本ルーチンを一旦終了する。
If it is determined in step S102 that the optimum addition amount is equal to or less than the predetermined amount and the maximum purification rate is equal to or less than the predetermined value, the process proceeds to step S103. As a result, the process proceeds to step S103 only when the SCR catalyst 3 has deteriorated and when the SCR catalyst 3 has not deteriorated and the urea addition valve 4 has malfunctioned. If it is determined in step S102 that the optimum addition amount is greater than the predetermined amount or the maximum purification rate is higher than the predetermined value, this routine is temporarily terminated.

ステップS103では、SCR触媒3の空気量−浄化率特性を算出する。当該空気量−浄化率特性は、ステップS101で算出した尿素量−浄化率特性から求められる最適添加量を尿素添加弁4から添加しつつ、SCR触媒3を流通する空気量を変化させながらNOxセンサ6によってNOx濃度を検出し、算出される。本ステップを実行するECU7が本発明の空気量−浄化率特性算出手段に相当する。これにより、図10に示すようにSCR触媒3の空気量−浄化率特性が算出される。ここで、図10に示す実線はSCR触媒3の劣化が生じている場合の特性であり、破線は尿素添加弁4の異常が生じている場合の特性である。   In step S103, the air amount-purification rate characteristic of the SCR catalyst 3 is calculated. The air amount-purification rate characteristic is obtained by adding the optimum addition amount obtained from the urea amount-purification rate characteristic calculated in step S101 from the urea addition valve 4 while changing the amount of air flowing through the SCR catalyst 3, and the NOx sensor. 6, the NOx concentration is detected and calculated. The ECU 7 that executes this step corresponds to the air amount-purification rate characteristic calculating means of the present invention. Thereby, as shown in FIG. 10, the air amount-purification rate characteristic of the SCR catalyst 3 is calculated. Here, the solid line shown in FIG. 10 is a characteristic when the SCR catalyst 3 is deteriorated, and the broken line is a characteristic when the urea addition valve 4 is abnormal.

ステップS104では、所定範囲の空気量におけるステップS103で算出した空気量−浄化率特性の傾きが一定か否かを判別する。本ステップを実行するECU7が本発明の判定手段に相当する。   In step S104, it is determined whether or not the slope of the air amount-purification rate characteristic calculated in step S103 for a predetermined range of air amount is constant. The ECU 7 that executes this step corresponds to the determination means of the present invention.

ステップS104において、図10に示す実線のように所定範囲の空気量における空気量−浄化率特性の傾きが一定であると肯定判定された場合には、ステップS105へ移行する。ステップS104において、図10に示す破線のように所定範囲の空気量における空気量−浄化率特性の傾きが一定でないと否定判定された場合には、ステップS106へ移行する。   If it is determined in step S104 that the slope of the air amount-purification rate characteristic in the air amount in the predetermined range is constant as indicated by the solid line in FIG. 10, the process proceeds to step S105. If it is determined in step S104 that the slope of the air amount-purification rate characteristic in the air amount in the predetermined range is not constant as indicated by the broken line in FIG. 10, the process proceeds to step S106.

ステップS105では、SCR触媒3の劣化と判定する。そして、本ルーチンを一旦終了する。   In step S105, it is determined that the SCR catalyst 3 has deteriorated. Then, this routine is temporarily terminated.

ステップS106では、尿素添加弁4の異常と判定する。ステップS106に続くステップS107では、尿素添加弁4の噴射圧力を上昇させて、排気中に添加する尿素の霧化を促進させ、尿素の分散性を向上させる。そして、本ルーチンを一旦終了する。なお、ステップS107での処理は、上記した噴射圧力の上昇の処理に限られず、例えば尿素ラインヒーターをONさせる等して、尿素の霧化を促進させてもよい。   In step S106, it is determined that the urea addition valve 4 is abnormal. In step S107 following step S106, the injection pressure of the urea addition valve 4 is increased to promote atomization of urea added to the exhaust gas, thereby improving the dispersibility of urea. Then, this routine is temporarily terminated. Note that the processing in step S107 is not limited to the above-described increase in the injection pressure, and urea atomization may be promoted by, for example, turning on the urea line heater.

以上説明した本ルーチンによれば、所定範囲の空気量における空気量−浄化率特性の傾きが一定である場合にSCR触媒3の劣化と判定することができ、所定範囲の空気量における空気量−浄化率特性の傾きが一定でない場合に尿素添加弁4の異常と判定することができる。   According to this routine described above, it is possible to determine that the SCR catalyst 3 has deteriorated when the slope of the air amount-purification rate characteristic in a predetermined range of air amount is constant, and the air amount in the predetermined range of air amount− When the slope of the purification rate characteristic is not constant, it can be determined that the urea addition valve 4 is abnormal.

なお、本実施例では、空気量−浄化率特性の傾きの変動が所定域内に収まる場合を空気量−浄化率特性の傾きが一定とし、当該傾きが一定の場合にSCR触媒3の劣化と判定し、当該傾きが一定でない場合に尿素添加弁4の異常と判定すると説明した。しかし本発明はこれに限られない。所定範囲の空気量における空気量−浄化率特性の傾きの変動に基づいて、SCR触媒3の劣化と尿素添加弁4の異常とを区別できればどのような手法を採用してもよい。   In this embodiment, when the variation in the slope of the air amount-purification rate characteristic falls within a predetermined range, the slope of the air amount-purification rate characteristic is constant, and when the slope is constant, it is determined that the SCR catalyst 3 has deteriorated. Then, it has been described that it is determined that the urea addition valve 4 is abnormal when the inclination is not constant. However, the present invention is not limited to this. Any method may be adopted as long as it is possible to distinguish the deterioration of the SCR catalyst 3 from the abnormality of the urea addition valve 4 based on the fluctuation of the slope of the air amount-purification rate characteristic in the air amount within a predetermined range.

本発明に係る内燃機関の触媒劣化判定装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。   The catalyst deterioration determination device for an internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the scope of the present invention.

実施例1に係る内燃機関及びその排気系の概略構成を示す図。1 is a diagram illustrating a schematic configuration of an internal combustion engine and an exhaust system thereof according to Embodiment 1. FIG. 実施例1に係る尿素量−浄化率特性を示す図。FIG. 3 is a diagram illustrating urea amount-purification rate characteristics according to the first embodiment. 実施例1に係る尿素量−浄化率特性が異なる3つの場合を示す図。The figure which shows three cases from which the urea amount-purification rate characteristic which concerns on Example 1 differs. 実施例1に係る尿素添加弁の異常によりSCR触媒の一部分に尿素が集中して添加される場合を示す図。The figure which shows the case where urea concentrates and is added to a part of SCR catalyst by abnormality of the urea addition valve which concerns on Example 1. FIG. 実施例1に係るSCR触媒が劣化した場合の触媒内NH分布を示す図。It shows a catalyst in the NH 3 distribution when the SCR catalyst according to Example 1 is deteriorated. 実施例1に係るSCR触媒が劣化した場合の空気量−浄化率特性を示す図。The figure which shows the air quantity-purification rate characteristic when the SCR catalyst which concerns on Example 1 deteriorates. 実施例1に係る尿素分散が触媒中心部に集中した場合の触媒内NH分布を示す図。It shows a catalyst in the NH 3 distribution when urea dispersion according to Example 1 was concentrated in the catalyst center. 実施例1に係る尿素分散が触媒中心部に集中した場合の空気量−浄化率特性を示す図。The figure which shows the air quantity-purification rate characteristic when urea dispersion | distribution which concerns on Example 1 concentrates on the catalyst center part. 実施例1に係る触媒劣化判定制御ルーチンを示すフローチャート。3 is a flowchart showing a catalyst deterioration determination control routine according to the first embodiment. 実施例1に係る所定範囲の空気量における傾きが一定の場合及び傾きが一定でない場合の空気量−浄化率特性を示す図。The figure which shows the air quantity-purification rate characteristic in case the inclination in the air amount of the predetermined range which concerns on Example 1 is constant, and when inclination is not constant.

符号の説明Explanation of symbols

1 内燃機関
2 排気通路
3 SCR触媒
4 尿素添加弁
5 分散板
6 NOxセンサ
7 ECU
8 アクセル開度センサ
9 クランクポジションセンサ
1 Internal combustion engine 2 Exhaust passage 3 SCR catalyst 4 Urea addition valve 5 Dispersion plate 6 NOx sensor 7 ECU
8 Accelerator opening sensor 9 Crank position sensor

Claims (4)

内燃機関の排気通路に配置され、還元剤が供給されることで排気中のNOxを浄化する触媒と、
前記触媒に還元剤を添加する還元剤添加手段と、
前記触媒を流通する空気量に対する前記触媒の浄化率の特性を算出する空気量−浄化率特性算出手段と、
所定範囲の空気量における前記空気量−浄化率特性算出手段によって算出された空気量−浄化率特性の傾きの変動に基づいて、触媒劣化と前記還元剤添加手段の異常とを区別して判定する判定手段と、
を備えたことを特徴とする内燃機関の触媒劣化判定装置。
A catalyst that is disposed in an exhaust passage of the internal combustion engine and purifies NOx in the exhaust by being supplied with a reducing agent;
Reducing agent addition means for adding a reducing agent to the catalyst;
An air amount-purification rate characteristic calculating means for calculating a characteristic of the purification rate of the catalyst with respect to the amount of air flowing through the catalyst;
Determination that distinguishes between catalyst deterioration and abnormality of the reducing agent addition unit based on a change in the slope of the air amount-purification rate characteristic calculated by the air amount-purification rate characteristic calculation unit in an air amount within a predetermined range. Means,
An apparatus for determining catalyst deterioration of an internal combustion engine, comprising:
前記判定手段は、所定範囲の空気量における前記空気量−浄化率特性算出手段によって算出された空気量−浄化率特性の傾きの変動が所定域内に収まる場合に触媒劣化と判定し、所定範囲の空気量における前記空気量−浄化率特性算出手段によって算出された空気量−浄化率特性の傾きの変動が所定域を超える場合に前記還元剤添加手段の異常と判定することを特徴とする請求項1に記載の内燃機関の触媒劣化判定装置。   The determination unit determines that the catalyst has deteriorated when a change in the slope of the air amount-purification rate characteristic calculated by the air amount-purification rate characteristic calculation unit within a predetermined range falls within a predetermined range. The abnormality of the reducing agent addition unit is determined when a variation in the slope of the air amount-purification rate characteristic calculated by the air amount-purification rate characteristic calculation unit in an air amount exceeds a predetermined range. The catalyst deterioration determination device for an internal combustion engine according to claim 1. 前記触媒よりも下流の前記排気通路に配置され、前記触媒から排出される排気中のNOx濃度を検出するNOx濃度検出手段と、
前記還元剤添加手段から添加される還元剤量を変化させながら前記NOx濃度検出手段によってNOx濃度を検出し、前記還元剤添加手段から添加される還元剤量に対する前記触媒の浄化率の特性を算出する還元剤量−浄化率特性算出手段と、
を備え、
前記空気量−浄化率特性算出手段は、前記還元剤量−浄化率特性算出手段によって算出された還元剤量−浄化率特性から求められる最適添加量を前記還元剤添加手段から添加しつつ、前記触媒を流通する空気量を変化させながら前記NOx濃度検出手段によってNOx濃度を検出し、前記触媒を流通する空気量に対する前記触媒の浄化率の特性を算出することを特徴とする請求項1又は2に記載の内燃機関の触媒劣化判定装置。
NOx concentration detection means that is disposed in the exhaust passage downstream of the catalyst and detects the NOx concentration in the exhaust discharged from the catalyst;
The NOx concentration is detected by the NOx concentration detecting means while changing the amount of reducing agent added from the reducing agent adding means, and the characteristic of the purification rate of the catalyst with respect to the amount of reducing agent added from the reducing agent adding means is calculated. Reducing agent amount-purification rate characteristic calculating means,
With
The air amount-purification rate characteristic calculating means adds the optimum addition amount calculated from the reducing agent amount-purification rate characteristic calculated by the reducing agent amount-purification rate characteristic calculating means from the reducing agent addition means, 3. The characteristic of the purification rate of the catalyst with respect to the amount of air flowing through the catalyst is calculated by detecting the NOx concentration by the NOx concentration detecting means while changing the amount of air flowing through the catalyst. The catalyst deterioration determination device for an internal combustion engine according to claim 1.
前記空気量−浄化率特性算出手段は、前記還元剤量−浄化率特性算出手段によって算出された還元剤量−浄化率特性から求められる最適添加量が所定量以下、且つ、前記還元剤量−浄化率特性算出手段によって算出された還元剤量−浄化率特性から求められる最高浄化率が所定値以下の場合に、前記触媒を流通する空気量に対する前記触媒の浄化率の特性を算出することを特徴とする請求項3に記載の内燃機関の触媒劣化判定装置。   The air amount-purification rate characteristic calculating means is such that the optimum addition amount obtained from the reducing agent amount-reduction rate characteristic calculated by the reducing agent amount-purification rate characteristic calculating means is equal to or less than a predetermined amount, and the reducing agent amount- Calculating the characteristic of the purification rate of the catalyst with respect to the amount of air flowing through the catalyst when the maximum purification rate obtained from the reducing agent amount-purification rate characteristic calculated by the purification rate characteristic calculating means is equal to or less than a predetermined value; The catalyst deterioration determination device for an internal combustion engine according to claim 3,
JP2008211315A 2008-08-20 2008-08-20 Catalyst deterioration determination device for internal combustion engine Withdrawn JP2010048115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211315A JP2010048115A (en) 2008-08-20 2008-08-20 Catalyst deterioration determination device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211315A JP2010048115A (en) 2008-08-20 2008-08-20 Catalyst deterioration determination device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010048115A true JP2010048115A (en) 2010-03-04

Family

ID=42065396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211315A Withdrawn JP2010048115A (en) 2008-08-20 2008-08-20 Catalyst deterioration determination device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010048115A (en)

Similar Documents

Publication Publication Date Title
JP5120464B2 (en) Exhaust purification device abnormality detection device and exhaust purification device abnormality detection method
JP4985849B2 (en) Catalyst deterioration determination device and catalyst deterioration determination method
WO2011108110A1 (en) Exhaust purification device for internal combustion engine
JP2012031826A (en) Failure detection system for exhaust emission control device
JP6330614B2 (en) Failure judgment device for exhaust gas purification device of internal combustion engine
JP2009275666A (en) Emission control device of internal combustion engine
JP2011226293A (en) Failure detecting device of exhaust gas purification device
JP5344093B2 (en) Exhaust gas purification device for internal combustion engine
WO2014103505A1 (en) Exhaust purification device for internal combustion engine
JP5839118B2 (en) Abnormality determination system for exhaust gas purification device of internal combustion engine
JP5182200B2 (en) Catalyst deterioration determination device and catalyst deterioration determination method
JP5240065B2 (en) Failure detection device for exhaust gas purification device
JP2016079852A (en) Abnormality determination system of exhaust emission control device of internal combustion engine
US10364727B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP2011220142A (en) Catalyst deterioration determination device for internal combustion engine
US9884292B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP2007040130A (en) Exhaust emission control device of internal combustion engine
AU2011377329B2 (en) Exhaust purification device for internal combustion engine
JP2010048115A (en) Catalyst deterioration determination device for internal combustion engine
WO2013042188A1 (en) Exhaust purification device for internal combustion engine
JP2010151110A (en) Catalyst deterioration determination device for internal combustion engine
WO2006041223A1 (en) Exhaust gas purification system for internal combustion engine
JP2013199913A (en) Exhaust emission control device for internal combustion engine
JP2012215143A (en) Catalyst deterioration determination device
JP5895882B2 (en) Exhaust gas purification system for internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101