JP2010145094A - Evaluation device and evaluation method - Google Patents

Evaluation device and evaluation method Download PDF

Info

Publication number
JP2010145094A
JP2010145094A JP2008319158A JP2008319158A JP2010145094A JP 2010145094 A JP2010145094 A JP 2010145094A JP 2008319158 A JP2008319158 A JP 2008319158A JP 2008319158 A JP2008319158 A JP 2008319158A JP 2010145094 A JP2010145094 A JP 2010145094A
Authority
JP
Japan
Prior art keywords
polarized light
linearly polarized
vibration direction
polarization component
repetitive pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008319158A
Other languages
Japanese (ja)
Other versions
JP5299764B2 (en
Inventor
Kazuhiko Fukazawa
和彦 深澤
Yuji Kudo
祐司 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008319158A priority Critical patent/JP5299764B2/en
Publication of JP2010145094A publication Critical patent/JP2010145094A/en
Application granted granted Critical
Publication of JP5299764B2 publication Critical patent/JP5299764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation device specifying a cause of an abnormality of a repeated pattern. <P>SOLUTION: In this evaluation device 1, a first imaging element 31 rotates an optical analyzer 21 so that the azimuth of a transmission axis of the optical analyzer 21 becomes equal to a tilt angle of 90°±3° with respect to a transmission axis of a polarizer 17, and a Fourier image is imaged in each condition, and an operation processing part 40 detects a state change of a repeated pattern 3 caused by a change of a dose amount based on a difference of signal intensity between two Fourier images, and detects a state change of the repeated pattern 3 caused by a focus change, based on an average of the signal intensity between the two Fourier images. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体ウェハや液晶基板等の表面に形成されたパターンを評価する評価装置および評価方法に関する。   The present invention relates to an evaluation apparatus and an evaluation method for evaluating a pattern formed on a surface of a semiconductor wafer, a liquid crystal substrate or the like.

従来、半導体ウェハや液晶ガラス基板等の基板の表面に形成されたパターンを検査する装置が種々提案されている(例えば、特許文献1を参照)。例えば、基板のパターン幅の測定をSEM(走査型電子顕微鏡)で行った場合、測定精度は高いが、観察倍率が高く何点かをサンプリングして測定を行うため、測定に膨大な時間がかかってしまう。そこで、光源から射出された所定波長の光を偏光子および対物レンズを介して落射照明により被検基板の表面に照射し、当該照明による被検基板からの反射光を、対物レンズ、偏光子とクロスニコルの条件を満足する検光子、および視野絞り等を介して得られるフーリエ画像をCCDカメラで検出し、フーリエ画像内で感度の高い所を選択することにより、高感度でパターン幅の変化を検出する検査装置が提案されている。
特開2006−135211号公報
Conventionally, various apparatuses for inspecting a pattern formed on the surface of a substrate such as a semiconductor wafer or a liquid crystal glass substrate have been proposed (see, for example, Patent Document 1). For example, when measuring the pattern width of a substrate with a scanning electron microscope (SEM), the measurement accuracy is high, but since the observation magnification is high and sampling is performed by sampling several points, the measurement takes an enormous amount of time. End up. Therefore, the light of a predetermined wavelength emitted from the light source is irradiated onto the surface of the test substrate by epi-illumination through the polarizer and the objective lens, and the reflected light from the test substrate by the illumination is converted into the objective lens and the polarizer. By detecting a Fourier image obtained through an analyzer that satisfies the conditions of crossed Nicols and a field stop with a CCD camera and selecting a place with high sensitivity in the Fourier image, the pattern width can be changed with high sensitivity. An inspection device for detection has been proposed.
JP 2006-135211 A

しかしながら、上述のような方法では、パターン幅を検出することはできるが、パターン幅の変化の原因を特定することができなかった。   However, in the method as described above, the pattern width can be detected, but the cause of the change in the pattern width cannot be specified.

本発明は、このような問題に鑑みてなされたものであり、繰り返しパターンの異常の原因を特定することが可能な評価装置および評価方法を提供することを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to provide an evaluation apparatus and an evaluation method capable of specifying the cause of an abnormality of a repetitive pattern.

このような目的達成のため、本発明に係る評価装置は、所定の繰り返しパターンを有する基板の表面に直線偏光を照射する照明部と、前記直線偏光が照射された前記繰り返しパターンからの正反射光のうち前記直線偏光と振動方向が異なる偏光成分を受光する光学系と、前記光学系の瞳面もしくは瞳面と共役な面における前記偏光成分を検出する検出部と、前記直線偏光の振動方向と前記偏光成分の振動方向との間の角度条件を設定する設定部と、前記検出部により検出された前記偏光成分に基づいて前記繰り返しパターンの状態を評価する評価部とを備え、前記検出部は、前記設定部により設定された前記直線偏光の振動方向と前記偏光成分の振動方向との関係を複数の角度条件に設定して得られる前記偏光成分をそれぞれ検出し、前記評価部は、前記検出部により検出された複数の前記偏光成分の情報に基づいて、前記繰り返しパターンの状態を評価するようになっている。   In order to achieve such an object, the evaluation apparatus according to the present invention includes an illumination unit that irradiates a surface of a substrate having a predetermined repetitive pattern with linearly polarized light, and regular reflection light from the repetitive pattern irradiated with the linearly polarized light. An optical system that receives a polarization component having a vibration direction different from that of the linearly polarized light, a detection unit that detects the polarization component on a pupil plane of the optical system or a plane conjugate with the pupil plane, and a vibration direction of the linear polarization. A setting unit that sets an angle condition between the vibration direction of the polarization component, and an evaluation unit that evaluates the state of the repetitive pattern based on the polarization component detected by the detection unit. Detecting the polarization component obtained by setting the relationship between the vibration direction of the linearly polarized light and the vibration direction of the polarization component set by the setting unit to a plurality of angle conditions, respectively. Parts are on the basis of the information of a plurality of the polarization component detected by the detection unit is adapted to evaluate the state of the repeated pattern.

なお、上述の評価装置において、前記設定部は、前記直線偏光の進行方向と垂直な面内における振動方向と、前記正反射光の進行方向と垂直な面内における前記偏光成分の振動方向とのなす角度を、90度±所定角度である2つの角度条件となるように設定することが好ましい。   In the evaluation apparatus, the setting unit includes a vibration direction in a plane perpendicular to the traveling direction of the linearly polarized light and a vibration direction of the polarization component in a plane perpendicular to the traveling direction of the regular reflected light. The angle formed is preferably set so as to satisfy two angle conditions of 90 ° ± predetermined angle.

また、上述の評価装置において、前記繰り返しパターンは、露光装置を用いて形成されており、前記検出部は、前記設定部により設定された前記直線偏光の振動方向と前記偏光成分の振動方向との間の2つの角度条件において得られる前記偏光成分をそれぞれ検出し、前記評価部は、前記検出部により検出された2つの前記偏光成分に対応する信号強度の差分に基づいて、前記露光装置における露光量の変化に起因する前記繰り返しパターンの状態変化を検出し、前記2つの前記偏光成分に対応する信号強度の平均に基づいて、前記露光装置におけるフォーカスの変化に起因する前記繰り返しパターンの状態変化を検出することが好ましい。   Further, in the above-described evaluation apparatus, the repetitive pattern is formed using an exposure apparatus, and the detection unit includes a vibration direction of the linearly polarized light and a vibration direction of the polarization component set by the setting unit. Each of the polarization components obtained under two angle conditions in between, and the evaluation unit performs exposure in the exposure apparatus based on a difference in signal intensity corresponding to the two polarization components detected by the detection unit. Detecting a change in state of the repetitive pattern due to a change in amount, and determining a change in state of the repetitive pattern due to a change in focus in the exposure apparatus based on an average of signal intensities corresponding to the two polarization components. It is preferable to detect.

また、上述の評価装置において、前記照明部は、落射照明により前記直線偏光を前記基板の表面に照射することが好ましい。   In the evaluation apparatus described above, it is preferable that the illumination unit irradiates the surface of the substrate with the linearly polarized light by epi-illumination.

また、本発明に係る評価方法は、所定の繰り返しパターンを有する基板の表面に直線偏光を照射するとともに、前記直線偏光が照射された前記繰り返しパターンからの正反射光のうち前記直線偏光と振動方向が異なる偏光成分を受光し、前記受光した光学系の瞳面もしくは瞳面と共役な面における前記偏光成分を検出して前記繰り返しパターンの状態を評価する評価方法であって、前記直線偏光の振動方向と前記偏光成分の振動方向との間の角度条件を設定する第1のステップと、前記第1のステップで設定した前記直線偏光の振動方向と前記偏光成分の振動方向との関係を複数の角度条件に設定し、前記基板の表面に前記直線偏光を照射する第2のステップと、前記複数の角度条件において、前記直線偏光が照射された前記繰り返しパターンからの正反射光のうち前記直線偏光と振動方向が異なる偏光成分を受光する第3のステップと、前記複数の角度条件において、前記第3のステップで受光した前記光学系の瞳面もしくは瞳面と共役な面における前記偏光成分を検出する第4のステップと、前記複数の角度条件において前記第4のステップでそれぞれ検出した複数の前記偏光成分の情報に基づいて、前記繰り返しパターンの状態を評価する第5のステップとを有している。   Further, the evaluation method according to the present invention irradiates the surface of the substrate having a predetermined repetitive pattern with linearly polarized light, and among the regular reflected light from the repetitive pattern irradiated with the linearly polarized light, the linearly polarized light and the vibration direction Is a method for evaluating the state of the repetitive pattern by detecting the polarization component on a pupil plane of the received optical system or a plane conjugate with the pupil plane, A first step of setting an angle condition between a direction of vibration and the polarization direction of the polarization component, and a plurality of relationships between the vibration direction of the linearly polarized light and the vibration direction of the polarization component set in the first step. A second step of setting the angle condition to irradiate the surface of the substrate with the linearly polarized light; and the repetitive pattern irradiated with the linearly polarized light under the plurality of angle conditions. A third step of receiving a polarized light component having a vibration direction different from that of the linearly polarized light from the specularly reflected light, and a pupil plane or a pupil plane of the optical system received in the third step under the plurality of angle conditions And a fourth step of detecting the polarization component in a plane conjugate with the second angle, and evaluating the state of the repetitive pattern based on information of the plurality of polarization components detected in the fourth step under the plurality of angle conditions, respectively. And a fifth step.

なお、上述の評価方法において、前記第1のステップでは、前記直線偏光の進行方向と垂直な面内における振動方向と、前記正反射光の進行方向と垂直な面内における前記偏光成分の振動方向とのなす角度を、90度±所定角度である2つの角度条件となるように設定することが好ましい。   In the evaluation method described above, in the first step, the vibration direction in a plane perpendicular to the traveling direction of the linearly polarized light, and the vibration direction of the polarization component in a plane perpendicular to the traveling direction of the regular reflection light. Is preferably set so as to satisfy two angle conditions of 90 ° ± predetermined angle.

また、上述の評価方法において、前記繰り返しパターンは、露光装置を用いて形成されており、前記第2のステップでは、前記第1のステップで設定した前記直線偏光の振動方向と前記偏光成分の振動方向との間の2つの角度条件において、前記基板の表面に前記直線偏光を照射し、前記第3のステップでは、前記2つの角度条件において、前記直線偏光が照射された前記繰り返しパターンからの正反射光のうち前記直線偏光と振動方向が異なる偏光成分を受光し、前記第4のステップでは、前記2つの角度条件において、前記第3のステップで受光した前記光学系の瞳面もしくは瞳面と共役な面における前記偏光成分を検出し、前記第5のステップでは、前記第4のステップでそれぞれ検出した2つの前記偏光成分に対応する信号強度の差分に基づいて、前記露光装置における露光量の変化に起因する前記繰り返しパターンの状態変化を検出し、前記2つの前記偏光成分に対応する信号強度の平均に基づいて、前記露光装置におけるフォーカスの変化に起因する前記繰り返しパターンの状態変化を検出することが好ましい。   In the above evaluation method, the repetitive pattern is formed by using an exposure apparatus, and in the second step, the vibration direction of the linearly polarized light and the vibration of the polarization component set in the first step are used. In the third step, the surface of the substrate is irradiated with the linearly polarized light under two angle conditions, and in the third step, the positive pattern from the repetitive pattern irradiated with the linearly polarized light under the two angle conditions is irradiated. Of the reflected light, a polarization component having a vibration direction different from that of the linearly polarized light is received. In the fourth step, the pupil plane or the pupil plane of the optical system received in the third step under the two angle conditions. The polarization component in a conjugate plane is detected, and in the fifth step, a difference in signal intensity corresponding to the two polarization components detected in the fourth step, respectively. And detecting a change in the state of the repetitive pattern caused by a change in exposure amount in the exposure apparatus, and determining a change in focus in the exposure apparatus based on an average of signal intensities corresponding to the two polarization components. It is preferable to detect a change in the state of the repetitive pattern.

また、上述の評価方法において、前記第2のステップでは、落射照明により前記直線偏光を前記基板の表面に照射することが好ましい。   In the evaluation method described above, in the second step, it is preferable to irradiate the surface of the substrate with the linearly polarized light by epi-illumination.

本発明によれば、繰り返しパターンの異常の原因を特定することができる。   According to the present invention, it is possible to identify the cause of a repetitive pattern abnormality.

以下、図面を参照して本発明の好ましい実施形態について説明する。本実施形態の評価装置1は、図1に示すように、ウェハステージ5と、対物レンズ6と、ハーフミラー7と、照明光学系10と、検出光学系20と、第1および第2撮像素子と、演算処理部40とを主体に構成される。半導体ウェハ2(以下、ウェハ2と称する)は、露光装置(図示せず)による最上層のレジスト膜への露光・現像後、不図示の搬送系により、不図示のウェハカセットまたは現像装置から運ばれ、パターン(繰り返しパターン)の形成面を上にした状態でウェハステージ5に載置される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the evaluation apparatus 1 of the present embodiment includes a wafer stage 5, an objective lens 6, a half mirror 7, an illumination optical system 10, a detection optical system 20, and first and second imaging elements. And the arithmetic processing unit 40. The semiconductor wafer 2 (hereinafter referred to as wafer 2) is transported from a wafer cassette (not shown) or a developing device by a transport system (not shown) after exposure and development of the uppermost resist film by an exposure device (not shown). Then, it is placed on the wafer stage 5 with the pattern (repetitive pattern) formation surface facing up.

ウェハ2の表面には、複数のチップ領域が縦横に配列され、各チップ領域の中に所定の繰り返しパターン3が形成されている(図2を参照)。この繰り返しパターン3は、複数のライン部がその短手方向に沿って一定のピッチで配列されたレジストパターン(例えば、ラインアンドスペースパターンである配線パターン)である。なお、ライン部の配列方向を「繰り返しパターン3の繰り返し方向」と称する。   A plurality of chip areas are arranged vertically and horizontally on the surface of the wafer 2, and a predetermined repetitive pattern 3 is formed in each chip area (see FIG. 2). The repeated pattern 3 is a resist pattern (for example, a wiring pattern that is a line and space pattern) in which a plurality of line portions are arranged at a constant pitch along the short direction. The arrangement direction of the line portions is referred to as “repeating direction of the repeating pattern 3”.

ウェハステージ5は、互いに直交するX,Y,Z軸(図2を参照)の3方向へ移動可能に構成されている(なお、図2の上下方向をY軸方向とし、図2の左右方向をX軸方向とし、図2の紙面と直交する方向をZ軸方向とする)。これにより、ウェハステージ5は、ウェハ2をX,Y,Z軸方向へ移動可能に支持することができる。また、ウェハステージ5は、Z軸(ウェハ2を概略円形と見た時の回転対称軸)を中心に回転できるように構成されている。   The wafer stage 5 is configured to be movable in three directions of X, Y, and Z axes (see FIG. 2) orthogonal to each other (note that the vertical direction in FIG. 2 is the Y axis direction, and the horizontal direction in FIG. Is the X-axis direction, and the direction perpendicular to the plane of FIG. 2 is the Z-axis direction). Thereby, the wafer stage 5 can support the wafer 2 so as to be movable in the X, Y, and Z axis directions. Further, the wafer stage 5 is configured to be able to rotate around the Z axis (axis of rotational symmetry when the wafer 2 is viewed as a substantially circular shape).

照明光学系10は、図1の左側から右側へ向けて配置順に、光源11(例えば、白色LEDやハロゲンランプ等)と、集光レンズ12と、照度均一化ユニット13と、開口絞り14と、視野絞り15と、コリメータレンズ16と、着脱可能な偏光子17とを有して構成される。   The illumination optical system 10 includes a light source 11 (for example, a white LED or a halogen lamp), a condenser lens 12, an illuminance uniformizing unit 13, an aperture stop 14 in order of arrangement from the left side to the right side in FIG. A field stop 15, a collimator lens 16, and a detachable polarizer 17 are included.

ここで、照明光学系10の光源11から放出された光は、集光レンズ12および照度均一化ユニット13を介して、開口絞り14および視野絞り15に導かれる。照度均一化ユニット13は、照明光を散乱し、光量分布を均一化する。また、干渉フィルタを含めることもできる。開口絞り14および視野絞り15は、照明光学系10の光軸に対して開口部の大きさおよび位置が変更可能に構成されている。したがって、照明光学系10では、開口絞り14および視野絞り15を操作することによって、照明領域の大きさおよび位置の変更と、照明の開口角の調整とを行うことができる。そして、開口絞り14および視野絞り15を通過した光は、コリメータレンズ16によって平行光にされた後に偏光子17を通過してハーフミラー7に入射する。   Here, the light emitted from the light source 11 of the illumination optical system 10 is guided to the aperture stop 14 and the field stop 15 via the condenser lens 12 and the illuminance equalizing unit 13. The illuminance uniformizing unit 13 scatters illumination light and uniformizes the light quantity distribution. An interference filter can also be included. The aperture stop 14 and the field stop 15 are configured such that the size and position of the opening can be changed with respect to the optical axis of the illumination optical system 10. Therefore, in the illumination optical system 10, by operating the aperture stop 14 and the field stop 15, the size and position of the illumination area can be changed and the aperture angle of the illumination can be adjusted. The light that has passed through the aperture stop 14 and the field stop 15 is collimated by the collimator lens 16, passes through the polarizer 17, and enters the half mirror 7.

偏光子17は、その透過軸がウェハ2上でY軸方向を向く方位に設定され、コリメータレンズ16からの光を直線偏光にする。これにより、ウェハ2の表面に照射される照明光は直線偏光となる。なおこのとき、ウェハステージ5の回転により、ウェハ2における繰り返しパターン3の繰り返し方向が、X軸方向に対して45度の角度に傾くように配置される。すなわち、ウェハ2の表面における直線偏光の振動方向と、繰り返しパターン3の繰り返し方向とのなす角度が45度に設定される(図2を参照)。また、角度は45度に限らず、22.5度や67.5度など任意角度方向に設定可能である。   The polarizer 17 is set so that its transmission axis is oriented in the Y-axis direction on the wafer 2, and makes light from the collimator lens 16 linearly polarized light. Thereby, the illumination light irradiated on the surface of the wafer 2 becomes linearly polarized light. At this time, the wafer stage 5 is rotated so that the repeating direction of the repeating pattern 3 on the wafer 2 is inclined at an angle of 45 degrees with respect to the X-axis direction. That is, the angle formed by the vibration direction of the linearly polarized light on the surface of the wafer 2 and the repeating direction of the repeating pattern 3 is set to 45 degrees (see FIG. 2). The angle is not limited to 45 degrees, and can be set in an arbitrary angle direction such as 22.5 degrees or 67.5 degrees.

ハーフミラー7は、照明光学系10からの光を下方に反射して対物レンズ6に導く。これにより、対物レンズ6を通過した照明光学系10からの光(直線偏光)でウェハ2が落射照明される。一方、ウェハ2に落射照明された光は、ウェハ2で反射して再び対物レンズ6に戻り、ハーフミラー7を透過して検出光学系20に入射することができる。   The half mirror 7 reflects light from the illumination optical system 10 downward and guides it to the objective lens 6. Thereby, the wafer 2 is incidentally illuminated by the light (linearly polarized light) from the illumination optical system 10 that has passed through the objective lens 6. On the other hand, the light incident on the wafer 2 is reflected by the wafer 2, returns to the objective lens 6 again, passes through the half mirror 7, and can enter the detection optical system 20.

検出光学系20は、図1の下側から上側に向けて配置順に、着脱可能な検光子21と、レンズ22と、ハーフプリズム23と、ベルトランレンズ24と、視野絞り25とを有して構成される。検光子21は、回転駆動装置26を用いて検出光学系20の光軸を中心に透過軸の方位(偏光方向)を回転可能に構成されており、検光子21の透過軸の方位は、上述した偏光子17の透過軸に対して90度前後の傾斜角度で傾くように設定される。すなわち、検光子21が照明光学系10の偏光子17に対してクロスニコルの状態(偏光方向が直交する状態)となるように配置されるとともに、クロスニコル状態を意図的にくずすことを可能にしている。   The detection optical system 20 includes a detachable analyzer 21, a lens 22, a half prism 23, a belt run lens 24, and a field stop 25 in the order of arrangement from the lower side to the upper side in FIG. 1. Is done. The analyzer 21 is configured to be able to rotate the azimuth (polarization direction) of the transmission axis around the optical axis of the detection optical system 20 using the rotation drive device 26. The azimuth of the transmission axis of the analyzer 21 is the above-mentioned. It is set so as to be inclined at an inclination angle of about 90 degrees with respect to the transmission axis of the polarizer 17. That is, the analyzer 21 is arranged so as to be in a crossed Nicols state (a state in which the polarization directions are orthogonal) with respect to the polarizer 17 of the illumination optical system 10, and the crossed Nicols state can be intentionally broken. ing.

そして、ハーフミラー7を透過したウェハ2表面からの正反射光が検光子21を透過すると、当該正反射光のうち照明光である直線偏光の振動方向に対し振動方向が略直角な偏光成分としての第2の直線偏光が、ハーフプリズム23により第1および第2撮像素子31,32の撮像面に導かれる。なお、照明光学系10の偏光子17と検出光学系20の検光子21とがクロスニコルの条件を満たす場合、ウェハ2の繰り返しパターン3において偏光主軸が回転しない限り、検出光学系20で受光される光量は零に近くなる。   Then, when the specularly reflected light from the surface of the wafer 2 that has passed through the half mirror 7 passes through the analyzer 21, as a polarized light component whose vibration direction is substantially perpendicular to the vibration direction of linearly polarized light that is illumination light in the specularly reflected light. The second linearly polarized light is guided to the imaging surfaces of the first and second imaging elements 31 and 32 by the half prism 23. When the polarizer 17 of the illumination optical system 10 and the analyzer 21 of the detection optical system 20 satisfy the crossed Nicols condition, the light is received by the detection optical system 20 unless the polarization main axis rotates in the repeated pattern 3 of the wafer 2. The amount of light that comes close to zero.

ハーフプリズム23は入射光束を二方向に分岐させる。ハーフプリズム23を通過する一方の光束は、ベルトランレンズ24を介して視野絞り25にウェハ2の表面の像を結像させるとともに、対物レンズ6の瞳面の像を第1撮像素子31に投影させるので、第1撮像素子31の撮像面に対物レンズ6の瞳面上の輝度分布が再現されて、第1撮像素子31によりフーリエ変換されたウェハ2の画像(フーリエ画像)を撮像することが可能である。なお、ベルトランレンズ(Bertrand lens)は、一般に、対物レンズの後部焦点面の像を接眼レンズの焦点面に結ばせる収束レンズをいうが、顕微鏡等の光学系は一般に像側がテレセントリックな状態であり、対物レンズの後部焦点面が瞳面となるため、本実施形態において、第1撮像素子31の撮像面に対物レンズ6の瞳面の像を結像させるレンズ24をベルトランレンズ24と称することにする。   The half prism 23 branches the incident light beam in two directions. One light beam passing through the half prism 23 forms an image of the surface of the wafer 2 on the field stop 25 via the belt-run lens 24 and projects an image of the pupil plane of the objective lens 6 onto the first image sensor 31. Therefore, the luminance distribution on the pupil plane of the objective lens 6 is reproduced on the imaging surface of the first image sensor 31, and an image (Fourier image) of the wafer 2 that is Fourier transformed by the first image sensor 31 can be captured. It is. The Bertrand lens is generally a converging lens that connects the image of the rear focal plane of the objective lens to the focal plane of the eyepiece, but an optical system such as a microscope is generally telecentric on the image side. Since the rear focal plane of the objective lens is the pupil plane, in this embodiment, the lens 24 that forms an image of the pupil plane of the objective lens 6 on the imaging plane of the first imaging element 31 is referred to as a belt run lens 24. .

また、視野絞り25は、検出光学系20の光軸に対して垂直方向の面内で開口形状を変化させることができる。そのため、視野絞り25の操作によって、ウェハ2の任意の領域での情報を第1撮像素子31が検出できるようになる。また、ハーフプリズム23を通過する他方の光束は、フーリエ変換されていない通常のウェハ2の画像を撮像するための第2撮像素子32に導かれる。   The field stop 25 can change the aperture shape in a plane perpendicular to the optical axis of the detection optical system 20. Therefore, the first image sensor 31 can detect information in an arbitrary region of the wafer 2 by operating the field stop 25. The other light beam passing through the half prism 23 is guided to a second image sensor 32 for capturing an image of a normal wafer 2 that has not undergone Fourier transform.

ここで、図3を参照しつつ、ウェハ2への照明光の入射角度と瞳面内での結像位置との関係を説明する。図3の破線で示すように、ウェハ2への照明光の入射角度が0°のときには、瞳上の結像位置は瞳中心となる。一方、図3の実線で示すように、入射角度が64°(NA=0.9相当)のときには、瞳上の結像位置は瞳の外縁部となる。すなわち、ウェハ2への照明光の入射角度は、瞳上では瞳内の半径方向の位置に対応する。また、瞳内の光軸から同一半径内の位置に結像する光は、ウェハ2に同一角度で入射した光である。   Here, the relationship between the incident angle of the illumination light on the wafer 2 and the imaging position in the pupil plane will be described with reference to FIG. As shown by the broken line in FIG. 3, when the incident angle of the illumination light to the wafer 2 is 0 °, the image formation position on the pupil is the pupil center. On the other hand, as shown by the solid line in FIG. 3, when the incident angle is 64 ° (corresponding to NA = 0.9), the imaging position on the pupil is the outer edge of the pupil. That is, the incident angle of the illumination light on the wafer 2 corresponds to the radial position in the pupil on the pupil. Further, the light that forms an image at a position within the same radius from the optical axis in the pupil is light that is incident on the wafer 2 at the same angle.

第1撮像素子31は、CCDやCMOS等の2次元イメージセンサであり、前述のフーリエ画像を撮像(検出)して、検出信号を演算処理部40に出力する。なお、第1撮像素子31としてCMOSイメージセンサを用いるようにすれば、読み出しエリアを画素単位で自由に設定できるので、必要な画素データ(光情報)のみを高速に読み出すことができる。その場合、このような部分読み出しを可能にする回路が第1撮像素子31に(オンチップで)配設される。   The first image sensor 31 is a two-dimensional image sensor such as a CCD or a CMOS, images (detects) the Fourier image described above, and outputs a detection signal to the arithmetic processing unit 40. If a CMOS image sensor is used as the first image sensor 31, the readout area can be freely set in units of pixels, so that only necessary pixel data (optical information) can be read out at high speed. In that case, a circuit that enables such partial reading is provided on the first imaging element 31 (on-chip).

演算処理部40は、第1撮像素子31から入力されたフーリエ画像の検出信号に基づいて、繰り返しパターン3の状態を評価する。そして、演算処理部40による繰り返しパターン3の評価結果および、そのときのフーリエ画像がモニタ45で出力表示される。   The arithmetic processing unit 40 evaluates the state of the repeated pattern 3 based on the detection signal of the Fourier image input from the first image sensor 31. Then, the evaluation result of the repeated pattern 3 by the arithmetic processing unit 40 and the Fourier image at that time are output and displayed on the monitor 45.

本実施形態の評価装置1を用いた繰り返しパターン3の評価方法について、図4に示すフローチャートを参照しながら説明する。本願の発明者は、検光子21の透過軸の方位が偏光子17の透過軸に対して90度±3度の傾斜角度となるように検光子21を回転させて撮像した2つのフーリエ画像における信号強度の差分について、良品のパターンと評価対象となるパターンとを比較した結果、ドーズ量の変化に起因するライン部の幅の変化(以下、線幅変化と称する)と相関があることがわかった。また、検光子21の透過軸の方位が偏光子17の透過軸に対して90度±3度の傾斜角度となるように検光子21を回転させて撮像した2つのフーリエ画像における画素毎の信号強度の平均について、良品のパターンと評価対象となるパターンとを比較した結果、フォーカスの変化に起因するLER(Line Edge Roughness)の変化と相関があることがわかった。なお、LERとは、パターンの壁面に出来た凹凸の大きさを表す値である。   A method for evaluating the repeated pattern 3 using the evaluation apparatus 1 of the present embodiment will be described with reference to the flowchart shown in FIG. The inventor of the present application uses two Fourier images obtained by rotating the analyzer 21 so that the orientation of the transmission axis of the analyzer 21 is 90 ° ± 3 ° with respect to the transmission axis of the polarizer 17. As a result of comparing the non-defective pattern with the pattern to be evaluated, the difference in signal intensity is found to correlate with the change in the width of the line portion (hereinafter referred to as line width change) caused by the change in dose. It was. Further, signals for each pixel in two Fourier images picked up by rotating the analyzer 21 so that the orientation of the transmission axis of the analyzer 21 is 90 ° ± 3 ° with respect to the transmission axis of the polarizer 17. As a result of comparing the non-defective pattern with the pattern to be evaluated with respect to the average intensity, it was found that there was a correlation with a change in LER (Line Edge Roughness) caused by a change in focus. Note that LER is a value representing the size of the irregularities formed on the wall surface of the pattern.

そこでまず、評価対象となるウェハ2をウェハステージ5へ搬送し、ウェハ2上の評価するパターン(1ショットの一部分)をウェハステージ5により対物レンズ6の下方に移動させる。(ステップS101)。ウェハ2の搬送後、繰り返しパターン3の繰り返し方向が照明方向(ウェハ2の表面における直線偏光の進行方向)に対して45度だけ傾くようにアライメントを行う。なお、アライメントの角度は45度に限らず、67.5度あるいは22.5度であってもよい。   Therefore, first, the wafer 2 to be evaluated is transferred to the wafer stage 5, and the pattern to be evaluated (a part of one shot) on the wafer 2 is moved below the objective lens 6 by the wafer stage 5. (Step S101). After the wafer 2 is transferred, alignment is performed so that the repeating direction of the repeating pattern 3 is inclined by 45 degrees with respect to the illumination direction (the traveling direction of linearly polarized light on the surface of the wafer 2). The alignment angle is not limited to 45 degrees, and may be 67.5 degrees or 22.5 degrees.

前述したように、検光子21は、回転駆動装置26を用いて透過軸の方位(偏光方向)を回転可能に構成されており、ウェハ2の搬送およびアライメントを行った後、検光子21の透過軸の方位が偏光子17の透過軸に対して90度+3度(93度)の傾斜角度となるように検光子21を回転させる(ステップS102)。このとき、照明光である直線偏光の進行方向と垂直な面内における振動方向と、検光子21により抽出される第2の直線偏光(正反射光)の進行方向と垂直な面内における振動方向とのなす角度が、90度+3度(93度)に設定される。   As described above, the analyzer 21 is configured to be able to rotate the azimuth (polarization direction) of the transmission axis by using the rotation drive device 26, and after the wafer 2 is transported and aligned, the analyzer 21 transmits the light. The analyzer 21 is rotated so that the axis orientation is at an inclination angle of 90 degrees + 3 degrees (93 degrees) with respect to the transmission axis of the polarizer 17 (step S102). At this time, the vibration direction in the plane perpendicular to the traveling direction of the linearly polarized light that is the illumination light, and the vibration direction in the plane perpendicular to the traveling direction of the second linearly polarized light (regular reflection light) extracted by the analyzer 21. Is set to 90 degrees + 3 degrees (93 degrees).

次に、ウェハ2の表面に直線偏光を照射し、ウェハ2の表面で反射した正反射光(楕円偏光)を検光子21を介して第1撮像素子31で検出し撮像する(ステップS103)。このとき、光源11から放出された照明光は、集光レンズ12および照度均一化ユニット13を介して、開口絞り14および視野絞り15を通過し、コリメータレンズ16で平行光にされた後に偏光子17を通過してハーフミラー7で反射した後、対物レンズ6を通ってウェハ2に照射される。そして、ウェハ2からの正反射光は、対物レンズ6およびハーフミラー7を通過して検出光学系20に入射し、検出光学系20に入射した光は、検光子21、レンズ22、ハーフプリズム23、ベルトランレンズ24、および視野絞り25を通過し、第1撮像素子31の撮像面にフーリエ像が投影される。第1撮像素子31は、撮像面上に形成された第2の直線偏光によるフーリエ像を光電変換して検出信号を生成し、当該検出信号を演算処理部40に出力する。   Next, the surface of the wafer 2 is irradiated with linearly polarized light, and specularly reflected light (elliptical polarized light) reflected by the surface of the wafer 2 is detected and imaged by the first image sensor 31 via the analyzer 21 (step S103). At this time, the illumination light emitted from the light source 11 passes through the aperture stop 14 and the field stop 15 via the condenser lens 12 and the illuminance equalizing unit 13, and is converted into parallel light by the collimator lens 16 and then the polarizer. After passing through 17 and reflected by the half mirror 7, the wafer 2 is irradiated through the objective lens 6. The specularly reflected light from the wafer 2 passes through the objective lens 6 and the half mirror 7 and enters the detection optical system 20, and the light incident on the detection optical system 20 includes the analyzer 21, the lens 22, and the half prism 23. The Fourier image passes through the belt run lens 24 and the field stop 25 and is projected onto the imaging surface of the first imaging element 31. The first image sensor 31 photoelectrically converts the Fourier image of the second linearly polarized light formed on the imaging surface to generate a detection signal, and outputs the detection signal to the arithmetic processing unit 40.

第2の直線偏光によるフーリエ画像の検出信号が演算処理部40に入力されると、演算処理部40の内部メモリ(図示せず)に記憶される(ステップS104)。ここで、フーリエ画像の一例を図5に示す。また、図6は、照明光の波長が546nmで、入射角度が60°の場合に、繰り返しパターン3からの正反射光が検光子21を透過して瞳内に達したときの光量(すなわち、フーリエ像における光量)を計算により求めた図である。   When the detection signal of the Fourier image by the second linearly polarized light is input to the arithmetic processing unit 40, it is stored in an internal memory (not shown) of the arithmetic processing unit 40 (step S104). Here, an example of a Fourier image is shown in FIG. FIG. 6 shows the amount of light when the reflected light from the repetitive pattern 3 reaches the inside of the pupil through the analyzer 21 when the wavelength of the illumination light is 546 nm and the incident angle is 60 ° (that is, It is the figure which calculated | required by calculation the light quantity in a Fourier image.

次に、検光子21の透過軸の方位が偏光子17の透過軸に対して90度±3度の傾斜角度となるように検光子21を回転させて、それぞれの条件で、フーリエ画像を撮像したか否かを判定する(ステップS105)。判定がNoである場合、ステップS106へ進み、検光子21の透過軸の方位が偏光子17の透過軸に対して90度−3度(87度)の傾斜角度となるように検光子21を回転させてから、ステップS103の撮像およびステップS104の画像記憶を繰り返し、ステップS105へ戻る。このとき、照明光である直線偏光の進行方向と垂直な面内における振動方向と、検光子21により抽出された第2の直線偏光の進行方向と垂直な面内における振動方向とのなす角度が、90度−3度(87度)に設定される。   Next, the analyzer 21 is rotated so that the orientation of the transmission axis of the analyzer 21 is 90 ° ± 3 ° with respect to the transmission axis of the polarizer 17, and a Fourier image is captured under each condition. It is determined whether or not (step S105). When determination is No, it progresses to step S106 and the analyzer 21 is set so that the azimuth | direction of the transmission axis of the analyzer 21 may become an inclination angle of 90 degrees-3 degrees (87 degrees) with respect to the transmission axis of the polarizer 17. After the rotation, the imaging in step S103 and the image storage in step S104 are repeated, and the process returns to step S105. At this time, the angle formed by the vibration direction in the plane perpendicular to the traveling direction of the linearly polarized light that is the illumination light and the vibration direction in the plane perpendicular to the traveling direction of the second linearly polarized light extracted by the analyzer 21 is , 90 degrees to 3 degrees (87 degrees).

一方、ステップS105における判定がYesである場合、ステップS107へ進み、ウェハ2を回収する。これにより、検光子21の透過軸の方位が異なる2枚の画像が記憶される。なお、検光子21の回転角度範囲は、大きい方が不良ショットでの輝度変化量が大きい一方、ノイズ成分(偏光変化量以外)が大きくなることから、±3度〜±5度の範囲が望ましい。   On the other hand, when the determination in step S105 is Yes, the process proceeds to step S107, and the wafer 2 is recovered. As a result, two images with different orientations of the transmission axes of the analyzer 21 are stored. Note that the rotation angle range of the analyzer 21 is preferably in the range of ± 3 degrees to ± 5 degrees because the larger the amount of luminance change in a defective shot, the larger the noise component (other than the amount of polarization change). .

ウェハ12を回収すると、画像処理部50は、前のステップで撮像取得した2枚の画像を内部メモリから読み出し(ステップS108)、読み出した2枚の画像における信号強度の差分および平均を画像処理により求める(ステップS109)。信号強度の差分を求めるには、例えば、2枚のフーリエ画像において評価に適した部分(例えば、図6におけるRの部分)の信号強度の差分を画素単位で求め、画素単位で求めた差分の平均値を信号強度の差分値として算出する。信号強度の平均を求めるには、例えば、2枚のフーリエ画像において評価に適した部分(例えば、図6におけるRの部分)の信号強度の平均を画素単位で求め、画素単位で求めた平均の平均値を信号強度の平均値として算出する。なお、信号強度の差分および平均を求める領域は、2枚のフーリエ画像における評価に適した部分に応じて、図6におけるRの部分に限らず、U、D、L、その他の部分を選ぶようにすればよい。なお、第1撮像素子31としてCMOSイメージセンサを用いるようにすれば、読み出しエリアを画素単位で自由に設定できるので、パターンの評価に適した部分の画素データのみを高速に読み出すことができる。   When the wafer 12 is collected, the image processing unit 50 reads out the two images captured and acquired in the previous step from the internal memory (step S108), and calculates the difference and the average of the signal intensity in the two read images by image processing. Obtained (step S109). In order to obtain the difference in signal strength, for example, the difference in signal strength between portions suitable for evaluation (for example, the portion R in FIG. 6) in two Fourier images is obtained in pixel units, and the difference obtained in pixel units is calculated. The average value is calculated as a difference value of signal strength. In order to obtain the average signal intensity, for example, the average of the signal intensity of the part suitable for evaluation (for example, the R part in FIG. 6) in two Fourier images is obtained in pixel units, and the average obtained in pixel units is calculated. The average value is calculated as the average value of signal intensity. It should be noted that the region for obtaining the difference and the average of the signal intensity is not limited to the portion R in FIG. 6 according to the portion suitable for the evaluation in the two Fourier images, but U, D, L, and other portions are selected. You can do it. If a CMOS image sensor is used as the first image sensor 31, the readout area can be freely set in units of pixels, so that only pixel data in a portion suitable for pattern evaluation can be read out at high speed.

信号強度の差分値および平均値を求めると、求めた差分値より、ドーズ量(露光量)の(適正値からの)変化に起因する線幅変化(すなわち、繰り返しパターン3の状態変化)を求める(ステップS110)。このとき、演算処理部40は、例えば、求めた差分値を、信号強度の差分と線幅変化との相関を予め求めておいたデータテーブルと比較することにより、線幅変化を求める。   When the difference value and the average value of the signal intensity are obtained, the line width change (that is, the state change of the repetitive pattern 3) caused by the change of the dose amount (exposure amount) (from the appropriate value) is obtained from the obtained difference value. (Step S110). At this time, the arithmetic processing unit 40 obtains the line width change by, for example, comparing the obtained difference value with a data table in which the correlation between the signal intensity difference and the line width change is obtained in advance.

次に、求めた平均値より、フォーカスの(適正値からの)変化に起因するLER(すなわち、繰り返しパターン3の状態変化)を求め、繰り返しパターン3の評価を終了する(ステップS111)。このとき、演算処理部40は、例えば、求めた平均値を、信号強度の平均とLERとの相関を予め求めておいたデータテーブルと比較することにより、LERを求める。このようにして求めた線幅変化およびLERは、2枚のフーリエ画像とともにモニタ55に表示され、線幅変化またはLERが所定の閾値を超えた場合には、ドーズ不良またはフォーカス不良としてその旨が報知される。   Next, the LER (that is, the state change of the repetitive pattern 3) resulting from the change in focus (from the appropriate value) is obtained from the obtained average value, and the evaluation of the repetitive pattern 3 is finished (step S111). At this time, the arithmetic processing unit 40 obtains the LER, for example, by comparing the obtained average value with a data table in which the correlation between the average signal intensity and the LER is obtained in advance. The line width change and LER obtained in this way are displayed on the monitor 55 together with the two Fourier images, and when the line width change or LER exceeds a predetermined threshold value, this is indicated as a dose failure or a focus failure. Informed.

このように、本実施形態の評価装置1および方法によれば、照明光である直線偏光の振動方向と検光子21により抽出された第2の直線偏光の振動方向との間の角度条件を変えて撮像した2枚のフーリエ画像に基づいて、繰り返しパターン3の状態を評価することで、ドーズ不良とフォーカス不良とを判別して検出することができ、繰り返しパターン3の異常の原因を特定することが可能になる。   As described above, according to the evaluation apparatus 1 and method of the present embodiment, the angle condition between the vibration direction of the linearly polarized light that is the illumination light and the vibration direction of the second linearly polarized light extracted by the analyzer 21 is changed. By evaluating the state of the repetitive pattern 3 based on the two Fourier images picked up in this way, it is possible to discriminate and detect a dose defect and a focus defect, and to identify the cause of the abnormality of the repetitive pattern 3 Is possible.

このとき、照明光である直線偏光の進行方向と垂直な面内における振動方向と、検光子21により抽出された第2の直線偏光の進行方向と垂直な面内における振動方向とのなす角度を、90度±3度になるように設定することで、高い感度で繰り返しパターン3の状態を評価することが可能になる。   At this time, an angle formed by the vibration direction in the plane perpendicular to the traveling direction of the linearly polarized light that is the illumination light and the vibration direction in the plane perpendicular to the traveling direction of the second linearly polarized light extracted by the analyzer 21 is defined. , 90 ° ± 3 ° can be set, and the state of the repeated pattern 3 can be evaluated with high sensitivity.

またこのとき、2枚のフーリエ画像における信号強度(輝度)の差分に基づいて、露光装置におけるドーズ量(露光量)の変化に起因する繰り返しパターン3の状態変化(線幅変化)を検出し、2枚のフーリエ画像における信号強度(輝度)の平均に基づいて、露光装置におけるフォーカスの変化に起因する繰り返しパターン3の状態変化(LER)を検出することで、確実にドーズ不良とフォーカス不良とを判別して検出することができる。   At this time, based on the difference in signal intensity (luminance) between the two Fourier images, the state change (line width change) of the repetitive pattern 3 due to the change in the dose amount (exposure amount) in the exposure apparatus is detected, By detecting the state change (LER) of the repetitive pattern 3 caused by the focus change in the exposure apparatus based on the average of the signal intensity (luminance) in the two Fourier images, the dose failure and the focus failure can be reliably detected. It can be determined and detected.

またこのとき、落射照明によりウェハ2の表面を照明することで、装置の大きさを小型にすることができる。   At this time, the size of the apparatus can be reduced by illuminating the surface of the wafer 2 with epi-illumination.

なお、上述の実施形態において、ウェハ2の表面に形成された繰り返しパターン3を評価しているが、これに限られるものではなく、例えば、ガラス基板上に形成されたパターンを評価することも可能である。   In the above-described embodiment, the repeated pattern 3 formed on the surface of the wafer 2 is evaluated. However, the present invention is not limited to this. For example, a pattern formed on a glass substrate can be evaluated. It is.

評価装置の概要図である。It is a schematic diagram of an evaluation apparatus. 直線偏光の振動方向と繰り返しパターンの繰り返し方向との傾き状態を説明する図である。It is a figure explaining the inclination state of the vibration direction of linearly polarized light, and the repeating direction of a repeating pattern. ウェハへの照明光の入射角度と瞳内での結像位置との関係を示す説明図である。It is explanatory drawing which shows the relationship between the incident angle of the illumination light to a wafer, and the imaging position in a pupil. パターンの評価方法を示すフローチャートである。It is a flowchart which shows the evaluation method of a pattern. フーリエ画像の一例を示す図である。It is a figure which shows an example of a Fourier image. 照明光の波長が546nmで、入射角度が60°の場合に、繰り返しパターンからの正反射光が検光子を透過して瞳内に達したときの光量を計算により求めた図である。It is the figure which calculated | required the light quantity when the regular reflection light from a repetitive pattern permeate | transmits an analyzer and arrived in a pupil when the wavelength of illumination light is 546 nm and an incident angle is 60 degrees.

符号の説明Explanation of symbols

1 評価装置
2 ウェハ(基板) 3 繰り返しパターン
10 照明光学系(照明部) 17 偏光子
20 検出光学系(光学系) 21 検光子
26 回転駆動装置(設定部)
31 第1撮像素子(検出部)
40 演算処理部(評価部)
DESCRIPTION OF SYMBOLS 1 Evaluation apparatus 2 Wafer (substrate) 3 Repeat pattern 10 Illumination optical system (illumination part) 17 Polarizer 20 Detection optical system (optical system) 21 Analyzer 26 Rotation drive apparatus (setting part)
31 1st image sensor (detection part)
40 arithmetic processing unit (evaluation unit)

Claims (8)

所定の繰り返しパターンを有する基板の表面に直線偏光を照射する照明部と、
前記直線偏光が照射された前記繰り返しパターンからの正反射光のうち前記直線偏光と振動方向が異なる偏光成分を受光する光学系と、
前記光学系の瞳面もしくは瞳面と共役な面における前記偏光成分を検出する検出部と、
前記直線偏光の振動方向と前記偏光成分の振動方向との間の角度条件を設定する設定部と、
前記検出部により検出された前記偏光成分に基づいて前記繰り返しパターンの状態を評価する評価部とを備え、
前記検出部は、前記設定部により設定された前記直線偏光の振動方向と前記偏光成分の振動方向との関係を複数の角度条件に設定して得られる前記偏光成分をそれぞれ検出し、
前記評価部は、前記検出部により検出された複数の前記偏光成分の情報に基づいて、前記繰り返しパターンの状態を評価することを特徴とする評価装置。
An illumination unit that irradiates the surface of the substrate having a predetermined repeating pattern with linearly polarized light;
An optical system for receiving a polarized light component having a vibration direction different from that of the linearly polarized light among the regularly reflected light from the repeated pattern irradiated with the linearly polarized light;
A detection unit for detecting the polarization component in a pupil plane of the optical system or a plane conjugate with the pupil plane;
A setting unit for setting an angle condition between the vibration direction of the linearly polarized light and the vibration direction of the polarization component;
An evaluation unit that evaluates the state of the repetitive pattern based on the polarization component detected by the detection unit;
The detection unit detects the polarization components obtained by setting the relationship between the vibration direction of the linearly polarized light and the vibration direction of the polarization component set by the setting unit to a plurality of angle conditions,
The evaluation unit evaluates the state of the repetitive pattern based on information on the plurality of polarization components detected by the detection unit.
前記設定部は、前記直線偏光の進行方向と垂直な面内における振動方向と、前記正反射光の進行方向と垂直な面内における前記偏光成分の振動方向とのなす角度を、90度±所定角度である2つの角度条件となるように設定することを特徴とする請求項1に記載の評価装置。   The setting unit is configured to determine an angle formed by a vibration direction in a plane perpendicular to the traveling direction of the linearly polarized light and a vibration direction of the polarization component in a plane perpendicular to the traveling direction of the regular reflected light by 90 degrees ± predetermined. The evaluation apparatus according to claim 1, wherein the evaluation apparatus is set to satisfy two angle conditions that are angles. 前記繰り返しパターンは、露光装置を用いて形成されており、
前記検出部は、前記設定部により設定された前記直線偏光の振動方向と前記偏光成分の振動方向との間の2つの角度条件において得られる前記偏光成分をそれぞれ検出し、
前記評価部は、前記検出部により検出された2つの前記偏光成分に対応する信号強度の差分に基づいて、前記露光装置における露光量の変化に起因する前記繰り返しパターンの状態変化を検出し、前記2つの前記偏光成分に対応する信号強度の平均に基づいて、前記露光装置におけるフォーカスの変化に起因する前記繰り返しパターンの状態変化を検出することを特徴とする請求項1または2に記載の評価装置。
The repeating pattern is formed using an exposure apparatus,
The detection unit detects the polarization component obtained in two angular conditions between the vibration direction of the linearly polarized light and the vibration direction of the polarization component set by the setting unit;
The evaluation unit detects a change in state of the repetitive pattern due to a change in exposure amount in the exposure apparatus based on a difference in signal intensity corresponding to the two polarization components detected by the detection unit, 3. The evaluation apparatus according to claim 1, wherein a state change of the repetitive pattern caused by a focus change in the exposure apparatus is detected based on an average of signal intensities corresponding to the two polarization components. .
前記照明部は、落射照明により前記直線偏光を前記基板の表面に照射することを特徴とする請求項1から3のいずれか一項に記載の評価装置。   The evaluation apparatus according to claim 1, wherein the illumination unit irradiates the surface of the substrate with the linearly polarized light by epi-illumination. 所定の繰り返しパターンを有する基板の表面に直線偏光を照射するとともに、前記直線偏光が照射された前記繰り返しパターンからの正反射光のうち前記直線偏光と振動方向が異なる偏光成分を受光し、前記受光した光学系の瞳面もしくは瞳面と共役な面における前記偏光成分を検出して前記繰り返しパターンの状態を評価する評価方法であって、
前記直線偏光の振動方向と前記偏光成分の振動方向との間の角度条件を設定する第1のステップと、
前記第1のステップで設定した前記直線偏光の振動方向と前記偏光成分の振動方向との関係を複数の角度条件に設定し、前記基板の表面に前記直線偏光を照射する第2のステップと、
前記複数の角度条件において、前記直線偏光が照射された前記繰り返しパターンからの正反射光のうち前記直線偏光と振動方向が異なる偏光成分を受光する第3のステップと、
前記複数の角度条件において、前記第3のステップで受光した前記光学系の瞳面もしくは瞳面と共役な面における前記偏光成分を検出する第4のステップと、
前記複数の角度条件において前記第4のステップでそれぞれ検出した複数の前記偏光成分の情報に基づいて、前記繰り返しパターンの状態を評価する第5のステップとを有することを特徴とする評価方法。
The surface of the substrate having a predetermined repetitive pattern is irradiated with linearly polarized light, and a polarized light component having a vibration direction different from that of the linearly polarized light from the repetitive pattern irradiated with the linearly polarized light is received. An evaluation method for evaluating the state of the repetitive pattern by detecting the polarization component in the pupil plane of the optical system or a plane conjugate with the pupil plane,
A first step of setting an angular condition between the vibration direction of the linearly polarized light and the vibration direction of the polarization component;
A second step of setting the relationship between the vibration direction of the linearly polarized light and the vibration direction of the polarization component set in the first step to a plurality of angular conditions, and irradiating the surface of the substrate with the linearly polarized light;
A third step of receiving a polarized light component having a vibration direction different from that of the linearly polarized light among the regularly reflected light from the repetitive pattern irradiated with the linearly polarized light under the plurality of angle conditions;
A fourth step of detecting the polarization component in the pupil plane of the optical system received in the third step or a plane conjugate with the pupil plane in the plurality of angle conditions;
And a fifth step of evaluating the state of the repetitive pattern based on information of the plurality of polarization components respectively detected in the fourth step under the plurality of angle conditions.
前記第1のステップでは、前記直線偏光の進行方向と垂直な面内における振動方向と、前記正反射光の進行方向と垂直な面内における前記偏光成分の振動方向とのなす角度を、90度±所定角度である2つの角度条件となるように設定することを特徴とする請求項5に記載の評価方法。   In the first step, an angle formed by a vibration direction in a plane perpendicular to the traveling direction of the linearly polarized light and a vibration direction of the polarization component in a plane perpendicular to the traveling direction of the regular reflection light is 90 degrees. 6. The evaluation method according to claim 5, wherein two angle conditions that are ± predetermined angles are set. 前記繰り返しパターンは、露光装置を用いて形成されており、
前記第2のステップでは、前記第1のステップで設定した前記直線偏光の振動方向と前記偏光成分の振動方向との間の2つの角度条件において、前記基板の表面に前記直線偏光を照射し、
前記第3のステップでは、前記2つの角度条件において、前記直線偏光が照射された前記繰り返しパターンからの正反射光のうち前記直線偏光と振動方向が異なる偏光成分を受光し、
前記第4のステップでは、前記2つの角度条件において、前記第3のステップで受光した前記光学系の瞳面もしくは瞳面と共役な面における前記偏光成分を検出し、
前記第5のステップでは、前記第4のステップでそれぞれ検出した2つの前記偏光成分に対応する信号強度の差分に基づいて、前記露光装置における露光量の変化に起因する前記繰り返しパターンの状態変化を検出し、前記2つの前記偏光成分に対応する信号強度の平均に基づいて、前記露光装置におけるフォーカスの変化に起因する前記繰り返しパターンの状態変化を検出することを特徴とする請求項5または6に記載の評価方法。
The repeating pattern is formed using an exposure apparatus,
In the second step, the surface of the substrate is irradiated with the linearly polarized light under two angular conditions between the vibration direction of the linearly polarized light and the vibration direction of the polarization component set in the first step,
In the third step, in the two angular conditions, a polarized light component having a vibration direction different from the linearly polarized light among the regular reflected light from the repetitive pattern irradiated with the linearly polarized light is received,
In the fourth step, the polarization component on the pupil plane of the optical system received in the third step or a plane conjugate with the pupil plane is detected under the two angle conditions,
In the fifth step, based on the difference in signal intensity corresponding to the two polarization components detected in the fourth step, the state change of the repetitive pattern caused by the change in the exposure amount in the exposure apparatus is performed. 7. The state change of the repetitive pattern caused by a change in focus in the exposure apparatus is detected based on an average of signal intensities corresponding to the two polarization components. The evaluation method described.
前記第2のステップでは、落射照明により前記直線偏光を前記基板の表面に照射することを特徴とする請求項5から7のいずれか一項に記載の評価方法。   In the said 2nd step, the said linearly polarized light is irradiated to the surface of the said board | substrate by epi-illumination, The evaluation method as described in any one of Claim 5 to 7 characterized by the above-mentioned.
JP2008319158A 2008-12-16 2008-12-16 Evaluation apparatus and evaluation method Expired - Fee Related JP5299764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008319158A JP5299764B2 (en) 2008-12-16 2008-12-16 Evaluation apparatus and evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008319158A JP5299764B2 (en) 2008-12-16 2008-12-16 Evaluation apparatus and evaluation method

Publications (2)

Publication Number Publication Date
JP2010145094A true JP2010145094A (en) 2010-07-01
JP5299764B2 JP5299764B2 (en) 2013-09-25

Family

ID=42565701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008319158A Expired - Fee Related JP5299764B2 (en) 2008-12-16 2008-12-16 Evaluation apparatus and evaluation method

Country Status (1)

Country Link
JP (1) JP5299764B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3476897A1 (en) 2010-06-25 2019-05-01 Mitsubishi Chemical Corporation Polycarbonate resin composition and molded article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281401A (en) * 1996-04-16 1997-10-31 Nikon Corp Object inspecting instrument
JP2005055447A (en) * 1998-09-18 2005-03-03 Hitachi Ltd Method and apparatus for inspecting defects
JP2006023307A (en) * 2004-07-08 2006-01-26 Carl Zeiss Sms Gmbh Microscope focusing system, and method especially for inspecting mask for emulating high-aperture focusing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281401A (en) * 1996-04-16 1997-10-31 Nikon Corp Object inspecting instrument
JP2005055447A (en) * 1998-09-18 2005-03-03 Hitachi Ltd Method and apparatus for inspecting defects
JP2006023307A (en) * 2004-07-08 2006-01-26 Carl Zeiss Sms Gmbh Microscope focusing system, and method especially for inspecting mask for emulating high-aperture focusing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3476897A1 (en) 2010-06-25 2019-05-01 Mitsubishi Chemical Corporation Polycarbonate resin composition and molded article

Also Published As

Publication number Publication date
JP5299764B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP4802481B2 (en) Surface inspection apparatus, surface inspection method, and exposure system
JP4908925B2 (en) Wafer surface defect inspection apparatus and method
TWI499772B (en) Evaluation device and evaluation method
JP4548385B2 (en) Surface inspection device
TWI449898B (en) Observation device, inspection device and inspection method
US8885037B2 (en) Defect inspection method and apparatus therefor
JP4552859B2 (en) Surface inspection apparatus and surface inspection method
JP5585615B2 (en) Inspection apparatus and inspection method
KR101237583B1 (en) Inspection method based on captured image and inspection device
JP2009192520A (en) Surface inspection device
WO2009133849A1 (en) Inspection device
JP2012083125A (en) End face inspection device
JP5500427B2 (en) Surface inspection apparatus and surface inspection method
JP4462232B2 (en) Surface inspection device
JP5212779B2 (en) Surface inspection apparatus and surface inspection method
JP4605089B2 (en) Surface inspection device
JP2009265026A (en) Inspection device
JP4696607B2 (en) Surface inspection device
JP5299764B2 (en) Evaluation apparatus and evaluation method
JP2010271186A (en) Defect inspection apparatus
JP2010107465A (en) Device and method for inspecting defect
JP5201443B2 (en) Surface inspection apparatus and surface inspection method
JP3572545B2 (en) Pass / fail judgment method of substrate
JP5354362B2 (en) Surface inspection device
JP2009281922A (en) Substrate tester and test condition setting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

R150 Certificate of patent or registration of utility model

Ref document number: 5299764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees