JP2010147170A - 裏面電極型太陽電池セルの裏面パターン観察方法 - Google Patents

裏面電極型太陽電池セルの裏面パターン観察方法 Download PDF

Info

Publication number
JP2010147170A
JP2010147170A JP2008321211A JP2008321211A JP2010147170A JP 2010147170 A JP2010147170 A JP 2010147170A JP 2008321211 A JP2008321211 A JP 2008321211A JP 2008321211 A JP2008321211 A JP 2008321211A JP 2010147170 A JP2010147170 A JP 2010147170A
Authority
JP
Japan
Prior art keywords
cell
film
alignment mark
wiring film
electrode type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008321211A
Other languages
English (en)
Inventor
Kojiro Morii
浩二郎 森井
Chiaki Yamawaki
千明 山脇
Hideo Okada
英生 岡田
Kimihiro Taniguchi
仁啓 谷口
Ryuji Sakai
竜児 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008321211A priority Critical patent/JP2010147170A/ja
Publication of JP2010147170A publication Critical patent/JP2010147170A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】裏面電極型太陽電池セルとフィルムとの双方の観察対象物を同時に観察する。
【解決手段】赤外線を拡散透過する裏面電極型太陽電池セル2の前記裏面に対向する位置に、前記赤外線を透過可能である配線フィルム5が配置されており、配線フィルム5には、複数の裏面電極型太陽電池セル2同士を電気的に接続するための配線パターンが形成されており、裏面電極型太陽電池セル2の前記裏面には、セルアライメントマーク9が形成されており、配線フィルム5には、配線フィルムアライメントマーク10が形成されており、裏面電極型太陽電池セル2の前記表面側から赤外線照射装置8により前記赤外線を照射し、裏面電極型太陽電池セル2及び配線フィルム5を透過した前記赤外線を検知する赤外線撮像装置7により、電極31及び電極32のパターンを観察する。
【選択図】図1

Description

本発明は、裏面電極型太陽電池セルの裏面パターンを好適に観察する方法に関する。
従来の太陽電池セルにおいては、例えば単結晶のシリコン基板または多結晶のシリコン基板の、太陽光が入射する側の表面、即ち受光面に、上述したシリコン基板の導電型と反対の導電型となる不純物を拡散する。これにより、受光面近傍にpn接合を形成すると共に、受光面に一方の電極を配置し、受光面の反対側にある表面、即ち裏面に他方の電極を配置して製造されたものが、太陽電池セルの主流となっている。
そして、上記構成を有する複数の太陽電池セルを、インターコネクタで電気的に接続することにより、太陽電池ストリングを形成し、複数の上記太陽電池ストリングを電気的に接続した後に、樹脂等の封止材で封止することにより太陽電池モジュールが作製され、該太陽電池モジュールを用いて太陽光発電が行なわれている。
また、近年では、太陽電池セルの高効率化の一手段として、受光面側の電極による損失、いわゆる「シャドウロス」を無くすため、受光面に電極がなく、p領域に接続される電極とn領域に接続される電極との両方を裏面に形成した「裏面電極型太陽電池セル」が挙げられる。裏面電極型太陽電池セルは、電極によるシャドウロスが無く、入射してくる太陽光を100%太陽電池セルに取り込むことができる。このため、原理的に太陽電池セルの発電効率の向上が可能となる。
前記裏面電極型太陽電池セル(以下、セルと称する)は、従来の太陽電池セルよりも電極ピッチを狭くすることで更なる発電効率向上を達成しているが、前記電極ピッチの狭ピッチ化に伴い、前記セルのモジュール化において、前記セルと該セルに対向する配線との位置決めに要求される精度が高まっている。
図5は、特許文献1において開示されている、太陽電池モジュール及びその製造方法と同様に、インターコネクタで電気的に接続された従来の太陽電池セルを示す斜視図である。図5に示すように、隣接する2つのセル101同士を電気的に接続するものとして、インターコネクタ102が用いられている。
しかしながら、前記電極ピッチに対応したピッチで前記配線の接続をする必要があるが、インターコネクタ102を用いると、狭ピッチ化に伴いインターコネクタ102の本数が非常に多くなる。この結果、プロセスが煩雑になる、隣接するインターコネクタ102同士が接触してしまう、はんだ接続時のセル101に対するストレスによりセル101の割れまたはセル101の欠けが発生する等の問題が発生する。
そこで前記セルのモジュール化においては、樹脂製のフィルム上に前記電極ピッチに対応した形にあらかじめ金属の配線パターンが形成されており、前記セル複数枚を並べてモジュール化する際に前記セル同士を電気的に接続する役目を果たす配線フィルムが用いられる。
電極と配線フィルムの配線パターンとの電気的接続を確実にするためには、前記セルの電極と前記配線フィルムの配線パターンとを、またはセルアライメントマークと配線フィルムアライメントマークとを、CCDカメラ等の撮像装置により観察し、それぞれの位置を把握することで位置決めをする必要がある。
なお、上記撮像装置は、前記セルの電極と前記配線フィルムアライメントマークとを観察したり、前記配線フィルムの配線パターンと前記セルアライメントマークとを観察したり、前記セルの電極と前記配線フィルムの配線パターンとを観察したりする場合もある。
そこで、一般的に知られている、観察方法及び位置決め方法を以下に記す。
〔第1の観察方法及び第1の位置決め方法〕
図6は、配線フィルムに対して裏面電極型太陽電池セルの位置決めを行う従来の位置決め装置200の斜視図である。位置決め手順を以下に記す。
〔手順1〕
セル203を複数枚、電極とセルアライメントマークとがパターンニングされた裏面側を下側にして積み重ねられたスタックセル201から、セル保持部材202でセル203を保持する。セル保持部材202に隠れているセル203は、図6上では図示されていない。セル203の保持には、セル保持部材202に設けられるが図6上では図示されていない、吸着パッドやベルヌーイチャック等の一般的な基板保持部材を用いる。
〔手順2〕
ベース204に固定された2台のセルマーク撮像装置205を用いて、セル203の裏面側に設けられた2箇所のセルアライメントマークを撮像するために、セルマーク撮像装置205の上方に位置するように、セル保持部材202を±X方向にスライドさせる。
〔手順3〕
2台のセルマーク撮像装置205で2箇所のセルアライメントマークを撮像し、セル203の位置及び姿勢を把握し、XYθ座標データとして図示しない記憶装置により記憶する。セルマーク撮像装置205は1台だけでもよい。
〔手順4〕
配線フィルム206の位置及び姿勢を把握するために、配線フィルム206上に形成されている、図示しない2つ以上の配線フィルムアライメントマークを、セル保持部材202に固定されている配線フィルムマーク撮像装置207で撮像し、配線フィルム206の位置及び姿勢を把握し、XYθ座標データとして図示しない記憶装置により記憶する。
〔手順5〕
手順3及び手順4で記憶した、セル203と配線フィルム206とのXYθ座標データより、セル203と配線フィルム206との相対距離、及びセル203と配線フィルム206とのθ方向のずれ量を計算する。そして、セル保持部材202、配線フィルムステージ208、及びセル保持部材202に積載された図示しない回転ステージとにより、セル203と配線フィルム206とを相対移動させる。ここではセル保持部材202が±X方向に移動し、配線フィルムステージ208が±Y方向に移動し、上記回転ステージが±θ方向に回転することにより、セル203と配線フィルム206とを相対移動させる。これにより、セル203と配線フィルム206との位置決めが完了する。
しかし、上記第1の観察方法及び上記第1の位置決め方法による位置決め手順は、X,Yそれぞれの方向への移動距離が長い。このため、自動的に動くことが可能である各ステージの機械ずれの問題があり、位置決め完了後でも所望の精度で位置決めできていない場合がある。また、また、移動後のずれの確認ができないという問題がある。
〔第2の観察方法及び第2の位置決め方法〕
そこで、上記課題を解決するために、特許文献2に開示されている位置決め方法について説明する。図7は、特許文献2に開示されている位置決め方法を適用した、赤外線を透過可能である上側ワークを下側ワークに対して位置決めするための、従来の位置決め装置300の斜視図である。位置決め手順を以下に記す。
〔手順1〕
上側ワーク303を複数枚、赤外線を透過しない上側ワークアライメントマークまたは赤外線透過率の低い上側ワークアライメントマークがパターンニングされた裏面側を下側にして積み重ねたスタックワーク301から、ワーク保持部材302で上側ワーク303を保持する。ワーク保持部材302に隠れている上側ワーク303は、図7上では図示されていない。上側ワーク303の保持には、ワーク保持部材302に設けられるが図7上では図示されていない、吸着パッドやベルヌーイチャック等の一般的な基板保持部材を用いる。
〔手順2〕
上側ワーク303を、下側ワーク304上の位置決めしようとするおおよその位置まで移動させるために、上側ワーク303を保持したワーク保持部材302を±X方向に移動させ、下側ワークステージ305を±Y方向に移動させる。同時に上側ワーク303と下側ワーク304との間に所定のクリアランス(距離)を設けるように、ワーク保持部材302に積載された図示しないZ軸ステージにより、上側ワーク303と下側ワーク304との間のクリアランスを調整する。
〔手順3〕
焦点距離の差が互いの被写界深度の和よりも大きい2つのCCDカメラCCD1,CCD2を備えた赤外線撮像装置306が、ワーク保持部材302における異なる2箇所に積載されている。また、それぞれのCCDカメラの光軸に対して同軸落射照明として、図示しない赤外光源がワーク保持部材302に配置されている。さらに、ワーク保持部材302には、2つの光軸を合成させる図示しない2光軸合成ユニットが備えられている。
上側ワーク303が赤外線を透過可能であるため、CCDカメラCCD1により上側ワーク303の裏面にパターニングされた、赤外線を透過しない上側ワークアライメントマークまたは赤外線透過率の低い上側ワークアライメントマークを観察できる。
また、上側ワーク303を透過した赤外線は、下側ワーク304に形成された図示しない下側ワークアライメントマークで反射し、反射した赤外線は、再び上側ワーク303の裏面側から透過し、CCDカメラCCD2により下側ワークアライメントマークが撮像される。
CCDカメラCCD1の焦点距離とCCDカメラCCD2の焦点距離とを変えているのは、上側ワークアライメントマークのみを観察しようとするCCDカメラCCD1によって、下側ワークアライメントマークが観察されないようにするためである。また同様に、下側ワークアライメントマークのみを観察しようとするCCDカメラCCD2によって、上側ワークアライメントマークが観察されないようにするためである。
〔手順4〕
手順3で観察した、上側ワークアライメントマーク及び下側ワークアライメントマークそれぞれの位置情報より、上側ワーク303と下側ワーク304との相対的な位置ずれ量及び上側ワーク303と下側ワーク304との相対的な角度ずれ量を計算する。そして、第1の観察方法及び第1の位置決め方法と同様に、各ずれ量に応じた距離だけXYθ方向に上側ワーク303と下側ワーク304とを相対移動させることで、上側ワーク303と下側ワーク304との位置決めが完了する。
この方法によれば、上側ワークアライメントマーク及び下側ワークアライメントマークそれぞれを同時に観察することができるため、上側ワーク303と下側ワーク304との相対移動量が小さくて済み、自動的に動くことが可能である各ステージの機械ずれの影響がほとんどない。
特開2005−11869号公報(2005年1月13日公開) 特許第3356406号公報(平成14年10月4日特許)
しかしながら、前記セルを前記上側ワークとして前記配線フィルムを前記下側ワークとした時に、前記第2の観察方法及び前記第2の位置決め方法2によって観察及び位置決めを行なっても、前記セルの受光面側に高効率化のためにテクスチャと呼ばれる反射防止表面処理が施されていることや、前記セル内部に含まれる不純物やシリコンの結晶粒界の影響などにより、前記セルを透過する赤外線は拡散してしまう。このため、同軸落射照明による観察方法で前記セル表面側から観察しようとしても、同軸落射照明光が前記セル表面や内部でほとんど散乱してしまう。
また、観察対象物である、前記セル電極、前記セルアライメントマーク、前記配線フィルムの配線の表面、または前記配線フィルムアライメントマークの表面において、一部透過した赤外線の反射した光が、前記セルの表面または前記セルの内部に対してぼやけて投影される。このため、観察対象物がぼやけて観察されることに加えて、前述のように前記セルの表面または前記セルの内部で同軸落射照明光が散乱した光が投影像と混ざり合ってしまうために、観察対象物の観察ができない。
さらに、前記第2の観察方法及び前記第2の位置決め方法による観察方法では、上側ワーク303と下側ワーク304との間に、Z方向のクリアランス、即ち前記裏面に対する法線方向のクリアランスがなければ、双方の観察対象物を同時に観察することができない。このため、移動後のずれの確認ができないという問題がある。
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、裏面電極型太陽電池セルとフィルムとの双方の観察対象物を同時に観察することにある。
本発明の裏面電極型太陽電池セルの裏面パターン観察方法は、上記課題を解決するために、太陽光を受光する表面に電極がなく、第1の導電型の半導体領域に接続される第1電極と第2の導電型の半導体領域に接続される第2電極との両方が、前記表面の反対側に位置する裏面に形成された裏面電極型太陽電池セルの裏面パターン観察方法であって、赤外線を拡散透過する前記裏面電極型太陽電池セルの前記裏面に対向する位置に、前記赤外線を透過可能であるフィルムが配置されており、前記フィルムには、複数の前記裏面電極型太陽電池セル同士を電気的に接続するための配線パターンが形成されており、前記裏面電極型太陽電池セルの前記裏面には、セルアライメントマークが形成されており、前記フィルムの前記裏面と対向する面には、フィルムアライメントマークが形成されており、前記裏面電極型太陽電池セルの前記表面側から赤外線照射手段により前記赤外線を照射し、前記フィルムの前記フィルムアライメントマークが形成されていない面側に配置され、前記裏面電極型太陽電池セル及び前記フィルムを透過した前記赤外線を検知する撮像手段により、前記セルアライメントマーク及び前記フィルムアライメントマークのパターンを同時に観察することを特徴とする。
上記発明によれば、前記赤外線照射手段より照射された前記赤外線は、前記裏面電極型太陽電池セルの前記表面で散乱反射するものの、一部透過した前記赤外線が、前記裏面電極型太陽電池セルの前記裏面側に形成された、前記セルアライメントマーク及び前記フィルムアライメントマークのパターンを捉える。一部透過した前記赤外線が、前記フィルムを透過する際に、前記表面で拡散しなければ、前記セルアライメントマーク及び前記フィルムアライメントマークのパターンをそのまま前記撮像手段で撮像することが出来る。
従って、前記裏面電極型太陽電池セルと前記フィルムとの双方の観察対象物を同時に観察出来る。
また、一部透過した前記赤外線が前記表面で拡散するならば、前記裏面電極型太陽電池セルと前記フィルムとの距離を近づけることで、前記セルアライメントマーク及び前記フィルムアライメントマークのパターンが、影として前記フィルムに投影されるため、投影された影はほとんどぼやけずに撮像できる。
さらに、上記発明による観察を行うことにより、前記裏面電極型太陽電池セルと前記フィルムをずれなく位置決めすることが出来る。また、位置決めした後の、前記裏面電極型太陽電池セルと前記フィルムとの間に、前記裏面に対する法線方向のクリアランスがない場合でも、前記裏面電極型太陽電池セルと前記フィルムとの双方の観察対象物を観察出来る。
そして、前記裏面電極型太陽電池セルを複数枚並べるモジュール化プロセスにおいて、モジュール大の配線フィルムに対して個々のセルを高精度に位置決めすることができる。
また、前記フィルムには、複数の前記裏面電極型太陽電池セル同士を電気的に接続するための配線パターンが形成されている。これにより、複数枚の前記裏面電極型太陽電池セルを設置できる面積の前記フィルムに、前記裏面電極型太陽電池セル同士を電気的に接続するための前記配線パターンを形成し、前記フィルム1枚で、または前記フィルム複数枚をインターコネクタ等で電気的に接続することで、1つの太陽電池モジュールを形成できる。
さらに、前記インターコネクタを用いた前記裏面電極型太陽電池セル同士の接続方法と比較して、第1の効果として接続プロセスが単純になる、第2の効果としてインターコネクタ同士の接触がない、第3の効果としてはんだ接続時の面電極型太陽電池セルに対するストレスを抑えることができるために、前記裏面電極型太陽電池セルの割れや欠けを低減出来る等といった効果が得られる。
前記裏面電極型太陽電池セルの裏面パターン観察方法では、前記セルアライメントマークの光透過率は、前記裏面電極型太陽電池セルの光透過率よりも低く、前記フィルムアライメントマークの光透過率は、前記フィルムの光透過率よりも低くてもよい。
これにより、前記裏面電極型太陽電池セル及び前記フィルムに前記赤外線を透過させることで、光透過率の違いにより各アライメントマークを前記撮像手段により観察することができる。
そのため、前記裏面電極型太陽電池セルの裏面パターン観察方法を用いることで、前記フィルム上に形成された前記配線パターンが狭ピッチであるがゆえに前記配線パターンに対して前記裏面電極型太陽電池セルを高精度に位置決めする必要がある場合でも、前記セルアライメントマーク及び前記フィルムアライメントマーク双方を同時に観察することが出来る。このため、高精度の位置決めを行うことができる。
また、前記いずれかの裏面電極型太陽電池セルの裏面パターン観察方法では、前記フィルムは、ポリエチレンテレフタレートまたはポリエチレンナフタレートを原料としてもよい。
これにより、前記フィルムは前記赤外線を透過可能となる。また、前記フィルムの厚みを薄くすることができるため、材料費を安く抑えることが出来、しかも前記太陽電池モジュールを形成したときにコンパクト化を図ることができる。
本発明の裏面電極型太陽電池セルの裏面パターン観察方法は、以上のように、赤外線を拡散透過する前記裏面電極型太陽電池セルの前記裏面に対向する位置に、前記赤外線を透過可能であるフィルムが配置されており、前記フィルムには、複数の前記裏面電極型太陽電池セル同士を電気的に接続するための配線パターンが形成されており、前記裏面電極型太陽電池セルの前記裏面には、セルアライメントマークが形成されており、前記フィルムの前記裏面と対向する面には、フィルムアライメントマークが形成されており、前記裏面電極型太陽電池セルの前記表面側から赤外線照射手段により前記赤外線を照射し、前記フィルムの前記フィルムアライメントマークが形成されていない面側に配置され、前記裏面電極型太陽電池セル及び前記フィルムを透過した前記赤外線を検知する撮像手段により、前記セルアライメントマーク及び前記フィルムアライメントマークのパターンを同時に観察する方法である。
それゆえ、裏面電極型太陽電池セルとフィルムとの双方の観察対象物を同時に観察するという効果を奏する。
本発明の一実施形態について実施例1、実施例2、図1〜図3に基づいて説明すれば、以下の通りである。
〔実施例1〕
本実施例1では、本発明の実施形態に係る、裏面電極型太陽電池セル2(以下、セル2と称する)と配線フィルムとの位置決め方法について説明する。セル2は、図3(a)及び図3(b)に示されるように、太陽光を受光する表面(受光面)に電極がなく、p領域に接続される電極31とn領域に接続される電極32との両方が裏面に形成されている。
図1は、本発明の実施形態に係る観察方法を用いた、セルと配線フィルムとを位置決めするための位置決め装置1の斜視図である。図2(a)は、本発明の実施形態に係る位置決め装置1の一部を示す正面図である。図2(b)は、本発明の実施形態に係る赤外線撮像装置7が撮像した観察画像を示す平面図である。位置決め手順を以下に記す。
〔手順1〕
セル2を複数枚、図2(a)において示されるセルアライメントマーク9及び図3に示す電極31,32が形成された裏面側を下側にして積み重ねたスタックセル3から、セル保持部材4でセル2を保持する。セル2の原料は、例えばシリコンであり、セル保持部材4に隠れているセル2は、図1上では図示されていない。また、セルアライメントマーク9はパターンニングにより形成され、赤外線を透過しない、または赤外線透過率が0%〜0.1%程度と低い。但し、セルアライメントマーク9の透過率は、必ずしもこれほど低い透過率である必要は無く、セル2の赤外線透過率との十分な差異があればよい。さらに、セルアライメントマーク9の光透過率は、裏面電極型太陽電池セル2の光透過率よりも低い。
セル2の保持には、セル保持部材4に設けられるが図1上では図示されていない、吸着パッドやベルヌーイチャック等の一般的な基板保持部材を用いる。
〔手順2〕
PET(Polyethylene terephthalate、ポリエチレンテレフタレート)またはPEN(polyethylene naphthalate、ポリエチレンナフタレート)を原料とした配線フィルム5上の、位置決めしようとするおおよその位置まで、セル2を移動させるために、セル2を保持したセル保持部材4を±X方向に、配線フィルムステージ6を±Y方向に移動させる。配線フィルム5には、複数の裏面電極型太陽電池セル2同士を電気的に接続するための配線パターンが形成されている。また、配線フィルムステージ6は平板であり、配線フィルム5を吸着固定する。
同時に配線フィルムステージ6の下方に設置された、ベース20上を±X軸方向に移動できる2台の赤外線撮像装置7を、セル保持部材4における異なる2箇所に設置された赤外線照射装置8の真下の位置まで移動させる。赤外線照射装置8は、セル保持部材4に保持されたセル2の表面側から赤外線を照射する機能を有する。
〔手順3〕
セル保持部材4に保持されたセル2と配線フィルム5との間のクリアランス(Z軸方向の距離)が、赤外線撮像装置7の被写界深度より短くなるように、セル保持部材4に設置された図示しないZ軸ステージにより調整する。
〔手順4〕
図2(a)に示されるように、セル保持部材4に保持されたセル2の表面側から、赤外線照射装置8により赤外線を照射する。セル2は赤外線を透過可能であるため、照射された赤外線はセル2を透過し、セルアライメントマーク9で反射あるいは吸収される。
よって、図2(a)に示されるように、セルアライメントマーク9の周辺を透過した赤外線のみが配線フィルム5に到達する。
そして、配線フィルム5にパターンニングされた配線フィルムアライメントマーク10は、赤外線を透過しない、または赤外線透過率が0%〜0.1%程度と低い。但し、配線フィルムアライメントマーク10の透過率は、必ずしもこれほど低い透過率である必要は無く、セル2の赤外線透過率との十分な差異があればよい。よって、セルアライメントマーク9の周辺を透過した透過した赤外線は、配線フィルムアライメントマーク10の表面で反射あるいは吸収される。また、配線フィルム5はPETまたはPENを原料としているために、赤外線を透過する。
従って、図2(a)に示されるように、配線フィルムアライメントマーク10の周辺を透過した赤外線のみが赤外線撮像装置7に到達する。
その結果、図2(b)の観察画像11に示されるように、セルアライメントマーク9及び配線フィルムアライメントマーク10は、赤外線撮像装置7によって、それぞれセルアライメントマーク影12と配線フィルムアライメントマーク影13として観察される。
なお、配線フィルムアライメントマーク10の光透過率は、配線フィルム5の光透過率よりも低い。
〔手順5〕
手順4で観察したセルアライメントマーク影12と配線フィルムアライメントマーク影13の位置情報より、セル2と配線フィルム5との、相対的な位置ずれ量及び相対的な角度ずれ量を計算する。
そして、セル保持部材4、配線フィルムステージ6、及びセル保持部材4に積載された図示しない回転ステージとにより、セル2と配線フィルム5とを相対移動させる。ここではセル保持部材4が±X方向に移動し、配線フィルムステージ6が±Y方向に移動し、上記回転ステージが±θ方向に回転することにより、セル2と配線フィルム5とを相対移動させる。これにより、セル2と配線フィルム5との位置決めが完了する。
以上のように、本発明の実施形態に係る位置決め方法によれば、セルアライメントマーク影12及び配線フィルムアライメントマーク影13を、赤外線撮像装置7を用いて観察することにより、セルアライメントマーク9と配線フィルムアライメントマーク10とを同時に観察することができる。このため、セル2と配線フィルム5との相対移動量が小さくて済み、自動的に動くことが可能である各ステージの機械ずれの影響がほとんどない。
セル2を位置決めして配線フィルム5の上に設置した後は、以下に示す手順6−1または手順6−2によりセル2を固定する。
〔手順6−1〕
UV(ultra violet:紫外線)硬化樹脂ディスペンサー14により、配線フィルム5とセル2とを固定するためにUV硬化樹脂をセル2の四隅に塗布する。UV硬化樹脂の塗布後、UV光照射装置15でUV光を照射してUV硬化樹脂を硬化させてセル2を固定する。
セル2を固定した後の後工程において、セル2の電極と配線フィルム5の電極とが確実に接触するように、圧接保持を行う。後工程としては、例えばEVA(Ethylene Vinyl Acetate;エチレンビニルアセテート)ラミネート工程が挙げられる。
〔手順6−2〕
塗布装置16により、セル2または配線フィルム5に予め硬化樹脂を塗布しておく。UV硬化樹脂ディスペンサー14とUV光照射装置とにより仮固定を行い、その後加圧加熱装置17で上記硬化樹脂を硬化させることでセル2を固定する。
本手順6−2においては、塗布装置16が、セル2の電極と配線フィルム5の電極とが確実に接触するように、上記硬化樹脂の塗布量及び硬化条件を制御する。加圧加熱装置17による硬化に代えて、手順6−1において示したEVAラミネート工程を用いてもよい。
〔実施例2〕
本実施例2では、本発明の実施形態に係る、他のセルと配線フィルムとの位置決め方法について説明する。
位置決め装置1の構成は実施例1と同様だが、配線パターン及び配線フィルムアライメントマーク10を配線フィルム5に形成するために、配線フィルム5の原料であるPETまたはPENの表面に対して、マット処理を施す場合がある。
上記マット処理が施された配線フィルム5の表面は、赤外線を拡散しやすい。このため、セル2と配線フィルム5との間のクリアランスが大きいと、セルアライメントマーク影12がぼやけて撮像される場合があり、セルアライメントマーク9の位置が検出できなくなる場合がある。
この場合、セル2と配線フィルム5との間のクリアランスを狭くすることで、赤外線の拡散を抑えることが出来るため、セルアライメントマーク影12がぼやけることない。よって、セルアライメントマーク影12を正確に観察出来、セルアライメントマーク9の位置が検出出来る。
セル2と配線フィルム5との間のクリアランスは、表面にマット処理が施された配線フィルム5の拡散率を予め測定しておくことによって、決定することが出来る。即ち、配線フィルム5の拡散率がより高い場合は、セル2と配線フィルム5との間のクリアランスをより狭くし、配線フィルム5の拡散率がより低い場合は、セル2と配線フィルム5との間のクリアランスをより広くすればよい。
また、セル2と配線フィルム5との間のクリアランスを、配線フィルム5の拡散率に基づき決定されたクリアランスに調整する機構として、セル保持部材4のセル2を保持するセル保持部4aの中に、所望のクリアランス量の厚みを持ったスペーサを設ける方法や、セル保持部材4に図4(a)〜図4(d)に示す平行倣い機構18を設け、セル2を配線フィルム5に倣わせたあと、所望のクリアランス量だけZ軸ステージを上昇させることで、所望のクリアランスを設けることが出来る。
なお、本実施形態において、倣うとは、図4(b)〜図4(d)に示すように、セル2の裏面と配線フィルム5とが平行になることを意味する。
平行倣い機構18の動作の詳細について図4(a)〜図4(d)を用いて説明する。平行倣い機構18は、X方向移動部18aと回転部18bとを有している。
まず、図4(a)に示すように、X方向移動部18aを±X方向に移動させ、配線フィルムステージ6を±Y方向に移動させた後に、セル保持部材4を下降させる、即ち−Z方向に移動させる。セル保持部材4の下降は、上述したZ軸ステージにより行われる。
次に、図4(b)に示すように、回転部18bを±θ’方向に回転させて、セル2を配線フィルム5に倣わせる。
さらに、図4(c)に示すように、X方向移動部18aを閉じることにより回転部18bをロックした状態で、セル保持部材4を上昇させる、即ち+Z方向に移動させる。
これにより、図4(d)に示すように、セル2と配線フィルム5との間に所望のクリアランスを設けることが出来る。
また、本実施形態において、裏面電極型太陽電池セルの観察対象物は、セルアライメントマーク9、電極31及び電極32であり、配線フィルム5の観察対象物は、配線フィルムアライメントマーク10及び配線パターンである。よって、セル2の位置決めには、各アライメントマークだけでなく、各電極のパターン及び配線パターンも用いることが出来る。本実施の形態では、各電極のパターン、配線パターン及び各アライメントマークを総称して裏面パターンと称する。
〔実施形態の総括〕
本発明の実施形態に係る裏面電極型太陽電池セルの裏面パターン観察方法は、太陽光を受光する表面に電極がなくp領域に接続される電極31とn領域に接続される電極32との両方が、前記表面の反対側に位置する裏面に形成された裏面電極型太陽電池セル2の裏面パターン観察方法であって、赤外線を拡散透過する裏面電極型太陽電池セル2の前記裏面に対向する位置に、前記赤外線を透過可能である配線フィルム5が配置されており、配線フィルム5には、複数の裏面電極型太陽電池セル2同士を電気的に接続するための配線パターンが形成されており、裏面電極型太陽電池セル2の前記裏面には、セルアライメントマーク9が形成されており、配線フィルム5の前記裏面と対向する面には、配線フィルムアライメントマーク10が形成されており、裏面電極型太陽電池セル2の前記表面側から赤外線照射装置8により前記赤外線を照射し、配線フィルム5の配線フィルムアライメントマーク10が形成されていない面側に配置され、裏面電極型太陽電池セル2及び配線フィルム5を透過した前記赤外線を検知する赤外線撮像装置7により、セルアライメントマーク9及びフィルムアライメントマーク10のパターンを観察する。
上記構成によれば、赤外線照射装置8より照射された前記赤外線は、裏面電極型太陽電池セル2の前記表面で散乱反射するものの、一部透過した前記赤外線が、裏面電極型太陽電池セル2の前記裏面側に形成された、セルアライメントマーク9及びフィルムアライメントマーク10のパターンを捉える。一部透過した前記赤外線が、配線フィルム5を透過する際に、前記表面で拡散しなければ、セルアライメントマーク9及びフィルムアライメントマーク10のパターンをそのまま赤外線撮像装置7で撮像することが出来る。
従って、裏面電極型太陽電池セル2と配線フィルム5との双方の観察対象物を同時に観察出来る。
また、一部透過した前記赤外線が前記表面で拡散するならば、裏面電極型太陽電池セル2と配線フィルム5との距離を近づけることで、セルアライメントマーク9及びフィルムアライメントマーク10のパターンが、影として配線フィルム5に投影されるため、投影された影はほとんどぼやけずに撮像できる。
さらに、上記構成による観察を行うことにより、裏面電極型太陽電池セル2と配線フィルム5をずれなく位置決めすることが出来る。また、位置決めした後の、裏面電極型太陽電池セル2と配線フィルム5との間に、前記裏面に対する法線方向のクリアランスがない場合でも、裏面電極型太陽電池セル2と配線フィルム5との双方の観察対象物を観察出来る。
また、配線フィルム5には、複数の裏面電極型太陽電池セル2同士を電気的に接続するための配線パターンが形成されている。これにより、複数枚の裏面電極型太陽電池セル2を設置できる面積の配線フィルム5に、裏面電極型太陽電池セル2同士を電気的に接続するための前記配線パターンを形成し、配線フィルム51枚で、または配線フィルム5複数枚をインターコネクタ等で電気的に接続することで、1つの太陽電池モジュールを形成できる。
また、前記インターコネクタを用いた裏面電極型太陽電池セル2同士の接続方法と比較して、第1の効果として接続プロセスが単純になる、第2の効果としてインターコネクタ同士の接触がない、第3の効果としてはんだ接続時の面電極型太陽電池セルに対するストレスを抑えることができるために、裏面電極型太陽電池セル2の割れや欠けを低減出来る等といった効果が得られる。
前記裏面電極型太陽電池セルの裏面パターン観察方法では、セルアライメントマーク9の光透過率は、裏面電極型太陽電池セル2の光透過率よりも低く、配線フィルムアライメントマーク10の光透過率は、配線フィルム5の光透過率よりも低くてもよい。
これにより、裏面電極型太陽電池セル2及び配線フィルム5に前記赤外線を透過させることで、光透過率の違いにより各アライメントマークを赤外線撮像装置7により観察することができる。
そのため、裏面電極型太陽電池セル2の裏面パターン観察方法を用いることで、配線フィルム5上に形成された前記配線パターンが狭ピッチであるがゆえに前記配線パターンに対して裏面電極型太陽電池セル2を高精度に位置決めする必要がある場合でも、セルアライメントマーク9及び配線フィルム5アライメントマーク双方を同時に観察することが出来る。このため、高精度の位置決めを行うことができる。
また、前記いずれかの裏面電極型太陽電池セルの裏面パターン観察方法では、配線フィルム5は、ポリエチレンテレフタレートまたはポリエチレンナフタレートを原料としてもよい。
これにより、配線フィルム5は前記赤外線を透過可能となる。また、配線フィルム5の厚みを薄くすることができるため、材料費を安く抑えることが出来る。
本発明の実施形態に係る位置決め装置1は、
太陽光を受光する表面に電極がなくp領域に接続される電極31とn領域に接続される電極32との両方が、前記表面の反対側に位置する裏面に形成され、赤外線を透過可能である裏面電極型太陽電池セル2を複数枚、セルアライメントマーク9と電極31と電極32とが形成された裏面側を下側にして積み重ねたスタックセル3から、セル2を保持するセル保持部材4(セル保持手段)と、
平板であり、配線フィルム5(フィルム)を吸着固定する配線フィルムステージ6(フィルム固定手段)と、
配線フィルム5(フィルム)とセル2とを固定するためにUV(紫外線)硬化樹脂をセル2の四隅に塗布するUV硬化樹脂ディスペンサー14(紫外線硬化樹脂塗布手段)と、
UV光を照射してUV硬化樹脂を硬化させるUV光照射装置15(紫外線光照射手段)とを備え、
配線フィルムステージ6(フィルム固定手段)は、セル保持部材4(セル保持手段)により保持された裏面電極型太陽電池セル2と対向するように配置される位置決め装置であって、
セル保持部材4(セル保持手段)が、裏面電極型太陽電池セル2の前記表面側から赤外線を照射する赤外線照射装置8(赤外線照射手段)を有し、
位置決め装置1は、裏面電極型太陽電池セル2及び配線フィルム5を透過した赤外線を検知する赤外線撮像装置7(撮像手段)をさらに備え、
赤外線撮像装置7(撮像手段)と赤外線照射装置8(赤外線照射手段)とは、配線フィルム5(フィルム)及び配線フィルムステージ6(フィルム固定手段)を介して対向可能であり、さらに配線フィルムステージ6(フィルム固定手段)の平面と平行である第1の方向に移動可能であり、
配線フィルムステージ6(フィルム固定手段)は、配線フィルムステージ6(フィルム固定手段)の平面と平行であり、前記第1の方向と垂直である第2の方向に移動可能であり、
セル保持部材4(セル保持手段)は、前記裏面に対する法線方向である第3の方向に移動可能であり、さらに前記第3の方向の軸を中心として回転可能である。
上記構成によれば、セル保持部材4は、セル保持部材4に保持された裏面電極型太陽電池セル2と配線フィルム5との間のクリアランス(前記第3の方向の距離)が、赤外線撮像装置7の被写界深度より短くなるように調整出来る。
次に、セル保持部材4に保持された裏面電極型太陽電池セル2の表面側から、赤外線照射装置8により赤外線を照射出来る。裏面電極型太陽電池セル2は赤外線を透過可能であるため、照射された赤外線は裏面電極型太陽電池セル2を透過し、セルアライメントマーク9で反射あるいは吸収される。
よって、セルアライメントマーク9の周辺を透過した赤外線のみが配線フィルム5に到達出来る。
そして、セルアライメントマーク9の周辺を透過した透過した赤外線は、配線フィルムアライメントマーク10の表面で反射あるいは吸収される。また、配線フィルム5は、赤外線を透過する。
従って、配線フィルムアライメントマーク10の周辺を透過した赤外線のみが赤外線撮像装置7に到達出来る。
その結果、セルアライメントマーク9及び配線フィルムアライメントマーク10は、赤外線撮像装置7によって、それぞれセルアライメントマーク影12と配線フィルムアライメントマーク影13として観察することが可能となる。
上述した、セルアライメントマーク影12及び配線フィルムアライメントマーク影13の位置情報より、裏面電極型太陽電池セル2と配線フィルム5との、相対的な位置ずれ量及び相対的な角度ずれ量を計算出来る。
そして、セル保持部材4及び配線フィルムステージ6により、裏面電極型太陽電池セル2と配線フィルム5とを相対移動出来る。ここではセル保持部材4が前記第1の方向に移動し、配線フィルムステージ6が前記第2の方向に移動し、セル保持部材4が前記第3の方向の軸を中心として回転することにより、裏面電極型太陽電池セル2と配線フィルム5とを相対移動出来る。これにより、裏面電極型太陽電池セル2と配線フィルム5との位置決めを行うことが出来る。
以上のように、本発明の実施形態に係る位置決め装置1によれば、セルアライメントマーク影12及び配線フィルムアライメントマーク影13を、赤外線撮像装置7を用いて観察することにより、セルアライメントマーク9と配線フィルムアライメントマーク10とを同時に観察することができる。このため、裏面電極型太陽電池セル2と配線フィルム5との相対移動量が小さくて済み、自動的に動くことが可能である各ステージの機械ずれの影響がほとんどない。
セル2を位置決めして配線フィルム5(フィルム)の上に設置した後は、UV(紫外線)硬化樹脂ディスペンサー14(紫外線硬化樹脂塗布手段)とUV光照射装置15(紫外線光照射手段)とを用いてセル2を固定する。
位置決め装置1では、セル2または配線フィルム5に予め硬化樹脂を塗布する塗布装置16(塗布手段)と、上記硬化樹脂を硬化させる加圧加熱装置17(加圧加熱手段)とをさらに備え、塗布装置16が、セル2の電極と配線フィルム5の電極とが確実に接触するように、上記硬化樹脂の塗布量及び硬化条件を制御してもよい。
これにより、UV硬化樹脂ディスペンサー14(UV硬化樹脂塗布手段)とUV光照射装置(UV光照射手段)とにより仮固定を行い、その後加圧加熱装置17(加圧加熱手段)で上記硬化樹脂を硬化させることでセル2を固定することが可能となる。
本発明の裏面電極型太陽電池セルの裏面パターン観察方法は、裏面電極型太陽電池セルとフィルムとの双方の観察対象物を同時に観察出来るので、別の方法で位置決めしたセルが位置ずれしていないかどうかを判断する検査に好適に用いることが出来る。
本発明の実施形態に係る観察方法を用いた、セルと配線フィルムとを位置決めするための位置決め装置1の斜視図である。 (a)は、本発明の実施形態に係る位置決め装置の一部を示す正面図であり、(b)は、本発明の実施形態に係る赤外線撮像装置が撮像した観察画像を示す平面図である。 (a)は、本発明の実施形態に係る裏面電極型太陽電池セルをセル裏面から見た図であり、(b)は、本発明の実施形態に係る裏面電極型太陽電池セルをセル側面から見た図である。 本発明の実施形態に係る平行倣い機構の動作の詳細を示す図である。 インターコネクタで電気的に接続された従来の太陽電池セルを示す斜視図である。 配線フィルムに対して裏面電極型太陽電池セルの位置決めを行う従来の位置決め装置の斜視図である。 赤外線を透過可能である上側ワークを下側ワークに対して位置決めするための、従来の位置決め装置300の斜視図である。
符号の説明
1 位置決め装置
2 セル
3 スタックセル
4 セル保持部材
4a セル保持部
5 配線フィルム(フィルム)
6 配線フィルムステージ
7 赤外線撮像装置(撮像手段)
8 赤外線照射装置(赤外線照射手段)
9 セルアライメントマーク
10 配線フィルムアライメントマーク(フィルムアライメントマーク)
11 観察画像
12 セルアライメントマーク影
13 配線フィルムアライメントマーク影
14 UV硬化樹脂ディスペンサー(紫外線硬化樹脂塗布手段)
15 UV光照射装置(紫外線光照射手段)
16 塗布装置(塗布手段)
17 加圧加熱装置(加圧加熱手段)
18 平行倣い機構
18a X方向移動部
18b 回転部
20 ベース
31 電極(第1電極)
32 電極(第2電極)

Claims (3)

  1. 太陽光を受光する表面に電極がなく、第1の導電型の半導体領域に接続される第1電極と第2の導電型の半導体領域に接続される第2電極との両方が、前記表面の反対側に位置する裏面に形成された裏面電極型太陽電池セルの裏面パターン観察方法であって、
    赤外線を拡散透過する前記裏面電極型太陽電池セルの前記裏面に対向する位置に、前記赤外線を透過可能であるフィルムが配置されており、
    前記フィルムには、複数の前記裏面電極型太陽電池セル同士を電気的に接続するための配線パターンが形成されており、
    前記裏面電極型太陽電池セルの前記裏面には、セルアライメントマークが形成されており、
    前記フィルムの前記裏面と対向する面には、フィルムアライメントマークが形成されており、
    前記裏面電極型太陽電池セルの前記表面側から赤外線照射手段により前記赤外線を照射し、
    前記フィルムの前記フィルムアライメントマークが形成されていない面側に配置され、前記裏面電極型太陽電池セル及び前記フィルムを透過した前記赤外線を検知する撮像手段により、前記セルアライメントマーク及び前記フィルムアライメントマークのパターンを同時に観察することを特徴とする裏面電極型太陽電池セルの裏面パターン観察方法。
  2. 前記セルアライメントマークの光透過率は、前記裏面電極型太陽電池セルの光透過率よりも低く、
    前記フィルムアライメントマークの光透過率は、前記フィルムの光透過率よりも低いことを特徴とする請求項1に記載の裏面電極型太陽電池セルの裏面パターン観察方法。
  3. 前記フィルムは、ポリエチレンテレフタレートまたはポリエチレンナフタレートを原料とすることを特徴とする請求項1または2に記載の裏面電極型太陽電池セルの裏面パターン観察方法。
JP2008321211A 2008-12-17 2008-12-17 裏面電極型太陽電池セルの裏面パターン観察方法 Pending JP2010147170A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008321211A JP2010147170A (ja) 2008-12-17 2008-12-17 裏面電極型太陽電池セルの裏面パターン観察方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008321211A JP2010147170A (ja) 2008-12-17 2008-12-17 裏面電極型太陽電池セルの裏面パターン観察方法

Publications (1)

Publication Number Publication Date
JP2010147170A true JP2010147170A (ja) 2010-07-01

Family

ID=42567297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008321211A Pending JP2010147170A (ja) 2008-12-17 2008-12-17 裏面電極型太陽電池セルの裏面パターン観察方法

Country Status (1)

Country Link
JP (1) JP2010147170A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165746A (zh) * 2011-12-14 2013-06-19 株式会社日立工业设备技术 太阳电池模块的制造方法以及制造装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031868A (ja) * 2002-06-28 2004-01-29 Toray Eng Co Ltd 実装方法および実装装置
WO2008090718A1 (ja) * 2007-01-25 2008-07-31 Sharp Kabushiki Kaisha 太陽電池セル、太陽電池アレイおよび太陽電池モジュールならびに太陽電池アレイの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031868A (ja) * 2002-06-28 2004-01-29 Toray Eng Co Ltd 実装方法および実装装置
WO2008090718A1 (ja) * 2007-01-25 2008-07-31 Sharp Kabushiki Kaisha 太陽電池セル、太陽電池アレイおよび太陽電池モジュールならびに太陽電池アレイの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165746A (zh) * 2011-12-14 2013-06-19 株式会社日立工业设备技术 太阳电池模块的制造方法以及制造装置
JP2013125852A (ja) * 2011-12-14 2013-06-24 Hitachi Plant Technologies Ltd 太陽電池モジュールの製造方法および製造装置

Similar Documents

Publication Publication Date Title
JP6216407B2 (ja) ウェハの製造方法及びウェハ処理システム
US20080105295A1 (en) Method for structuring of a thin-layer solar module
TWI505896B (zh) 雷射加工裝置
US20130102103A1 (en) Methods and apparatus for the closed-loop feedback control of the printing of a multilayer pattern
TW201044933A (en) Autotuned screen printing process
TW200822274A (en) Substrate transfer device, substrate processing apparatus and substrate transfer method
TW201041467A (en) Method and apparatus for screen printing a multiple layer pattern
TW200823966A (en) Substrate processing apparatus
TW201136693A (en) Laser processing method, laser processing device and solar panel manufacturing method
KR20120008447A (ko) 기판 처리 장치, 기판 처리 방법, 프로그램 및 컴퓨터 기억 매체
US20130330848A1 (en) Observation device, inspection device, method for manufacturing semiconductor device, and substrate support member
KR20110083641A (ko) 광기전력 소자의 제조 방법 및 제조 시스템
US20140256068A1 (en) Adjustable laser patterning process to form through-holes in a passivation layer for solar cell fabrication
TW202225851A (zh) 同軸穿透式對準成像系統
WO2017078230A1 (ko) 레이저 마킹장치 및 이를 이용하는 레이저 마킹방법
JP5164363B2 (ja) 半導体ウエーハの製造方法
KR101153434B1 (ko) 태양 전지의 제조 방법 및 제조 장치
CN1244022C (zh) 曝光装置
JP2010147170A (ja) 裏面電極型太陽電池セルの裏面パターン観察方法
TW201031488A (en) Laser processing method and apparatus and manufacturing method for solar panel
CN110957390A (zh) 丝网印刷装置及双面电池的背面栅线对位方法
KR20130007392A (ko) 기판 가장자리 처리 방법 및 장치
CN103907208B (zh) 太阳能电池的制造方法以及太阳能电池
JPH02260419A (ja) レーザ照射方法
JP5493399B2 (ja) 製造装置、及び、半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730