JP2010149785A - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
JP2010149785A
JP2010149785A JP2008332303A JP2008332303A JP2010149785A JP 2010149785 A JP2010149785 A JP 2010149785A JP 2008332303 A JP2008332303 A JP 2008332303A JP 2008332303 A JP2008332303 A JP 2008332303A JP 2010149785 A JP2010149785 A JP 2010149785A
Authority
JP
Japan
Prior art keywords
energy
vehicle
flywheel
power source
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008332303A
Other languages
Japanese (ja)
Inventor
Masahiro Watanabe
渡邉雅弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008332303A priority Critical patent/JP2010149785A/en
Publication of JP2010149785A publication Critical patent/JP2010149785A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Wind Motors (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid vehicle of using rotational energy of a flywheel by a vehicle travel wind as an auxiliary power source. <P>SOLUTION: Mainly when a vehicle travels at a high speed, a wind turbine 14 is rotated by the travel wind introduced from a part for receiving positive pressure of a vehicle surface and discharged from a part of becoming negative pressure, and rotational energy of the wind turbine 14 is stored by being converted into the rotational energy of the flywheel 15, and is used as the auxiliary power source 16 of vehicle driving or its part by the stored rotational energy of the flywheel 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、高速走行時車両の走行抵抗の主体的要因となる空気抵抗による車両走行風を、車両駆動の補助エネルギー源とするハイブリッド車両に関する。   The present invention relates to a hybrid vehicle using vehicle traveling wind caused by air resistance, which is a main factor of traveling resistance of a vehicle at high speed traveling, as an auxiliary energy source for driving the vehicle.

従来、車両に搭載した風車を車両走行風によって回転させ、前記風車の回転によって発電機を駆動して発電し、発電された電気エネルギーをバッテリーに蓄積して車両駆動の補助エネルギーとする車両走行風利用方法が考えられている。
しかしこの方法では、走行風を電気エネルギーに変換しているため、発電機、バッテリー、および車両駆動用モータが必要であること、また発電機効率、蓄電効率、車両駆動用モータの駆動効率等、によって走行風エネルギーの利用効率、すなわちエネルギー回生効率、が悪くなるという問題点がある(特許文献1〜特許文献4)。
Conventionally, a wind turbine mounted on a vehicle is rotated by a vehicle traveling wind, a generator is driven by the rotation of the wind turbine to generate electric power, and the generated electric energy is stored in a battery and used as auxiliary energy for driving the vehicle. How to use is considered.
However, in this method, since the traveling wind is converted into electric energy, a generator, a battery, and a vehicle driving motor are necessary, and generator efficiency, power storage efficiency, driving efficiency of the vehicle driving motor, etc. Therefore, there is a problem that the utilization efficiency of traveling wind energy, that is, the energy regeneration efficiency is deteriorated (Patent Documents 1 to 4).

一方、車両駆動の補助エネルギー源として電気エネルギーではなく機械エネルギー、すなわちフライホイールに蓄積された回転エネルギーを利用する方法がある。これは車両減速時において通常摩擦エネルギーとして消費されてしまう車両の運動エネルギーをフライホイールに蓄積して利用しようとするものである(非特許文献1)。
この方法は補助エネルギーの形態として電気エネルギーではなく機械エネルギーであるため前記回生効率の問題は改良されるが、フライホイールへのエネルギー採取・蓄積量は車両減速時の車両エネルギーに限定されているため、一般車両用補助エネルギー源としては十分であるとはいえない。
On the other hand, there is a method of using mechanical energy, that is, rotational energy stored in a flywheel, instead of electric energy as an auxiliary energy source for driving the vehicle. This is intended to accumulate and use the kinetic energy of the vehicle, which is normally consumed as frictional energy during vehicle deceleration, in the flywheel (Non-patent Document 1).
Since this method uses mechanical energy instead of electrical energy as a form of auxiliary energy, the problem of regeneration efficiency is improved. However, the amount of energy collected and stored in the flywheel is limited to vehicle energy during vehicle deceleration. It cannot be said that it is sufficient as an auxiliary energy source for general vehicles.

実開平6−60202ACT 6-60202 特開2003−278641Japanese Patent Application Laid-Open No. 2003-278641 特開2008−127994JP 2008-127994 A 特開2008−185026JP2008-185026 フライホイールでモータと電池に勝つ方法 http://techon.nikkeibp.co.jp/article/TOPCOL/20080205/146997/How to win a motor and battery with a flywheel http://techon.nikkeibp.co.jp/article/TOPCOL/20080205/146997/

本願発明は上記車両の走行風を補助エネルギー化するに際してのエネルギーの回生効率の問題、および車両の運動エネルギーを回生するに際しての回生エネルギー量の問題、を解決したハイブリッド車両の構成方法に関する。   The present invention relates to a hybrid vehicle configuration method that solves the problem of energy regeneration efficiency when the traveling wind of the vehicle is used as auxiliary energy and the problem of the amount of regenerative energy when the kinetic energy of the vehicle is regenerated.

車両における空気抵抗は本来車両の正面投影面積に比例して大きくなる。したがって空気抵抗を少なくするためには正面投影面積を極力小さくする必要がある。しかし、車両の規格、用途、あるいはデザイン上の制限から正面投影面積の極小化には限度がある。そこで次善の策として、極小化した車両正面投影面積を有する車両表面の受ける風圧中、正圧部分(ラジエーターやベンチレーターの空気取入口等)からできるだけ効率よく大量の走行風を取り込んでそれを車両の駆動エネルギーに活用する方法が考えられる。 The air resistance in the vehicle increases in proportion to the front projected area of the vehicle. Therefore, in order to reduce the air resistance, it is necessary to make the front projection area as small as possible. However, there is a limit to minimizing the front projection area due to restrictions on vehicle standards, applications, and designs. Therefore, as a next best measure, the wind pressure received by the vehicle surface with a minimized frontal projection area of the vehicle is taken in as much as possible from the positive pressure part (radiator, ventilator air intake, etc.) as efficiently as possible. A method of utilizing the energy for driving is considered.

上記車両走行風、すなわち車両走行時の走行抵抗の一要因である空気抵抗によって発生する風、を補助エネルギー化するに際しては、
従来考えられている走行風によって風車を回転させ、風車の回転によって発電機を駆動して発電し、発電された電力をバッテリーあるいはキャパシターに蓄積して車両駆動の補助エネルギーとして活用する方法に代えて、
本願発明においては走行風によって風車を回転させ、風車の回転エネルギーを(電気エネルギーに変換せずそのまま)機械エネルギーとしてフライホイールの回転エネルギーとして蓄積し、それをCVT(無段変速機)、クラッチを介して車両駆動に活用する。
When the above-mentioned vehicle traveling wind, that is, wind generated by air resistance that is one factor of traveling resistance during vehicle traveling, is converted into auxiliary energy.
Instead of the conventional method of rotating the windmill with the driving wind, driving the generator by the rotation of the windmill to generate electricity, and storing the generated power in a battery or capacitor and using it as auxiliary energy for driving the vehicle ,
In the present invention, the windmill is rotated by the traveling wind, and the rotational energy of the windmill is stored as mechanical energy (as it is without being converted into electric energy) as rotational energy of the flywheel, which is stored as CVT (continuously variable transmission) and clutch. It is used for vehicle driving.

上記の如く構成、動作させることによって、走行風エネルギーを電気エネルギーに変換・蓄積・車両駆動エネルギー化するに際しての発電機、バッテリー、駆動用モータ等の付加すべき構成要素の問題、およびエネルギー回生効率の問題が、本願発明においては走行風エネルギーを風車で取り込みその回転エネルギーをそのままフライホイールの回転エネルギーとして蓄積し、さらに蓄積された回転エネルギーを車両駆動輪の駆動エネルギーとして変速機を経由してそのまま利用することから、大幅に改善されることになる。 By constructing and operating as described above, problems of components to be added such as a generator, a battery, a driving motor, and the like, and energy regeneration efficiency when converting / accumulating traveling wind energy into electric energy / converting into vehicle driving energy In the present invention, in the present invention, the wind energy is taken in by the windmill, and the rotational energy is stored as it is as the rotational energy of the flywheel, and the stored rotational energy is directly used as the driving energy of the vehicle driving wheel via the transmission. Using it will greatly improve it.

また、速度vで走行している質量mの車両は、運動エネルギーE=m・v2/2を有している。通常この車両が減速する、すなわち速度vを減少させる際には前記運動エネルギーは通常は摩擦ブレーキによって消費されてしまう。このエネルギーを回生して後の発進・加速に利用しているのが、現在最も省エネルギーで環境にやさしい車両としてのエンジン/モータによるハイブリッドカーである。
すなわち車両減速時、前記運動エネルギーは発電機によって電気エネルギーに変換されバッテリーに蓄積される。これに対して前記運動エネルギーを電気エネルギーに変換・蓄積する代わりにフライホイールに蓄積・保存して活用しようとする試みもなされている。
The vehicle of mass m which is traveling at a speed v has a kinetic energy E = m · v 2/2 . Normally, when the vehicle decelerates, that is, when the speed v is decreased, the kinetic energy is normally consumed by the friction brake. The engine / motor hybrid car is currently the most energy-saving and environmentally friendly vehicle that regenerates this energy and uses it for subsequent start-up and acceleration.
That is, when the vehicle decelerates, the kinetic energy is converted into electrical energy by a generator and stored in the battery. On the other hand, instead of converting / accumulating the kinetic energy into electric energy, an attempt has been made to accumulate and store it in a flywheel.

エネルギー蓄積用としてフライホイール利用に関してはジャイロ効果の問題もある。しかしジャイロ効果に対しては車両進行方向左右対称に2組の走行風導入路、風車、およびフライホイール、を設け、左右のフライホイールの回転の向きを逆に設定することによって、各々のフライホイールのジャイロ効果を相殺させることができる。したがってフライホイールには一定量の質量が必要であることを加味しても、補助エネルギー源のために付加すべき構成要素、あるいは回生効率、に関してエネルギー蓄積を電気量で行う場合に比べてフライホイールを利用するほうが総合的には優れていると考えられる。 There is also a problem of the gyro effect when using a flywheel for energy storage. However, for the gyro effect, two sets of traveling wind introduction paths, wind turbines, and flywheels are provided symmetrically in the vehicle traveling direction, and each flywheel is set by reversing the direction of rotation of the left and right flywheels. The gyro effect can be offset. Therefore, even if a certain amount of mass is required for the flywheel, the flywheel is compared to the case where energy is stored in terms of electricity with respect to the component to be added for the auxiliary energy source or regenerative efficiency. It is considered that the use of is generally better.

上記本願発明、すなわち走行風のエネルギーをフライホイールに蓄積して車両駆動の補助エネルギー源とすること、によって、省エネルギー、排出ガス量削減を目的としたハイブリッド車両の実現が価格的にもまた出力パワー密度、エネルギー蓄積要素(具体的にはバッテリー)の廃棄時の環境問題等の問題も解決され、容易となる。
以上本願発明使用形態としてハイブリッド車両を説明してきたが、2輪車を含む自動車以外の移動体であって走行抵抗に相当する抵抗がその移動体移動抵抗の大きな要因となるもの、例えば船舶、鉄道等、への補助エネルギー源としての本願発明の適用も可能である。
The above-described invention of the present application, that is, the accumulation of traveling wind energy in the flywheel, which is used as an auxiliary energy source for driving the vehicle, makes it possible to realize a hybrid vehicle for the purpose of saving energy and reducing the amount of exhaust gas. Problems such as environmental problems at the time of disposal of density and energy storage elements (specifically, batteries) are also solved and facilitated.
As described above, the hybrid vehicle has been described as a form of use of the present invention. However, a moving body other than an automobile including a two-wheeled vehicle, and the resistance corresponding to the running resistance is a major factor of the moving body moving resistance, such as a ship or a railroad. It is also possible to apply the present invention as an auxiliary energy source.

また、フライホイールに蓄積するエネルギー源として、本願発明による走行風によるエネルギーに加えて、従来から考えられている車両減速時の運動エネルギーをも合わせて蓄積することによって、より大量のまた異なった走行条件下、すなわち主として高速走行時および減速時、に各々得られるエネルギーを統合した効率的な補助エネルギー源とすることができる。
但し、車両の運動エネルギーの活用に際しては、補助エネルギー源として変換・蓄積する以前に、車両運動エネルギーの惰性走行への活用による直接的・効率的な活用を優先度1とし、それに余る部分、即ち制動により消費すべきすべき運動エネルギー部分についてのみフライホイールに蓄積することによる回生が望ましい。
In addition to the energy generated by the traveling wind according to the present invention, as a source of energy stored in the flywheel, the kinetic energy at the time of deceleration of the vehicle, which has been conventionally considered, is also stored, so that a larger amount of different driving can be performed. It is possible to provide an efficient auxiliary energy source that integrates the energy obtained under the conditions, that is, mainly during high-speed traveling and deceleration.
However, when using the kinetic energy of the vehicle, prior to conversion / accumulation as an auxiliary energy source, the direct and efficient use of the vehicle kinetic energy for inertial driving is set as a priority 1, and the remaining part, that is, Regeneration is desirable by accumulating on the flywheel only the portion of the kinetic energy that should be consumed by braking.

図1に本願発明によるハイブリッド車両のエネルギーフローを示す。
図1において、
11は、エンジン等ハイブリッド車両の主動力源、
12は、主動力源および補助動力源の動力(駆動エネルギー)を車輪に伝達する無段変速機、
13は、主動力源および補助動力源の動力を得て車両を駆動する車輪、
14は、主として高速走行中の車両走行風によって回転する風車であり、本風車は走行車両表面の受ける風圧の正圧部分から導入され、負圧部分から排出される走行風によって駆動される。
15は、風車14の回転エネルギーを蓄積し、無段変速機12を介して車輪13を駆動するフライホイール、
16は、風車14とフライホイール15から構成される補助動力源、
である。
FIG. 1 shows an energy flow of a hybrid vehicle according to the present invention.
In FIG.
11 is a main power source of a hybrid vehicle such as an engine,
12 is a continuously variable transmission that transmits the power (drive energy) of the main power source and the auxiliary power source to the wheels;
13 is a wheel for driving the vehicle with the power of the main power source and the auxiliary power source;
Reference numeral 14 denotes a windmill that is rotated mainly by the vehicle traveling wind during high-speed traveling. The windmill is introduced from the positive pressure portion of the wind pressure received by the surface of the traveling vehicle and is driven by the traveling wind discharged from the negative pressure portion.
15 is a flywheel that accumulates rotational energy of the windmill 14 and drives the wheels 13 via the continuously variable transmission 12,
16 is an auxiliary power source composed of a windmill 14 and a flywheel 15;
It is.

また、図1中の
aは、主動力源11による駆動エネルギー、
bは、補助動力源16による駆動エネルギー、
cは、主動力源11および補助動力源16の合成駆動エネルギー、
である。
ただし合成駆動エネルギーcによる車輪13の駆動は、車両の走行状態あるいは補助エネルギー蓄積状態等によって適宜最適化される。
上記の如きエネルギーフローを構成することによって、車輪13は主動力源11および補助動力源16を構成するフライホイール15からエネルギーを得て車両駆動を行うことができる。
Moreover, a in FIG. 1 is the drive energy by the main power source 11,
b is the driving energy by the auxiliary power source 16,
c is the combined drive energy of the main power source 11 and the auxiliary power source 16,
It is.
However, the driving of the wheels 13 by the combined drive energy c is appropriately optimized depending on the traveling state of the vehicle or the auxiliary energy storage state.
By configuring the energy flow as described above, the wheel 13 can drive the vehicle by obtaining energy from the flywheel 15 constituting the main power source 11 and the auxiliary power source 16.

図2に、フライホイールの回転エネルギー源として走行風に加えて車両減速時の運動エネルギー回生によるエネルギーフローをしめす。
図1との相違点は、補助エネルギーとしてのフライホイール15へのエネルギー蓄積が、図1の場合は風車14からだけであるのに対し、図2においては風車14からに加えて車両制動時の回生エネルギーが加わっていることである。
従って本例においては無段変速機の構成が実施例1における主動力源および補助動力源から車輪への動力伝達に加えて、車輪から補助動力源への回生エネルギーの伝達も行うことになる。
FIG. 2 shows the energy flow due to kinetic energy regeneration when the vehicle decelerates in addition to running wind as the rotational energy source of the flywheel.
The difference from FIG. 1 is that energy storage in the flywheel 15 as auxiliary energy is only from the windmill 14 in the case of FIG. 1, but in FIG. Regenerative energy is added.
Therefore, in the present example, the configuration of the continuously variable transmission also transmits regenerative energy from the wheels to the auxiliary power source in addition to the power transmission from the main power source and the auxiliary power source to the wheels in the first embodiment.

すなわち、b‘は、補助動力源16による駆動エネルギーであるが、これは風車14の回転エネルギーの蓄積に加えて、車両制動時の車輪13からの回生エネルギーdが蓄積されたものである。
従って主動力源11及び補助動力源16の合成駆動エネルギーの内容は図1の場合のcと異なりc‘となる。
ここで合成駆動エネルギーc’による車輪13の駆動は、cと同様車両の走行状態あるいは補助エネルギーの蓄積状態によって適宜最適化される。
That is, b ′ is the driving energy by the auxiliary power source 16, which is the accumulation of the regenerative energy d from the wheel 13 during vehicle braking in addition to the accumulation of the rotational energy of the windmill 14.
Therefore, the content of the combined drive energy of the main power source 11 and the auxiliary power source 16 is c ′ unlike c in the case of FIG.
Here, the driving of the wheels 13 by the combined drive energy c ′ is optimized as appropriate according to the traveling state of the vehicle or the storage state of the auxiliary energy as in the case of c.

本願発明による「風車+フライホイール」を補助動力源とするハイブリッド車両によって、ハイブリッド車両の一層の低価格化・高効率化が実現できる。加えて補助エネルギー源として電気エネルギーを使用する場合に最も問題となるバッテリーの重量・サイズおよび廃棄時の環境問題も改善される。
さらに、風車とフライホイールを一体化することによって風車からフライホイールへのエネルギー伝達損失は改善されること、構成が単純化すること、によって上記効果は一層上がることになる。
The hybrid vehicle using the “windmill + flywheel” according to the present invention as an auxiliary power source can further reduce the price and increase the efficiency of the hybrid vehicle. In addition, the weight and size of the battery, which are most problematic when using electric energy as an auxiliary energy source, and environmental problems at the time of disposal are improved.
Furthermore, by integrating the windmill and the flywheel, the energy transmission loss from the windmill to the flywheel is improved, and the configuration is simplified, so that the above effect is further enhanced.

本願発明によるハイブリッド車両の車両駆動エネルギーフロー(その1)説明図Vehicle drive energy flow (part 1) explanatory diagram of a hybrid vehicle according to the present invention 本願発明によるハイブリッド車両の車両駆動エネルギーフロー(その2)説明図である。It is vehicle drive energy flow (the 2) explanatory drawing of the hybrid vehicle by this invention.

符号の説明Explanation of symbols

図1、および図2において、
11:主動力源、
12:無段変速機、
13:車輪、
14:風車、
15:フライホイール、
16:補助動力源、
In FIG. 1 and FIG.
11: Main power source,
12: continuously variable transmission,
13: Wheel,
14: Windmill,
15: Flywheel,
16: Auxiliary power source,

a:主動力源11による車輪駆動エネルギー、
b:補助動力源16による車輪駆動エネルギー、
b‘:補助動力源16による車輪駆動エネルギー、
c:主動力源11および補助動力源16の合成車輪駆動エネルギー、
c‘:主動力源11および補助動力源16の合成車輪駆動エネルギー、
d:車両減速時の回生エネルギー、
a: Wheel drive energy by the main power source 11,
b: Wheel drive energy by the auxiliary power source 16,
b ': Wheel drive energy by the auxiliary power source 16,
c: Synthetic wheel drive energy of the main power source 11 and the auxiliary power source 16,
c ′: composite wheel drive energy of the main power source 11 and the auxiliary power source 16,
d: regenerative energy during vehicle deceleration,

Claims (4)

車両に搭載した風車の車両走行風による回転エネルギーをフライホイールに蓄積し、これを車両駆動の補助エネルギーとすることを特徴とするハイブリッド車両。    A hybrid vehicle characterized in that rotational energy generated by wind of a windmill mounted on a vehicle is accumulated in a flywheel and used as auxiliary energy for driving the vehicle. 車両進行方向左右対称の位置に風車およびフライホイールの組み合わせを各々設置し、かつフライホイールの回転の向きを逆に設定することによってフライホイールのジャイロ効果を相殺することを特徴とする請求項1記載のハイブリッド車両。   2. The flywheel gyro effect is offset by installing a combination of a windmill and a flywheel at positions symmetrical to each other in the vehicle traveling direction, and setting the direction of rotation of the flywheel in reverse. Hybrid vehicle. 風車機能とフライホイール機能を一体化して構成することを特徴とする請求項1、あるいは請求2記載のハイブリッド車両。   The hybrid vehicle according to claim 1 or 2, wherein the windmill function and the flywheel function are integrated. 車両に搭載した風車の車両走行風による回転エネルギーに加えて車両減速時の運動エネルギーをフライホイールに蓄積し、これを車両駆動の補助エネルギーとすることを特徴とするハイブリッド車両。    A hybrid vehicle characterized in that kinetic energy at the time of vehicle deceleration is accumulated in a flywheel in addition to rotational energy due to vehicle running wind of a windmill mounted on the vehicle, and this is used as auxiliary energy for driving the vehicle.
JP2008332303A 2008-12-26 2008-12-26 Hybrid vehicle Pending JP2010149785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332303A JP2010149785A (en) 2008-12-26 2008-12-26 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332303A JP2010149785A (en) 2008-12-26 2008-12-26 Hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2010149785A true JP2010149785A (en) 2010-07-08

Family

ID=42569363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332303A Pending JP2010149785A (en) 2008-12-26 2008-12-26 Hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2010149785A (en)

Similar Documents

Publication Publication Date Title
US8359864B2 (en) Wind-gas engine assembly and motor vehicle with the same
JP5318185B2 (en) Vehicle drive device
JP5301658B2 (en) Hybrid vehicle
TW200846212A (en) Hybrid propulsion and transmission system for motorcycles
WO2012081272A1 (en) Hybrid vehicle
CN203305830U (en) Energy-storing and driving device for hybrid electric vehicle
JP3646962B2 (en) Hybrid car
CN104097497B (en) Can be applied to energy storage and the drive device of hybrid vehicle
CN110654248A (en) Flywheel auxiliary power system
CN104097498B (en) A kind of energy storage that can be applicable to hybrid vehicle and driving means
JP2010202167A (en) Energy recovery/output device of vehicle
CN203305831U (en) Energy storage and driving device capable of being applied to hybrid electric vehicle
CN103213486A (en) Energy-saving drive device of new energy automobile
CN104002690B (en) A kind of range extended electric vehicle power system that flywheel work-saving device is housed
JP6646846B2 (en) Vehicle drive device and electric vehicle
JP3859896B2 (en) Hybrid car
CN106541838A (en) A kind of new-energy automobile
CN202243039U (en) Multi-energy electric vehicle
JP2010149785A (en) Hybrid vehicle
CN203211096U (en) Energy-saving drive device for new-energy automobile
CN100434302C (en) Integrated efficient pollution-free vehicle
JP5345255B2 (en) Hybrid vehicle
JP2010261343A (en) Hybrid vehicle
CN101462480A (en) Non-power consumption loss self-charging voltage-stabilizing oil electric motorcycle
CN202510198U (en) Automobile exhaust power generation device