JP2010149136A - マグネシウム合金鍛造部材の製造方法 - Google Patents

マグネシウム合金鍛造部材の製造方法 Download PDF

Info

Publication number
JP2010149136A
JP2010149136A JP2008328556A JP2008328556A JP2010149136A JP 2010149136 A JP2010149136 A JP 2010149136A JP 2008328556 A JP2008328556 A JP 2008328556A JP 2008328556 A JP2008328556 A JP 2008328556A JP 2010149136 A JP2010149136 A JP 2010149136A
Authority
JP
Japan
Prior art keywords
magnesium alloy
forging
alloy material
dead metal
becomes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008328556A
Other languages
English (en)
Inventor
Takeyoshi Nakamura
武義 中村
Kazuo Kanbara
和夫 神原
Yoshiaki Yoshida
義明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAMOTO KOGYO KK
Honda Motor Co Ltd
Original Assignee
MIYAMOTO KOGYO KK
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAMOTO KOGYO KK, Honda Motor Co Ltd filed Critical MIYAMOTO KOGYO KK
Priority to JP2008328556A priority Critical patent/JP2010149136A/ja
Publication of JP2010149136A publication Critical patent/JP2010149136A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

【課題】通常の鍛造方法でデッドメタルとなる部位を含め、鍛造部材全体に均質な強度を発現できるマグネシウム合金鍛造部材の製造方法を提供する。
【解決手段】長周期構造を示す金属間化合物を含むマグネシウム合金素材12を鍛造して鍛造部材1を製造する。デッドメタルとなる部位5を予め特定し、マグネシウム合金素材12を密閉型11内に収容して鍛造し、デッドメタルとなる部位5に1.0以上の相当歪みを導入する予備成形を行い、予備成形されたマグネシウム合金素材18を鍛造して鍛造部材1を得る。マグネシウム合金素材12は、MgとZnとYとを含むマグネシウム合金からなり、前記長周期構造を示す金属間化合物はMg12ZnY相である。予備成形は、デッドメタルとなる部位5に、加圧パンチ17に形成された凸部16を圧接する。凸部16の大きさは、マグネシウム合金素材12について予め求められた強度−歪み曲線に基づいて決定する。
【選択図】 図3

Description

本発明は、マグネシウム合金からなり内燃機関のピストン等に用いられる鍛造部材の製造方法に関する。
マグネシウムは、鉄、アルミニウムに比べて軽量であるため、鉄鋼材料、アルミニウム合金材料からなる部材に代わる軽量代替材として、マグネシウム合金を用いることが検討されている。ところが、一般のマグネシウム合金は、鉄鋼、アルミニウム合金、チタン合金等の他の金属構造材料に比較して強度が低く、比較的高強度とされるダイキャスト用のAZ91材ですら160MPa程度である。また、ピストン等の産業用部品の可動部では少なくとも4〜5%の伸びが必要とされるが、一般のマグネシウム合金は延性についても十分とは言えず、前記AZ91材で3%程度である。
そこで、従来、高強度と高延性とを備えるマグネシウム合金部材の製造方法が種々提案されている。
例えば、本発明者らは、先に、MgとZnとY等の希土類元素とを溶解してなる溶湯を用いて得られた鋳造体を押出加工し、得られた押出加工材を350〜500℃の温度に加熱して鍛造するマグネシウム合金鍛造部材の製造方法を提案している(特許文献1参照)。前記製造方法によれば、マグネシウム合金に長周期構造を示す金属間化合物であるMg12ZnY相が含まれると共に、前記押出加工により該Mg12ZnY相にキンクを発生させることができるので、前記マグネシウム合金鍛造部材の強度を著しく向上させることができる。
しかし、前記製造方法では、前記鋳造体の押出加工の際に、押出用のビレットの切削加工分、押出時の押し残し分、押出先端の不均質分等の無駄が生じるために歩留まりが低くなりコストが増大するという問題がある。
そこで、本発明者らは、前記問題を解決するために、先に、MgとZnとYと、0.1〜0.7重量%のZrとを溶解してなる溶湯を所定の形状の鋳型に連続的に供給し、該鋳型内で冷却して取り出すことにより得られた連続鋳造棒を、350〜500℃の温度に加熱して鍛造するマグネシウム合金部材の製造方法を特許出願している(特願2008−36691明細書等参照)。
前記連続鋳造棒を構成するマグネシウム合金は、長周期構造を示す金属間化合物であるMg12ZnY相を含んでいるので、該連続鋳造棒として得られたマグネシウム合金素材を前記範囲の温度に加熱して鍛造すると、該Mg12ZnY相にキンクが発生する。従って、前記連続鋳造棒として得られたマグネシウム合金素材を用いることにより、押出加工によることなく、優れた強度を備えるマグネシウム合金鍛造部材を得ることができる。
しかしながら、前記押出加工材または前記連続鋳造棒を鍛造して得られたマグネシウム合金鍛造部材は鍛造時の歪みにより強度が発現するので、鍛造時にマグネシウム合金が実質的に流動しないデッドメタルとなる部位では、優れた強度が得られないという不都合がある。
特開2008−231536号公報
本発明は、かかる不都合を解消して、通常の鍛造方法ではデッドメタルとなる部位にも優れた強度を付与して、鍛造部材全体に均質な強度を発現させることができるマグネシウム合金鍛造部材の製造方法を提供することを目的とする。
かかる目的を達成するために、本発明のマグネシウム合金鍛造部材の製造方法は、長周期構造を示す金属間化合物を含むマグネシウム合金素材を鍛造して所定の形状を備える鍛造部材を製造する方法において、前記鍛造部材を直接鍛造したときにデッドメタルとなる部位を予め特定する工程と、該マグネシウム合金素材を密閉型内に収容した状態で鍛造して該デッドメタルとなる部位に1.0以上の相当歪みを導入する予備成形を行う工程と、該予備成形が施されたマグネシウム合金素材を鍛造して所定の形状を備える鍛造部材を得る工程とを備えることを特徴とする。
本発明の製造方法では、前記マグネシウム合金素材から前記鍛造部材を直接鍛造したときにデッドメタルとなる部位を予め特定しておき、該マグネシウム合金素材の該デッドメタルとなる部位に前記相当歪みを導入する予備成形を行う。前記予備成形は、前記マグネシウム合金素材を前記密閉型内に収容した状態で鍛造することにより、該予備成形により変形する部位に鍛造割れが発生することを防止することができる。
そして、前記予備成形が施されたマグネシウム合金素材を鍛造して所定の形状を備える前記鍛造部材を得る。このようにして得られた前記鍛造部材は、前記デッドメタルとなる部位に前記相当歪みが導入されており、その他の部位には前記所定の形状を付与することにより相当歪みが導入されるので、該鍛造部材全体に均質な強度を発現させることができる。
本発明のマグネシウム合金鍛造部材の製造方法に用いる前記マグネシウム合金素材としては、例えば、MgとZnとYとを含むマグネシウム合金からなり、前記長周期構造を示す金属間化合物はMg12ZnY相であるものを用いることができる。前記マグネシウム合金は、さらにZrを含むことが好ましい。前記マグネシウム合金はZrを含むことにより結晶粒子径が微細化され、優れた延性を得ることができる。
前記予備成形は、例えば、前記密閉型内に収容した前記マグネシウム合金素材の前記デッドメタルとなる部位に、加圧パンチに形成された凸部を圧接することにより行うことができる。このとき、前記凸部は前記デッドメタルとなる部位に所定の歪みを与える大きさを備えることが好ましく、該凸部の大きさは、例えば、前記マグネシウム合金素材について予め求められた強度−歪み曲線に基づいて決定される。
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の製造方法により製造されるマグネシウム合金鍛造部材の一例である内燃機関用ピストンの正面図であり、図2は図1に示す内燃機関用ピストンの従来の製造方法を示す説明的断面図であり、図3は図1に示す内燃機関用ピストンの本実施形態の製造方法を示す説明的断面図である。また、図4は本実施形態の製造方法で得られた内燃機関用ピストンにおけるピストンヘッドならびにスカート部の相当歪み及び250℃における耐力とを示すグラフであり、図5は従来の製造方法で得られた内燃機関用ピストンにおけるピストンヘッドならびにスカート部の相当歪み及び250℃における耐力とを示すグラフである。
本実施形態のマグネシウム合金鍛造部材の製造方法は、例えば、図1に示す内燃機関用ピストン1の製造に適用することができる。内燃機関用ピストン1は、円柱状のピストンヘッド部2と、ピストンヘッド部2の下方に連なる筒状のスカート部3とからなり、ピストンヘッド部2は外周面に形成された複数のリング溝4と、頂部に形成された平坦なピストンヘッド5とを備えている。また、スカート部3は、図示しないピストンピンが連結されるピン孔6を備えている。
前記内燃機関用ピストン1を鍛造する際には、例えば、まず図2(a)に示すように、円筒状の金型11に円柱状のマグネシウム合金素材12を配設し、上方から加圧パンチ13で押圧することにより、据え込み鍛造を行う。次に、図2(b)に示すように、前記据え込み鍛造により得られたマグネシウム合金素材12aを、内燃機関用ピストン1の外形を備える金型14に配設し、上方から加圧パンチ15で押圧することにより、内燃機関用ピストン1を製造する。ところが、図2(a)及び(b)に示すようにして、マグネシウム合金素材12から内燃機関用ピストン1を直接鍛造すると、ピストンヘッド5はマグネシウム合金が実質的に流動しないデッドメタルとなるため、相当歪みが導入されず所要の強度が得られない。
そこで、本実施形態の製造方法では、まず、図3(a)に示すように、円筒状の金型11に円柱状のマグネシウム合金素材12を配設し、上方から緩やかな曲面からなる凸部16を備える加圧パンチ17で押圧することにより、予備成形を行う。このとき、加圧パンチ17が、マグネシウム合金素材12のピストンヘッド5となる部分(前記デッドメタルとなる部位)に凸部16を圧接することにより、ピストンヘッド5となる部分に凹部18が形成され、1.0以上の相当歪みが導入されたマグネシウム合金予備成形体19が得られる。
前記金型11は、加圧パンチ17より密閉される密閉型であるので、凹部18の周囲の隆起部が金型11及び加圧パンチ17に巻き込まれることがなく、鍛造割れを防止することができる。
次に、金型14にマグネシウム合金予備成形体19を配設し、図3(b)に示すように、上方から加圧パンチ15で押圧することにより、内燃機関用ピストン1を製造する。このようにすることにより、ピストンヘッド5を含むピストンヘッド部2及びスカート部3に均質な相当歪みを導入することができ、内燃機関用ピストン1全体に均質な強度を発現させることができる。
前記マグネシウム合金素材12としては、長周期構造を示す金属間化合物であるMg12ZnY相を含むものが用いられる。このようなマグネシウム合金素材12は、例えば、MgとZnとY等の希土類元素とを溶解してなる溶湯を用いて得られた鋳造体を押出加工して得られた押出加工材であってもよく、MgとZnとYと、0.1〜0.7重量%のZrとを溶解してなる溶湯を所定の形状の鋳型に連続的に供給し、該鋳型内で冷却して取り出すことにより得られた連続鋳造棒であってもよい。
前記加圧パンチ17の凸部16は、マグネシウム合金素材12のピストンヘッド5となる部分(前記デッドメタルとなる部位)に1.0以上の相当歪みを導入する大きさを備えていればよいが、具体的にはピストンヘッド5となる部分に要求される強度が発現される相当歪みを導入することができるように、その大きさが決定される。
前記強度と相当歪みとの関係は、マグネシウム合金素材12について、予め強度−歪み曲線を作成することにより知ることができる。図2(a)に示すように、金型11にマグネシウム合金素材12を配設して加圧パンチ13で押圧することにより据え込み鍛造を行う際に加工率を変量し、各加工率に対応する歪み量と、該据え込み鍛造後の強度とを求めることにより、前記強度−歪み曲線を作成することができる。前記強度−歪み曲線の一例を図4に示す。
次に、本発明の実施例及び比較例を示す。
本実施例では、マグネシウム合金素材12として、4.9重量%のZnと、6.5重量%のYと、0.4重量%のZrとを含み残部Mgと不可避的不純物とからなるマグネシウム合金の溶湯を所定の形状の鋳型に連続的に供給し、該鋳型内で冷却して取り出すことにより得られた連続鋳造棒を用いた。
次に、マグネシウム合金素材12を、図3(a)に示す金型11に配設し、鍛造温度400℃、鍛造速度15mm/秒、金型温度350℃の条件で、上方から凸部16を備える加圧パンチ17で押圧することにより予備成形を行い、マグネシウム合金予備成形体18を得た。このとき、凸部16の大きさは、図4に示す強度−歪み曲線Aにより、マグネシウム合金素材12のピストンヘッド5となる部分(前記デッドメタルとなる部位)に170〜200MPaの耐力が250℃において発現するように、1.13〜2.26の相当歪みを導入できるように調整した。
次に、マグネシウム合金予備成形体18を、図3(b)に示す金型14に配設し、鍛造温度400℃、鍛造速度15mm/秒、金型温度350℃の条件で、上方から加圧パンチ15で押圧することにより、内燃機関用ピストン1を製造した。
凸部16により、マグネシウム合金素材12のピストンヘッド5となる部分(前記デッドメタルとなる部位)に1.5の相当歪みを導入した場合について、得られた内燃機関用ピストン1におけるピストンヘッド5の相当歪み及び耐力aと、スカート部3の相当歪み及び耐力bとを図4に示す。この場合、ピストンヘッド5には結果的に2.4の相当歪みが導入され、250℃における耐力は200MPaであった。また、スカート部3には2.1の相当歪みが導入され、250℃における耐力は195MPaであった。
従って、本実施例で得られた内燃機関用ピストン1では、ピストンヘッド5及びスカート部3において、略均質な相当歪み及び耐力となっていることが明らかである。
〔比較例〕
本比較例では、マグネシウム合金素材12として、前記実施例で用いたものと全く同一の連続鋳造棒を用い、マグネシウム合金素材12を、図2(a)に示す金型11に配設し、鍛造温度400℃、鍛造速度15mm/秒、金型温度350℃の条件で、加圧パンチ13で押圧することにより、据え込み鍛造を行った。
次に、前記据え込み鍛造により得られたマグネシウム合金素材12を、図2(b)に示す金型14に配設し、鍛造温度400℃、鍛造速度15mm/秒、金型温度350℃の条件で、加圧パンチ15で押圧することにより、内燃機関用ピストン1を製造した。
本比較例で得られた内燃機関用ピストン1におけるピストンヘッド5の相当歪み及び耐力aと、スカート部3の相当歪み及び耐力bとを図5に示す。この場合、ピストンヘッド5は結果的に0.87の相当歪みが導入されたに過ぎず、デッドメタルとなっており、250℃における耐力は150MPa程度であった。一方、スカート部3には2.4の相当歪みが導入され、250℃における耐力は200MPa程度であった。
従って、本比較例で得られた内燃機関用ピストン1では、ピストンヘッド5及びスカート部3において、相当歪み及び耐力が不均質であり、ピストンヘッド5において所要の強度が得られないことが明らかである。
本発明の製造方法により製造されるマグネシウム合金鍛造部材の一例としての内燃機関用ピストンの正面図。 図1に示す内燃機関用ピストンの従来の製造方法を示す説明的断面図。 図1に示す内燃機関用ピストンの本発明の製造方法を示す説明的断面図。 本発明の製造方法で得られた内燃機関用ピストンにおけるピストンヘッドならびにスカート部の相当歪み及び250℃における耐力とを示すグラフ。 従来の製造方法で得られた内燃機関用ピストンにおけるピストンヘッドならびにスカート部の相当歪み及び250℃における耐力とを示すグラフ。
符号の説明
1…内燃機関用ピストン、 5…ピストンヘッド(デッドメタルとなる部位)、 11密閉型、 16…凸部、 17…加圧パンチ。

Claims (5)

  1. 長周期構造を示す金属間化合物を含むマグネシウム合金素材を鍛造して所定の形状を備える鍛造部材を製造する方法において、
    前記鍛造部材を直接鍛造したときにデッドメタルとなる部位を予め特定する工程と、
    該マグネシウム合金素材を密閉型内に収容した状態で鍛造して該デッドメタルとなる部位に1.0以上の相当歪みを導入する予備成形を行う工程と、
    該予備成形が施されたマグネシウム合金素材を鍛造して所定の形状を備える鍛造部材を得る工程とを備えることを特徴とするマグネシウム合金鍛造部材の製造方法。
  2. 前記マグネシウム合金素材は、MgとZnとYとを含むマグネシウム合金からなり、前記長周期構造を示す金属間化合物はMg12ZnY相であることを特徴とする請求項1記載のマグネシウム合金鍛造部材の製造方法。
  3. 前記マグネシウム合金は、Zrを含むことを特徴とする請求項2記載のマグネシウム合金鍛造部材の製造方法。
  4. 前記予備成形は、前記密閉型内に収容した前記マグネシウム合金素材の前記デッドメタルとなる部位に、加圧パンチに形成された凸部を圧接することにより行うことを特徴とする請求項1乃至請求項3のいずれか1項記載のマグネシウム合金鍛造部材の製造方法。
  5. 前記予備成形は、前記マグネシウム合金素材について予め求められた強度−歪み曲線に基づいて、前記デッドメタルとなる部位に所定の歪みを与える大きさを備え前記凸部を、前記密閉型内に収容した前記マグネシウム合金素材の該デッドメタルとなる部位に押圧することにより行うことを特徴とする請求項1乃至請求項4のいずれか1項記載のマグネシウム合金鍛造部材の製造方法。
JP2008328556A 2008-12-24 2008-12-24 マグネシウム合金鍛造部材の製造方法 Withdrawn JP2010149136A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328556A JP2010149136A (ja) 2008-12-24 2008-12-24 マグネシウム合金鍛造部材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328556A JP2010149136A (ja) 2008-12-24 2008-12-24 マグネシウム合金鍛造部材の製造方法

Publications (1)

Publication Number Publication Date
JP2010149136A true JP2010149136A (ja) 2010-07-08

Family

ID=42568822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328556A Withdrawn JP2010149136A (ja) 2008-12-24 2008-12-24 マグネシウム合金鍛造部材の製造方法

Country Status (1)

Country Link
JP (1) JP2010149136A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006074A (ja) * 2010-05-27 2012-01-12 Kobe Steel Ltd マグネシウム合金鍛造ピストンの製造方法およびマグネシウム合金鍛造ピストン
CN105441840A (zh) * 2014-09-10 2016-03-30 中国科学院金属研究所 一种高强耐热镁合金铸锭的锤锻开坯方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006074A (ja) * 2010-05-27 2012-01-12 Kobe Steel Ltd マグネシウム合金鍛造ピストンの製造方法およびマグネシウム合金鍛造ピストン
CN105441840A (zh) * 2014-09-10 2016-03-30 中国科学院金属研究所 一种高强耐热镁合金铸锭的锤锻开坯方法

Similar Documents

Publication Publication Date Title
JP6626441B2 (ja) 鍛造製品および他の加工製品の製造方法
CN1283822C (zh) 制造镁合金产品的方法
CN106312016B (zh) 一种铝合金锻件振动铸锻复合成形方法
CN102581257B (zh) 循环闭式模锻制备镁合金半固态坯料及触变挤压成形方法
CN106890865B (zh) 大直径aq80m镁合金饼材挤锻集成成形工艺
EP2074237B1 (fr) Procede de fabrication de pieces forgees a chaud en alliage de magnesium
CN105705271A (zh) 生产高性能轴对称部件的方法和设备
JP4377901B2 (ja) 高強度加工素材の製造方法および製造装置
CN113953343A (zh) 一种镦粗和非对称挤压复合的一步法轻合金制备方法
JP4776751B2 (ja) マグネシウム合金薄板の製造方法
CN111069519A (zh) 一种镍及镍合金高颈法兰的制造方法
JP2010149136A (ja) マグネシウム合金鍛造部材の製造方法
US2759257A (en) Process for forging cast iron and the like
JP5588884B2 (ja) マグネシウム合金鍛造ピストンの製造方法およびマグネシウム合金鍛造ピストン
RU2239511C1 (ru) Способ изготовления крупногабаритных поршней двигателей внутреннего сгорания
JPH08269589A (ja) 超塑性az91マグネシウム合金の製造方法
JP5150406B2 (ja) ピストン素材の製造方法
JP2005009673A (ja) 圧力容器の製造方法
JP4460197B2 (ja) 両端末閉塞中空材及び後端末偏肉・増肉中空材の製造方法及びその装置
JP2017171964A (ja) マグネシウム合金焼結ビレットおよびその製造方法
JP2009191353A (ja) マグネシウム合金部材の製造方法
JP3097476B2 (ja) 熱間塑性加工方法
JP4955158B2 (ja) マグネシウム合金板材
US3037623A (en) Method of forming tubular bodies
JPH069725B2 (ja) コンロツドの成形方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306