JP2010148252A - 故障診断回路、及び電池パック - Google Patents

故障診断回路、及び電池パック Download PDF

Info

Publication number
JP2010148252A
JP2010148252A JP2008323246A JP2008323246A JP2010148252A JP 2010148252 A JP2010148252 A JP 2010148252A JP 2008323246 A JP2008323246 A JP 2008323246A JP 2008323246 A JP2008323246 A JP 2008323246A JP 2010148252 A JP2010148252 A JP 2010148252A
Authority
JP
Japan
Prior art keywords
current
unit
offset
secondary battery
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008323246A
Other languages
English (en)
Inventor
Kazuya Maekawa
和也 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008323246A priority Critical patent/JP2010148252A/ja
Publication of JP2010148252A publication Critical patent/JP2010148252A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】異常検出の精度を向上させることができる故障診断回路、及びこれを用いた電池パックを提供する。
【解決手段】第1電流経路L1と、第1スイッチング素子Q13と、第2電流経路L2と、第2スイッチング素子Q14と、第1スイッチング素子Q13をオフさせ第2スイッチング素子Q14をオンさせたときに電流センサ104によって検出されるオフセット電流値Iofを取得するオフセット電流取得部110と、第1スイッチング素子Q13をオンさせ第2スイッチング素子Q14をオフさせたときに電流センサ104によって制御部105の消費電流値Isを取得する消費電流値取得部116と、オフセット電流値Iofがオフセット判定値Iothに満たず、かつ消費電流値Isが消費電流判定値Isthを超えるとき、制御部105に異常が生じていると判定する故障判定部119とを備えた。
【選択図】図1

Description

本発明は、二次電池の充放電を監視、又は制御するために設けられた制御部の異常を検出することができる故障診断回路、及びこれを用いた電池パックに関する。
充電可能な二次電池を有する充電式の電池パックにおいて、電池パックを安全に制御するためには、電池の電圧や温度、充放電電流などを計測し充放電を制御するための回路基板等で構成された制御部が必要となる。しかしながら、このような制御部が故障している場合は、二次電池に対して正常な充放電制御を行えず、安全性が低下する可能性が考えられる。そのため、制御部が正常か否かの故障診断を行うことが望ましい。
このような制御基板の故障を検出する方法としては、例えば、アクチュエータを制御する制御回路が消費する消費電流を計測する電流計測回路を備え、その電流計測回路で計測された消費電流値に基づいて故障診断を行う方法がある(例えば、特許文献1参照。)。
特開平9−123894号公報
しかしながら、電流計測回路は温度や経年変化によって、電流の計測精度が変動する。そのため、特許文献1に記載の技術のように、電流計測回路で計測された消費電流値に基づいて故障診断を行うと、制御部が正常であるにもかかわらず異常状態であると誤判定してしまうおそれがあった。
本発明の目的は、異常検出の精度を向上させることができる故障診断回路、及びこれを用いた電池パックを提供することである。
本発明に係る故障診断回路は、二次電池と直列に接続されて当該二次電池に流れる電流を検出する電流検出部と、前記二次電池を充電するための充電回路及び前記二次電池の放電電流の供給を受ける負荷回路のうち少なくとも一方に前記二次電池と前記電流検出部との直列回路を接続するための接続端子と、前記二次電池から供給される電流を動作用電源電流として用いることで動作する制御部と、前記二次電池から前記電流検出部を介して供給される電流を前記動作用電源電流として前記制御部へ導く第1電流経路と、前記第1電流経路を開閉する第1スイッチング素子と、前記二次電池から供給される電流を前記動作用電源電流として当該二次電池から前記電流検出部を介さずに前記制御部へ導く第2電流経路と、前記第2電流経路を開閉する第2スイッチング素子と、前記第1スイッチング素子をオフさせ前記第2スイッチング素子をオンさせたときに前記電流検出部によって検出されるオフセット電流値を取得するオフセット電流取得部と、前記第1スイッチング素子をオンさせ前記第2スイッチング素子をオフさせたときに前記電流検出部によって検出される検出電流値を前記制御部の消費電流値として取得する消費電流値取得部と、前記オフセット電流取得部によって取得されたオフセット電流値が所定のオフセット判定値に満たず、かつ前記消費電流値取得部によって取得された消費電流値が所定の消費電流判定値を超えるとき、前記制御部に異常が生じていると判定する故障判定部とを備える。
この構成によれば、オフセット電流取得部は、第1スイッチング素子をオフさせ、かつ第2スイッチング素子をオンさせることによって、第1電流経路を遮断し、第2電流経路を介して制御部の動作用電源電流を供給させた状態で、電流検出部によって検出される電流値をオフセット電流値として取得する。そうすると、動作用電源電流が、電流検出部を経由することなく制御部へ供給されるので、制御部の動作を維持しつつ、電流検出部で検出される電流値から制御部の動作用電源電流が除外されて、オフセット電流取得部でオフセット電流値を取得することができる。
そして、消費電流値取得部が第1スイッチング素子をオンさせ前記第2スイッチング素子をオフさせることによって、制御部の動作用電源電流が、二次電池から電流検出部と第1電流経路とを経由して制御部へ供給されるので、制御部の消費電流が電流検出部によって検出される。さらに、オフセット電流取得部によって取得されたオフセット電流値が所定のオフセット判定値に満たず、従って電流検出部が正常に動作していると考えられるときに、消費電流値取得部によって取得された消費電流値が所定の消費電流判定値を超えると、故障判定部によって、制御部に異常が生じていると判定される。
この場合、故障判定部によって、電流検出部が正常に動作していることが確認されたうえで、電流検出部によって制御部の消費電流値が検出され、この消費電流値に基づき制御部の故障診断が実行されるので、温度や経年変化等によって電流検出部に異常が生じているときに電流検出部で検出された電流値に基づき誤って制御部に異常が生じていると判定されるおそれが低減される。従って、異常検出の精度を向上させることができる。
また、前記故障判定部は、前記オフセット電流取得部によって取得されたオフセット電流値が前記オフセット判定値を超えるとき、前記電流検出部に異常が生じていると判定することが好ましい。
電流検出部のオフセット電流値が所定のオフセット判定値を超えて増大した場合、電流検出部に異常が生じていると考えられるから、このような場合、故障判定部は、電流検出部に異常が生じていると判定することで、電流検出部の故障診断を行うことが可能となる。
また、前記電流検出部の温度と相関関係のある温度を検出する第1温度検出部と、前記第1温度検出部によって検出された温度に応じて前記オフセット判定値を設定するオフセット判定値設定部とをさらに備えることが好ましい。
この構成によれば、オフセット判定値設定部によって、電流検出部の温度と相関関係のある温度に応じてオフセット判定値が設定され、このオフセット判定値を用いて故障判定部による異常の有無の判定が行われるので、電流検出部の温度特性を考慮して異常の有無を判定することができる結果、異常検出の精度を向上させることができる。
また、前記制御部の温度と相関関係のある温度を検出する第2温度検出部と、前記第2温度検出部によって検出された温度に応じて前記消費電流判定値を設定する消費電流判定値設定部とをさらに備えることが好ましい。
この構成によれば、消費電流判定値設定部によって、制御部の温度と相関関係のある温度に応じて消費電流判定値が設定され、この消費電流判定値を用いて故障判定部による異常の有無の判定が行われるので、制御部の温度特性を考慮して異常の有無を判定することができる結果、異常検出の精度を向上させることができる。
また、前記第1スイッチング素子をオンさせ前記第2スイッチング素子をオフさせて前記電流検出部によって検出される検出電流値を、前記オフセット電流取得部によって取得されたオフセット電流値に基づいて補正する電流補正部をさらに備え、前記消費電流取得部は、前記電流補正部によって補正された後の検出電流値を、前記制御部の消費電流値として取得することが好ましい。
この構成によれば、第1スイッチング素子をオンさせ第2スイッチング素子をオフさせて電流検出部によって検出される検出電流値、すなわち制御部の消費電流値が、電流補正部によって、オフセット電流値に基づいて補正され、この補正された後の検出電流値が、消費電流取得部によって制御部の消費電流値として取得されるので、消費電流値の精度が向上する。そして、精度が向上した消費電流値に基づいて、故障判定部による異常の有無の判定が行われるので、異常検出の精度を向上させることができる。
また、前記二次電池から前記接続端子へ至る主電流経路を開閉する第1開閉部をさらに備え、前記オフセット電流取得部は、前記オフセット電流値を取得する際に、さらに前記第1開閉部をオフさせることが好ましい。
この構成によれば、オフセット電流取得部は、オフセット電流値を取得する際に、第1開閉部をオフさせて主電流経路を遮断するので、接続端子を介して充放電される二次電池の電流が確実にゼロにされる。そうすると、二次電池に流れる電流がゼロになる確実性が向上するので、オフセット電流値の検出精度が向上する。そして、精度が向上したオフセット電流値を用いて、故障判定部による異常の有無の判定が行われるので、異常検出の精度を向上させることができる。
また、前記二次電池から供給される動作用電源電流を前記制御部へ導く第3電流経路と、前記第3電流経路に介設されると共に、当該第3電流経路の電圧が予め設定された設定電圧を超えたとき、当該第3電流経路を、予め設定された設定時間だけ導通させた後に遮断するワンショットスイッチ部とをさらに備え、前記制御部は、前記動作用電源電流の供給を受けて起動されると、前記設定時間内に、前記第1及び第2スイッチング素子のうち少なくとも一つをオンさせる起動処理部をさらに備えることが好ましい。
もし仮に第3電流経路がなかったとしたら、制御部が電源供給されずに停止状態になると、第1及び第2スイッチング素子をオンさせることができないので、第1及び第2電流経路が遮断され、制御部には動作用電源電流が供給されないまま制御部を起動することができなくなってしまうおそれがある。
しかしながら、この構成によれば、第1及び第2電流経路が遮断されて制御部が停止状態になっていても、例えば検出電流補正回路に二次電池を取り付けたり、二次電池を充電したり、スイッチにより二次電池の出力電圧を第3電流経路へ供給したりする等して二次電池の出力電圧をワンショットスイッチ部に印加すると、ワンショットスイッチ部が第3電流経路を設定時間だけ導通させる。そうすると、二次電池から第3電流経路を介して動作用電源電流が供給されて、制御部が起動される。制御部が起動されると、設定時間内、すなわち第3電流経路を介して動作用電源電流が供給されている期間内に、起動処理部によって、第1及び第2スイッチング素子のうち少なくとも一つがオンされる。
そうすると、第1及び第2電流経路のうち少なくとも一つを介して二次電池から制御部へ動作用電源電流が供給されるので、設定時間が経過後にワンショットスイッチ部によって第3電流経路が遮断されても、制御部、すなわち制御部が備える各部が動作可能な状態に維持される。そして、ワンショットスイッチ部によって第3電流経路が遮断された後に、オフセット電流取得部によるオフセット電流値の取得が行われることで、オフセット電流値から、第3電流経路を経由して制御部へ供給される電流が排除される結果、オフセット電流値の精度が向上する。
また、前記二次電池から前記接続端子へ至る主電流経路に流れる電流が、予め設定された電流閾値を超えた場合に当該主電流経路を遮断すると共に、導通状態に復帰可能な保護回路をさらに備え、前記第3電流経路は、前記二次電池から供給される動作用電源電流を、前記保護回路を介して前記制御部へ導くことが好ましい。
例えば主電流経路に過電流が流れて保護回路が作動した場合には、例えばメンテナンス等の必要から制御部への電源供給を止めて停止させ、第1及び第2スイッチング素子をオフさせることがある。このような場合、この構成によれば、例えば過電流が解消して保護回路が復帰したり、メンテナンスが終了して保守作業者が保護回路の復帰操作をしたり、あるいは起動スイッチとして保護回路をオンさせるなどして保護回路が導通すると、ワンショットスイッチ部によって、制御部を起動させることが可能となる。
また、前記接続端子から前記制御部へ動作用電源電流を導く第4電流経路をさらに備えることが好ましい。
この構成によれば、二次電池が、制御部の動作用電源電流を供給できず、制御部を起動できないほど、深放電に至り、ワンショットスイッチ部による起動ができなくなった際に、外部から、前記接続端子と第4電流経路とを介して制御部へ動作用電源電流を供給することで、制御部を起動することが可能となる。
また、本発明に係る電池パックは、上述の故障診断回路と、前記二次電池とを備える。
この構成によれば、電池パックにおいて、異常検出の精度を向上させることができる。
このような構成の故障診断回路、及び電池パックは、電流検出部が正常に動作していることが確認されたうえで、電流検出部によって制御部の消費電流値が検出され、この消費電流値に基づき制御部の故障診断が実行されるので、温度や経年変化等によって電流検出部に異常が生じているときに電流検出部で検出された電流値に基づき誤って制御部に異常が生じていると判定されるおそれが低減される。従って、異常検出の精度を向上させることができる。
以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。図1は、本発明の一実施形態に係る故障診断回路を備えた電池パックの構成の一例を示すブロック図である。
図1に示す電池パック100は、接続端子101,102、ブレーカ103(保護回路)、電流センサ104(電流検出部)、制御部105、電源部106、ワンショットスイッチ回路部107、スイッチング素子Q11,Q12(第1開閉部)、第1スイッチング素子Q13、第2スイッチング素子Q14、ダイオードD11,D12,D13,D14、温度センサ121(第1及び第2温度検出部)、表示部122、及び二次電池B11を備えて構成されている。
また、制御部105は、オフセット電流取得部110、電流補正部111、電流積算部112、SOC算出部113、充放電制御部114、起動処理部115、消費電流値取得部116、オフセット判定値設定部117、消費電流判定値設定部118、及び故障判定部119を含んでいる。
この場合、電池パック100における二次電池B11以外の回路部が電池パックの充放電制御を行うECU(Electronic Control Unit)の一例に相当し、ECUにおける電流積算部112、SOC算出部113、及び充放電制御部114以外の回路部が故障診断回路の一例に相当している。
なお、ECU及び故障診断回路は、電池パックに内蔵される例に限らない。例えば、ECU及び故障診断回路は、携帯型パーソナルコンピュータ、デジタルカメラ、携帯電話機、電気自動車、ハイブリットカー等、種々の電池駆動機器や、発電装置の負荷を二次電池によって平準化する電源システム等に用いられてもよい。
また、ECU及び故障診断回路は、例えば二次電池を充電する発電装置等の充電装置に内蔵されていてもよい。また、充電装置は、太陽光発電装置、風力発電装置、電動車輌における電力回生装置等であってもよい。
接続端子101は電池パックのプラス端子、接続端子102は電池パックのマイナス端子である。接続端子101,102は、電池パック100と図略の充電装置、あるいは電池パック100と図略の負荷装置とを電気的に接続するものであればよく、例えば電極やコネクタ、端子台等で構成される。さらに、接続端子101,102は、ECU及び故障診断回路が電池駆動機器や充電装置に内蔵されている場合等、接続端子101,102は、ランドやパッド等の配線パターンであってもよい。
接続端子101は、充電制御用のスイッチング素子Q11、放電用のスイッチング素子Q12、ブレーカ103、及び電流センサ104を介して二次電池B11の正極に接続されている。スイッチング素子Q11,Q12としては、例えばFET(Field Effect Transistor)が用いられる。スイッチング素子Q11は、寄生ダイオードのカソードが接続端子101の方向にされている。スイッチング素子Q12は、寄生ダイオードのカソードがブレーカ103の方向にされている。
そして、接続端子102は、二次電池B11の負極に接続されており、接続端子101からスイッチング素子Q11,Q12、ブレーカ103、電流センサ104、及び二次電池B11を介して接続端子102に至る主電流経路Lmが構成されている。
電流センサ104は、二次電池B11に流れる電流の電流値Ibを検出する電流検出回路である。電流センサ104は、例えば二次電池B11を充電する方向の電流をプラスの電流値Ib、二次電池B11が放電する方向の電流をマイナスの電流値Ibで表して、制御部105へ送信するようになっている。
電流センサ104は、例えば、主電流経路Lmに介設されたシャント抵抗や電流変成器と、これらによってアナログ電圧に変換された電流値Ibを、デジタル値に変換して制御部105へ出力するアナログデジタルコンバータ等とで構成されている。なお、アナログデジタルコンバータは制御部105に内蔵されていてもよい。
ここで、例えば温度の影響でシャント抵抗の抵抗値が変化したり、電流変成器やアナログデジタルコンバータの温度特性やこれらの精度バラツキ等の影響によって検出電流値が変動したりするため、電流センサ104で検出される電流値Ibの精度が低下するおそれがある。
表示部122は、例えばLED(Light Emitting Diode)や液晶表示器等を用いて構成された表示装置である。
ブレーカ103と電流センサ104との接続点P1は、第1スイッチング素子Q13とダイオードD13とを介して電源部106に接続されている。この場合、接続点P1から第1スイッチング素子Q13とダイオードD13とを介して電源部106に至る電流経路が第1電流経路L1に相当している。
ブレーカ103は、例えばユーザが操作可能なハンドルを備えた遮断器である。そして、ブレーカ103は、主電流経路Lmに過電流が流れて予め設定された電流閾値を超えると主電流経路Lmを遮断し、ユーザがハンドルを操作することで、主電流経路Lmを導通状態に復帰させるようになっている。また、ブレーカ103は、起動スイッチとして用いられてもよい。
なお、ブレーカ103は、例えばPTC(Positive Temperature Coefficient)やバイメタルスイッチ等の保護素子を用いて構成されていてもよい。そして、ブレーカ103は、主電流経路Lmに過電流が流れて予め設定された電流閾値を超えると、自己発熱によりオフして主電流経路Lmを遮断し、二次電池B11を過電流から保護するものであってもよい。このようなブレーカ103は、電流が流れなくなって温度が低下すると再びオンして主電流経路Lmを導通状態に復帰させるようになっている。
二次電池B11と電流センサ104との接続点P2は、第2スイッチング素子Q14とダイオードD14とを介して電源部106に接続されている。この場合、接続点P2から第2スイッチング素子Q14とダイオードD14とを介して電源部106に至る電流経路が第2電流経路L2に相当している。また、第1スイッチング素子Q13及び第2スイッチング素子Q14は、例えばFETを用いて構成されている。
なお、スイッチング素子Q11,Q12、第1スイッチング素子Q13及び第2スイッチング素子Q14は、NチャネルMOSFETであってもよく、PチャネルMOSFETであってもよく、その他のスイッチング素子を用いてもよいが、FETは、オン抵抗が小さいので、スイッチング素子Q11,Q12、第1スイッチング素子Q13及び第2スイッチング素子Q14として好適である。
ブレーカ103とスイッチング素子Q12との接続点P3は、ワンショットスイッチ回路部107とダイオードD12とを介して電源部106に接続されている。この場合、接続点P3からワンショットスイッチ回路部107とダイオードD12とを介して電源部106に至る電流経路が第3電流経路L3に相当している。
ワンショットスイッチ回路部107は、第3電流経路L3の電圧が予め設定された設定電圧を超えたとき、第3電流経路L3を、予め設定された設定時間だけ導通させた後に遮断する。ワンショットスイッチ回路部107は、一定時間だけ導通するものであればよく、例えばタイマ回路やスイッチング素子を用いて構成してもよく、その他の回路構成であってもよい。
また、ブレーカ103を備えなくてもよい。そして、ワンショットスイッチ回路部107として機械的なワンショットスイッチ(押しボタンスイッチ)を用いて、ユーザがこのスイッチを押下している間だけ、第3電流経路L3が導通する構成としてもよい。さらに、第3電流経路L3は、接続点P3ではなく、接続点P1や接続点P2に接続されていてもよい。
また、接続端子101は、ダイオードD11を介して電源部106に接続されている。この場合、接続端子101からダイオードD11を介して電源部106に至る電流経路が第4電流経路L4に相当している。
二次電池B11は、例えばリチウムイオン二次電池やニッケル水素二次電池、鉛蓄電池等の素電池が複数、直列接続された組電池である。なお、二次電池B11は、素電池が直列接続されたものに限られず、例えば複数の素電池が並列、あるいは直列と並列とを組み合わせて接続された組電池であってもよい。また、二次電池B11は、素電池であってもよい。
電源部106は、例えばDC−DCコンバータやスイッチングレギュレータ等を用いて構成された電源回路である。そして、電源部106は、第1電流経路L1、第2電流経路L2、第3電流経路L3、及び第4電流経路L4のうち、少なくとも一つの電流経路を介して、接続端子101,102に接続された図略の充電回路や、二次電池B11等から供給された動作用充電電流から、制御部105の動作に適した動作用電源電圧を生成し、制御部105へ供給する。この場合、電源部106と制御部105とによって、請求項に係る制御部の一例が構成されている。
なお、制御部105が、二次電池B11の出力電圧や接続端子101,102に接続された充電装置等の外部電源電圧によって直接動作可能であれば、電源部106を備えない構成としてもよい。
スイッチング素子Q11,Q12、第1スイッチング素子Q13、及び第2スイッチング素子Q14は、ゲートが制御部105に接続されており、制御部105からの制御信号に応じてオン、オフされるようになっている。
温度センサ121は、例えばサーミスタや熱電対等の感熱素子を用いて構成されている。また、温度センサ121は、例えば二次電池B11の近傍に配設されており、二次電池B11の温度Tbを検出して、その温度検出値を制御部105へ出力する。温度センサ121は、例えばアナログデジタルコンバータ等を備えて温度Tbをデジタル値に変換して制御部105に出力するようにしてもよく、制御部105がアナログデジタルコンバータ等を備えて感熱素子で得られた計測電圧をデジタル値に変換するようにしてもよい。
ここで、二次電池B11、電流センサ104、及び制御部105は、いずれも電池パック100の構成要素であって、電池パック100の筐体内に内蔵されていたり、近接配置されていたりするから、二次電池B11の温度Tbが高いほど電流センサ104、及び制御部105の温度も高くなり、電流センサ104、及び制御部105の温度と温度Tbとは相関関係がある。この場合、電流センサ104は、第1及び第2温度検出部の一例に相当している。
なお、電流センサ104の温度を検出する第1温度検出部と、制御部105の温度を検出する第2温度検出部とをそれぞれ備えるようにしてもむろんよい。
制御部105は、例えば所定の演算処理を実行するCPU(Central Processing Unit)と、所定の制御プログラムが記憶されたROM(Read Only Memory)と、データを一時的に記憶するRAM(Random Access Memory)と、これらの周辺回路等とを備えて構成されている。そして、制御部105は、ROMに記憶された制御プログラムを実行することにより、オフセット電流取得部110、電流補正部111、電流積算部112、SOC算出部113、充放電制御部114、起動処理部115、消費電流値取得部116、オフセット判定値設定部117、消費電流判定値設定部118、及び故障判定部119として機能する。
オフセット電流取得部110は、スイッチング素子Q11,Q12をオフさせ、第2スイッチング素子Q14をオンさせ、第1スイッチング素子Q13をオフさせて、流れる電流がゼロにされた電流センサ104で検出される電流値をオフセット電流値Iofとして取得し、例えばRAMに記憶させる。
電流補正部111は、電流センサ104によって二次電池B11に流れる電流値Ibを検出させるときは、第1スイッチング素子Q13をオンさせると共に第2スイッチング素子Q14をオフさせる。さらに、電流補正部111は、常時、または定期的に、電流センサ104で検出された電流値Ibを取得すると共に、オフセット電流取得部110によって取得されたオフセット電流値Iofを減算することにより、補正電流値Ixの算出を繰り返す。
電流積算部112は、電流補正部111によって算出された補正電流値Ixを、継続的に、例えば単位時間毎に積算することによって、二次電池B11に充電されている積算電荷量Qを算出する。
SOC算出部113は、例えば二次電池B11の満充電容量に対する積算電荷量Qの比率を算出することで、二次電池B11のSOCを算出し、RAMに記憶させる。
充放電制御部114は、SOC算出部113によって算出されたSOCが、例えば100%以上になると、スイッチング素子Q11をオフさせて二次電池B11の充電を禁止し、過充電を防止する。また、充放電制御部114は、SOC算出部113によって算出されたSOCが、例えば0%以下になると、スイッチング素子Q12をオフさせて二次電池B11の放電を禁止し、過放電を防止する。
さらに、充放電制御部114は、例えば温度センサ121によって検出された温度Tbが、予め設定された温度閾値を超えた場合、スイッチング素子Q11,Q12をオフさせて二次電池B11の充放電を禁止し、二次電池B11の過熱を防止する。
これにより、二次電池B11の過充電、過放電、及び過熱の発生が防止されて、安全性が向上するようになっている。
また、過熱の防止等、二次電池B11の充電制御を目的とする温度Tbの検出と、第1及び第2温度検出部として故障診断を目的とする温度Tbの検出とを、1つの温度センサ121で行うことができるので、各目的毎に温度センサを設ける必要がないため、コストの増大を低減することが容易である。
起動処理部115は、電源部106から動作用電源電圧の供給を受けて制御部105が起動されると、前記設定時間内に、第1スイッチング素子Q13及び第2スイッチング素子Q14のうち少なくとも一つをオンさせる。
消費電流値取得部116は、第1スイッチング素子Q13をオンさせ第2スイッチング素子Q14をオフさせたときに電流センサ104によって検出される電流値から電流補正部111によって算出された補正電流値Ixを、制御部105の補正消費電流値Is’として取得する。なお、電流補正部111を備えず、消費電流値取得部116は、第1スイッチング素子Q13をオンさせ第2スイッチング素子Q14をオフさせたときに電流センサ104によって検出される電流値を消費電流値Isとして取得するようにしてもよい。
オフセット判定値設定部117は、温度センサ121によって検出された温度Tbに応じて、電流センサ104に異常が生じているか否かを判定するためのオフセット判定値Iothを設定する。
具体的には、電流センサ104の温度特性に依存して、流れる電流がゼロのときに電流センサ104から出力されるオフセット電流値Iofの値は、電流センサ104の温度によって変化する。そして、電流センサ104の温度は温度センサ121で検出される温度Tbと相関関係がある。
そこで、例えば実験的にオフセット電流値Iofと温度Tbとの関係を求め、温度Tbに対応して、正常な電流センサ104によって得られるオフセット電流値Iofの上限値をオフセット判定値Iothとして示すオフセットデータテーブルをROMに記憶させておく。そして、オフセット判定値設定部117は、このオフセットデータテーブルを参照し、温度センサ121によって検出された温度Tbと対応付けられているオフセット判定値Iothを取得することで、オフセット判定値Iothを設定するようにしてもよい。
なお、オフセット判定値設定部117を備えず、オフセット判定値Iothを固定値として予め設定するようにしてもよい。
消費電流判定値設定部118は、温度センサ121によって検出された温度Tbに応じて、制御部105に異常が生じているか否かを判定するための消費電流判定値Isthを設定する。
具体的には、制御部105の消費電流値Isは、制御部105の温度に応じて変化する。そして、制御部105の温度は温度センサ121で検出される温度Tbと相関関係がある。
そこで、例えば実験的に消費電流値Isと温度Tbとの関係を求め、温度Tbに対応して、正常な制御部105によって消費される消費電流値Isの上限値を消費電流判定値Isthとして示す消費電流データテーブルをROMに記憶させておく。そして、消費電流判定値設定部118は、この消費電流データテーブルを参照し、温度センサ121によって検出された温度Tbと対応付けられている消費電流判定値Isthを取得することで、消費電流判定値Isthを設定するようにしてもよい。
制御部105(又は電源部106)の内部で、例えばショート故障が発生したり、絶縁が劣化したりしてリーク電流が増大するなどの故障が発生すると、消費電流が増大する。そこで、消費電流値Isが消費電流判定値Isthを超えた場合、制御部105(又は電源部106)に何らかの故障が生じていると判定することができる。
なお、消費電流判定値設定部118を備えず、消費電流判定値Isthを固定値として予め設定するようにしてもよい。
故障判定部119は、オフセット電流取得部110によって取得されたオフセット電流値Iofが、オフセット判定値設定部117によって設定されたオフセット判定値Iothを超えるとき、電流センサ104に異常が生じていると判定する。
また、故障判定部119は、オフセット電流取得部110によって取得されたオフセット電流値Iofが、オフセット判定値設定部117によって設定されたオフセット判定値Iothに満たず、かつ消費電流値取得部116によって取得された補正消費電流値Is’が、消費電流判定値設定部118によって設定された消費電流判定値Isthを超えるとき、制御部105(又は電源部106)に異常が生じていると判定する。
なお、故障判定部119は、補正消費電流値Is’の代わりに消費電流値Isを用いるようにしてもよい。
そして、故障判定部119は、異常の発生を検知すると、異常が発生した旨、あるいはその異常が発生した箇所を、表示部122によって報知させる。
次に、図1に示す電池パック100の動作について説明する。図2は、図1に示す電池パック100を起動させる際の起動方法の一例である起動方法1を説明するためのフローチャートである。例えば、電池パック100に何も接続されていないか、あるいは電池パック100の充電機能を有さない負荷装置が接続されている場合、制御部105は、二次電池B11から供給される電力によって動作することになる。
ここで、例えば制御部105が停止状態になって、第1スイッチング素子Q13、及び第2スイッチング素子Q14がオフしている状態で、ブレーカ103が遮断していると、二次電池B11から電源部106へ電力が供給されないので、制御部105の動作用電源電圧が供給されず、従って制御部105が停止状態のままとなる。
この状態から制御部105が起動される動作について、図2を参照しつつ、説明する。まず、例えばユーザがブレーカ103のハンドルを操作して、ブレーカ103をオンすると(ステップS1)、二次電池B11の出力電圧が、電流センサ104及びブレーカ103を介してワンショットスイッチ回路部107に印加される。
そして、ワンショットスイッチ回路部107に印加される電圧が、予め設定された設定電圧を超えると、ワンショットスイッチ回路部107が予め設定された設定時間だけ導通し、二次電池B11からワンショットスイッチ回路部107及びダイオードD12を介して電源部106へ、電流が供給される(ステップS2)。
そうすると、電源部106によって、制御部105へ、当該設定時間の間、動作用電源電圧が供給されて、制御部105が起動する(ステップS3)。この場合、もし仮に、ワンショットスイッチ回路部107を含む第3電流経路L3を備えていなければ、第1スイッチング素子Q13及び第2スイッチング素子Q14をオンさせることができず、従って電源部106に電力を供給して制御部105を起動することができなくなってしまう。
しかしながら、図1に示す電池パック100は、ワンショットスイッチ回路部107を含む第3電流経路L3を備えることで、起動方法1によって、制御部105を起動することが可能にされている。
制御部105が起動されると、ワンショットスイッチ回路部107がオンしている設定時間の間に、起動処理部115によって、第1スイッチング素子Q13がオンされる(ステップS4)。そうすると、二次電池B11の出力電流が、電流センサ104、第1スイッチング素子Q13、及びダイオードD13を介して電源部106へ供給されるので、その後、上記設定時間が経過してワンショットスイッチ回路部107がオフしても、二次電池B11の出力電流が第1スイッチング素子Q13及びダイオードD13を介して電源部106へ供給される結果、制御部105が動作状態のまま維持される。
なお、起動処理部115は、ステップS4において、第1スイッチング素子Q13の代わりに第2スイッチング素子Q14をオンしてもよく、第1スイッチング素子Q13と第2スイッチング素子Q14とをオンするようにしてもよい。
そして、制御部105が起動されると、充放電制御部114は、SOC算出部113によって算出されたSOCが例えば100%に満たない場合や、二次電池B11の端子電圧等から二次電池B11および電池パック100がまだ充電可能と判断すると、スイッチング素子Q11をオンさせて、接続端子101,102に接続された図略の充電装置によって、二次電池B11を充電することが可能にされる。
また、充放電制御部114は、SOC算出部113によって算出されたSOCが例えば0%を超えている場合や、二次電池B11の端子電圧等から二次電池B11および電池パック100がまだ放電可能と判断すると、スイッチング素子Q12をオンさせて、接続端子101,102に接続された図略の負荷装置へ、二次電池B11からの放電電流を供給することが可能にされる。
図3は、図1に示す電池パック100の起動方法の他の一例である起動方法2について、説明するためのフローチャートである。二次電池B11が、制御部105の動作用電力を供給できないほどの深放電に至った場合、図2に示す起動方法1では、二次電池B11が、ワンショットスイッチ回路部107をオンさせるための設定電圧を出力できないか、あるいはワンショットスイッチ回路部107がオンしたとしても、制御部105を動作させるのに必要な電力を二次電池B11が電源部106へ供給できないために、制御部105を起動することができない。
そこで、図3に示す起動方法2では、例えばユーザがブレーカ103のハンドルを操作してブレーカ103をオンし(ステップS11)、接続端子101,102に発電機や充電装置等の外部電源を接続する(ステップS12)。そうすると、外部電源から、ダイオードD11を介して電源部106へ電力が供給される(ステップS13)。さらに、電源部106によって、制御部105の動作用電源電圧が供給されて、制御部105が起動する(ステップS14)。
図4は、図1に示す電池パック100における故障診断動作の一例を示すフローチャートである。まず、例えば、図2又は図3に示す起動方法等により、制御部105が起動されている状態で、オフセット電流取得部110は、スイッチング素子Q11,Q12をオフすると共に、第2スイッチング素子Q14をオンさせる(ステップS21)。
これにより、スイッチング素子Q11,Q12がオフされて二次電池B11の接続端子101,102を介した充放電が禁止される。そうすると、電流センサ104を流れる電流は、二次電池B11から電流センサ104、第1スイッチング素子Q13、及びダイオードD13を介して電源部106に流れる制御部105の動作用電源電流のみとなる。
次に、オフセット電流取得部110は、第1スイッチング素子Q13をオフして第1電流経路L1を介して電源部106へ供給される電流を遮断する(ステップS22)。このとき、既に第2スイッチング素子Q14がオンされているので、二次電池B11から第2電流経路L2を介して電源部106へ、制御部105の動作用電源電流が供給される結果、第1スイッチング素子Q13をオフしても、制御部105の動作が維持される。
そして、第2電流経路L2を介して電源部106へ流れる電流は、電流センサ104を経由しないので、電流センサ104に流れる電流はゼロとなる。このとき、もし仮に、電流センサ104の検出電流値に誤差が生じていなければ、電流センサ104の検出電流値もまたゼロとなるはずである。一方、電流センサ104の検出電流値がゼロでなければ、その検出電流値が、電流センサ104の誤差、すなわちオフセット電流値を示していることになる。
そこで、オフセット電流取得部110は、このときの電流センサ104の検出電流値を、オフセット電流値Iofとして取得する(ステップS23)。これにより、オフセット電流取得部110は、電流センサ104の温度特性や、経年劣化などの影響による検出電流値の誤差、いわゆるオフセットずれをオフセット電流値として精度よく検出することができる。
次に、温度センサ121によって、二次電池B11の温度Tbが検出される(ステップS24)。そして、オフセット判定値設定部117によって、温度Tbに応じてオフセット判定値Iothが設定され、消費電流判定値設定部118によって、温度Tbに応じて消費電流判定値Isthが設定される(ステップS25)。
次に、故障判定部119は、オフセット電流取得部110によって取得されたオフセット電流値Iofと、オフセット判定値設定部117によって設定されたオフセット判定値Iothとを比較し(ステップS26)、オフセット電流値Iofがオフセット判定値Iothを超える場合(ステップS26でYES)、電流センサ104に異常が生じていると判定し、電流センサ104に異常が発生した旨、表示部122によって表示させる(ステップS27)。
一方、オフセット電流値Iofがオフセット判定値Ioth以下の場合(ステップS26でNO)、故障判定部119は、電流センサ104は正常であり、制御部105の消費電流を正しく検出できると判断し、制御部105の故障診断を実行するべくステップS28へ移行する。
この場合、オフセット判定値Iothは、オフセット判定値設定部117によって、電流センサ104の温度と相関関係がある温度Tbに応じて設定されているので、オフセット判定値Iothは、電流センサ104の温度特性が補正された値が設定される結果、故障判定部119による電流センサ104の故障診断の精度が向上する。
ステップS28において、消費電流値取得部116は、第1スイッチング素子Q13をオンさせ第2スイッチング素子Q14をオフさせる(ステップS28)。そうすると、二次電池B11から電流センサ104、及び第1電流経路L1を介して電源部106へ制御部105の動作用電源電流が供給されるので、電流センサ104によって、電流値Ibが消費電流値Isとして検出される(ステップS29)。
次に、電流補正部111は、消費電流値Isからオフセット電流値Iofを減算することにより、補正消費電流値Is’を算出する(ステップS30)。
次に、故障判定部119は、補正消費電流値Is’と消費電流判定値Isthとを比較し(ステップS31)、補正消費電流値Is’が消費電流判定値Isthを超える場合(ステップS31でYES)、制御部105(又は電源部106)に異常が生じていると判定し、制御部105(又は電源部106)に異常が発生した旨、表示部122によって表示させる(ステップS32)。
一方、補正消費電流値Is’が消費電流判定値Isth以下の場合(ステップS31でNO)、故障判定部119は、制御部105(及び電源部106)は正常であると判定する(ステップS33)。
この場合、補正消費電流値Is’は、電流補正部111によって電流センサ104のオフセットが補正されており、さらに消費電流判定値Isthは、消費電流判定値設定部118によって、制御部105の温度と相関関係がある温度Tbに応じて設定されて制御部105の温度特性が補正されている結果、故障判定部119による制御部105の故障診断の精度が向上する。
本発明に係る故障診断回路、及び電池パックは、携帯型パーソナルコンピュータやデジタルカメラ、携帯電話機等の電子機器、電気自動車やハイブリッドカー等の車両、太陽電池や発電装置と二次電池とを組み合わされた電源システム等の電池搭載装置、システムにおいて、好適に利用することができる。
本発明の一実施形態に係る故障診断回路を備えた電池パックの構成の一例を示すブロック図である。 図1に示す電池パックを起動させる際の起動方法の一例を説明するためのフローチャートである。 図1に示す電池パックの起動方法の他の一例について説明するためのフローチャートである。 図1に示す電池パック100における故障診断動作の一例を示すフローチャートである。
符号の説明
100 電池パック
101,102 接続端子
103 ブレーカ
104 電流センサ
105 制御部
106 電源部
107 ワンショットスイッチ回路部
110 オフセット電流取得部
111 電流補正部
112 電流積算部
113 SOC算出部
114 充放電制御部
115 起動処理部
116 消費電流値取得部
117 オフセット判定値設定部
118 消費電流判定値設定部
119 故障判定部
121 温度センサ
122 表示部
B11 二次電池
D11,D12,D13,D14 ダイオード
Ib 電流値
Iof オフセット電流値
Ioth オフセット判定値
Is 消費電流値
Is’ 補正消費電流値
Isth 消費電流判定値
Ix 補正電流値
L1 第1電流経路
L2 第2電流経路
L3 第3電流経路
L4 第4電流経路
Lm 主電流経路
Q11,Q12 スイッチング素子
Q13 第1スイッチング素子
Q14 第2スイッチング素子
Tb 温度

Claims (10)

  1. 二次電池と直列に接続されて当該二次電池に流れる電流を検出する電流検出部と、
    前記二次電池を充電するための充電回路及び前記二次電池の放電電流の供給を受ける負荷回路のうち少なくとも一方に前記二次電池と前記電流検出部との直列回路を接続するための接続端子と、
    前記二次電池から供給される電流を動作用電源電流として用いることで動作する制御部と、
    前記二次電池から前記電流検出部を介して供給される電流を前記動作用電源電流として前記制御部へ導く第1電流経路と、
    前記第1電流経路を開閉する第1スイッチング素子と、
    前記二次電池から供給される電流を前記動作用電源電流として当該二次電池から前記電流検出部を介さずに前記制御部へ導く第2電流経路と、
    前記第2電流経路を開閉する第2スイッチング素子と、
    前記第1スイッチング素子をオフさせ前記第2スイッチング素子をオンさせたときに前記電流検出部によって検出されるオフセット電流値を取得するオフセット電流取得部と、
    前記第1スイッチング素子をオンさせ前記第2スイッチング素子をオフさせたときに前記電流検出部によって検出される検出電流値を前記制御部の消費電流値として取得する消費電流値取得部と、
    前記オフセット電流取得部によって取得されたオフセット電流値が所定のオフセット判定値に満たず、かつ前記消費電流値取得部によって取得された消費電流値が所定の消費電流判定値を超えるとき、前記制御部に異常が生じていると判定する故障判定部と
    を備えることを特徴とする故障診断回路。
  2. 前記故障判定部は、
    前記オフセット電流取得部によって取得されたオフセット電流値が前記オフセット判定値を超えるとき、前記電流検出部に異常が生じていると判定すること
    を特徴とする請求項1記載の故障診断回路。
  3. 前記電流検出部の温度と相関関係のある温度を検出する第1温度検出部と、
    前記第1温度検出部によって検出された温度に応じて前記オフセット判定値を設定するオフセット判定値設定部とをさらに備えること
    を特徴とする請求項1又は2記載の故障診断回路。
  4. 前記制御部の温度と相関関係のある温度を検出する第2温度検出部と、
    前記第2温度検出部によって検出された温度に応じて前記消費電流判定値を設定する消費電流判定値設定部とをさらに備えること
    を特徴とする請求項1〜3のいずれか1項に記載の故障診断回路。
  5. 前記第1スイッチング素子をオンさせ前記第2スイッチング素子をオフさせて前記電流検出部によって検出される検出電流値を、前記オフセット電流取得部によって取得されたオフセット電流値に基づいて補正する電流補正部をさらに備え、
    前記消費電流取得部は、
    前記電流補正部によって補正された後の検出電流値を、前記制御部の消費電流値として取得すること
    を特徴とする請求項1〜4のいずれか1項に記載の故障診断回路。
  6. 前記二次電池から前記接続端子へ至る主電流経路を開閉する第1開閉部をさらに備え、
    前記オフセット電流取得部は、
    前記オフセット電流値を取得する際に、さらに前記第1開閉部をオフさせること
    を特徴とする請求項1〜5のいずれか1項に記載の故障診断回路。
  7. 前記二次電池から供給される動作用電源電流を前記制御部へ導く第3電流経路と、
    前記第3電流経路に介設されると共に、当該第3電流経路の電圧が予め設定された設定電圧を超えたとき、当該第3電流経路を、予め設定された設定時間だけ導通させた後に遮断するワンショットスイッチ部とをさらに備え、
    前記制御部は、
    前記動作用電源電流の供給を受けて起動されると、前記設定時間内に、前記第1及び第2スイッチング素子のうち少なくとも一つをオンさせる起動処理部をさらに備えること
    を特徴とする請求項1〜6のいずれか1項に記載の故障診断回路。
  8. 前記二次電池から前記接続端子へ至る主電流経路に流れる電流が、予め設定された電流閾値を超えた場合に当該主電流経路を遮断すると共に、導通状態に復帰可能な保護回路をさらに備え、
    前記第3電流経路は、
    前記二次電池から供給される動作用電源電流を、前記保護回路を介して前記制御部へ導くこと
    を特徴とする請求項7記載の故障診断回路。
  9. 前記接続端子から前記制御部へ動作用電源電流を導く第4電流経路をさらに備えること
    を特徴とする請求項1〜8のいずれか1項に記載の故障診断回路。
  10. 請求項1〜9のいずれか1項に記載の故障診断回路と、
    前記二次電池と
    を備えることを特徴とする電池パック。
JP2008323246A 2008-12-19 2008-12-19 故障診断回路、及び電池パック Pending JP2010148252A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323246A JP2010148252A (ja) 2008-12-19 2008-12-19 故障診断回路、及び電池パック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323246A JP2010148252A (ja) 2008-12-19 2008-12-19 故障診断回路、及び電池パック

Publications (1)

Publication Number Publication Date
JP2010148252A true JP2010148252A (ja) 2010-07-01

Family

ID=42568086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323246A Pending JP2010148252A (ja) 2008-12-19 2008-12-19 故障診断回路、及び電池パック

Country Status (1)

Country Link
JP (1) JP2010148252A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050163A1 (ja) * 2010-10-15 2012-04-19 三洋電機株式会社 蓄電システム用の自己診断装置
JP2014535038A (ja) * 2011-09-30 2014-12-25 ケーピーアイティ テクノロジーズ リミテッド バッテリーの充電状態を決定するためのシステムおよび方法
JP2019128207A (ja) * 2018-01-23 2019-08-01 三菱自動車工業株式会社 電池監視システム
JP7491108B2 (ja) 2020-07-15 2024-05-28 株式会社Gsユアサ 蓄電素子の管理装置、蓄電装置、及び、管理方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050163A1 (ja) * 2010-10-15 2012-04-19 三洋電機株式会社 蓄電システム用の自己診断装置
US8547107B2 (en) 2010-10-15 2013-10-01 Sanyo Electric Co., Ltd. Self-diagnostic apparatus for electrical storage system
JP2014535038A (ja) * 2011-09-30 2014-12-25 ケーピーアイティ テクノロジーズ リミテッド バッテリーの充電状態を決定するためのシステムおよび方法
JP2019128207A (ja) * 2018-01-23 2019-08-01 三菱自動車工業株式会社 電池監視システム
JP7387250B2 (ja) 2018-01-23 2023-11-28 三菱自動車工業株式会社 電池監視システム
JP7491108B2 (ja) 2020-07-15 2024-05-28 株式会社Gsユアサ 蓄電素子の管理装置、蓄電装置、及び、管理方法

Similar Documents

Publication Publication Date Title
JP4831171B2 (ja) 電池パックおよび制御方法
JP5208149B2 (ja) 保護回路、及び電池パック
JP4692674B2 (ja) 充電装置
KR101093928B1 (ko) 배터리 셀의 고온 스웰링을 방지할 수 있는 배터리 팩 및 그 방법
JP6155569B2 (ja) 電源システム
JP4936227B2 (ja) 電池パックおよび電池パックを用いた電動工具
KR101147231B1 (ko) 전지 팩 및 그의 충방전 제어 방법
JP2009060734A (ja) 充電回路、及びこれを備えた電池パック、充電システム
JP4785708B2 (ja) パック電池の制御方法
JP2009264779A (ja) 電池状態検出回路、電池パック、及び充電システム
JP2011115012A (ja) 電池パックおよび制御方法
JP2009254215A (ja) 充電装置
WO2012005186A1 (ja) 電圧測定回路及び方法
US11381095B2 (en) Management device, energy storage apparatus, and management method for energy storage device
JP2010019805A (ja) 検出電流補正回路、及びこれを用いた電池パック
JP2012034425A (ja) 二次電池の充放電制御回路、電池パック、及び電池電源システム
JP2010148252A (ja) 故障診断回路、及び電池パック
JP5518001B2 (ja) 組電池の制御装置
JP2009104821A (ja) 電池パック
JP5373446B2 (ja) 保護回路、及び電池パック
JP2010033773A (ja) 電池パック、及び電池システム
JP2011036014A (ja) 保護回路、及び電池パック
JP2015173568A (ja) 電池保護回路および電池パック
JP2012200113A (ja) 電池パック及び充電システム
JP5958640B2 (ja) パック電池、及び、充電方法