JP2005171809A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2005171809A
JP2005171809A JP2003410434A JP2003410434A JP2005171809A JP 2005171809 A JP2005171809 A JP 2005171809A JP 2003410434 A JP2003410434 A JP 2003410434A JP 2003410434 A JP2003410434 A JP 2003410434A JP 2005171809 A JP2005171809 A JP 2005171809A
Authority
JP
Japan
Prior art keywords
temperature
catalyst
exhaust
reducing agent
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003410434A
Other languages
Japanese (ja)
Other versions
JP4155182B2 (en
Inventor
Kingo Suyama
欣悟 陶山
Koichiro Fukuda
光一朗 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003410434A priority Critical patent/JP4155182B2/en
Publication of JP2005171809A publication Critical patent/JP2005171809A/en
Application granted granted Critical
Publication of JP4155182B2 publication Critical patent/JP4155182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress degradation of emission when a temperature of an exhaust purification catalyst is increased to a catalytic activity temperature, the temperature of the exhaust purification catalyst is estimated, and then fuel is supplied to the exhaust purification catalyst based on the estimated temperature. <P>SOLUTION: An exhaust emission control device for an internal combustion engine comprises: a first catalyst temperature estimation means for estimating the temperature of the catalyst based on an inflow exhaust temperature, an amount of reducer in the exhaust, and heat capacity in the catalyst; and a second catalyst temperature estimation means for estimating a temperature of a predetermined part of the catalyst based on the inflow exhaust temperature and the heat capacity in the catalyst after excluding temperature increase of the catalyst based on the reducer. When a temperature of the catalyst estimated by first catalyst temperature estimation means exceeds a temporary catalyst activity temperature, the reducer is added to the exhaust (S102, S103), and the addition of the reducer to the exhaust is prohibited based on the temperature of the predetermined part of the catalyst estimated by the second catalyst temperature estimation means (S105, S107). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関からの排気の浄化を行う排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus that purifies exhaust gas from an internal combustion engine.

内燃機関から排出される排気の浄化を行うための排気浄化触媒として、いわゆる吸蔵還元型NOx触媒、三元触媒、酸化触媒等が利用されている。これらの排気浄化触媒は、その触媒機能が発揮されるためには活性温度に達している必要がある。また排気浄化触媒に触媒劣化が生じると、触媒機能が十分に発揮されない虞がある。   As an exhaust gas purification catalyst for purifying exhaust gas discharged from an internal combustion engine, a so-called storage reduction type NOx catalyst, a three-way catalyst, an oxidation catalyst, or the like is used. These exhaust purification catalysts need to reach the activation temperature in order to exhibit their catalytic functions. Further, when the exhaust gas purification catalyst is deteriorated, the catalyst function may not be sufficiently exhibited.

そこで、排気浄化触媒に流入する排気に還元剤を添加したときの排気浄化触媒に流入する排気の温度と排気浄化触媒の推定温度との温度差から排気浄化触媒に触媒劣化が生じているか否かを判定する技術が公開されている(例えば、特許文献1を参照。)。即ち、触媒劣化による排気浄化触媒の酸化能の低下を利用して排気浄化触媒の触媒劣化の程度を判定するものである。   Therefore, whether or not catalyst deterioration has occurred in the exhaust purification catalyst from the temperature difference between the temperature of the exhaust flowing into the exhaust purification catalyst when the reducing agent is added to the exhaust flowing into the exhaust purification catalyst and the estimated temperature of the exhaust purification catalyst A technique for judging the above is disclosed (for example, see Patent Document 1). That is, the degree of catalyst deterioration of the exhaust purification catalyst is determined using the decrease in the oxidizing ability of the exhaust purification catalyst due to catalyst deterioration.

また、排気浄化触媒の温度を活性温度とするために排気浄化触媒に還元剤を供給するとき、実際の排気浄化触媒の温度と排気中の還元剤量等から推定される排気浄化触媒の温度との温度差が許容範囲を超えるとき還元剤の供給を禁止する技術が公開されている(例えば、特許文献2を参照。)。即ち、還元剤が供給されることで排気浄化触媒が本来あるべき温度である排気浄化触媒温度(上述の推定された排気浄化触媒の温度)に達しないことを以て、排気浄化触媒に供給された燃料の外気への放出が抑制される。
特開2003−214153号公報 特開2001−227325号公報
Further, when supplying a reducing agent to the exhaust purification catalyst in order to set the temperature of the exhaust purification catalyst to the activation temperature, the actual temperature of the exhaust purification catalyst and the temperature of the exhaust purification catalyst estimated from the amount of reducing agent in the exhaust, etc. A technique for prohibiting the supply of the reducing agent when the temperature difference exceeds the allowable range is disclosed (for example, see Patent Document 2). That is, the fuel supplied to the exhaust purification catalyst by not reaching the exhaust purification catalyst temperature (the estimated temperature of the exhaust purification catalyst described above), which is the temperature at which the exhaust purification catalyst should be originally, by supplying the reducing agent. Is released to the outside air.
JP 2003-214153 A JP 2001-227325 A

内燃機関の排気浄化触媒の触媒機能を効率的に発揮させるためには、排気浄化触媒の温度を速やかに触媒活性温度とするのが好ましい。そこで、排気浄化触媒の温度を上昇させるに当たり、排気浄化触媒に流入する排気の温度を利用することに加えて、排気浄化触媒に還元剤を供給して還元剤と排気浄化触媒との反応熱を利用することで、排気浄化触媒の温度上昇を行う。   In order to efficiently exhibit the catalytic function of the exhaust purification catalyst of the internal combustion engine, it is preferable to quickly bring the temperature of the exhaust purification catalyst to the catalyst activation temperature. Therefore, in order to raise the temperature of the exhaust purification catalyst, in addition to using the temperature of the exhaust gas flowing into the exhaust purification catalyst, a reducing agent is supplied to the exhaust purification catalyst to reduce the reaction heat between the reducing agent and the exhaust purification catalyst. By using this, the temperature of the exhaust purification catalyst is increased.

ここで、排気浄化触媒での還元剤との反応が行われるためには、排気浄化触媒の温度が、該反応が起こり得る温度(以下、「暫定触媒活性温度」という)に達している必要がある。尚、暫定触媒活性温度は、上述の触媒活性温度より低い温度である。しかし、排気浄化触媒の温度を推定した上で該推定温度に基づいて排気浄化触媒への還元剤の供給を行うとき、該推定温度の精度が悪いと、実際の排気浄化触媒の温度が暫定触媒推定温度に達成していないときに排気浄化触媒に燃料が供給され得る。その結果、供給された還元剤が酸化触媒との反応に供されず、外気へ放出されてエミッションが悪化する虞がある。   Here, for the reaction with the reducing agent in the exhaust purification catalyst, the temperature of the exhaust purification catalyst needs to reach a temperature at which the reaction can occur (hereinafter referred to as “provisional catalyst activation temperature”). is there. The temporary catalyst activation temperature is lower than the above-described catalyst activation temperature. However, when estimating the temperature of the exhaust purification catalyst and supplying the reducing agent to the exhaust purification catalyst based on the estimated temperature, if the accuracy of the estimated temperature is poor, the actual temperature of the exhaust purification catalyst becomes the temporary catalyst. Fuel may be supplied to the exhaust purification catalyst when the estimated temperature is not achieved. As a result, the supplied reducing agent is not subjected to the reaction with the oxidation catalyst, and is released to the outside air, which may deteriorate the emission.

本発明では、上記した問題に鑑み、排気浄化触媒の温度を触媒活性温度に上昇させるに際して、排気浄化触媒の温度を推定した上で該推定温度に基づいて排気浄化触媒に燃料を供給するときの、エミッションの悪化を抑制することを目的とする。   In the present invention, in view of the above problems, when the temperature of the exhaust purification catalyst is raised to the catalyst activation temperature, the temperature of the exhaust purification catalyst is estimated and then the fuel is supplied to the exhaust purification catalyst based on the estimated temperature. The purpose is to suppress the deterioration of emissions.

本発明は、上記した課題を解決するために、第一に、排気浄化触媒の温度を推定したうえで排気浄化触媒への燃料供給を行うとともに、排気浄化触媒と供給される還元剤との反応熱による温度上昇を除外して推定された排気浄化触媒の推定温度に基づいて、排気浄化触媒への燃料供給の適否、即ち燃料供給時において排気浄化触媒の温度が暫定触媒活性温度に達しているか否かを判定するものとした。反応熱による温度上昇を除外して推定することで排気浄化触媒の温度を比較的精度よく低温側に推定することになる。従って、該推定温度を基準にすることで、排気浄化触媒の温度が暫定触媒活性温度に達しているか否かを安定的に判断することが可能となる。   In order to solve the above-described problems, the present invention firstly estimates the temperature of the exhaust purification catalyst, supplies fuel to the exhaust purification catalyst, and reacts the exhaust purification catalyst with the supplied reducing agent. Appropriateness of fuel supply to the exhaust purification catalyst based on the estimated temperature of the exhaust purification catalyst estimated by excluding temperature rise due to heat, that is, whether the temperature of the exhaust purification catalyst has reached the temporary catalyst activation temperature at the time of fuel supply Judgment was made on whether or not. By excluding the temperature rise due to reaction heat, the temperature of the exhaust purification catalyst is estimated to the low temperature side with relatively high accuracy. Therefore, by using the estimated temperature as a reference, it is possible to stably determine whether or not the temperature of the exhaust purification catalyst has reached the temporary catalyst activation temperature.

そこで、本発明は、内燃機関の排気浄化装置において、内燃機関の排気通路に設けられ、酸化能を有する排気浄化触媒と、前記排気浄化触媒に流入する排気に還元剤を添加する還元剤添加手段と、少なくとも前記排気浄化触媒に流入する排気の温度、該排気に含まれる還元剤量および該排気浄化触媒内の熱容量に基づいて、該排気浄化触媒の温度を推定する第一触媒温度推定手段と、前記排気浄化触媒に流入する排気に含まれる還元剤に基づく該排気浄化触媒の温度上昇を除外したうえで、少なくとも該排気浄化触媒に流入する排気の温度および該排気浄化触媒内の熱容量に基づいて該排気浄化触媒の所定部位の温度を推定する第二触媒温度推定手段と、前記第一触媒温度推定手段によって推定される前記排気浄化触媒の温度が暫定触媒活性温度を超えるとき、前記還元剤添加手段による排気への還元剤の添加を行う還元剤添加制御手段と、前記第一触媒温度推定手段によって推定される前記排気浄化触媒の温度が前記暫定触媒活性温度より高い触媒活性温度を超えるとき、前記排気浄化触媒は活性状態にあると判定する触媒活性判定手段と、前記還元剤添加制御手段によって排気への還元剤の添加が行われているときに、前記第二触媒温度推定手段によって推定される前記排気浄化触媒の前記所定部位の温度に基づいて該還元剤添加制御手段による排気への還元剤の添加を禁止する還元剤添加禁止手段と、を備える。   Accordingly, the present invention provides an exhaust purification device for an internal combustion engine, provided in an exhaust passage of the internal combustion engine, having an oxidizing ability, and a reducing agent adding means for adding a reducing agent to the exhaust gas flowing into the exhaust purification catalyst. And first catalyst temperature estimating means for estimating the temperature of the exhaust purification catalyst based on at least the temperature of the exhaust flowing into the exhaust purification catalyst, the amount of reducing agent contained in the exhaust, and the heat capacity in the exhaust purification catalyst; In addition to excluding the temperature increase of the exhaust purification catalyst based on the reducing agent contained in the exhaust gas flowing into the exhaust purification catalyst, at least based on the temperature of the exhaust gas flowing into the exhaust purification catalyst and the heat capacity in the exhaust purification catalyst Second catalyst temperature estimating means for estimating the temperature of the predetermined portion of the exhaust purification catalyst, and the temperature of the exhaust purification catalyst estimated by the first catalyst temperature estimating means The temperature of the exhaust purification catalyst estimated by the first catalyst temperature estimating means is the provisional catalyst activation temperature, the reducing agent addition control means for adding the reducing agent to the exhaust gas by the reducing agent addition means, When the catalyst activation determining means for determining that the exhaust purification catalyst is in an activated state when a higher catalyst activation temperature is exceeded, and when the reducing agent is added to the exhaust gas by the reducing agent addition control means, Reducing agent addition prohibiting means for prohibiting the addition of the reducing agent to the exhaust gas by the reducing agent addition control means based on the temperature of the predetermined portion of the exhaust purification catalyst estimated by the second catalyst temperature estimating means.

上述の内燃機関の排気浄化装置においては、排気通路に設けられた排気浄化触媒によって排気の浄化が行われる。ここで、排気の浄化、例えば排気中のNOxや粒子状物質の除去等が効率的に行われるには、排気浄化触媒の温度が活性触媒温度に達する必要がある。従って、排気浄化触媒の温度が低温であるときは、速やかに活性触媒温度にまで上昇させるのが好ましい。   In the exhaust gas purification apparatus for an internal combustion engine described above, the exhaust gas is purified by the exhaust gas purification catalyst provided in the exhaust passage. Here, in order to efficiently perform exhaust purification, for example, removal of NOx and particulate matter in the exhaust, the temperature of the exhaust purification catalyst needs to reach the active catalyst temperature. Therefore, when the temperature of the exhaust purification catalyst is low, it is preferable to quickly raise the temperature to the active catalyst temperature.

そこで、排気浄化触媒の温度が比較的低温であるときは、内燃機関から排出される排気の温度によって排気浄化触媒の温度を上昇させる。そして、排気浄化触媒の温度が、排気中の還元剤を酸化し得る温度、即ち暫定触媒活性温度に到達したときは、排気浄化触媒に流入する排気に還元剤を添加することで、該排気浄化触媒に還元剤を供給し、還元剤と排気浄化触媒との間で、還元剤の酸化による反応熱を発生させて、排気浄化触媒の温度上昇を行う。これにより、排気浄化触媒の速やかな温度上昇が図られる。   Therefore, when the temperature of the exhaust purification catalyst is relatively low, the temperature of the exhaust purification catalyst is raised by the temperature of the exhaust discharged from the internal combustion engine. When the temperature of the exhaust purification catalyst reaches a temperature at which the reducing agent in the exhaust can be oxidized, that is, the temporary catalyst activation temperature, the reducing agent is added to the exhaust flowing into the exhaust purification catalyst, thereby A reducing agent is supplied to the catalyst, and heat of reaction due to oxidation of the reducing agent is generated between the reducing agent and the exhaust purification catalyst, thereby raising the temperature of the exhaust purification catalyst. As a result, the temperature of the exhaust purification catalyst can be quickly increased.

このとき、燃料添加手段による排気浄化触媒への還元剤の供給開始の判断は、第一触媒温度推定手段によって推定された触媒温度が基準となる。第一触媒温度推定手段は、上述のように少なくとも流入排気の温度、供給された還元剤を含む排気中の還元剤量および排気浄化触媒の熱容量に基づいて、触媒温度を推定する。即ち、少なくとも流入排気の熱エネルギーと還元剤の酸化によって発生する酸化熱エネルギーが排気浄化触媒の温度上昇に寄与することを前提とする。更に、排気浄化触媒の熱容量を考慮することで、流入排気温度の変動による影響を緩和し、比較的安定的な触媒温度の推定が可能となる。   At this time, the determination of the start of supply of the reducing agent to the exhaust purification catalyst by the fuel addition means is based on the catalyst temperature estimated by the first catalyst temperature estimation means. The first catalyst temperature estimating means estimates the catalyst temperature based on at least the temperature of the inflowing exhaust, the amount of reducing agent in the exhaust including the supplied reducing agent, and the heat capacity of the exhaust purification catalyst as described above. That is, it is assumed that at least the thermal energy of the inflowing exhaust gas and the oxidizing thermal energy generated by the oxidation of the reducing agent contribute to the temperature increase of the exhaust purification catalyst. Furthermore, by considering the heat capacity of the exhaust purification catalyst, the influence of fluctuations in the inflow exhaust temperature can be mitigated, and a relatively stable catalyst temperature can be estimated.

尚、燃料添加手段による還元剤の供給が行われる前においては、排気中に含まれる還元剤の大部分は内燃機関1からの排気に含まれる未燃焼の燃料等の還元剤である。そして、排気浄化触媒の温度は暫定触媒活性温度より低いため、排気中の還元剤による排気浄化触媒の温度上昇への寄与を、非常に小さく扱うか、若しくは無視してもよい。   Before the reducing agent is supplied by the fuel addition means, most of the reducing agent contained in the exhaust is a reducing agent such as unburned fuel contained in the exhaust from the internal combustion engine 1. Since the temperature of the exhaust purification catalyst is lower than the temporary catalyst activation temperature, the contribution of the reducing agent in the exhaust to the temperature increase of the exhaust purification catalyst may be handled very small or ignored.

しかし、第一触媒温度推定手段による推定温度の精度が低下することで、排気浄化触媒の温度が暫定触媒活性温度に到達していないにもかかわらず還元剤添加制御手段による排気浄化触媒への還元剤供給が行われると、該還元剤が酸化されずに外気へ放出されエミッションが悪化する虞がある。そこで、還元剤添加禁止手段によって、第二触媒温度推定手段による推定温度に基づいて還元剤添加制御手段による排気浄化触媒への還元剤供給が適正か否か判断され、排気浄化触媒への還元剤供給が適正でないと判断されるときは該還元剤供給が禁止される。   However, since the accuracy of the estimated temperature by the first catalyst temperature estimating means is reduced, the reduction to the exhaust purification catalyst by the reducing agent addition control means is performed even though the temperature of the exhaust purification catalyst has not reached the temporary catalyst activation temperature. When the agent is supplied, the reducing agent is not oxidized but is released to the outside air, which may deteriorate the emission. Therefore, the reducing agent addition prohibiting means determines whether or not the reducing agent addition control means supplies the reducing agent to the exhaust purification catalyst appropriately based on the estimated temperature by the second catalyst temperature estimating means, and the reducing agent to the exhaust purification catalyst is determined. When it is determined that the supply is not appropriate, the supply of the reducing agent is prohibited.

ここで、第二触媒温度推定手段は、排気浄化触媒の所定部位、即ち排気浄化触媒への還元剤供給の適否を判断するための排気浄化触媒のより好適な部位の温度を推定する。そして、その温度推定に際しては、排気浄化触媒に供給される還元剤の酸化によって発生する酸化熱エネルギーの該排気浄化触媒の温度上昇への寄与を考慮しない。酸化反応熱による温度上昇を除外して排気浄化触媒の温度を推定することで、温度推定に考慮されるファクターが減り該推定温度が比較的精度よくなるとともに、該推定温度が低温側の温度となる。従って、低温側の温度として比較的精度よく推定される所定部位の該推定温度を基準として、排気浄化触媒の温度が暫定触媒活性温度に達しているか否かをより安定的に判断することが可能となる。   Here, the second catalyst temperature estimating means estimates a temperature of a predetermined portion of the exhaust purification catalyst, that is, a more preferable portion of the exhaust purification catalyst for determining whether or not the reducing agent supply to the exhaust purification catalyst is appropriate. In estimating the temperature, the contribution of the oxidation heat energy generated by the oxidation of the reducing agent supplied to the exhaust purification catalyst to the temperature increase of the exhaust purification catalyst is not considered. By estimating the temperature of the exhaust purification catalyst by excluding the temperature rise due to the heat of oxidation reaction, the factor considered for the temperature estimation is reduced, the estimated temperature becomes relatively accurate, and the estimated temperature becomes the low temperature side temperature . Therefore, it is possible to more stably determine whether or not the temperature of the exhaust purification catalyst has reached the provisional catalyst activation temperature with reference to the estimated temperature of the predetermined portion that is estimated relatively accurately as the low temperature side temperature. It becomes.

これにより、排気浄化触媒に還元剤が供給されて該排気浄化触媒の温度上昇が行われるときであっても、還元剤の酸化が行われず外気へ還元剤が放出される虞があるときは、還元剤添加禁止手段によって排気浄化触媒への還元剤の供給が禁止されて、エミッションの悪化が抑制される。   Thereby, even when the reducing agent is supplied to the exhaust purification catalyst and the temperature of the exhaust purification catalyst is increased, when the reducing agent is not oxidized and the reducing agent may be released to the outside air, The reducing agent addition prohibiting means prohibits the supply of the reducing agent to the exhaust purification catalyst, thereby suppressing the deterioration of the emission.

ここで、上述の内燃機関の排気浄化装置において、前記第二触媒温度推定手段は、前記排気浄化触媒に排気が流入する部位である前端部位の温度を推定し、前記還元剤添加禁止手段は、前記還元剤添加制御手段によって排気への還元剤の添加が行われているときに前記第二触媒温度推定手段によって推定される前記排気浄化触媒の前端部位の温度が前記暫定触媒活性温度以下となる場合、該還元剤添加制御手段による排気への還元剤の添加を禁止してもよい。   Here, in the exhaust gas purification apparatus for an internal combustion engine described above, the second catalyst temperature estimating means estimates the temperature of the front end part, which is a part where exhaust flows into the exhaust purification catalyst, and the reducing agent addition prohibiting means is When the reducing agent is added to the exhaust gas by the reducing agent addition control means, the temperature of the front end portion of the exhaust purification catalyst estimated by the second catalyst temperature estimating means is equal to or lower than the temporary catalyst activation temperature. In this case, addition of the reducing agent to the exhaust by the reducing agent addition control means may be prohibited.

即ち、第二触媒温度推定手段によって温度推定される排気浄化触媒の所定部位は、排気浄化触媒に排気が流入する前端部位である。前端部位は排気浄化触媒において最初に排気が流入する部位であるため排気温度の変動を強く受ける。特に、第一触媒温度推定手段によって触媒温度が暫定触媒活性温度を超えたと判断されて間もない時期においては、内燃機関の運転状態によって排気温度が低下すると前段部位の触媒温度も低下し、該触媒温度が暫定触媒活性温度より低くなる虞がある。   That is, the predetermined portion of the exhaust purification catalyst whose temperature is estimated by the second catalyst temperature estimation means is the front end portion where the exhaust flows into the exhaust purification catalyst. Since the front end part is the part where exhaust gas flows first in the exhaust purification catalyst, it is strongly subject to fluctuations in the exhaust temperature. In particular, at a time immediately after the first catalyst temperature estimating means determines that the catalyst temperature has exceeded the provisional catalyst activation temperature, if the exhaust temperature decreases due to the operating state of the internal combustion engine, the catalyst temperature at the preceding stage also decreases, The catalyst temperature may be lower than the temporary catalyst activation temperature.

このとき、第二触媒温度推定手段によって温度推定される前段部位の触媒温度は還元剤の酸化による酸化熱を除外して推定されるため、該前段部位の触媒温度は排気浄化触媒における下限温度とみなすことが可能となる。そこで、第二触媒温度推定手段によって温度推定される前段部位の触媒温度が暫定触媒活性温度以下である場合には、供給された添加剤が十分に酸化されず外気へ放出される虞が大きいため、還元剤添加制御手段による還元剤の供給を禁止する。尚、第二触媒温度推定手段による温度推定においては、排気浄化触媒の熱容量を加味するため、流入排気温度の急峻な変動による影響を緩和し、比較的安定的な触媒温度の推定が可能となる。   At this time, since the catalyst temperature at the front part estimated by the second catalyst temperature estimation means is estimated by excluding the heat of oxidation due to oxidation of the reducing agent, the catalyst temperature at the front part is equal to the lower limit temperature in the exhaust purification catalyst. Can be considered. Therefore, when the catalyst temperature at the front stage estimated by the second catalyst temperature estimation means is equal to or lower than the provisional catalyst activation temperature, the supplied additive is not sufficiently oxidized and is likely to be released to the outside air. The supply of the reducing agent by the reducing agent addition control means is prohibited. In addition, in the temperature estimation by the second catalyst temperature estimation means, the heat capacity of the exhaust purification catalyst is taken into account, so that the influence due to the steep fluctuation of the inflowing exhaust gas temperature is mitigated, and a relatively stable catalyst temperature can be estimated. .

また、第二触媒温度推定手段によって温度推定される前段部位の触媒温度が暫定触媒活性温度以下であるために排気浄化触媒への還元剤の供給が禁止された後において、再び前段部位の温度が暫定触媒活性温度を超えるときは、排気浄化触媒への還元剤の供給を再開
してもよい。
In addition, since the catalyst temperature at the front part estimated by the second catalyst temperature estimation means is equal to or lower than the provisional catalyst activation temperature, the temperature at the front part again becomes lower after the supply of the reducing agent to the exhaust purification catalyst is prohibited. When the temporary catalyst activation temperature is exceeded, the supply of the reducing agent to the exhaust purification catalyst may be resumed.

また、上述の内燃機関の排気浄化装置において、該排気浄化装置が、前記排気浄化触媒の下流側に設けられ、該排気浄化触媒から流出する排気の温度を検出する排気温度検出手段を、更に備える場合、前記第二触媒温度推定手段は、前記排気浄化触媒から排気が流出する部位である後端部位の温度を推定し、前記還元剤添加禁止手段は、前記還元剤添加制御手段によって排気への還元剤の添加が行われているときに前記第二触媒温度推定手段によって推定される前記排気浄化触媒の後端部位の温度と前記排気温度検出手段によって検出される排気の温度との温度差が所定温度以下となる場合、該還元剤添加制御手段による排気への還元剤の添加を禁止してもよい。   Further, in the above-described exhaust gas purification apparatus for an internal combustion engine, the exhaust gas purification apparatus further includes an exhaust gas temperature detection means that is provided on the downstream side of the exhaust gas purification catalyst and detects the temperature of the exhaust gas flowing out from the exhaust gas purification catalyst. In this case, the second catalyst temperature estimating means estimates the temperature of the rear end portion, which is a portion where exhaust flows out from the exhaust purification catalyst, and the reducing agent addition prohibiting means is connected to the exhaust gas by the reducing agent addition control means. The temperature difference between the temperature of the rear end portion of the exhaust purification catalyst estimated by the second catalyst temperature estimation means and the exhaust temperature detected by the exhaust temperature detection means when the reducing agent is added is When the temperature falls below a predetermined temperature, addition of the reducing agent to the exhaust by the reducing agent addition control means may be prohibited.

即ち、第二触媒温度推定手段によって温度推定される排気浄化触媒の所定部位は、排気浄化触媒から排気が流出する後端部位である。ここで、排気温度検出手段は排気浄化触媒の下流に備えられており排気温度検出手段によって検出される排気温度は排気浄化触媒の温度とほぼ同一視することが可能である。そして、第二触媒温度推定手段によって推定される後段部位の触媒温度は、供給された還元剤の酸化による酸化熱を除外して推定されている。従って、排気浄化触媒において供給された還元剤の酸化が適正に行われている場合には、排気温度検出手段による排気温度の検出値と第二触媒温度推定手段による後段部位の触媒温度の推定値との温度差は拡大し、該温度差は所定温度を超える。   That is, the predetermined part of the exhaust purification catalyst whose temperature is estimated by the second catalyst temperature estimation means is the rear end part from which the exhaust flows out of the exhaust purification catalyst. Here, the exhaust gas temperature detection means is provided downstream of the exhaust gas purification catalyst, and the exhaust gas temperature detected by the exhaust gas temperature detection means can be regarded substantially the same as the temperature of the exhaust gas purification catalyst. The catalyst temperature at the rear stage estimated by the second catalyst temperature estimation means is estimated by excluding the heat of oxidation due to the oxidation of the supplied reducing agent. Therefore, when oxidation of the reducing agent supplied in the exhaust purification catalyst is properly performed, the detected value of the exhaust temperature by the exhaust temperature detecting means and the estimated value of the catalyst temperature at the subsequent stage by the second catalyst temperature estimating means And the temperature difference exceeds the predetermined temperature.

よって、該温度差に基づいて、還元剤添加制御手段による還元剤の排気浄化触媒への供給が適正に行われているか否かを判定することが可能となり、該温度差が所定温度以下である場合には、供給された添加剤が十分に酸化されず外気へ放出される虞が強いため、還元剤添加制御手段による還元剤の供給を禁止する。   Therefore, based on the temperature difference, it is possible to determine whether or not the reducing agent addition control means is properly supplying the reducing agent to the exhaust purification catalyst, and the temperature difference is not more than a predetermined temperature. In this case, since the supplied additive is not sufficiently oxidized and is likely to be released to the outside air, the supply of the reducing agent by the reducing agent addition control means is prohibited.

また、排気温度検出手段による排気温度の検出値と第二触媒温度推定手段による後段部位の触媒温度の推定値との温度差が所定温度以下であるために排気浄化触媒への還元剤の供給が禁止された後において、再び該温度差が所定温度を超えるときは、排気浄化触媒への還元剤の供給を再開してもよい。   Further, since the temperature difference between the detected value of the exhaust temperature by the exhaust temperature detecting means and the estimated value of the catalyst temperature at the subsequent stage by the second catalyst temperature estimating means is equal to or less than a predetermined temperature, the reducing agent is not supplied to the exhaust purification catalyst. After the prohibition, when the temperature difference again exceeds the predetermined temperature, the supply of the reducing agent to the exhaust purification catalyst may be resumed.

ここで、本発明は、上記した課題を解決するために、排気浄化触媒から流出する排気の、比較的長い期間における温度推移に着目した。比較的長い期間における排気温度の推移に基づくことで、内燃機関の運転状態の変動に伴って排気浄化触媒から流出する排気温度が変動する場合でも比較的精度よく排気温度の推移の傾向、即ち排気温度が下降状態にあるか若しくは上昇状態にあるかを判断することが可能となる。   Here, in order to solve the above-described problems, the present invention focuses on the temperature transition of the exhaust gas flowing out from the exhaust purification catalyst over a relatively long period. Based on the transition of the exhaust temperature over a relatively long period of time, even if the exhaust temperature flowing out from the exhaust purification catalyst varies with the variation of the operating state of the internal combustion engine, the trend of the transition of the exhaust temperature relatively accurately, that is, the exhaust It is possible to determine whether the temperature is in the falling state or in the rising state.

そこで、本発明は、内燃機関の排気浄化装置において、内燃機関の排気通路に設けられ、酸化能を有する排気浄化触媒と、前記排気浄化触媒に流入する排気に還元剤を添加する還元剤添加手段と、少なくとも前記排気浄化触媒に流入する排気の温度、該排気に含まれる還元剤量および該排気浄化触媒内の熱容量に基づいて、該排気浄化触媒の温度を推定する触媒温度推定手段と、前記排気浄化触媒の下流側に設けられ、該排気浄化触媒から流出する排気の温度を検出する排気温度検出手段と、前記触媒温度推定手段によって推定される前記排気浄化触媒の温度が暫定触媒活性温度を超えるとき、前記還元剤添加手段による排気への還元剤の添加を行う還元剤添加制御手段と、前記触媒温度推定手段によって推定される前記排気浄化触媒の温度が前記暫定触媒活性温度より高い触媒活性温度を超えるとき、前記排気浄化触媒は活性状態にあると判定する触媒活性判定手段と、前記還元剤添加制御手段によって排気への還元剤の添加が行われているときに、所定期間において前記排気温度検出手段によって検出される排気温度の低下量が前記内燃機関の運転状態に基づいて決定される排気温度低下許容範囲を超えた場合、該還元剤添加制御手段による排気への還元剤の添加を禁止する還元剤添加禁止手段と、を備える。   Accordingly, the present invention provides an exhaust purification device for an internal combustion engine, provided in an exhaust passage of the internal combustion engine, having an oxidizing ability, and a reducing agent adding means for adding a reducing agent to the exhaust gas flowing into the exhaust purification catalyst. Catalyst temperature estimating means for estimating the temperature of the exhaust purification catalyst based on at least the temperature of the exhaust gas flowing into the exhaust purification catalyst, the amount of reducing agent contained in the exhaust gas, and the heat capacity in the exhaust purification catalyst; An exhaust temperature detecting means provided on the downstream side of the exhaust purification catalyst for detecting the temperature of the exhaust gas flowing out from the exhaust purification catalyst, and the temperature of the exhaust purification catalyst estimated by the catalyst temperature estimating means is a temporary catalyst activation temperature. A reducing agent addition control means for adding a reducing agent to the exhaust gas by the reducing agent addition means, and a temperature of the exhaust purification catalyst estimated by the catalyst temperature estimating means. When the catalyst activation temperature higher than the temporary catalyst activation temperature is exceeded, the catalyst is judged to be in an active state, and the reducing agent is added to the exhaust gas by the reducing agent addition control means. When the exhaust gas temperature decrease amount detected by the exhaust gas temperature detection means exceeds a permissible exhaust gas temperature decrease allowable range determined based on the operating state of the internal combustion engine during a predetermined period, the reducing agent addition control means And a reducing agent addition prohibiting means for prohibiting the addition of the reducing agent to the exhaust gas due to the exhaust gas.

所定期間とは、上述したように、排気浄化触媒から流出する排気の温度推移の傾向を判断するために必要な期間である。換言すると、排気浄化触媒において触媒温度が暫定触媒活性温度を超えたと判断されて排気浄化触媒への還元剤の供給が行われているときの該還元剤が酸化されて排気浄化触媒の温度上昇に寄与しているか否かの判断において、内燃機関の運転状態による排気温度の変動の傾向を検出し得る検出期間である。そして、排気温度低下許容範囲とは、内燃機関の運転状態に起因する排気温度の低下の許容範囲である。   As described above, the predetermined period is a period necessary to determine the temperature transition tendency of the exhaust gas flowing out from the exhaust purification catalyst. In other words, when it is determined that the catalyst temperature has exceeded the provisional catalyst activation temperature in the exhaust purification catalyst and the reducing agent is being supplied to the exhaust purification catalyst, the reducing agent is oxidized to increase the temperature of the exhaust purification catalyst. This is a detection period during which it is possible to detect a tendency of fluctuations in the exhaust gas temperature depending on the operating state of the internal combustion engine in determining whether or not it contributes. The exhaust temperature decrease allowable range is an allowable range of exhaust temperature decrease caused by the operating state of the internal combustion engine.

即ち、還元剤が供給されて触媒温度が上昇状態にあるときは、排気浄化触媒から流出する排気温度も同様に上昇状態となる。しかし、該排気温度も内燃機関の運転状態によって低下する場合もあるが、その低下量が排気温度低下許容範囲を超える温度低下である場合には、排気浄化触媒において供給された還元剤が酸化されずに外気へ放出されている蓋然性が高い。そこで、このような場合には、還元剤添加制御手段による還元剤の供給を禁止して、エミッションの悪化を抑制する。   That is, when the reducing agent is supplied and the catalyst temperature is in the rising state, the exhaust temperature flowing out from the exhaust purification catalyst is also in the rising state. However, the exhaust temperature may also decrease depending on the operating state of the internal combustion engine, but when the amount of decrease is a temperature decrease exceeding the allowable exhaust temperature decrease range, the reducing agent supplied in the exhaust purification catalyst is oxidized. There is a high probability of being released to the outside air. Therefore, in such a case, the supply of the reducing agent by the reducing agent addition control means is prohibited to suppress the deterioration of the emission.

排気浄化触媒の温度を触媒活性温度に上昇させるに際して、排気浄化触媒の温度を推定した上で該推定温度に基づいて排気浄化触媒に燃料を供給するときの、エミッションの悪化を抑制することが可能となる。   When raising the temperature of the exhaust purification catalyst to the catalyst activation temperature, it is possible to estimate the temperature of the exhaust purification catalyst and suppress emission deterioration when fuel is supplied to the exhaust purification catalyst based on the estimated temperature It becomes.

ここで、本発明に係る内燃機関の排気浄化装置の実施の形態について図面に基づいて説明する。   Here, an embodiment of an exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described based on the drawings.

図1は、本発明が適用される内燃機関の吸排気系の概略構成を表すブロック図である。ここで、内燃機関1は、圧縮着火式の内燃機関である。内燃機関1の燃焼室には吸気通路2が接続されている。また、内燃機関1において燃焼により生成された排気は、内燃機関1から排気通路3へと排出される。排気通路3の途中には、酸化能を有する酸化触媒4と酸化触媒4の下流側にいわゆる吸蔵還元型NOx触媒が担持されたフィルタ(以下、単に「フィルタ」という)5が設けられている。尚、吸蔵還元型NOx触媒にはその成分に白金が含まれているため、フィルタ5は酸化能を有する触媒として作用する。また、酸化触媒4の上流側の排気通路3には、排気通路3を流れる排気に内燃機関1の燃料を添加する燃料添加弁6が設けられている。燃料添加弁6から排気へ添加された燃料は、酸化触媒4やフィルタ5に供給されて、これらの触媒に対して還元剤として作用するとともにこれらの触媒の酸化能によって酸化されて、酸化熱が発生する。   FIG. 1 is a block diagram showing a schematic configuration of an intake and exhaust system of an internal combustion engine to which the present invention is applied. Here, the internal combustion engine 1 is a compression ignition type internal combustion engine. An intake passage 2 is connected to the combustion chamber of the internal combustion engine 1. Further, exhaust gas generated by combustion in the internal combustion engine 1 is discharged from the internal combustion engine 1 to the exhaust passage 3. In the middle of the exhaust passage 3, there are provided an oxidation catalyst 4 having oxidation ability and a filter 5 (hereinafter simply referred to as “filter”) carrying a so-called storage reduction type NOx catalyst on the downstream side of the oxidation catalyst 4. Since the NOx storage reduction catalyst contains platinum as a component, the filter 5 acts as a catalyst having oxidation ability. A fuel addition valve 6 is provided in the exhaust passage 3 upstream of the oxidation catalyst 4 to add fuel from the internal combustion engine 1 to the exhaust gas flowing through the exhaust passage 3. The fuel added to the exhaust gas from the fuel addition valve 6 is supplied to the oxidation catalyst 4 and the filter 5, acts as a reducing agent for these catalysts, and is oxidized by the oxidizing ability of these catalysts, so that the heat of oxidation is increased. Occur.

また、内燃機関1には、該内燃機関1を制御するための電子制御ユニット(以下、「ECU」という)20が併設されている。このECU20は、CPUの他、後述する各種のプログラム及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御するユニットである。   The internal combustion engine 1 is also provided with an electronic control unit (hereinafter referred to as “ECU”) 20 for controlling the internal combustion engine 1. The ECU 20 includes a CPU, a ROM, a RAM, and the like for storing various programs and maps to be described later, and controls the operating conditions of the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the driver's request. Unit.

ECU20には、クランクポジションセンサ9、アクセル開度センサ10等、内燃機関1の運転状態を検出する種々のセンサが電気配線を介して接続され、それらの出力信号がECU20に入力されるようになっている。更に、ECU20には、フィルタ5の下流側に設けられた排気温度センサ7と排気空燃比センサ8が電気的に接続されている。排気温度センサによってフィルタ7から流出する排気の温度を、排気空燃比センサ8によって該排気の空燃比が検出される。   Various sensors for detecting the operating state of the internal combustion engine 1 such as a crank position sensor 9 and an accelerator opening sensor 10 are connected to the ECU 20 via electric wiring, and their output signals are input to the ECU 20. ing. Further, an exhaust gas temperature sensor 7 and an exhaust air / fuel ratio sensor 8 provided on the downstream side of the filter 5 are electrically connected to the ECU 20. The temperature of the exhaust gas flowing out from the filter 7 is detected by the exhaust temperature sensor, and the air-fuel ratio of the exhaust gas is detected by the exhaust air-fuel ratio sensor 8.

一方、ECU20には、燃料添加弁6が電気配線を介して接続され、ECU20からの
指令に従って燃料添加弁6から排気通路3を流れる排気に供給される燃料量等が制御される。また、図1には図示されていないが内燃機関1に備えられている燃料噴射弁もECU20と電気的に接続され、ECU20からの指令に従って燃料噴射弁からの燃料の噴射時期や噴射量が制御される。
On the other hand, the fuel addition valve 6 is connected to the ECU 20 via an electrical wiring, and the amount of fuel supplied from the fuel addition valve 6 to the exhaust gas flowing through the exhaust passage 3 is controlled according to a command from the ECU 20. Although not shown in FIG. 1, the fuel injection valve provided in the internal combustion engine 1 is also electrically connected to the ECU 20, and the timing and amount of fuel injection from the fuel injection valve are controlled in accordance with a command from the ECU 20. Is done.

このように構成される内燃機関1の排気系においては、排気中に含まれる粒子状物質がフィルタ5によって捕集された後酸化除去されたり、排気中のNOxがフィルタ5における吸蔵還元型NOx触媒によって還元されたりすることで、排気の浄化が行われる。また、酸化触媒4は排気中の燃料を酸化することで酸化熱を発生させて、フィルタ5に流入する排気温度を上昇させる。これによって、フィルタ5における吸蔵還元型NOx触媒の温度が上昇して、触媒機能による排気浄化能力が発揮される。   In the exhaust system of the internal combustion engine 1 configured as described above, particulate matter contained in the exhaust is collected by the filter 5 and then oxidized and removed, or NOx in the exhaust is stored in the filter 5 as a NOx storage reduction catalyst. The exhaust gas is purified by being reduced. Further, the oxidation catalyst 4 oxidizes the fuel in the exhaust gas to generate oxidation heat and raise the temperature of the exhaust gas flowing into the filter 5. As a result, the temperature of the NOx storage reduction catalyst in the filter 5 rises, and the exhaust purification ability by the catalytic function is exhibited.

しかし、酸化触媒4およびフィルタ5の触媒機能が発揮されるには、各々の触媒の温度が活性温度(以下、「触媒活性温度」という)に到達している必要がある。そこで、酸化触媒4およびフィルタ5の触媒温度を触媒活性温度に速やかに上昇させるために、内燃機関1からの排気の有する熱エネルギーを利用するとともに、燃料添加弁6から燃料を排気へ添加して、該燃料が酸化触媒4およびフィルタ5の有する酸化能によって酸化されて発生する酸化熱を利用する。このとき、燃料添加弁6からの燃料の添加は、酸化触媒4またはフィルタ5の触媒温度が、各々が有する酸化能が発揮され得る温度(以下、「暫定触媒活性温度」という)に到達している必要がある。尚、暫定触媒活性温度は、触媒機能が十分に発揮され得る上述の触媒活性温度より低い温度である。   However, in order for the catalytic functions of the oxidation catalyst 4 and the filter 5 to be exerted, the temperature of each catalyst needs to reach an activation temperature (hereinafter referred to as “catalytic activation temperature”). Therefore, in order to quickly raise the catalyst temperature of the oxidation catalyst 4 and the filter 5 to the catalyst activation temperature, the thermal energy of the exhaust from the internal combustion engine 1 is used, and the fuel is added to the exhaust from the fuel addition valve 6. The oxidation heat generated when the fuel is oxidized by the oxidation ability of the oxidation catalyst 4 and the filter 5 is used. At this time, the addition of the fuel from the fuel addition valve 6 reaches the temperature at which the catalyst temperature of the oxidation catalyst 4 or the filter 5 can exhibit the oxidation ability of each of them (hereinafter referred to as “provisional catalyst activation temperature”). Need to be. The temporary catalyst activation temperature is a temperature lower than the above-described catalyst activation temperature at which the catalyst function can be sufficiently exhibited.

酸化触媒4およびフィルタ5の触媒温度が暫定触媒活性温度に到達していないときに、燃料添加弁6から燃料が添加されると、該燃料が酸化触媒4やフィルタ5によって酸化されずに外気へ放出されエミッションが悪化する。そこで、燃料添加弁6からの燃料添加は、酸化触媒4やフィルタ5の温度を速やかに触媒活性温度に上昇させるために必要であるが、一方でこれらの触媒温度が暫定触媒活性温度に到達していないときはエミッションの悪化を抑制するために、燃料添加弁6からの燃料添加が実行されるのは好ましくない。従って、燃料添加弁6からの燃料添加を実行するためには、酸化触媒4およびフィルタ5の触媒温度を精度よく把握する必要がある。   When fuel is added from the fuel addition valve 6 when the catalyst temperatures of the oxidation catalyst 4 and the filter 5 have not reached the temporary catalyst activation temperature, the fuel is not oxidized by the oxidation catalyst 4 or the filter 5 and is released to the outside air. Released and worsens emissions. Therefore, fuel addition from the fuel addition valve 6 is necessary to quickly raise the temperature of the oxidation catalyst 4 and the filter 5 to the catalyst activation temperature. On the other hand, these catalyst temperatures reach the temporary catalyst activation temperature. If not, it is not preferable that the fuel addition from the fuel addition valve 6 is performed in order to suppress the deterioration of the emission. Therefore, in order to execute fuel addition from the fuel addition valve 6, it is necessary to accurately grasp the catalyst temperatures of the oxidation catalyst 4 and the filter 5.

そこで、酸化触媒4およびフィルタ5の触媒温度上昇を行うとともにエミッションの悪化を抑制するための、酸化触媒4およびフィルタ5の触媒温度の把握と燃料添加弁6からの燃料添加について、以下に説明する。   Therefore, the following describes the grasp of the catalyst temperature of the oxidation catalyst 4 and the filter 5 and the addition of fuel from the fuel addition valve 6 in order to increase the catalyst temperature of the oxidation catalyst 4 and the filter 5 and suppress the deterioration of the emission. .

ここで、酸化触媒4を排気の流れる方向において二分割し、その上流側の部位を前端部位4aと、その下流側の部位を後段部位4bとする。また、フィルタ5を排気の流れる方向に沿って三分割し、その最上流側の部位を前端部位5aと、その最下流側の部位を後端部位5cと、前端部位5aと後端部位5cとの間の部位を中間部位5bとする。また、各部位の触媒温度を推定するにあたり、各々に初期値が与えられる。例えば、内燃機関1の機関始動時においては、酸化触媒4およびフィルタ5の温度は、ほぼ外気温度と同一であるとみなして、外気温度と同一の値を各部位の触媒温度の初期値とする。   Here, the oxidation catalyst 4 is divided into two in the flow direction of the exhaust gas, and the upstream portion thereof is referred to as a front end portion 4a and the downstream portion thereof is referred to as a rear portion 4b. Further, the filter 5 is divided into three along the flow direction of the exhaust gas, the most upstream portion is the front end portion 5a, the most downstream portion is the rear end portion 5c, the front end portion 5a and the rear end portion 5c. The part between is set as the intermediate part 5b. Moreover, in estimating the catalyst temperature of each site | part, an initial value is given to each. For example, when the internal combustion engine 1 is started, the temperatures of the oxidation catalyst 4 and the filter 5 are considered to be substantially the same as the outside air temperature, and the same value as the outside air temperature is set as the initial value of the catalyst temperature of each part. .

燃料添加弁6から添加された燃料の一部は直接酸化触媒4へ到達し、残りは排気通路3の壁面に付着する。また、既に排気通路3の壁面に付着していた燃料の一部が蒸発して、改めて酸化触媒4へ到達する。また、内燃機関1における燃料の燃焼において燃焼せずに排気中に未燃成分として残留している燃料が酸化触媒4へ到達する。これらの酸化触媒4へ到達する燃料量を、機関回転速度や機関負荷等の内燃機関1の運転状態や、該運転状態から推定される内燃機関1から排出直後の排気の温度等に基づいて算出する。   Part of the fuel added from the fuel addition valve 6 directly reaches the oxidation catalyst 4, and the rest adheres to the wall surface of the exhaust passage 3. Further, part of the fuel that has already adhered to the wall surface of the exhaust passage 3 evaporates and reaches the oxidation catalyst 4 again. Further, the fuel remaining as an unburned component in the exhaust gas without being burned in the combustion of the fuel in the internal combustion engine 1 reaches the oxidation catalyst 4. The amount of fuel reaching the oxidation catalyst 4 is calculated based on the operating state of the internal combustion engine 1 such as the engine rotational speed and the engine load, the temperature of the exhaust gas immediately after being discharged from the internal combustion engine 1 estimated from the operating state, and the like. To do.

具体的には、例えば、内燃機関1の運転状態と燃料添加弁6からの燃料添加による酸化触媒4への直接の到達量との関係を実験等で予め測定して、内燃機関1の運転状態と燃料添加弁6からの添加量をパラメータとして酸化触媒4への直接の到達量を算出するマップを作成し、該マップにアクセすることで、酸化触媒4への燃料の到達量を算出する。尚、燃料添加弁6からの燃料添加が実行されていないときは、酸化触媒4への燃料の到達量は、内燃機関1の燃焼において未燃成分として排気中に残留する量である。   Specifically, for example, the relationship between the operating state of the internal combustion engine 1 and the amount of direct arrival at the oxidation catalyst 4 due to the addition of fuel from the fuel addition valve 6 is measured in advance by experiments or the like, so that the operating state of the internal combustion engine 1 is determined. Then, a map for calculating the amount of direct arrival at the oxidation catalyst 4 using the addition amount from the fuel addition valve 6 as a parameter is created, and the amount of fuel reaching the oxidation catalyst 4 is calculated by accessing the map. When the fuel addition from the fuel addition valve 6 is not executed, the amount of fuel reaching the oxidation catalyst 4 is the amount remaining in the exhaust gas as an unburned component in the combustion of the internal combustion engine 1.

次に、酸化触媒4へ到達した燃料のうち、前端部位4aによって酸化される割合を算出する。酸化能を有する触媒における燃料の酸化の程度(以下、「酸化率」という)は、該触媒に流入する排気の流量と、該触媒自身の温度によって決定される。即ち、該触媒に流入する排気の流量が増加するに従い燃料の酸化率は低下し、また該触媒自身の温度が高くなるに従い燃料の酸化率は上昇する。そこで、内燃機関1の運転状態から推定される排気流量や前端部位4aの現時点での温度に基づいて、燃料の酸化率が算出される。そして、酸化されない燃料は前端部位4aの下流側に位置する後端部位4bへ供給される。以下、同様に後端部位4bでの燃料の酸化率を算出する。   Next, the ratio of the fuel that has reached the oxidation catalyst 4 that is oxidized by the front end portion 4a is calculated. The degree of fuel oxidation (hereinafter referred to as “oxidation rate”) in the catalyst having oxidation ability is determined by the flow rate of exhaust gas flowing into the catalyst and the temperature of the catalyst itself. That is, the oxidation rate of the fuel decreases as the flow rate of the exhaust gas flowing into the catalyst increases, and the oxidation rate of the fuel increases as the temperature of the catalyst itself increases. Therefore, the oxidation rate of the fuel is calculated based on the exhaust gas flow rate estimated from the operating state of the internal combustion engine 1 and the current temperature of the front end portion 4a. And the fuel which is not oxidized is supplied to the rear-end part 4b located in the downstream of the front-end part 4a. Hereinafter, similarly, the oxidation rate of the fuel at the rear end portion 4b is calculated.

次に、前端部位4aにおいて存在する熱エネルギーの総和を算出する。前端部位4aにおいては、前端部位4aに流入する排気の有する熱エネルギーと、前端部位4aにおいて燃料が酸化されることによって発生する酸化熱の熱エネルギーと、現時点において前端部位4aが有している熱エネルギーとが存在する。そして、これらの熱エネルギーの総和が前端部位4aとそこに存在する排気へ等しく分配されて、前端部位4aと該排気とが同一の値へ変動すると考えて、新たな前端部位4aの温度を算出する。具体的には、前端部位4aにおいて存在する熱エネルギーの総和を、前端部位4aと前端部位4aに存在する排気の総熱容量で除することで、前端部位4aと前端部位4aに存在する排気の温度を算出する。   Next, the sum total of the thermal energy which exists in the front-end part 4a is calculated. In the front end part 4a, the thermal energy of the exhaust gas flowing into the front end part 4a, the thermal energy of oxidation heat generated by the oxidation of the fuel in the front end part 4a, and the heat that the front end part 4a currently has There is energy. Then, the sum of these thermal energies is equally distributed to the front end portion 4a and the exhaust existing there, and the temperature of the new front end portion 4a is calculated assuming that the front end portion 4a and the exhaust fluctuate to the same value. To do. Specifically, the sum of the thermal energy present in the front end part 4a is divided by the total heat capacity of the exhaust present in the front end part 4a and the front end part 4a, whereby the temperature of the exhaust present in the front end part 4a and the front end part 4a. Is calculated.

その後、前端部位4aに存在していた排気は、前端部位4aの下流側に位置する後端部位4bへ移動する。そして、同様に後端部位4bの温度を、排気の熱エネルギー、燃料の酸化熱の熱エネルギー、後端部位4b自身の熱エネルギーに基づいて算出する。   Thereafter, the exhaust gas existing in the front end part 4a moves to the rear end part 4b located on the downstream side of the front end part 4a. Similarly, the temperature of the rear end portion 4b is calculated based on the heat energy of the exhaust, the heat energy of the oxidation heat of the fuel, and the heat energy of the rear end portion 4b itself.

次にフィルタ5における各部位の触媒温度の算出について説明する。フィルタ5における各部位の触媒温度の算出も、上述した酸化触媒4における各部位の触媒温度の算出と同様に、フィルタ5の各部位に流入する排気の熱エネルギー、燃料の酸化熱エネルギー、各部位自身の熱エネルギーに基づいて算出される。ここで、フィルタ5の前端部位5aに供給される燃料の量は、酸化触媒4の各部位において酸化されずに残った量であり、またフィルタ5の前端部位5aに流入する排気は、酸化触媒4の後端部位4bにおいて上述のように算出され温度を有する排気である。   Next, calculation of the catalyst temperature of each part in the filter 5 will be described. Similarly to the calculation of the catalyst temperature of each part in the oxidation catalyst 4 described above, the calculation of the catalyst temperature of each part in the filter 5 is performed by the thermal energy of the exhaust gas flowing into each part of the filter 5, the oxidation thermal energy of the fuel, and each part. Calculated based on its own thermal energy. Here, the amount of fuel supplied to the front end portion 5a of the filter 5 is the amount remaining without being oxidized in each portion of the oxidation catalyst 4, and the exhaust gas flowing into the front end portion 5a of the filter 5 is the oxidation catalyst. 4 is exhaust gas having a temperature calculated as described above at the rear end portion 4b.

上述のように酸化触媒4およびフィルタ5の各部位の温度を算出し、フィルタ5の前端部位5aの触媒温度が暫定触媒活性温度を超えるとき、燃料添加弁6からの燃料添加が実行される。また、フィルタ5の各部位の温度が触媒活性温度を超えるとき、即ち排気温度センサ7の検出値が触媒活性温度を超えるとき、フィルタ5における吸蔵還元型NOx触媒の排気浄化能力が十分に発揮されることになる。   As described above, the temperature of each part of the oxidation catalyst 4 and the filter 5 is calculated, and when the catalyst temperature of the front end part 5a of the filter 5 exceeds the temporary catalyst activation temperature, the fuel addition from the fuel addition valve 6 is executed. Further, when the temperature of each part of the filter 5 exceeds the catalyst activation temperature, that is, when the detected value of the exhaust temperature sensor 7 exceeds the catalyst activation temperature, the exhaust purification ability of the NOx storage reduction catalyst in the filter 5 is sufficiently exhibited. Will be.

しかし、酸化触媒4およびフィルタ5の各部位の触媒温度の算出値が実際の触媒温度と乖離している場合、特に実際の触媒温度より該算出値が高い場合には、添加された燃料の酸化が十分に行われない虞がある。そのような場合には、燃料添加弁6からの燃料添加を行わないのが好ましい。そこで、図2に基づいて、燃料添加弁6からの燃料添加の制御(以下、「燃料添加制御」という)について説明する。尚、燃料添加制御は、酸化触媒およびフィルタ5の触媒温度を上昇させるときに実行されるルーチンである。   However, when the calculated values of the catalyst temperature at each part of the oxidation catalyst 4 and the filter 5 are different from the actual catalyst temperature, especially when the calculated value is higher than the actual catalyst temperature, the oxidation of the added fuel is performed. May not be sufficiently performed. In such a case, it is preferable not to add fuel from the fuel addition valve 6. Therefore, control of fuel addition from the fuel addition valve 6 (hereinafter referred to as “fuel addition control”) will be described with reference to FIG. The fuel addition control is a routine executed when raising the catalyst temperature of the oxidation catalyst and the filter 5.

S101では、フィルタ5の前端部位5aの触媒温度であるthdp1を算出する。thdp1の算出については、先述したように前端部位5aに流入する排気の熱エネルギー、内燃機関1から供給された燃料のうち前端部位5aに到達し酸化される燃料の酸化熱エネルギー、前端部位5aの有する自身の熱エネルギーに基づいて算出される。尚、この時点においては、燃料添加弁6からの燃料添加は行われていない。S101の処理が終了すると、S102へ進む。   In S101, thdp1, which is the catalyst temperature of the front end portion 5a of the filter 5, is calculated. Regarding the calculation of thdp1, as described above, the thermal energy of the exhaust gas flowing into the front end portion 5a, the oxidation thermal energy of the fuel that reaches the front end portion 5a and is oxidized among the fuel supplied from the internal combustion engine 1, the front end portion 5a It is calculated based on its own thermal energy. At this time, fuel addition from the fuel addition valve 6 is not performed. When the process of S101 ends, the process proceeds to S102.

S102では、S101で算出されたthdplが暫定触媒活性温度Tp_thavを超えるか否かが判定される。即ち、前端部位5aの触媒温度が暫定触媒活性温度Tp_thavに到達することで、排気中の燃料を酸化することが可能となるか否かが判定される。thdplが暫定触媒活性温度Tp_thavを超えると判定されると、S103へ進む。一方、thdplが暫定触媒活性温度Tp_thavを超えないと判定されると、S101の処理が再度行われる。   In S102, it is determined whether thdpl calculated in S101 exceeds the provisional catalyst activation temperature Tp_thav. That is, it is determined whether or not the fuel in the exhaust can be oxidized when the catalyst temperature of the front end portion 5a reaches the temporary catalyst activation temperature Tp_thav. If it is determined that thdpl exceeds the provisional catalyst activation temperature Tp_thav, the process proceeds to S103. On the other hand, if it is determined that thdpl does not exceed the provisional catalyst activation temperature Tp_thav, the process of S101 is performed again.

S103では、燃料添加弁6からの燃料添加が開始される。即ち、この時点においては、S102においてthdplが暫定触媒活性温度Tp_thavを超えると判断されているため、添加された燃料がフィルタ5におけるNOx吸蔵還元触媒の酸化能によって酸化されてNOx吸蔵還元触媒の温度上昇を図るべく、燃料添加弁6からの燃料添加が開始されるのである。S103の処理が終了すると、S104へ進む。   In S103, fuel addition from the fuel addition valve 6 is started. That is, at this time, since it is determined in S102 that thdpl exceeds the provisional catalyst activation temperature Tp_thav, the added fuel is oxidized by the oxidation ability of the NOx storage reduction catalyst in the filter 5, and the temperature of the NOx storage reduction catalyst In order to increase, fuel addition from the fuel addition valve 6 is started. When the process of S103 ends, the process proceeds to S104.

S104では、該部位に供給された燃料の酸化熱エネルギーによる該部位の触媒温度の上昇を除外したうえで、前端部位5aに流入する排気の熱エネルギーおよび前端部位5aの有する自身の熱エネルギーに基づいて、フィルタ5の前端部位5aの触媒温度である燃料酸化熱除去フィルタ前端部位温度thdp1_offが算出される。即ち、上述した触媒温度の算出方法において、前端部位5aに流入する排気の熱エネルギーと前端部位5aの有する自身の熱エネルギーの総和を、前端部位5aと前端部位5aに存在する排気の総熱容量で除することで、thdp1_offは算出される。S104の処理が終了すると、S105へ進む。   In S104, based on the thermal energy of the exhaust gas flowing into the front end portion 5a and the own thermal energy of the front end portion 5a, excluding the increase in the catalyst temperature of the portion due to the oxidation heat energy of the fuel supplied to the portion. Thus, the fuel oxidation heat removal filter front end part temperature thdp1_off which is the catalyst temperature of the front end part 5a of the filter 5 is calculated. That is, in the above-described method for calculating the catalyst temperature, the sum of the thermal energy of the exhaust flowing into the front end portion 5a and the thermal energy of the front end portion 5a is the total heat capacity of the exhaust existing in the front end portion 5a and the front end portion 5a. By dividing, thdp1_off is calculated. When the process of S104 ends, the process proceeds to S105.

S105では、S104で算出されたthdp1_offが暫定触媒活性温度Tp_thav以下であるか否かが判定される。前端部位5aはフィルタ5において排気が流入する部位であるため、内燃機関の運転状態による排気温度の変動を強く受ける。更に、thdp1_offは燃料の酸化による酸化熱エネルギーを除外して算出されるため、thdp1_offはフィルタ5における触媒温度の下限温度とみなすことが可能となる。そこで、thdp1_offが暫定触媒活性温度Tp_thav以下であるか否かに基づいて、燃料添加弁6からの燃料添加の実行の適否を判定するのである。   In S105, it is determined whether thdp1_off calculated in S104 is equal to or lower than the temporary catalyst activation temperature Tp_thav. Since the front end portion 5a is a portion into which exhaust gas flows in the filter 5, the exhaust temperature is strongly affected by the operating state of the internal combustion engine. Furthermore, since thdp1_off is calculated by excluding oxidation heat energy due to fuel oxidation, thdp1_off can be regarded as the lower limit temperature of the catalyst temperature in the filter 5. Therefore, whether or not the fuel addition from the fuel addition valve 6 is executed is determined based on whether or not thdp1_off is equal to or lower than the temporary catalyst activation temperature Tp_thav.

従って、S105でthdp1_offが暫定触媒活性温度Tp_thav以下であると判定されると、前端部位5aにおいて排気中の燃料の酸化が十分に行われない蓋然性が高いことを意味し、S107へ進み、燃料添加弁6からの燃料添加が禁止される。一方で、thdp1_offが暫定触媒活性温度Tp_thavを超えると判定されると、前端部位5aにおいて排気中の燃料の酸化が十分に行われ得ることを意味し、S108へ進み、燃料添加弁6からの燃料添加が禁止されているときは燃料添加を再開し、燃料添加弁6からの燃料添加が行われているときは継続して該燃料添加が行われる。S106又はS107の処理が終了すると、S108へ進む。   Therefore, if it is determined in S105 that thdp1_off is equal to or lower than the provisional catalyst activation temperature Tp_thav, it means that there is a high probability that the fuel in the exhaust gas is not sufficiently oxidized at the front end portion 5a, and the process proceeds to S107. Fuel addition from the valve 6 is prohibited. On the other hand, if it is determined that thdp1_off exceeds the provisional catalyst activation temperature Tp_thav, this means that the fuel in the exhaust gas can be sufficiently oxidized at the front end portion 5a, and the process proceeds to S108, where the fuel from the fuel addition valve 6 is fueled. When the addition is prohibited, the fuel addition is resumed, and when the fuel addition from the fuel addition valve 6 is being performed, the fuel addition is continuously performed. When the process of S106 or S107 ends, the process proceeds to S108.

S108では、排気温度センサ7による検出値であるフィルタ5から流出する排気温度が触媒活性温度thavを超えるか否かが判定される。排気温度センサ7はフィルタ5の下流側に配置されているため、排気温度センサ7によって検出される排気温度は、フィル
タ5の後端部位5cの実際の触媒温度とほぼ同一視し得る。そこで、後端部位5cの実際の触媒温度が触媒活性温度thavを超えることをもって、フィルタ5における吸蔵還元型NOx触媒が活性状態に至ったものと判定するのである。排気温度センサ7による検出値が触媒活性温度thavを超えると判定されると、本制御を終了する。一方で、排気温度センサ7による検出値が触媒活性温度thav以下であると判定されると、S104以降の処理が再び行われる。
In S108, it is determined whether or not the exhaust temperature flowing out from the filter 5, which is a value detected by the exhaust temperature sensor 7, exceeds the catalyst activation temperature thav. Since the exhaust gas temperature sensor 7 is disposed on the downstream side of the filter 5, the exhaust gas temperature detected by the exhaust gas temperature sensor 7 can be almost identical to the actual catalyst temperature of the rear end portion 5 c of the filter 5. Therefore, when the actual catalyst temperature at the rear end portion 5c exceeds the catalyst activation temperature thav, it is determined that the NOx storage reduction catalyst in the filter 5 has reached the active state. When it is determined that the detected value by the exhaust temperature sensor 7 exceeds the catalyst activation temperature thav, this control is terminated. On the other hand, if it is determined that the detected value by the exhaust temperature sensor 7 is equal to or lower than the catalyst activation temperature thav, the processes after S104 are performed again.

本制御によると、フィルタ5における吸蔵還元型NOx触媒の温度上昇は、燃料添加弁6による燃料添加を利用することで、速やかに行われるとともに、該燃料添加時において触媒温度が添加された燃料が適切に酸化されない温度となる場合には該燃料添加の実行が禁止される。その結果、添加燃料によるエミッションの悪化を抑制することが可能となる。   According to this control, the temperature increase of the NOx storage reduction catalyst in the filter 5 is quickly performed by using the fuel addition by the fuel addition valve 6, and the fuel to which the catalyst temperature is added at the time of the fuel addition is increased. When the temperature is not properly oxidized, the fuel addition is prohibited. As a result, it is possible to suppress the deterioration of emission due to the added fuel.

本発明に係る内燃機関の排気浄化装置における燃料添加制御の別の実施の形態について、図3に基づいて説明する。尚、図3に示す制御フローが行われる内燃機関の排気浄化装置は図1に示すものと同一である。また、図3に示す制御フロー中、図2に示す制御フローの処理と同一の処理については、同一の参照番号を付して、その説明を省略する。   Another embodiment of the fuel addition control in the exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described with reference to FIG. The exhaust gas purifying apparatus for the internal combustion engine in which the control flow shown in FIG. 3 is performed is the same as that shown in FIG. Also, in the control flow shown in FIG. 3, the same processes as those in the control flow shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.

図3に示す制御フローにおいては、S103の処理が終了すると、S201へ進む。S201では、該部位に供給された燃料の酸化熱エネルギーによる該部位の触媒温度の上昇を除外したうえで、後端部位5aに流入する排気の熱エネルギーおよび後端部位5cの有する自身の熱エネルギーに基づいて、フィルタ5の後端部位5cの触媒温度である燃料酸化熱除去フィルタ後端部位温度thdp2_offが算出される。即ち、上述した触媒温度の算出方法において、後端部位5cに流入する排気の熱エネルギーと後端部位5cの有する自身の熱エネルギーの総和を、後端部位5cと後端部位5cに存在する排気の総熱容量で除することで、thdp2_offは算出される。S201の処理が終了すると、S202へ進む。   In the control flow shown in FIG. 3, when the process of S103 is completed, the process proceeds to S201. In S201, excluding the increase in the catalyst temperature of the part due to the oxidation thermal energy of the fuel supplied to the part, the thermal energy of the exhaust gas flowing into the rear end part 5a and the own thermal energy of the rear end part 5c Based on this, the fuel oxidation heat removal filter rear end portion temperature thdp2_off, which is the catalyst temperature of the rear end portion 5c of the filter 5, is calculated. That is, in the above-described method for calculating the catalyst temperature, the sum of the thermal energy of the exhaust gas flowing into the rear end portion 5c and the own thermal energy of the rear end portion 5c is calculated as the exhaust gas existing in the rear end portion 5c and the rear end portion 5c. By dividing by the total heat capacity, thdp2_off is calculated. When the process of S201 ends, the process proceeds to S202.

S202では、S201で算出されたthdp2_offと排気温度センサ7による検出値との温度差であるΔthが算出される。排気温度センサ7はフィルタ5の下流側に配置されているため、排気温度センサ7によって検出される排気温度は、フィルタ5の後端部位5cの実際の触媒温度とほぼ同一視し得る。従って、Δthは、後端部位5cの実際の触媒温度と燃料の酸化が無いと仮定した場合の触媒温度との差を意味し、換言するとΔthは、燃料の酸化熱エネルギーによる後端部位5cの触媒温度上昇への寄与度を表すパラメータである。即ち、後端部位5cの触媒温度が実際に暫定触媒活性温度に至り後端部位5cにおいて燃料の酸化が適切に行われていると、実際の触媒温度は上昇するため、Δthの値が増大する。一方で、後端部位5cの触媒温度が実際には暫定触媒活性温度にまで至っておらず後端部位5cにおいて燃料の酸化が適切に行われていないと、後端部位5cに燃料が供給されても実際の触媒温度は上昇しないため、Δthの値が増大せず、若しくはその増大量が比較的小さい。   In S202, Δth, which is a temperature difference between thdp2_off calculated in S201 and the detected value by the exhaust temperature sensor 7, is calculated. Since the exhaust gas temperature sensor 7 is disposed on the downstream side of the filter 5, the exhaust gas temperature detected by the exhaust gas temperature sensor 7 can be almost identical to the actual catalyst temperature of the rear end portion 5 c of the filter 5. Therefore, Δth means the difference between the actual catalyst temperature of the rear end portion 5c and the catalyst temperature when it is assumed that there is no oxidation of the fuel. In other words, Δth is the rear end portion 5c due to the oxidation heat energy of the fuel. It is a parameter that represents the degree of contribution to the catalyst temperature rise. That is, when the catalyst temperature at the rear end portion 5c actually reaches the provisional catalyst activation temperature and the fuel is appropriately oxidized at the rear end portion 5c, the actual catalyst temperature rises, so that the value of Δth increases. . On the other hand, if the catalyst temperature at the rear end portion 5c does not actually reach the provisional catalyst activation temperature and the fuel is not properly oxidized at the rear end portion 5c, the fuel is supplied to the rear end portion 5c. However, since the actual catalyst temperature does not increase, the value of Δth does not increase, or the amount of increase is relatively small.

そこで、S203では、S202で算出されたΔthに基づいて、燃料添加弁6からの添加燃料が酸化されているか否かが判断される。具体的には、Δthが所定温度Δth0以下であるか否かが判断される。Δth0は、燃料添加弁6からの添加燃料が酸化されているか否かを判断するためのthdp2_offと排気温度センサ7による検出値との温度差の閾値である。ΔthがΔth0以下であると判定されると、後端部位5cにおいて排気中の燃料の酸化が十分に行われない蓋然性が高いことを意味し、S107へ進み、燃料添加弁6からの燃料添加が禁止される。一方で、ΔthがΔth0を超えると判定されると、後端部位5cにおいて排気中の燃料の酸化が十分に行われ得ることを意味し、S1
08へ進み、燃料添加弁6からの燃料添加が禁止されているときは燃料添加を再開し、燃料添加弁6からの燃料添加が行われているときは継続して該燃料添加が行われる。S106又はS107の処理が終了すると、S108へ進む。
Therefore, in S203, it is determined whether or not the added fuel from the fuel addition valve 6 is oxidized based on Δth calculated in S202. Specifically, it is determined whether Δth is equal to or lower than a predetermined temperature Δth0. Δth0 is a threshold value of a temperature difference between thdp2_off and a value detected by the exhaust temperature sensor 7 for determining whether or not the added fuel from the fuel addition valve 6 is oxidized. If it is determined that Δth is equal to or smaller than Δth0, it means that there is a high probability that the fuel in the exhaust gas is not sufficiently oxidized at the rear end portion 5c, and the process proceeds to S107, where fuel addition from the fuel addition valve 6 is performed. prohibited. On the other hand, if it is determined that Δth exceeds Δth0, it means that the fuel in the exhaust gas can be sufficiently oxidized at the rear end portion 5c, and S1.
When the fuel addition from the fuel addition valve 6 is prohibited, the fuel addition is resumed. When the fuel addition from the fuel addition valve 6 is being performed, the fuel addition is continued. When the process of S106 or S107 ends, the process proceeds to S108.

本制御によると、フィルタ5における吸蔵還元型NOx触媒の温度上昇は、燃料添加弁6による燃料添加を利用することで、速やかに行われるとともに、該燃料添加時において触媒温度が添加された燃料が適切に酸化されない温度となる場合には該燃料添加の実行が禁止される。その結果、添加燃料によるエミッションの悪化を抑制することが可能となる。   According to this control, the temperature increase of the NOx storage reduction catalyst in the filter 5 is quickly performed by using the fuel addition by the fuel addition valve 6, and the fuel to which the catalyst temperature is added at the time of the fuel addition is increased. When the temperature is not properly oxidized, the fuel addition is prohibited. As a result, it is possible to suppress the deterioration of emission due to the added fuel.

本発明に係る内燃機関の排気浄化装置における燃料添加制御の別の実施の形態について、図4に基づいて説明する。尚、図4に示す制御フローが行われる内燃機関の排気浄化装置は図1に示すものと同一である。また、図4に示す制御フロー中、図2に示す制御フローの処理と同一の処理については、同一の参照番号を付して、その説明を省略する。   Another embodiment of the fuel addition control in the exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described with reference to FIG. The exhaust gas purification apparatus for the internal combustion engine in which the control flow shown in FIG. 4 is performed is the same as that shown in FIG. Also, in the control flow shown in FIG. 4, the same processes as those in the control flow shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.

図4に示す制御フローにおいては、S103の処理が終了すると、S301へ進む。S301では、S301へ移行後10秒間隔で、排気温度センサ7によって排気温度が取得される。   In the control flow shown in FIG. 4, when the process of S103 is completed, the process proceeds to S301. In S301, the exhaust gas temperature is acquired by the exhaust gas temperature sensor 7 at intervals of 10 seconds after shifting to S301.

ここで、図5に基づいて、排気温度センサ7によって取得される排気温度と、フィルタ5における吸蔵還元型NOx触媒の触媒温度との関係について説明する。図5は、フィルタ5から流出する排気の温度推移を示すグラフである。該グラフの横軸は時間を表し、縦軸は排気温度を表している。また、グラフ中線L1、L2で表されるのが、排気温度の推移である。図5(a)、(b)における横軸のT1〜T5における5つの時間は、各時間の間隔がS301における排気温度の取得間隔に対応して10秒となっている。即ち、10秒間隔で、排気温度センサ7によってフィルタ5から流出する排気の温度が検出される。   Here, the relationship between the exhaust temperature acquired by the exhaust temperature sensor 7 and the catalyst temperature of the NOx storage reduction catalyst in the filter 5 will be described with reference to FIG. FIG. 5 is a graph showing the temperature transition of the exhaust gas flowing out from the filter 5. The horizontal axis of the graph represents time, and the vertical axis represents the exhaust temperature. Also, the transition of the exhaust gas temperature is represented by the graph middle lines L1 and L2. In the five times from T1 to T5 on the horizontal axis in FIGS. 5A and 5B, the time interval is 10 seconds corresponding to the exhaust temperature acquisition interval in S301. That is, the exhaust gas temperature flowing out of the filter 5 is detected by the exhaust gas temperature sensor 7 at intervals of 10 seconds.

図5(a)は、フィルタ5の吸蔵還元型NOx触媒の温度が実際に暫定触媒活性温度に到達しているときの排気温度の推移である。この場合、内燃機関1が、減速運転等、内燃機関1から排出される排気温度が低下する運転状態でない限りは、時間T1〜T2で表すように、燃料添加弁6から添加された燃料の酸化熱エネルギー等により、フィルタ5から流出する排気温度は徐々に上昇する。また、内燃機関1が、減速運転等、内燃機関1から排出される排気温度が低下する運転状態である場合には、時間T2〜T4で表すように、排気温度は低下し、その排気温度の低下量はΔthsc1である。しかし、燃料の酸化熱エネルギーが発生しているため、低下量Δthsc1は比較的小さく、また、排気温度が低下する時間も比較的短く、その後排気温度は上昇に転じる。   FIG. 5A shows the transition of the exhaust gas temperature when the temperature of the NOx storage reduction catalyst of the filter 5 actually reaches the temporary catalyst activation temperature. In this case, unless the internal combustion engine 1 is in an operating state in which the exhaust gas temperature discharged from the internal combustion engine 1 is reduced, such as in a deceleration operation, the oxidation of the fuel added from the fuel addition valve 6 is represented by time T1 to T2. The exhaust gas temperature flowing out from the filter 5 gradually increases due to thermal energy or the like. Further, when the internal combustion engine 1 is in an operation state in which the exhaust gas temperature discharged from the internal combustion engine 1 is reduced, such as in a deceleration operation, the exhaust gas temperature is reduced as indicated by times T2 to T4. The amount of decrease is Δthsc1. However, since the oxidation heat energy of the fuel is generated, the amount of decrease Δthsc1 is relatively small, and the time during which the exhaust temperature decreases is also relatively short, after which the exhaust temperature starts to increase.

一方で、図5(b)に示す排気温度の推移は、実際のフィルタ5の吸蔵還元型NOx触媒の温度が暫定触媒活性温度に到達していないにもかかわらず、燃料添加弁6からの燃料添加が行われているときの排気温度の推移である。フィルタ5の吸蔵還元型NOx触媒の温度が実際には暫定触媒活性温度に到達していないため、燃料の酸化熱エネルギーは発生しない。従って、内燃機関1が、減速運転等、内燃機関1から排出される排気温度が低下する運転状態である場合には、時間T1〜T4で表すように、排気温度は低下し、その排気温度の低下量はΔthsc2である。そして、上述の通り、燃料の酸化熱エネルギーは発生しないため、排気温度の低下量Δthsc2は、図5(a)における低下量Δthsc1と比較して大きく、また長い時間にわたって排気温度の下降状態が続く。   On the other hand, the transition of the exhaust gas temperature shown in FIG. 5 (b) shows the fuel from the fuel addition valve 6 even though the actual temperature of the NOx storage reduction catalyst of the filter 5 has not reached the temporary catalyst activation temperature. It is transition of the exhaust temperature when addition is performed. Since the temperature of the NOx storage reduction catalyst of the filter 5 does not actually reach the temporary catalyst activation temperature, no oxidation heat energy of the fuel is generated. Accordingly, when the internal combustion engine 1 is in an operating state in which the exhaust temperature discharged from the internal combustion engine 1 is reduced, such as in a deceleration operation, the exhaust temperature is reduced as shown by the times T1 to T4. The amount of decrease is Δthsc2. As described above, since no oxidizing heat energy is generated in the fuel, the exhaust temperature decrease amount Δthsc2 is larger than the decrease amount Δthsc1 in FIG. 5A, and the exhaust temperature decrease state continues for a long time. .

よって、燃料添加弁6からの燃料添加時において、吸蔵還元型NOx触媒の温度が実際
に暫定触媒活性温度に到達しているか否かを、排気温度の低下量に基づいて判定することが可能となる。このとき、該判定の基準となる排気温度の低下量は、比較的長い時間における排気温度の低下量である必要がある。これは、排気温度の低下量の算出のための間隔を長くすることで、排気温度の変動の傾向が下降状態にあるのか、排気温度は一時的に下降するものの全体を通しては排気温度の変動が上昇状態にあるかが判定し得るからである。そして、図5(b)に示すように排気温度の変動が下降状態にあるときは、吸蔵還元型NOx触媒の温度が実際に暫定触媒活性温度に到達していないことを意味する。
Therefore, at the time of fuel addition from the fuel addition valve 6, it is possible to determine whether the temperature of the NOx storage reduction catalyst actually reaches the temporary catalyst activation temperature based on the amount of decrease in the exhaust temperature. Become. At this time, the amount of decrease in the exhaust temperature that is the criterion for the determination needs to be the amount of decrease in the exhaust temperature over a relatively long time. This is because if the interval for calculating the amount of decrease in the exhaust temperature is lengthened, whether the tendency of fluctuations in the exhaust temperature is in a descending state, or the exhaust temperature varies temporarily, although the exhaust temperature temporarily decreases. This is because it can be determined whether or not the vehicle is in the rising state. Then, as shown in FIG. 5B, when the fluctuation of the exhaust gas temperature is in a descending state, it means that the temperature of the NOx storage reduction catalyst has not actually reached the temporary catalyst activation temperature.

そこで、S301の処理後、S302において、排気温度センサ7によって検出される排気温度が下降状態にあるか否かが判定される。具体的には、図5(a)、(b)に示すように、比較的長い期間における排気温度の低下量であるΔthsc1又はΔthsc2の値が、内燃機関の運転状態の変動に基づいて決定される排気温度の低下量を超えるときは、フィルタ5の吸蔵還元型NOx触媒の触媒温度は、実際は暫定触媒活性温度に到達していないと判断し得る。例えば、内燃機関の運転状態が減速状態となることで排気温度が20度低下するとき、Δthsc1の排気温度の低下量は10度であり、Δthsc2の排気温度の低下量が30度であれば、Δthsc1の排気温度の低下が現れるフィルタ5の吸蔵還元型NOx触媒の触媒温度は、実際に暫定触媒活性温度に到達していると判定され、一方で、Δthsc2の排気温度の低下が現れるフィルタ5の吸蔵還元型NOx触媒の触媒温度は、実際は暫定触媒活性温度に到達していないと判定される。   Therefore, after the processing of S301, in S302, it is determined whether or not the exhaust temperature detected by the exhaust temperature sensor 7 is in a decreasing state. Specifically, as shown in FIGS. 5A and 5B, the value of Δthsc1 or Δthsc2, which is the amount of decrease in the exhaust temperature over a relatively long period, is determined based on the fluctuation of the operating state of the internal combustion engine. When the exhaust gas temperature drop amount exceeds the amount of decrease in the exhaust gas temperature, it can be determined that the catalyst temperature of the NOx storage reduction catalyst of the filter 5 does not actually reach the provisional catalyst activation temperature. For example, when the exhaust temperature decreases by 20 degrees because the operating state of the internal combustion engine becomes a deceleration state, the amount of decrease in the exhaust temperature of Δthsc1 is 10 degrees, and the amount of decrease in the exhaust temperature of Δthsc2 is 30 degrees, The catalyst temperature of the NOx storage reduction catalyst of the filter 5 in which a decrease in the exhaust temperature of Δthsc1 appears is determined to actually reach the temporary catalyst activation temperature, while the exhaust temperature of the filter 5 in which the decrease of the exhaust temperature of Δthsc2 appears. It is determined that the catalyst temperature of the NOx storage reduction catalyst does not actually reach the provisional catalyst activation temperature.

排気温度センサ7によって検出される排気温度が下降状態にあると判定されると、フィルタ5において排気中の燃料の酸化が十分に行われない蓋然性が高いことを意味し、S107へ進み、燃料添加弁6からの燃料添加が禁止される。一方で、排気温度センサ7によって検出される排気温度が下降状態にないと判定されると、フィルタ5において排気中の燃料の酸化が十分に行われ得ることを意味し、S108へ進み、燃料添加弁6からの燃料添加が禁止されているときは燃料添加を再開し、燃料添加弁6からの燃料添加が行われているときは継続して該燃料添加が行われる。S106又はS107の処理が終了すると、S108へ進む。   If it is determined that the exhaust gas temperature detected by the exhaust gas temperature sensor 7 is in a lowered state, it means that there is a high probability that the filter 5 will not sufficiently oxidize the fuel in the exhaust gas. Fuel addition from the valve 6 is prohibited. On the other hand, if it is determined that the exhaust gas temperature detected by the exhaust gas temperature sensor 7 is not in the lowered state, it means that the filter 5 can sufficiently oxidize the fuel in the exhaust gas, and the process proceeds to S108, where fuel addition is performed. When the fuel addition from the valve 6 is prohibited, the fuel addition is resumed. When the fuel addition from the fuel addition valve 6 is being performed, the fuel addition is continuously performed. When the process of S106 or S107 ends, the process proceeds to S108.

本制御によると、フィルタ5における吸蔵還元型NOx触媒の温度上昇は、燃料添加弁6による燃料添加を利用することで、速やかに行われるとともに、該燃料添加時において触媒温度が添加された燃料が適切に酸化されない温度となる場合には該燃料添加の実行が禁止される。その結果、添加燃料によるエミッションの悪化を抑制することが可能となる。尚、本実施例において、排気温度センサ7による排気温度の取得間隔は10秒であるが、これは一例であり、適宜変更可能である。   According to this control, the temperature increase of the NOx storage reduction catalyst in the filter 5 is quickly performed by using the fuel addition by the fuel addition valve 6, and the fuel to which the catalyst temperature is added at the time of the fuel addition is increased. When the temperature is not properly oxidized, the fuel addition is prohibited. As a result, it is possible to suppress the deterioration of emission due to the added fuel. In the present embodiment, the exhaust temperature acquisition interval by the exhaust temperature sensor 7 is 10 seconds, but this is an example and can be changed as appropriate.

本発明の実施の形態に係る内燃機関の排気浄化装置の概略構成を表すブロック図である。1 is a block diagram illustrating a schematic configuration of an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention. 本発明の実施の形態に係る内燃機関の排気浄化装置において、燃料添加弁から排気への燃料添加制御に関する第一のフローチャートである。4 is a first flowchart regarding fuel addition control from a fuel addition valve to exhaust in the exhaust gas purification apparatus for an internal combustion engine according to the embodiment of the present invention. 本発明の実施の形態に係る内燃機関の排気浄化装置において、燃料添加弁から排気への燃料添加制御に関する第二のフローチャートである。6 is a second flowchart regarding control of fuel addition from the fuel addition valve to the exhaust in the exhaust gas purification apparatus for an internal combustion engine according to the embodiment of the present invention. 本発明の実施の形態に係る内燃機関の排気浄化装置において、燃料添加弁から排気への燃料添加制御に関する第三のフローチャートである。7 is a third flowchart regarding fuel addition control from a fuel addition valve to exhaust in the exhaust gas purification apparatus for an internal combustion engine according to the embodiment of the present invention. 本発明の実施の形態に係る内燃機関の排気浄化装置において、フィルタから流出する排気の温度推移を示すグラフである。4 is a graph showing a temperature transition of exhaust gas flowing out from a filter in the exhaust gas purification apparatus for an internal combustion engine according to the embodiment of the present invention.

符号の説明Explanation of symbols

1・・・・内燃機関
3・・・・排気通路
4・・・・酸化触媒
4a・・・・前端部位
4b・・・・後端部位
5・・・・フィルタ
5a・・・・前端部位
5c・・・・後端部位
6・・・・燃料添加弁
7・・・・排気温度センサ
20・・・・ECU
DESCRIPTION OF SYMBOLS 1 ...... Internal combustion engine 3 ... Exhaust passage 4 ... Oxidation catalyst 4a ... Front end part 4b ... Rear end part 5 ... Filter 5a ... Front end part 5c .... Rear end part 6 ... Fuel addition valve 7 ... Exhaust temperature sensor 20 ... ECU

Claims (4)

内燃機関の排気通路に設けられ、酸化能を有する排気浄化触媒と、
前記排気浄化触媒に流入する排気に還元剤を添加する還元剤添加手段と、
少なくとも前記排気浄化触媒に流入する排気の温度、該排気に含まれる還元剤量および該排気浄化触媒内の熱容量に基づいて、該排気浄化触媒の温度を推定する第一触媒温度推定手段と、
前記排気浄化触媒に流入する排気に含まれる還元剤に基づく該排気浄化触媒の温度上昇を除外したうえで、少なくとも該排気浄化触媒に流入する排気の温度および該排気浄化触媒内の熱容量に基づいて該排気浄化触媒の所定部位の温度を推定する第二触媒温度推定手段と、
前記第一触媒温度推定手段によって推定される前記排気浄化触媒の温度が暫定触媒活性温度を超えるとき、前記還元剤添加手段による排気への還元剤の添加を行う還元剤添加制御手段と、
前記第一触媒温度推定手段によって推定される前記排気浄化触媒の温度が前記暫定触媒活性温度より高い触媒活性温度を超えるとき、前記排気浄化触媒は活性状態にあると判定する触媒活性判定手段と、
前記還元剤添加制御手段によって排気への還元剤の添加が行われているときに、前記第二触媒温度推定手段によって推定される前記排気浄化触媒の前記所定部位の温度に基づいて該還元剤添加制御手段による排気への還元剤の添加を禁止する還元剤添加禁止手段と、
を備える内燃機関の排気浄化装置。
An exhaust purification catalyst provided in the exhaust passage of the internal combustion engine and having oxidizing ability;
Reducing agent addition means for adding a reducing agent to the exhaust gas flowing into the exhaust purification catalyst;
First catalyst temperature estimation means for estimating the temperature of the exhaust purification catalyst based on at least the temperature of the exhaust flowing into the exhaust purification catalyst, the amount of reducing agent contained in the exhaust, and the heat capacity in the exhaust purification catalyst;
Excluding the temperature increase of the exhaust purification catalyst based on the reducing agent contained in the exhaust gas flowing into the exhaust purification catalyst, based on at least the temperature of the exhaust gas flowing into the exhaust purification catalyst and the heat capacity in the exhaust purification catalyst Second catalyst temperature estimating means for estimating the temperature of a predetermined portion of the exhaust purification catalyst;
A reducing agent addition control means for adding a reducing agent to the exhaust by the reducing agent addition means when the temperature of the exhaust purification catalyst estimated by the first catalyst temperature estimation means exceeds a temporary catalyst activation temperature;
Catalyst activity determination means for determining that the exhaust purification catalyst is in an active state when the temperature of the exhaust purification catalyst estimated by the first catalyst temperature estimation means exceeds a catalyst activation temperature higher than the temporary catalyst activation temperature;
When the reducing agent is added to the exhaust gas by the reducing agent addition control means, the reducing agent addition is performed based on the temperature of the predetermined portion of the exhaust purification catalyst estimated by the second catalyst temperature estimating means. Reducing agent addition prohibiting means for prohibiting addition of reducing agent to exhaust by the control means;
An exhaust gas purification apparatus for an internal combustion engine.
前記第二触媒温度推定手段は、前記排気浄化触媒に排気が流入する部位である前端部位の温度を推定し、
前記還元剤添加禁止手段は、前記還元剤添加制御手段によって排気への還元剤の添加が行われているときに前記第二触媒温度推定手段によって推定される前記排気浄化触媒の前端部位の温度が前記暫定触媒活性温度以下となる場合、該還元剤添加制御手段による排気への還元剤の添加を禁止することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
The second catalyst temperature estimating means estimates a temperature of a front end portion that is a portion where exhaust flows into the exhaust purification catalyst,
The reducing agent addition prohibiting means has a temperature of the front end portion of the exhaust purification catalyst estimated by the second catalyst temperature estimating means when the reducing agent addition control means is adding the reducing agent to the exhaust gas. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein when the temperature is lower than the temporary catalyst activation temperature, addition of the reducing agent to the exhaust gas by the reducing agent addition control means is prohibited.
前記排気浄化触媒の下流側に設けられ、該排気浄化触媒から流出する排気の温度を検出する排気温度検出手段を、更に備え、
前記第二触媒温度推定手段は、前記排気浄化触媒から排気が流出する部位である後端部位の温度を推定し、
前記還元剤添加禁止手段は、前記還元剤添加制御手段によって排気への還元剤の添加が行われているときに前記第二触媒温度推定手段によって推定される前記排気浄化触媒の後端部位の温度と前記排気温度検出手段によって検出される排気の温度との温度差が所定温度以下となる場合、該還元剤添加制御手段による排気への還元剤の添加を禁止することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
Exhaust temperature detection means provided on the downstream side of the exhaust purification catalyst for detecting the temperature of the exhaust gas flowing out from the exhaust purification catalyst, further comprising
The second catalyst temperature estimation means estimates a temperature of a rear end portion that is a portion from which exhaust flows out of the exhaust purification catalyst,
The reducing agent addition prohibiting means is a temperature of a rear end portion of the exhaust purification catalyst estimated by the second catalyst temperature estimating means when the reducing agent is added to the exhaust gas by the reducing agent addition control means. The addition of the reducing agent to the exhaust gas by the reducing agent addition control means is prohibited when the temperature difference between the temperature of the exhaust gas detected by the exhaust gas temperature detecting means and the temperature of the exhaust gas becomes a predetermined temperature or less. 2. An exhaust gas purification apparatus for an internal combustion engine according to 1.
内燃機関の排気通路に設けられ、酸化能を有する排気浄化触媒と、
前記排気浄化触媒に流入する排気に還元剤を添加する還元剤添加手段と、
少なくとも前記排気浄化触媒に流入する排気の温度、該排気に含まれる還元剤量および該排気浄化触媒内の熱容量に基づいて、該排気浄化触媒の温度を推定する触媒温度推定手段と、
前記排気浄化触媒の下流側に設けられ、該排気浄化触媒から流出する排気の温度を検出する排気温度検出手段と、
前記触媒温度推定手段によって推定される前記排気浄化触媒の温度が暫定触媒活性温度を超えるとき、前記還元剤添加手段による排気への還元剤の添加を行う還元剤添加制御手段と、
前記触媒温度推定手段によって推定される前記排気浄化触媒の温度が前記暫定触媒活性温度より高い触媒活性温度を超えるとき、前記排気浄化触媒は活性状態にあると判定する触媒活性判定手段と、
前記還元剤添加制御手段によって排気への還元剤の添加が行われているときに、所定期
間において前記排気温度検出手段によって検出される排気温度の低下量が前記内燃機関の運転状態に基づいて決定される排気温度低下許容範囲を超えた場合、該還元剤添加制御手段による排気への還元剤の添加を禁止する還元剤添加禁止手段と、
を備える内燃機関の排気浄化装置。
An exhaust purification catalyst provided in the exhaust passage of the internal combustion engine and having oxidizing ability;
Reducing agent addition means for adding a reducing agent to the exhaust gas flowing into the exhaust purification catalyst;
Catalyst temperature estimating means for estimating the temperature of the exhaust purification catalyst based on at least the temperature of the exhaust flowing into the exhaust purification catalyst, the amount of reducing agent contained in the exhaust, and the heat capacity in the exhaust purification catalyst;
An exhaust gas temperature detecting means provided on the downstream side of the exhaust gas purification catalyst for detecting the temperature of the exhaust gas flowing out from the exhaust gas purification catalyst;
A reducing agent addition control means for adding a reducing agent to the exhaust gas by the reducing agent addition means when the temperature of the exhaust purification catalyst estimated by the catalyst temperature estimation means exceeds a temporary catalyst activation temperature;
Catalyst activity determination means for determining that the exhaust purification catalyst is in an active state when the temperature of the exhaust purification catalyst estimated by the catalyst temperature estimation means exceeds a catalyst activation temperature higher than the temporary catalyst activation temperature;
When the reducing agent addition control means is adding the reducing agent to the exhaust, the amount of decrease in the exhaust temperature detected by the exhaust temperature detecting means in a predetermined period is determined based on the operating state of the internal combustion engine. A reducing agent addition prohibiting means for prohibiting addition of the reducing agent to the exhaust by the reducing agent addition control means when the exhaust gas temperature drop allowable range is exceeded,
An exhaust gas purification apparatus for an internal combustion engine.
JP2003410434A 2003-12-09 2003-12-09 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4155182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410434A JP4155182B2 (en) 2003-12-09 2003-12-09 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410434A JP4155182B2 (en) 2003-12-09 2003-12-09 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005171809A true JP2005171809A (en) 2005-06-30
JP4155182B2 JP4155182B2 (en) 2008-09-24

Family

ID=34731531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410434A Expired - Fee Related JP4155182B2 (en) 2003-12-09 2003-12-09 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4155182B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114878A1 (en) * 2007-03-16 2008-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
JP2011111924A (en) * 2009-11-25 2011-06-09 Hino Motors Ltd Exhaust emission control device for engine
JP2017053327A (en) * 2015-09-11 2017-03-16 日野自動車株式会社 Exhaust emission control device
JP2017061878A (en) * 2015-09-24 2017-03-30 株式会社日本自動車部品総合研究所 Exhaust emission control device for internal combustion engine
CN109653889A (en) * 2017-10-11 2019-04-19 丰田自动车株式会社 The working method of temperature estimation module, the control device of internal combustion engine and temperature estimation module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162129B (en) * 2007-11-28 2011-10-05 上海吴泾化工有限公司 Method for utilizing cracking gas waste heat and gas-gas exchanger used therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114878A1 (en) * 2007-03-16 2008-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
JP2008231927A (en) * 2007-03-16 2008-10-02 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP4665924B2 (en) * 2007-03-16 2011-04-06 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
KR101030861B1 (en) 2007-03-16 2011-04-22 도요타지도샤가부시키가이샤 Exhaust purification system for internal combustion engine
US8307638B2 (en) 2007-03-16 2012-11-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
JP2011111924A (en) * 2009-11-25 2011-06-09 Hino Motors Ltd Exhaust emission control device for engine
JP2017053327A (en) * 2015-09-11 2017-03-16 日野自動車株式会社 Exhaust emission control device
JP2017061878A (en) * 2015-09-24 2017-03-30 株式会社日本自動車部品総合研究所 Exhaust emission control device for internal combustion engine
CN109653889A (en) * 2017-10-11 2019-04-19 丰田自动车株式会社 The working method of temperature estimation module, the control device of internal combustion engine and temperature estimation module
JP2019070365A (en) * 2017-10-11 2019-05-09 トヨタ自動車株式会社 Temperature estimation module and control device of internal combustion engine

Also Published As

Publication number Publication date
JP4155182B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
AU2013356013B2 (en) Deterioration determination system of exhaust emission control device
JP6350444B2 (en) Exhaust gas purification device for internal combustion engine
JP2008057364A (en) Exhaust emission control system of internal combustion engine
WO2008114878A1 (en) Exhaust purification system for internal combustion engine
JP5915516B2 (en) Exhaust gas purification device for internal combustion engine
JP4428361B2 (en) Exhaust gas purification system for internal combustion engine
WO2019172356A1 (en) Exhaust purification device, vehicle, and exhaust purification control device
JP4155182B2 (en) Exhaust gas purification device for internal combustion engine
JP2006348905A (en) Exhaust emission control system for internal combustion engine
JP4155192B2 (en) Exhaust gas purification device for internal combustion engine
JP4775201B2 (en) Exhaust gas purification system for internal combustion engine
JP2009138525A (en) Sulfur accumulation degree estimation device of exhaust emission control device
JP4033189B2 (en) Exhaust gas purification device for internal combustion engine
JP2007162468A (en) Deterioration determination method and deterioration determination system for storage reduction type nox catalyst
JP2012215143A (en) Catalyst deterioration determination device
JP2008064004A (en) Exhaust emission control system of internal combustion engine
JP2008157069A (en) Exhaust emission control system of internal combustion engine
JP2007303306A (en) Exhaust emission control device for internal combustion engine
JP4453664B2 (en) Exhaust gas purification system for internal combustion engine
JP4650245B2 (en) Exhaust gas purification system for internal combustion engine
JP4924756B2 (en) Exhaust gas purification device for internal combustion engine
JP4665830B2 (en) Exhaust gas purification system for internal combustion engine
JP2007315235A (en) Exhaust emission control system of internal combustion engine
JP6499921B2 (en) Exhaust purification equipment
JP2012233463A (en) Device for detecting defect in exhaust purificastion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees