JP2010144584A - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- JP2010144584A JP2010144584A JP2008321519A JP2008321519A JP2010144584A JP 2010144584 A JP2010144584 A JP 2010144584A JP 2008321519 A JP2008321519 A JP 2008321519A JP 2008321519 A JP2008321519 A JP 2008321519A JP 2010144584 A JP2010144584 A JP 2010144584A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- catalyst
- combustion chamber
- exhaust
- temperature rise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
【課題】触媒の暖機状態の進行程度を示す触媒暖機指標値を簡単に且つ精度良く取得することができ、更に、その触媒暖機指標値に基づいて内燃機関を適切に制御することができる制御装置を提供すること。
【解決手段】制御装置は、排気弁開弁時の筒内圧Pexoと排気弁開弁時の燃焼室の容積Vexoとの積(Pexo・Vexo)に基いて「排気弁開弁時における燃焼室内のガスの内部エネルギーに相当する量Uexoを算出し(ステップ810)、燃焼室から排気通路に排出される排ガスの熱エネルギーΔUに起因する「触媒の温度上昇分」を表す量「第1温度上昇対応量ΔTa」を、内部エネルギーに相当する量Uexoに基づいて取得する(ステップ820)。制御装置は、その第1温度上昇対応量ΔTaを積算することにより触媒暖機指標値(TempC)を取得し(ステップ835)、その指標値に基いて機関の制御を行う。
【選択図】図8
【解決手段】制御装置は、排気弁開弁時の筒内圧Pexoと排気弁開弁時の燃焼室の容積Vexoとの積(Pexo・Vexo)に基いて「排気弁開弁時における燃焼室内のガスの内部エネルギーに相当する量Uexoを算出し(ステップ810)、燃焼室から排気通路に排出される排ガスの熱エネルギーΔUに起因する「触媒の温度上昇分」を表す量「第1温度上昇対応量ΔTa」を、内部エネルギーに相当する量Uexoに基づいて取得する(ステップ820)。制御装置は、その第1温度上昇対応量ΔTaを積算することにより触媒暖機指標値(TempC)を取得し(ステップ835)、その指標値に基いて機関の制御を行う。
【選択図】図8
Description
本発明は、排気通路に排気浄化触媒を有する内燃機関に適用され、その触媒の暖機状態に応じた機関の制御を行う内燃機関の制御装置に関する。
従来から、排気通路に三元触媒等の排気浄化触媒(触媒装置、以下、単に「触媒」とも称呼する。)を備える内燃機関が知られている。このような内燃機関に適用される従来の制御装置は、例えば、触媒の温度を推定するとともに、その推定された触媒の温度が「活性温度よりも低い」と判定される場合に点火時期を遅角している。点火時期を遅角すると排ガスの温度が上昇する。その結果、触媒の温度が活性温度に早期に到達するので、未燃物(HC及びCO等)及び窒素酸化物(NOx)の排出量が低減する。
このような従来の制御装置の一つ(以下、「従来装置」と称呼する。)は、下記の(1)式に示したように、ルックアップテーブルMapTC(QEL,QfL)を用いて触媒温度TCを推定している。このテーブルMapTCは、予め実験により取得されたデータに基いて、触媒温度TCと「QEL及びQfL」との関係を規定したルックアップテーブルである。
テーブルMapTCの一つの引数QELは排気損失エネルギーである。即ち、排気損失エネルギーQELは、下記の(2)式に示したように、「燃料の燃焼による発熱量Qh」のうちの「図示仕事Wi」に寄与しないエネルギーである。
従来装置は、上記(2)式を用いて排気損失エネルギーQELを求めるために、下記の(3)式に従って「発熱量Qh」を算出し、下記の(4)式に従って「図示仕事Wi」を求める。(3)式及び(4)式において、θ1は点火時期、θ2は燃焼終了時のクランク角である。「κ」は燃焼室内のガスの比熱比である。
そして、従来装置は、算出された「発熱量Qh及び図示仕事Wi」を上記(2)式に適用して、排気損失エネルギーQELを算出する。
テーブルMapTCの他の一つの引数QfLは排出未燃成分のエネルギーである。より具体的に述べると、排出未燃成分のエネルギーQfLは、燃焼室において燃焼することなく排気通路に排出された燃料(未燃成分)が排気通路にて燃焼することによって発生するエネルギーである。この排出未燃成分のエネルギーQfLは、下記の(5)式に従って求められる。
上記(5)式において、Qfは燃焼室に供給された燃料が有するエネルギー(燃料エネルギーQf)である。燃料エネルギーQfは、燃料の低位発熱量Hu及び燃料噴射量mfを下記の(6)式に適用することにより求められる。燃料成分が既知であれば低位発熱量Huも既知である。
更に、上記(5)式において、Qwは冷却損失エネルギーである。冷却損失エネルギーQwは「ウッシーニ(Woschni)の熱伝達モデル」に基いて求められる。ウッシーニの熱伝達モデルは、クランク角θにおける「熱伝達率h(θ)、燃焼室内のガス平均速度w(θ)及び筒内温度T(θ)」を、筒内圧P(θ)及び燃焼室容積V(θ)等に基いて推定し、それらに基いて冷却損失エネルギーQwを推定する「実験式からなるモデル」である。
そして、従来装置は、上記(6)式に従って求めた燃料エネルギーQfと、ウッシーニの熱伝達モデルに基いて求めた冷却損失エネルギーQwと、上記(3)式に従って求めた発熱量Qhと、を上記(5)式に適用することにより、排出未燃成分のエネルギーQfLを求める。
このようにして、従来装置は、排気損失エネルギーQEL及び排出未燃成分のエネルギーQfLを求め、それらを上記(1)式に適用することにより、触媒温度TCを推定するようになっている(例えば、特許文献1を参照。)。
特開2004−197716号公報
しかしながら、上記従来装置によれば、例えば、上記(3)式及び(4)式のように積分計算を実行しなければならないので、制御装置の計算負荷が膨大になる恐れがある。更に、実際には積算処理が繰り返し行われることになるので、「発熱量Qh及び図示仕事Wi」等が精度良く求められない恐れもある。加えて、「ウッシーニの熱伝達モデル」に従って求められる「熱伝達率h(θ)、燃焼室内のガス平均速度w(θ)及び筒内温度T(θ)」等は変化が速いので、精度良く求めることが難しい。従って、冷却損失エネルギーQwが精度良く求められない恐れがある。これらの結果、従来装置は、触媒の温度TCを精度良く推定し得ない可能性を有している。
本発明は、上記課題に対処するために成されたものである。本発明の目的の一つは、触媒の暖機状態の進行程度(例えば、触媒の温度)を示す触媒暖機指標値を簡単に且つ精度良く取得することができ、更に、その触媒暖機指標値に基づいて内燃機関を適切に制御することができる制御装置を提供することにある。
具体的に述べると、本発明による内燃機関の制御装置は、排気通路に排気浄化触媒を有する内燃機関に適用され、筒内圧取得手段と、混合ガス供給手段と、温度上昇対応量取得手段と、運転制御手段と、を備える。
筒内圧取得手段は、燃焼室の内部の圧力である筒内圧を取得する。
混合ガス供給手段は、前記燃焼室に「燃料及び空気を含む混合ガス」を供給する。
混合ガス供給手段は、前記燃焼室に「燃料及び空気を含む混合ガス」を供給する。
温度上昇対応量取得手段は、「前記燃焼室に対して設けられている排気弁」が「膨張行程中に閉弁状態から開弁状態へと変化する排気弁開弁時」において前記筒内圧取得手段により取得された筒内圧と、その排気弁開弁時における前記燃焼室の容積と、の「積」に基いて、「前記排気弁開弁時における前記燃焼室内のガスの内部エネルギーに相当する量」を算出する。更に、温度上昇対応量取得手段は、「その膨張行程において生成された排ガスであって前記燃焼室から前記排気通路に排出される排ガス」の熱エネルギーに起因する「前記触媒の温度上昇分を表す量」である「第1温度上昇対応量」を、前記算出された「内部エネルギーに相当する量」に基づいて取得する。
運転制御手段は、「前記取得された第1温度上昇対応量」を積算することにより、前記触媒の暖機状態の進行程度を示す触媒暖機指標値を取得する。更に、運転制御手段は、その取得された触媒暖機指標値に応じて前記機関の運転制御量を変更するとともに、その変更された運転制御量に基づいて機関を制御する。
これによれば、排気弁開弁時における燃焼室内のガスの内部エネルギーに相当する量が、排気弁開弁時における「筒内圧と燃焼室容積との積」に基いて取得される。そして、その内部エネルギーに相当する量に基いて、燃焼室から排出される排ガスの熱エネルギーに依存する触媒の温度上昇分を表す量(第1温度上昇対応量)が取得される。排気弁開弁時における燃焼室内のガスの内部エネルギーに相当する量は、触媒の温度上昇分を表す量(第1温度上昇対応量)と非常に相関が強い。従って、第1温度上昇対応量が精度良く且つ簡単に取得され得る。そして、その第1温度上昇対応量が積算されることにより、触媒の暖機状態の進行程度を示す触媒暖機指標値が取得され、その指標値に応じた機関の制御が実行される。この結果、少ない計算量により触媒暖機指標値を得ることができる。更に、精度良く求めることが困難な「図示仕事Wi、発熱量Qh及び冷却損失エネルギーQw等」を個別に算出する必要がないので、精度が良好な触媒暖機指標値を容易に得ることができる。
前記温度上昇対応量取得手段は、「前記算出された内部エネルギーが大きいほど前記第1温度上昇対応量が大きくなるように同第1温度上昇対応量を取得する」ように構成され得る。
ところで、燃焼室から排気通路に排出される排ガスには未燃成分(特に、HC)が含まれている。この未燃成分は、排気通路を流れて触媒に到達するまでの間に排気通路の熱によって加熱されて酸化する。その結果、その未燃成分の酸化に起因して、触媒に流入するガスの温度は上昇する。しかし、この温度上昇分は触媒の温度の上昇に対して無視できるほど小さい。
これに対し、燃焼室から排気通路に排出された未燃成分のうち「触媒に到達するまでに酸化されなかった未燃成分」は、触媒内において酸化される。この触媒内における未燃成分の酸化反応により発生する熱は、触媒の温度を比較的大きく上昇させる。本発明の制御装置は、この未燃成分の触媒内における酸化反応に起因する触媒の温度上昇分を表す量を第2温度上昇対応量として取得する。但し、第2温度上昇対応量は第1温度上昇対応量に比較して一般に相当小さい。
発明者は、この第2温度上昇対応量も、排気弁開弁時の内部エネルギー(排気弁開弁時における燃焼室内のガスの内部エネルギーに相当する量)に基いて推定することができるとの知見を得た。以下、この点について、図3を参照しながら説明する。図3の実線の曲線C1は、燃焼室内において相対的に多くの燃料が排気弁開弁時までに燃焼し、その結果、相対的に微量の未燃成分(HC等)が排気通路に排出される場合の内部エネルギーの変化を示している。一方、破線の曲線C2は、燃焼室内において相対的に少ない燃料が排気弁開弁時までに燃焼室内にて燃焼し、その結果、相対的に多量の未燃成分(HC等)が排気通路に排出される場合の内部エネルギーの変化を示している。
この図3のグラフから理解されるように、燃焼室内において「より多くの燃料」が排気弁開弁時までに燃焼するほど、即ち、燃焼室から排気通路へと排出される未燃成分の量が少なくなるほど、燃焼室内において発生する熱量が大きくなり、その結果、排気弁開弁時における内部エネルギーも大きくなる。換言すると、排気弁開弁時における内部エネルギーが大きいほど、排気通路に排出される未燃成分の量は少ない。この排気通路に排出される未燃成分の量が少ないほど、未燃成分の触媒内における酸化反応に起因する触媒の温度上昇分は小さくなる。
従って、
前記温度上昇対応量取得手段は、
「前記膨張行程において生成された排ガスに含まれ且つ前記燃焼室から前記排気通路に排出される未燃成分が前記触媒内において酸化されることに起因する前記触媒の温度上昇分」を表す量である「第2温度上昇対応量」を、前記算出された内部エネルギーが大きいほど小さくなるように取得し、
前記運転制御手段は、
前記取得された第1温度上昇対応量と前記取得された第2温度上昇対応量との和を積算することにより前記触媒暖機指標値を取得するように構成される、
ことが好適である。
これによれば、触媒暖機指標値をより一層精度良く取得することができる。
前記温度上昇対応量取得手段は、
「前記膨張行程において生成された排ガスに含まれ且つ前記燃焼室から前記排気通路に排出される未燃成分が前記触媒内において酸化されることに起因する前記触媒の温度上昇分」を表す量である「第2温度上昇対応量」を、前記算出された内部エネルギーが大きいほど小さくなるように取得し、
前記運転制御手段は、
前記取得された第1温度上昇対応量と前記取得された第2温度上昇対応量との和を積算することにより前記触媒暖機指標値を取得するように構成される、
ことが好適である。
これによれば、触媒暖機指標値をより一層精度良く取得することができる。
この場合、前記温度上昇対応量取得手段は、
前記燃料に含まれるアルコールの濃度に対応した値をアルコール濃度対応値として取得するアルコール濃度対応値取得手段を含み、同取得されたアルコール濃度対応値により示されるアルコール濃度が高いほど前記第2温度上昇対応量が小さくなるように同第2温度上昇対応量を取得することが好適である。
前記燃料に含まれるアルコールの濃度に対応した値をアルコール濃度対応値として取得するアルコール濃度対応値取得手段を含み、同取得されたアルコール濃度対応値により示されるアルコール濃度が高いほど前記第2温度上昇対応量が小さくなるように同第2温度上昇対応量を取得することが好適である。
燃料のアルコール濃度が相対的に高い燃料の未燃成分が触媒内において酸化した場合の触媒の温度上昇分は、燃料のアルコール濃度が相対的に低い燃料の未燃成分が触媒内において酸化した場合の触媒の温度上昇分よりも小さいからである。
一方、このような制御装置において、
前記運転制御手段は、前記触媒暖機指標値によって示される前記触媒の暖機状態の進行程度が進むほど、前記排気弁開弁時における前記燃焼室内のガスの前記内部エネルギーが小さくなるように前記運転制御量を決定することが望ましい。
前記運転制御手段は、前記触媒暖機指標値によって示される前記触媒の暖機状態の進行程度が進むほど、前記排気弁開弁時における前記燃焼室内のガスの前記内部エネルギーが小さくなるように前記運転制御量を決定することが望ましい。
より具体的には、前記運転制御手段は、前記運転制御量としての前記機関の点火時期を、前記触媒暖機指標値によって示される前記触媒の暖機状態の進行程度が進むほど進角側に移行させるように構成される。
或いは、前記運転制御手段は、前記運転制御量としての「前記膨張行程(燃焼行程)開始前の時点における前記燃焼室内の既燃ガス(EGRガス)量」を、前記触媒暖機指標値によって示される前記触媒の暖機状態の進行程度が進むほど減少させるように構成される。
或いは、前記運転制御手段は、前記運転制御量としての前記機関の前記排気弁開弁時期を、前記触媒暖機指標値によって示される前記触媒の暖機状態の進行程度が進むほど遅角側に移行させるように構成される。
このような構成によれば、触媒の暖機状態に応じて機関を制御する(排気弁開弁時における燃焼室内のガスの内部エネルギーを触媒の暖機状態に応じて適切に制御する)ことができるので、触媒の暖機を早期に終了させることができる。更に、「触媒暖機のための制御」を不必要に実行することを回避できるので、機関の燃費が悪化することを回避することがでる。
以下、本発明による内燃機関の制御装置の実施形態について図面を参照しながら説明する。
(構成)
図1は、本発明の実施形態に係る制御装置(以下、単に「制御装置」とも称呼する。)を内燃機関10に適用したシステムの概略構成を示している。機関10は、ピストン往復動型・火花点火式・多気筒(4気筒)・4サイクル機関である。なお、図1は、特定の気筒の断面のみを図示しているが、他の気筒も同様な構成を備えている。この機関10は、燃料にエタノール等のアルコールが含まれていても安定した運転ができるようになっている。
(構成)
図1は、本発明の実施形態に係る制御装置(以下、単に「制御装置」とも称呼する。)を内燃機関10に適用したシステムの概略構成を示している。機関10は、ピストン往復動型・火花点火式・多気筒(4気筒)・4サイクル機関である。なお、図1は、特定の気筒の断面のみを図示しているが、他の気筒も同様な構成を備えている。この機関10は、燃料にエタノール等のアルコールが含まれていても安定した運転ができるようになっている。
機関10は、シリンダブロック、シリンダブロックロワーケース及びオイルパン等を含むシリンダブロック部20と、シリンダブロック部20の上に固定されるシリンダヘッド部30と、シリンダブロック部20に「燃料と空気とを含む混合ガス」を供給するための吸気系統40と、シリンダブロック部20から排出された排ガスを外部に放出するための排気系統50と、を含んでいる。
シリンダブロック部20は、シリンダ21、ピストン22、コンロッド23及びクランク軸24を含んでいる。ピストン22はシリンダ21内を往復動し、ピストン22の往復動がコンロッド23を介してクランク軸24に伝達され、これによりクランク軸24が回転するようになっている。シリンダ21とピストン22の上面は、シリンダヘッド部30とともに燃焼室25を形成している。
シリンダヘッド部30は、燃焼室25に連通した吸気ポート31、吸気ポート31を開閉する吸気弁32、吸気弁制御装置33、燃焼室25に連通した排気ポート34、排気ポート34を開閉する排気弁35、排気弁制御装置36、点火プラグ37、点火プラグ37に与える高電圧を発生するイグニッションコイルを含むイグナイタ38、及び、吸気ポート31内に指示信号に含まれる指示燃料供給量の燃料を噴射するインジェクタ(燃料噴射手段、混合ガス供給手段)39を備えている。
吸気弁制御装置33は、駆動信号に応答して吸気弁32を開閉駆動する電磁機構を備えている。即ち、吸気弁制御装置33は、吸気弁開弁時期INO及び吸気弁閉弁時期INCを自由に変更することができるようになっている。吸気弁制御装置33によって、吸気弁開弁時期INOが排気上死点(吸気上死点)を基準として進角させられるほど(吸気弁32及び排気弁35が共に開弁しているバルブオーバーラップ期間が増大するほど)、吸気ポート31に排出される既燃ガスの量が増大する。従って、その後、吸気弁32が開弁している期間(INO〜INCの期間)において吸気ポート31を通して燃焼室25内に流入する既燃ガスの量も増大する。即ち、吸気弁開弁時期INOが排気上死点を基準として進角させられるほど、吸気弁閉弁時期INCにおいて(従って、燃焼行程開始前の時点において)燃焼室25内に存在する既燃ガスの量が増大する。この既燃ガスは、「内部残留ガス、筒内残留ガス及び内部EGR等」とも称呼される。
排気弁制御装置36は、吸気弁制御装置33と同様、駆動信号に応答して排気弁35を開閉駆動する電磁機構を備えている。即ち、排気弁制御装置36は、排気弁開弁時期EXO及び排気弁閉弁時期EXCを自由に変更することができるようになっている。
吸気系統40は、インテークマニホールド41、吸気管(吸気ダクト)42、エアフィルタ43、スロットル弁44及びスロットル弁アクチュエータ44aを備えている。
インテークマニホールド41は、各気筒の吸気ポート31に接続されている。より詳細には、インテークマニホールド41は各吸気ポート31に接続された複数の枝部41aと、それらの枝部が集合したサージタンク部41bと、を備えている。吸気管42はサージタンク部41bに接続されている。インテークマニホールド41及び吸気管42は吸気通路を構成している。エアフィルタ43は吸気管42の端部に設けられている。スロットル弁44は吸気管42に回動可能に設けられ、回動することにより吸気管42が形成する吸気通路の開口断面積を変更するようになっている。スロットル弁アクチュエータ(スロットル弁駆動手段)44aは、DCモータからなり、駆動信号に応答してスロットル弁44を回転駆動するようになっている。
排気系統50は、各気筒の排気ポート34に連通したエキゾーストマニホールド51、エキゾーストマニホールド51の集合部に接続されたエキゾーストパイプ(排気管)52、及び、三元触媒(排気浄化用の触媒装置、排気浄化触媒)53を備えている。触媒53は、エキゾーストパイプ52に配設されている。排気ポート34、エキゾーストマニホールド51及びエキゾーストパイプ52は、排気通路を構成している。
一方、このシステムは、熱線式エアフローメータ61、スロットルポジションセンサ62、クランクポジションセンサ63、各気筒に設けられた筒内圧センサ64、冷却水温センサ65、触媒53の上流の排気通路に配設された上流側空燃比センサ66、触媒53の下流の排気通路に配設された下流側空燃比センサ67、アクセル開度センサ68及び電気制御装置70を備えている。
熱線式エアフローメータ61は、吸気管42内を流れる吸入空気の単位時間あたりの質量流量を検出し、質量流量Gaを表す信号を出力するようになっている。
スロットルポジションセンサ62は、スロットル弁44の開度を検出し、スロットル弁開度TAを表す信号を出力するようになっている。
クランクポジションセンサ63は、クランク軸24が10度回転する毎にパルスを出力するようになっている。クランクポジションセンサ63から出力されるパルスは機関回転速度NEを表す信号に変換されるようになっている。更に、クランクポジションセンサ63及び図示しない気筒判別センサ(特定の1つの気筒の圧縮上死点にて1つのパルスを発生するセンサ)からの信号に基いて、各気筒のクランク角θが求められるようになっている。
スロットルポジションセンサ62は、スロットル弁44の開度を検出し、スロットル弁開度TAを表す信号を出力するようになっている。
クランクポジションセンサ63は、クランク軸24が10度回転する毎にパルスを出力するようになっている。クランクポジションセンサ63から出力されるパルスは機関回転速度NEを表す信号に変換されるようになっている。更に、クランクポジションセンサ63及び図示しない気筒判別センサ(特定の1つの気筒の圧縮上死点にて1つのパルスを発生するセンサ)からの信号に基いて、各気筒のクランク角θが求められるようになっている。
筒内圧センサ64は、対応する(即ち、それが配設された)燃焼室25内のガスの圧力(筒内圧)を検出し、筒内圧P(=Pc)を表す信号を出力するようになっている。各気筒の筒内圧Pはクランク角が微小角度Δθだけ変化する毎に電気制御装置70により取得され、その筒内圧Pが取得された気筒のクランク角θとともに後述するRAM73に筒内圧P(θ)の形式にて格納されて行く。
上流側空燃比センサ66及び下流側空燃比センサ67は、触媒53の上下流の空燃比を検出し、その上下流の空燃比を表す信号をそれぞれ出力するようになっている。
アクセル開度センサ68は、運転者によって操作されるアクセルペダル81の操作量を検出し、アクセルペダル81の操作量Accpを表す信号を出力するようになっている。
アクセル開度センサ68は、運転者によって操作されるアクセルペダル81の操作量を検出し、アクセルペダル81の操作量Accpを表す信号を出力するようになっている。
電気制御装置70は、互いにバスで接続された「CPU71、ROM72、RAM73、及び、図示しないイグニッション・キー・スイッチがオン位置にあるときデータを書き込むことが可能であり且つイグニッション・キー・スイッチの位置に拘らず書き込まれたデータを保持するバックアップRAM74、並びに、ADコンバータを含むインターフェース75等」からなるマイクロコンピュータである。インターフェース75は、前記センサ61〜68と接続され、CPU71にセンサ61〜68からの信号を供給するようになっている。インターフェース75は、CPU71の指示に応じて吸気弁制御装置33、排気弁制御装置36、各気筒のインジェクタ(燃料噴射弁)39及びスロットル弁アクチュエータ44a等に駆動信号を送出するとともに、各気筒のイグナイタ38に点火信号を送出するようになっている。
(制御装置の作動の概要)
図2の(A)は、クランク角に対する筒内圧Pの変化を示したグラフである。
図2の(B)は、クランク角に対する「燃焼室25内のガスの内部エネルギーUの変化」を示したグラフである。
図2の(A)は、クランク角に対する筒内圧Pの変化を示したグラフである。
図2の(B)は、クランク角に対する「燃焼室25内のガスの内部エネルギーUの変化」を示したグラフである。
これらのグラフにおいて、クランク角0は「圧縮上死点」を示し、クランク角θが負の値である領域は圧縮上死点前(BTDC)を示し、クランク角θが正の値である領域は圧縮上死点後(ATDC)を示す。例えば、「−90」はクランク角θが圧縮上死点前90度クランク角であり、「90」はクランク角θが圧縮上死点後90度クランク角である。更に、図2の(B)において、点Xincは吸気弁32が閉弁した時点(実質的な圧縮行程の開始時点である吸気弁閉弁時期INC)を示し、点Xexoは排気弁35が開弁した時点(実質的な排気行程の開始時点である排気弁開弁時期EXO)を示す。吸気弁閉弁時期INCにおける内部エネルギーUは吸気弁閉弁時内部エネルギーUincとも称呼される。排気弁開弁時期EXOにおける内部エネルギーUは排気弁開弁時内部エネルギーUexoとも称呼される。
図2の(B)に示したように、排気弁35が開弁したときに燃焼室25から排気通路に排出される「排ガスのエネルギー」の量(排ガスの熱エネルギー量)は、排気弁開弁時(厳密には、排気弁開弁時期EXO直前)における内部エネルギーUexoと等しい。以下、この排ガスの熱エネルギー量を、排ガスのエネルギーΔUと表記する。この排ガスのエネルギーΔUが触媒53に流入し、触媒53の温度を上昇させる。触媒53の温度上昇分(温度上昇量)は、この排ガスのエネルギーΔUが大きくなるほど大きくなる。
そこで、制御装置は、排ガスのエネルギーΔUを後述するように推定し、その排ガスのエネルギーΔUに基いて触媒53の第1の温度上昇分ΔTaを取得する。なお、この温度上昇分ΔTaは、便宜上、「第1温度上昇対応量」とも称呼される。
制御装置は、この「第1温度上昇分ΔTa」を、後述するように推定される「第2の温度上昇分ΔTb」とともに積算することによって、触媒53の暖機状態の進行程度を示す触媒暖機指標値TempC(例えば、触媒53の温度、又は、触媒53の温度が高いほど大きくなる値)を取得する。第2の温度上昇分ΔTbは、燃焼室25から排気通路に排出された未燃成分(HC等)が触媒53内において酸化されることに起因する「触媒の温度上昇分」を表す量である。第2の温度上昇分ΔTbは、便宜上、「第2温度上昇対応量」とも称呼される。
そして、制御装置は、このように取得された触媒暖機指標値TempCに基づいて、排ガスのエネルギーΔUを変更するための「機関の運転制御量」を変更する。排ガスのエネルギーΔUを変更するための「機関の運転制御量」は、例えば、点火時期及び既燃ガス量等であり、以下、「触媒暖機促進制御量」とも称呼される。
<温度上昇分ΔTa(第1温度上昇対応量)の取得原理>
ここで、制御装置が採用した「温度上昇分ΔTa」を取得(推定)するための原理について説明する。この温度上昇分ΔTaは、上記排ガスのエネルギーΔUに基いて取得される。よって、先ず、排ガスのエネルギーΔUの取得原理について説明する。
ここで、制御装置が採用した「温度上昇分ΔTa」を取得(推定)するための原理について説明する。この温度上昇分ΔTaは、上記排ガスのエネルギーΔUに基いて取得される。よって、先ず、排ガスのエネルギーΔUの取得原理について説明する。
吸気弁32が閉弁して燃焼室25内のガスが圧縮され始めてからの圧縮行程は断熱圧縮過程であると考えることができる。更に、圧縮行程後に燃料が燃焼し始めてから排気弁35が開弁するまでの膨張行程は断熱膨張過程であると考えることができる。従って、良く知られるように、熱力学の第1法則から下記の(7)式及び(8)式が導き出される。
上記(7)式及び上記(8)式において、Qは燃焼室25における熱発生量(累積加熱量)、Pは燃焼室25内の圧力(即ち、筒内圧、燃焼室25内に存在するガスの圧力)、Vは燃焼室25の容積、θはクランク角、Wは燃焼室25内のガスが外部に対して行う仕事、Uは燃焼室25内のガスの内部エネルギーである。更に、κは燃焼室25内のガスの比熱比である。
より詳しくは、κは、燃焼室25に吸入されてから実質的な燃焼が開始するまでの期間において燃焼室25内に存在するガスの比熱比κ1と、実質的な燃焼が開始してから燃焼室25から排出されるまでの期間において燃焼室25内に存在するガスの比熱比κ2と、の平均の比熱比である。ここでは比熱比κに便宜上の一定値(例えば、1.32)を代入する。なお、比熱比κは燃料のアルコール濃度に応じても変化する。但し、ガソリンの比熱比及びアルコールの比熱比は、例えば、単原子分子や二原子分子等の比熱比に比べて十分に小さい。従って、ガソリンの比熱比及びアルコールの比熱比は実質的に等しいと扱うことができる。
この(10)式から下記の(11)式が得られる。(11)式において、wは既燃ガスの質量、Mは既燃ガスの平均分子量(燃焼に供された混合ガスの空燃比が理論空燃比であればMは当然に定数である。)、Rは気体定数(8.314kJ/(mol・K))である。
上記(11)式から、内部エネルギーUは、燃焼室25内のガスの圧力(筒内圧)Pに比例する(筒内圧Pと燃焼室容積Vとの積に比例する)と考えることができる。換言すると、内部エネルギーUは、筒内圧Pを取得(測定)することにより簡単に求めることができる。更に、上記(11)式から、内部エネルギーUは、排ガスの温度Tと量wとに比例するので、排ガスの熱エネルギーを示す値であるとも言える。
以上のことから、制御装置は、下記の(12)式を用いて排気弁開弁時内部エネルギーUexoを算出し、その排気弁開弁時内部エネルギーUexoを上記排ガスのエネルギーΔUとして取得する。(12)式において、Pexoは排気弁開弁時期EXOにおける筒内圧であり、Vexoは排気弁開弁時期EXOにおける燃焼室25の容積である。
一方、制御装置は第1テーブルMapΔTa(ΔU)(=MapΔTa)をROM72に格納している。第1テーブルMapΔTaは、排ガスのエネルギーΔUと触媒53の温度上昇分ΔTaとの関係を予め定めたルックアップテーブルである。第1テーブルMapΔTaは、実験により予め得られた「排ガスのエネルギーΔUと温度上昇分ΔTaとの関係を示すデータ」に基づいて決定される。第1テーブルMapΔTaによれば、温度上昇分ΔTaは、排ガスのエネルギーΔUが大きいほど大きくなるように決定される。そして、制御装置は、上記(12)式に従って求めた排ガスのエネルギーΔUを第1テーブルMapΔTaに適用することにより、温度上昇分ΔTaを取得する。
<温度上昇分ΔTb(第2温度上昇対応量)の取得原理>
次に、制御装置が採用した「温度上昇分ΔTb」を取得(推定)するための原理について説明する。この温度上昇分ΔTbは、前述したように、燃焼室25から排気通路に排出された未燃成分(HC等)が触媒53内において酸化されることに起因する「触媒の温度上昇分」を表す量である。
次に、制御装置が採用した「温度上昇分ΔTb」を取得(推定)するための原理について説明する。この温度上昇分ΔTbは、前述したように、燃焼室25から排気通路に排出された未燃成分(HC等)が触媒53内において酸化されることに起因する「触媒の温度上昇分」を表す量である。
より具体的に述べると、燃焼室25から排気通路に排出されるガスには未燃成分(特に、HC)が含まれている。この未燃成分は、排気通路を流れて触媒53に到達するまでの間に排気通路の熱によって加熱されて酸化する。その結果、その未燃成分の酸化に起因して、触媒53に流入するガスの温度は温度上昇分ΔT1だけ上昇する。しかし、この温度上昇分ΔT1は触媒53の温度の上昇に対して無視できるほど小さい。
一方、燃焼室25から排気通路に排出された未燃成分のうち触媒53に到達するまでに酸化されなかった未燃成分は、触媒53内において酸化される。この触媒53内における未燃成分の酸化反応により発生する熱は、触媒53の温度を無視できない程度に上昇させる。この「未燃成分の触媒53内での酸化に起因する触媒53の温度上昇分」が、上記温度上昇分ΔTbである。但し、一般には、温度上昇分ΔTbは温度上昇分ΔTaに比べて相当に小さい。
この温度上昇分ΔTbも、排気弁開弁時内部エネルギーUexo(=排ガスのエネルギーΔU)に基いて推定することができる。以下、この点について、図3を参照しながら説明する。図3は、図2の(B)と同様、クランク角に対する「燃焼室25内のガスの内部エネルギーUの変化」を示したグラフである。実線の曲線C1は、燃焼室25内において相対的に多くの燃料が排気弁開弁時期EXOまでに燃焼し、その結果、相対的に微量の未燃成分(HC等)が排気通路に排出される場合の内部エネルギーUの変化を示している。一方、破線の曲線C2は、燃焼室25内において相対的に少ない燃料が排気弁開弁時期EXOまでに燃焼し、その結果、相対的に多量の未燃成分(HC等)が排気通路に排出される場合の内部エネルギーUの変化を示している。
この図3のグラフから理解されるように、燃焼室25内においてより多くの燃料が排気弁開弁時期EXOまでに燃焼するほど、即ち、燃焼室25から排気通路へと排出される未燃成分の量が少なくなるほど、燃焼室25内において発生する熱量が大きくなり、その結果、排気弁開弁時期EXOにおける内部エネルギーU(排気弁開弁時内部エネルギーUexo)も大きくなる。換言すると、排気弁開弁時期EXOにおける内部エネルギーU(即ち、排ガスのエネルギーΔU)が大きいほど、排気通路に排出される未燃成分の量は少なくなり、従って、触媒53内における未燃成分の酸化反応に起因する触媒53の温度上昇分ΔTb(第2温度上昇対応量)は小さくなる。
制御装置は、係る観点に立脚し、上記(12)式に基いて取得した排ガスのエネルギーΔU(即ち、排気弁開弁時内部エネルギーUexo)に基き、排ガスのエネルギーΔUが大きいほど温度上昇分ΔTbが小さくなるように、温度上昇分ΔTbを取得する。
より具体的に述べると、制御装置は第2テーブルMapΔTb(ΔU)(=MapΔTb)をROM72に格納している。第2テーブルMapΔTbは、排ガスのエネルギーΔUと触媒53の温度上昇分ΔTbとの関係を予め定めたルックアップテーブルである。第2テーブルMapΔTbは、実験により予め得られた「排ガスのエネルギーΔUと温度上昇分ΔTbとの関係を示すデータ」に基づいて決定される。第2テーブルMapΔTbによれば、温度上昇分ΔTbは、排ガスのエネルギーΔUが大きいほど小さくなるように決定される。そして、制御装置は、上記(12)式に従って求めた排ガスのエネルギーΔUを第2テーブルMapΔTbに適用することにより、温度上昇分ΔTbを取得する。
<触媒暖機指標値TempCの取得原理>
制御装置は、実際には、上述の原理に基づいて取得した「温度上昇分ΔTaと温度上昇分ΔTb」との和を、機関10の始動後から各気筒の燃焼が終了する毎に積算することにより、触媒53の暖機状態の進行程度を示す触媒暖機指標値TempCを取得する。即ち、制御装置は、触媒暖機指標値TempCを下記の(13)式に従って求める。なお、制御装置は、機関10が始動されたとき、その時点の冷却水温THWを取得し、その取得した機関始動時の冷却水温THWが高いほど大きくなる値を触媒暖機指標値TempCの初期値として採用する。
制御装置は、実際には、上述の原理に基づいて取得した「温度上昇分ΔTaと温度上昇分ΔTb」との和を、機関10の始動後から各気筒の燃焼が終了する毎に積算することにより、触媒53の暖機状態の進行程度を示す触媒暖機指標値TempCを取得する。即ち、制御装置は、触媒暖機指標値TempCを下記の(13)式に従って求める。なお、制御装置は、機関10が始動されたとき、その時点の冷却水温THWを取得し、その取得した機関始動時の冷却水温THWが高いほど大きくなる値を触媒暖機指標値TempCの初期値として採用する。
<排ガスのエネルギーΔUを変更するための運転制御量(触媒暖機促進制御量)>
次に、触媒暖機促進制御量について説明する。触媒暖機促進制御量は、例えば、点火時期SA(点火時期の遅角量)、既燃ガス量及び排気弁開弁時期等である。既燃ガス量は、「吸気弁32と排気弁35とが共に開弁している期間であるバルブオーバーラップ期間」の長さである「バルブオーバーラップ量OL」を変更することにより制御され得る。
次に、触媒暖機促進制御量について説明する。触媒暖機促進制御量は、例えば、点火時期SA(点火時期の遅角量)、既燃ガス量及び排気弁開弁時期等である。既燃ガス量は、「吸気弁32と排気弁35とが共に開弁している期間であるバルブオーバーラップ期間」の長さである「バルブオーバーラップ量OL」を変更することにより制御され得る。
<<点火時期と内部エネルギーUとの関係>>
図4は、点火時期を異なる時期に設定した各場合における「クランク角に対する、燃焼室25内のガスの内部エネルギーUの変化」を示したグラフである。図4において、実線は点火時期が最も進角側の第1点火時期である場合(点火遅角量が最小である場合)における内部エネルギーUを示す。一点鎖線は点火時期が最も遅角側の第2点火時期である場合(点火遅角量が最大である場合)における内部エネルギーUを示す。破線は点火時期が第1点火時期と第2点火時期との間の点火時期である場合(点火遅角量が中程度である場合)における内部エネルギーUを示す。
図4は、点火時期を異なる時期に設定した各場合における「クランク角に対する、燃焼室25内のガスの内部エネルギーUの変化」を示したグラフである。図4において、実線は点火時期が最も進角側の第1点火時期である場合(点火遅角量が最小である場合)における内部エネルギーUを示す。一点鎖線は点火時期が最も遅角側の第2点火時期である場合(点火遅角量が最大である場合)における内部エネルギーUを示す。破線は点火時期が第1点火時期と第2点火時期との間の点火時期である場合(点火遅角量が中程度である場合)における内部エネルギーUを示す。
図4から理解されるように、点火時期が進角側に設定されるほど燃焼開始時期が進角側に移行し、その結果、燃焼は早期に終了する。従って、排気弁開弁時期EXOにおける内部エネルギーUは、点火時期が遅角されるほど大きくなる。即ち、一点鎖線上の点Q1における内部エネルギーUが最大となり、破線上の点Q2における内部エネルギーUが二番目に大きく、実線上の点Q3における内部エネルギーUが最小となる。従って、制御装置は、触媒53の暖機が進行するほど(触媒53の温度が高くなるほど)、点火時期を進角側に移行させる(即ち、機関の負荷及び回転速度により決定される基本点火時期に対する点火遅角量を減少させる)。
<<既燃ガス量(又はバルブオーバーラップ量)と内部エネルギーUとの関係>>
図5は、既燃ガス量(既燃ガス量を増減するバルブオーバーラップ量)を異なる量に設定した各場合における「クランク角に対する、燃焼室25内のガスの内部エネルギーUの変化」を示したグラフである。前述したように、既燃ガス量はバルブオーバーラップ量OLが大きくなるほど大きくなる。
図5は、既燃ガス量(既燃ガス量を増減するバルブオーバーラップ量)を異なる量に設定した各場合における「クランク角に対する、燃焼室25内のガスの内部エネルギーUの変化」を示したグラフである。前述したように、既燃ガス量はバルブオーバーラップ量OLが大きくなるほど大きくなる。
図5において、実線はバルブオーバーラップ量OLが最小量である場合(既燃ガス量が最小量である場合)における内部エネルギーUを示す。一点鎖線はバルブオーバーラップ量OLが最大量である場合(既燃ガス量が最大量である場合)における内部エネルギーUを示す。破線はバルブオーバーラップ量OLが最大量と最小量との間にある場合(既燃ガス量が最大量と最小量との間の中間量である場合)における内部エネルギーUを示す。
図5から理解されるように、バルブオーバーラップ量OL(既燃ガス量)が小さくなるほど燃焼速度が大きくなり、燃焼は早期に終了する。従って、排気弁開弁時期EXOにおける内部エネルギーUは、バルブオーバーラップ量OL(既燃ガス量)が増大されるほど大きくなる。即ち、一点鎖線上の点Q1における内部エネルギーUが最大となり、破線上の点Q2における内部エネルギーUが二番目に大きく、実線上の点Q3における内部エネルギーUが最小となる。従って、制御装置は、触媒53の暖機が進行するほど(触媒53の温度が高くなるほど)、バルブオーバーラップ量OL(既燃ガス量)を減少させる。
<<排気弁開弁時期EXOと内部エネルギーUとの関係>>
図6は、排気弁開弁時期EXOを異なる時期に設定した各場合における「クランク角に対する、燃焼室25内のガスの内部エネルギーUの変化」を示したグラフである。図6において、実線は排気弁開弁時期EXOが最も進角側にある場合(圧縮上死点に最も近い場合)における内部エネルギーUを示す。一点鎖線は排気弁開弁時期EXOが最も遅角側にある場合(圧縮上死点から最も遠い場合)における内部エネルギーUを示す。破線は排気弁開弁時期EXOが最も進角側にある場合の時期と最も遅角側にある場合の時期との間の時期である場合における内部エネルギーUを示す。
図6は、排気弁開弁時期EXOを異なる時期に設定した各場合における「クランク角に対する、燃焼室25内のガスの内部エネルギーUの変化」を示したグラフである。図6において、実線は排気弁開弁時期EXOが最も進角側にある場合(圧縮上死点に最も近い場合)における内部エネルギーUを示す。一点鎖線は排気弁開弁時期EXOが最も遅角側にある場合(圧縮上死点から最も遠い場合)における内部エネルギーUを示す。破線は排気弁開弁時期EXOが最も進角側にある場合の時期と最も遅角側にある場合の時期との間の時期である場合における内部エネルギーUを示す。
図6から理解されるように、排気弁開弁時期EXOが遅角側に移行するほど(即ち、膨張下死点に近づくほど)、燃焼室25内におけるガスの仕事量が多くなるから、排気弁開弁時期EXOにおける内部エネルギーU(即ち、排ガスのエネルギーΔU)は小さくなる。即ち、実線上の点Q1における内部エネルギーUが最大となり、破線上の点Q2における内部エネルギーUが二番目に大きく、一点鎖線上の点Q3における内部エネルギーUが最小となる。従って、制御装置は、触媒53の暖機が進行するほど(触媒53の温度が高くなるほど)、排気弁開弁時期EXOを遅角側に移行させる。以上が、制御装置の作動の概要である。
(実際の作動)
次に、制御装置の実際の作動について説明する。CPU71は、所定時間が経過する毎に図7にフローチャートにより示した「触媒暖機指標値の初期値設定ルーチン」を実行するようになっている。この図7に示したルーチンにより、機関始動時(始動直後)における冷却水温THWに基いて、触媒暖機指標値TempCの初期値が決定される。
次に、制御装置の実際の作動について説明する。CPU71は、所定時間が経過する毎に図7にフローチャートにより示した「触媒暖機指標値の初期値設定ルーチン」を実行するようになっている。この図7に示したルーチンにより、機関始動時(始動直後)における冷却水温THWに基いて、触媒暖機指標値TempCの初期値が決定される。
即ち、所定のタイミングになると、CPU71は図7のステップ700から処理を開始してステップ710に進み、現時点が機関10の始動直後(始動操作がなされ機関10が始動した直後の時点)であるか否かを判定する。
このとき、現時点が「機関10の始動直後の時点」であると、CPU71はステップ710にて「Yes」と判定してステップ720に進み、触媒暖機指標値(触媒温度推定値)TempCに「冷却水温THWと関数(又はテーブル)fとにより決まる値f(THW)」を設定する。関数fは、機関10の始動時における冷却水温THWと触媒53の温度との関係を定める。関数fは、実験により予め得られた「機関10の始動時における冷却水温THWと触媒53の温度との関係を示すデータ」に基づいて決定され、ROM72内に格納されている。関数fによれば、触媒暖機指標値TempCは、機関10の始動時における冷却水温THWが高いほど大きくなるように決定される。
一方、CPU71がステップ710に進んだとき、現時点が「機関10の始動直後の時点」でなければ、CPU71はステップ710にて「No」と判定し、ステップ795に直接進んで本ルーチンを一旦終了する。
更に、CPU71は、所定時間が経過する毎に図8にフローチャートにより示した「触媒暖機完了判定ルーチン」を実行するようになっている。従って、所定のタイミングになると、CPUは図8のステップ800から処理を開始してステップ805に進み、現時点が「何れかの気筒の排気弁35の状態が閉弁状態から開弁状態へと変化した時点の直後(排気弁開弁直後)であるか否か」を判定する。このとき、現時点が何れかの気筒の排気弁開弁直後でなければ、CPU71はステップ805にて「No」と判定し、ステップ895に直接進んで本ルーチンを一旦終了する。
一方、CPU71がステップ805に進んだ時点が、何れかの気筒の排気弁開弁直後であると、CPU71はそのステップ805にて「Yes」と判定し、以下に述べるステップ810乃至ステップ835の処理を順に行い、その後、ステップ840に進む。
ステップ810:CPU71は上記(12)式に従って、排気弁開弁時内部エネルギーUexoを取得(算出)する。
ステップ815:CPU71は、排ガスのエネルギーΔU(排気弁開弁時の排ガスのエネルギーΔU)として、ステップ810にて求めた排気弁開弁時内部エネルギーUexoを採用する。
ステップ815:CPU71は、排ガスのエネルギーΔU(排気弁開弁時の排ガスのエネルギーΔU)として、ステップ810にて求めた排気弁開弁時内部エネルギーUexoを採用する。
ステップ820:CPU71は、第1テーブルMapΔTa(ΔU)に、ステップ815において取得した排ガスのエネルギーΔUを適用することにより、温度上昇分ΔTaを取得する。この取得された温度上昇分ΔTaは、排気弁開弁直後の状態にある気筒から排出された排ガス(排ガスの熱エネルギー)による触媒53の温度上昇分である。第1テーブルMapΔTa(ΔU)によれば、温度上昇分ΔTaは、排ガスのエネルギーΔUが大きいほど大きくなるように決定される。
ステップ825:CPU71は、エタノール濃度(アルコール濃度)EtOHをバックアップRAM74から読み出す。エタノール濃度EtOHは、後述するルーチンにより別途取得され、バックアップRAM74内に格納されている。
ステップ830:CPU71は、第2テーブルMapΔTb(ΔU)に、「ステップ815において取得した排ガスのエネルギーΔU」及び「ステップ825にて読み出されたエタノール濃度EtOH」を適用することにより、温度上昇分ΔTbを取得する。この取得された温度上昇分ΔTbは、「排気弁開弁直後の状態にある気筒から排出された排ガスに含まれる未燃成分のうち触媒53に流入した未燃成分」が「触媒53内において酸化されるときに発生する熱」に起因する「触媒53の温度上昇分」である。第2テーブルMapΔTb(ΔU)によれば、温度上昇分ΔTbは、排ガスのエネルギーΔUが大きいほど小さくなるように決定される。更に、第2テーブルMapΔTb(ΔU)によれば、温度上昇分ΔTbは、エタノール濃度EtOHが大きいほど小さくなるように決定される。
ステップ835:CPU71は、現時点における触媒暖機指標値TempCに、「温度上昇分ΔTaと温度上昇分ΔTbとの和」を加算することによって触媒暖機指標値TempCを更新する。即ち、CPU71は、機関10の始動後から、各気筒において燃焼が終了する毎に「温度上昇分ΔTaと温度上昇分ΔTbとの和」を取得し、その和を積算することにより触媒暖機指標値TempCを更新する。
次に、CPU71はステップ840に進み、触媒暖機指標値TempCが暖機完了閾値(触媒53の活性温度)TempCth以上であるか否かを判定する。現時点が通常の始動直後であるとすると、触媒暖機指標値TempCは暖機完了閾値TempCthよりも小さい。従って、CPU71は、ステップ840にて「No」と判定してステップ845に進み、触媒暖機完了フラグ(触媒活性化フラグ)XACTに「0」を設定する。なお、触媒暖機完了フラグXACTの値は、機関10が搭載された車両の図示しないイグニッション・キー・スイッチがオフからオンに変更されたときに実行されるイニシャルルーチンにおいて「0」に設定されるようになっている。その後、CPU71はステップ895に進み、本ルーチンを一旦終了する。
その後、CPU71は図8に示した触媒暖機完了判定ルーチンを繰り返し実行する。従って、触媒暖機指標値TempCはステップ835の処理によって次第に増大し、所定の時間が経過したとき暖機完了閾値TempCthに到達する。このとき、CPU71がステップ840の処理を実行すると、CPU71はそのステップ840にて「Yes」と判定する。そして、CPU71はステップ850に進み、触媒暖機完了フラグXACTの値を「1」に設定し、ステップ895に進む。
ところで、CPU71は、エタノール濃度推定ルーチンを実行することにより、図8のステップ825にて読み出されるエタノール濃度を取得している。図9は、このエタノール濃度推定ルーチンを示すフローチャートである。CPU71は、このエタノール濃度推定ルーチンを、何れかの気筒のクランク角が圧縮上死点後60度クランク角に到達したときに実行するようになっている。なお、以下において、クランク角が圧縮上死点後60度クランク角に到達した気筒を「燃焼終了気筒」と称呼する。
従って、何れかの気筒のクランク角が圧縮上死点後60度クランク角に到達すると、CPU71は図9のステップ900から処理を開始してステップ910に進み、触媒暖機完了フラグXACTの値が「1」であるか否かを判定する。後述するように、触媒暖機完了フラグXACTの値が「1」であるとき、点火時期はMBT(Minimum Advance For Best Torque)燃焼が発生するような点火時期(即ち、機関が発生するトルクが最大となる点火時期)に設定される。従って、CPU71は、ステップ910にて、現時点にて行われている燃焼がMBT燃焼であるか否かを判定していることになる。
ここで、触媒暖機完了フラグXACTの値が「0」であると、CPU71はステップ910にて「No」と判定し、ステップ995に直接進んで本ルーチンを一旦終了する。これに対し、触媒暖機完了フラグXACTの値が「1」であると、CPU71はステップ910にて「Yes」と判定し、以下に述べるステップ920乃至ステップ950の処理を順に行うことにより、エタノール濃度EtOHを取得し、そのエタノール濃度EtOHをバックアップRAM74内に格納する。以下、ステップ920乃至ステップ950の処理について説明する前に、制御装置が採用した「低位発熱量を用いたエタノール濃度推定原理」について説明する。
低位発熱量は、燃料が単位質量あたりに発生できる熱量である。例えば、ガソリンの低位発熱量は40(MJ/g)であり、エタノールの低位発熱量は26(MJ/g)である。従って、低位発熱量は燃料のエタノール(アルコール)濃度に応じて変化する。そこで、制御装置は、以下のようにして低位発熱量に相当する値(低位発熱量を表す値である低位発熱量相当値)を取得し、その低位発熱量相当値に基づいてエタノール(アルコール)濃度EtOHを取得(推定)する。
図10の(A)は、クランク角θに対する筒内圧Pの変化の様子を示している。図10の(B)は「P(θ)・V(θ)κ」の変化の様子を実線により示すとともに、燃焼室25における熱発生量(発生した熱の積算量、累積加熱量)Qを破線により示している。図10の(C)は燃焼室25内のガスの内部エネルギーUの変化の様子を示している。図10においても、クランク角0は「圧縮上死点」を示し、クランク角θが負の値である領域は圧縮上死点前(BTDC)を示し、クランク角θが正の値である領域は圧縮上死点後(ATDC)を示す。
図10の(B)から、熱発生量Qの変化パターン(破線)はP(θ)・V(θ)κの変化パターン(実線)と概ね一致することが理解される。即ち、熱発生量Qは、P(θ)・V(θ)κに基づいて取得することができる。
ところで、上述したように、低位発熱量は「燃料が単位質量あたりに発生できる熱量」である。そこで、制御装置は、図11に示したように、一回の燃焼による燃料の熱発生量Qに対応する量ΔP・Vκを算出する。この量ΔP・Vκは、便宜上、「発熱相当量」と称呼される。
より具体的に述べると、制御装置は、クランク角θが圧縮上死点前θs度クランク角(例えば、θs=60度クランク角)であるときのP(θs)・V(θs)κを取得する。更に、制御装置は、クランク角θが圧縮上死点後θe度クランク角(例えば、θe=40度クランク角)であるときのP(θe)・V(θe)κを取得する。その後、制御装置は、それらの差、即ち、P(θe)・V(θe)κからP(θs)・V(θs)κを減じた値を発熱相当量ΔP・Vκとして取得する。
クランク角θが圧縮上死点前θs度クランク角である時点は、対象とする燃焼行程(膨張行程)に向う圧縮行程において吸気弁32及び排気弁35の両方が閉じた状態にあり且つ点火時期よりも十分に進角した時期である。即ち、混合ガスが何らの熱を発生していない時点である。クランク角θが圧縮上死点後θe度クランク角である時点は、対象とする燃焼行程における混合ガスの燃焼が実質的に終了する最も遅い時期よりも遅い所定の時期であり且つ排気弁開弁時期EXOよりも進角した時期である。
なお、制御装置は、クランク角θが圧縮上死点前θs度クランク角と圧縮上死点後θe度クランク角との間にある場合の「P(θ)・V(θ)κ」の最大値MAXと最小値MINを取得し、それらの差(MAX−MIN)を発熱相当量ΔP・Vκとして取得するように構成されてもよい。
即ち、制御装置は、少なくとも混合ガスの燃焼開始時(例えば、点火時期、又は、P・Vκが急激な上昇を開始する時点)から燃焼終了時(例えば、点火時期以降においてP・Vκが減少を開始する時点)までの期間において、混合ガスの燃焼に伴って発生する熱の量である熱発生量に相当する量(発熱相当量)を、ΔP・Vκに基いて推定(取得)する熱発生量推定手段を備えている。
更に、制御装置は「発熱相当量ΔP・Vκ」を、その燃焼に供された燃料の質量に比例する燃料供給量τ(=後述する最終燃料噴射量Fiを質量に換算した値)により除することにより、低位発熱量に応じた値(低位発熱量相当値)LHVを推定する。なお、燃料噴射量τはエタノール(アルコール)濃度に応じて変化するが、ガソリンの濃度とエタノールの濃度とは、互いに実質的に等しいと扱っても問題が生じない程度に近い。
そして、制御装置は、低位発熱量相当値LHVとエタノール濃度(アルコール濃度)EtOHとの関係を定めた「図12に示したテーブルMapEtOH(LHV)」に、「推定された低位発熱量相当値LHV」を適用することにより、エタノール濃度EtOHを推定する。テーブルMapEtOH(LHV)は、実験により予め得られた「低位発熱量相当値LHVとエタノール濃度EtOHとの関係を示すデータ」に基づいて決定され、ROM72内に格納されている。テーブルMapEtOH(LHV)によれば、推定された低位発熱量相当値LHVが大きいほどエタノール濃度EtOHは小さい値となるように求められる。以上がエタノール(アルコール)濃度の推定原理である。
CPU71は、上記エタノール濃度推定原理に基く「図9のステップ920乃至ステップ950の処理」を実行する。
ステップ920:CPU71は、燃焼終了気筒の直前の燃焼に対する「発熱相当量ΔP・Vκ」を算出する。即ち、CPU71は、その燃焼終了気筒のクランク角がBTDC60degであるときのP(−60)・V(−60)κ=P(BTDC60deg)・V(BTDC60deg)κを取得する。更に、CPU71は、その燃焼終了気筒のクランク角がATDC40degであるときのP(40)・V(40)κ=P(ATDC40deg)・V(ATDC40deg)を取得する。次いで、CPU71は、それらの差(=P(40)・V(40)κ−P(−60)・V(−60)κ)を発熱相当量ΔP・Vκとして取得する。
なお、CPU71は、所定の微小なクランク角が経過する毎に、筒内圧Pを取得し、その筒内圧Pが取得された時点のクランク角θとその取得された筒内圧Pとを関連付けるように、その筒内圧Pを筒内圧P(θ)としてRAM73に格納している。また、燃焼室容積Vとクランク角θとの関係を予め定めたテーブルMapV(θ)がROM72内に格納されている。CPU71は、そのテーブルMapV(θ)とクランク角θとに基づいて燃焼室容積V(θ)を取得する。そして、CPU71は、ステップ920にて、発熱相当量ΔP・Vκの計算に必要な値をROM72及びRAM73から読み出し、上記P(−60)・V(−60)κ及びP(40)・V(40)κを求める。
ステップ930:CPU71は、ステップ920にて取得した発熱相当量ΔP・Vκを燃料供給量τ(=最終燃料噴射量Fiを質量に換算した値)により除することによって低位発熱量相当値LHVを取得する。燃料供給量τは、燃焼終了気筒の前記直前の燃焼に供された燃料の質量である。
ステップ940:CPU71は、前述したテーブルMapEtOH(LHV)に「ステップ930にて算出された低位発熱量相当値LHV」を適用することにより、現時点におけるエタノール濃度EtOHを取得する。テーブルMapEtOH(LHV)によれば、低位発熱量相当値LHVが大きいほどエタノール濃度EtOHは小さくなる。
ステップ950:CPU71は、ステップ950にて取得したエタノール濃度EtOHをバックアップRAM74に格納する。その後、CPU71はステップ995に進み、本ルーチンを一旦終了する。
以上に説明したように、CPU71は、触媒暖機指標値TempCを取得するとともに、触媒暖機指標値TempCに基いて触媒暖機完了フラグXACTの値を設定する。そして、CPU71は、この触媒暖機指標値TempCと触媒暖機完了フラグXACTとを用いて機関の運転制御量(触媒暖機促進制御量である、点火時期、バルブオーバーラップ量及び排気弁開弁時期)を以下に述べるように制御する。
<点火時期制御>
CPU71は、燃焼割合を取得し、その取得した燃焼割合に基いて点火時期を制御する。燃焼割合は、機関10の燃焼状態を示す燃焼状態指標値である。燃焼割合は図示熱量の割合と実質的に等価な値である。図示熱量の割合は、一回の燃焼行程に関して、「燃焼室において燃焼した総ての燃料によって発生した熱のうちピストンに対する仕事に変換された熱の総量Qtotalに対する、所定のタイミング(圧縮上死点後クランク角θ)までに同燃焼室において燃焼した燃料によって発生した熱のうちピストンに対する仕事に変換された熱の積算量Qsumの割合Qsum/Qtotal」と定義される。燃焼割合は、「燃焼室において燃焼した総ての燃料のうちピストンに対する仕事に寄与した燃料の総量に対する、所定のタイミング(圧縮上死点後クランク角θ)までに同燃焼室において燃焼した燃料のうちピストンに対する仕事に寄与した燃料の積算量の割合」と定義される。
CPU71は、燃焼割合を取得し、その取得した燃焼割合に基いて点火時期を制御する。燃焼割合は、機関10の燃焼状態を示す燃焼状態指標値である。燃焼割合は図示熱量の割合と実質的に等価な値である。図示熱量の割合は、一回の燃焼行程に関して、「燃焼室において燃焼した総ての燃料によって発生した熱のうちピストンに対する仕事に変換された熱の総量Qtotalに対する、所定のタイミング(圧縮上死点後クランク角θ)までに同燃焼室において燃焼した燃料によって発生した熱のうちピストンに対する仕事に変換された熱の積算量Qsumの割合Qsum/Qtotal」と定義される。燃焼割合は、「燃焼室において燃焼した総ての燃料のうちピストンに対する仕事に寄与した燃料の総量に対する、所定のタイミング(圧縮上死点後クランク角θ)までに同燃焼室において燃焼した燃料のうちピストンに対する仕事に寄与した燃料の積算量の割合」と定義される。
このように定義される燃焼割合は図示熱量の割合Qsum/Qtotalを表す値として推定(取得)される。燃焼割合を「筒内圧センサ64によって検出された筒内圧Pc」に基づいて求める手法の詳細は、例えば、特開2006−144645号公報に開示されているので、以下、その概略について述べる。
本例において、燃焼割合は所定のタイミングを表すクランク角θに対応して求められる。クランク角θにおける燃焼割合をMFBθと表す。このクランク角θは圧縮上死点において「0」となり、圧縮上死点から圧縮上死点前に向って進角するほど絶対値が大きくなる負の値をとり、圧縮上死点から圧縮上死点後に向って遅角するほど絶対値が大きくなる正の値をとるように定義される。即ち、燃焼割合MFBθにおいてθが−θ1度クランク角(=−θ1°、θ1>0)であるとき、その燃焼割合MFBθは「BTDCθ1°における燃焼割合」である。燃焼割合MFBθにおいてθがθ2度クランク角(=θ2°、θ2>0)であるとき、その燃焼割合MFBθは「ATDCθ2°における燃焼割合」である。
図10の(B)を参照しながら説明したように、燃焼室25において発生した熱のうちピストンに対する仕事に寄与した熱の積算量Q(累積加熱量Q)の変化パターンはP(θ)・V(θ)κの変化パターンと概ね一致する。従って、クランク角θにおける燃焼割合MFBθは、下記の(14)式により推定される。
(14)式において、Pc(θ)は圧縮上死点後クランク角θにおける筒内圧、V(θ)は圧縮上死点後クランク角θにおける燃焼室25の容積、κは混合ガスの比熱比である。なお、(14)式の分母はMFBの100%に相当する値である。クランク角θs(θs<0)は、対象とする燃焼行程(膨張行程)に向う圧縮行程において吸気弁32及び排気弁35の両方が閉じた状態にあり且つ点火時期よりも十分に進角した時期(例えば、θs=−60°、即ち、BTDC60°)である。クランク角θe(θe>0)は、対象とする燃焼行程における燃焼が実質的に終了する最も遅い時期よりも遅い所定の時期且つ排気弁開弁時期よりも進角した時期(例えば、(14)式においてはθe=60°、即ち、ATDC60°)である。
圧縮上死点後第一クランク角(例えば、8°クランク角)における燃焼割合である「8deg燃焼割合MFB8」は、上記(14)式においてPc(θ)にPc(8°)を代入し、V(θ)にV(8°)を代入することにより取得される。同様に、圧縮上死点後第二クランク角(例えば、15°クランク角)における燃焼割合である「15deg燃焼割合MFB15」は、上記(14)式においてPc(θ)にPc(15°)を代入し、V(θ)にV(15°)を代入することにより取得される。
図13は、点火時期SAと、8deg燃焼割合MFB8(第一燃焼割合)と、機関10の発生トルク(図示トルク)TRQと、の関係を示したグラフである。図13から理解されるように、発生トルクTRQが最大となる8deg燃焼割合MFB8は約60%である(図13の領域Aを参照。)。このことから、8deg燃焼割合MFB8の目標値である8deg目標燃焼割合MFB8tgtを60%に設定し、実際の8deg燃焼割合MFB8が8deg目標燃焼割合MFB8tgtに一致するように点火時期SAをフィードバック制御すれば、上述したMBT燃焼が発生する。
ただし、MBT燃焼を実現しているときの点火時期SAは進角値の大きい点火時期であるから、触媒53の温度を早期に上昇させることができない。従って、CPU71は、触媒53の暖機が完了する前の時点においては、点火時期を遅角側の点火時期に設定する。より具体的に述べると、CPU71は、触媒暖機完了フラグXACTの値が「0」であるとき、15deg燃焼割合MFB15を取得するとともに、その15deg燃焼割合MFB15が15deg目標燃焼割合MFB15tgt(例えば、30%)になるように、点火時期をフィードバック制御する。これにより、点火時期SAはMBT燃焼が行われているときの点火時期よりも遅角側の点火時期となるので、触媒53の暖機が促進される。一方、PU71は、触媒暖機完了フラグXACTの値が「1」であるとき、8deg燃焼割合MFB8を取得するとともに、その8deg燃焼割合MFB8が8deg目標燃焼割合MFB8tgt(例えば、50%〜60%のうちの適値)になるように、点火時期をフィードバック制御する。
CPU71は、このような点火時期制御を実現するために、図14にフローチャートにより示した「点火時期制御ルーチン」を「各気筒のクランク角が圧縮上死点後90度クランク角に一致したとき」に実行するようになっている。
従って、各気筒のクランク角が圧縮上死点後90度クランク角に一致すると、CPU71は図14のステップ1400から処理を開始してステップ1410に進み、触媒暖機完了フラグXACTの値が「1」であるか否かを判定する。いま、機関10の始動後から十分な時間が経過していないために触媒暖機完了フラグXACTの値が「0」であると仮定する。
この場合、CPU71はステップ1410にて「No」と判定してステップ1420に進み、クランク角が圧縮上死点後90度クランク角に一致している気筒についての15deg燃焼割合MFB15を上記(14)式に従って取得する。
次いで、CPU71はステップ1430に進み、その15deg燃焼割合MFB15が15deg目標燃焼割合MFB15tgtに一致するように点火時期SAをフィードバック制御する。より具体的に述べると、CPU71は、15deg燃焼割合MFB15が15deg目標燃焼割合MFB15tgtよりも小さいとき、点火時期SAを微小量ΔSAだけ進角する。これに対し、CPU71は、15deg燃焼割合MFB15が15deg目標燃焼割合MFB15tgtよりも大きいとき、点火時期SAを微小量ΔSAだけ遅角する。その後、CPU71はステップ1495に進み、本ルーチンを一旦終了する。この結果、点火時期SAはMBTに対して相当に遅角側の点火時期となる。よって、排気弁開弁時内部エネルギーUexo(=排ガスのエネルギーΔU)が増大するから、触媒53の温度は早期に上昇する。
その後、機関10の運転が継続されることにより触媒53の温度が上昇すると、図8のステップ840及びステップ850の処理によって触媒暖機完了フラグXACTの値が「1」に変更される。この状況において、CPU71が図14のステップ1400から処理を開始すると、CPU71はステップ1410にて「Yes」と判定してステップ1440に進み、クランク角が圧縮上死点後90度クランク角に一致している気筒についての8deg燃焼割合MFB8を上記(14)式に従って取得する。
次に、CPU71はステップ1450に進み、その8deg燃焼割合MFB8が8deg目標燃焼割合MFB8tgt(例えば、60%)に一致するように点火時期SAをフィードバック制御する。より具体的に述べると、CPU71は、8deg燃焼割合MFB8が8deg目標燃焼割合MFB8tgtよりも小さいとき、点火時期SAを微小量ΔSAだけ進角する。これに対し、CPU71は、8deg燃焼割合MFB8が8deg目標燃焼割合MFB8tgtよりも大きいとき、点火時期SAを微小量ΔSAだけ遅角する。その後、CPU71はステップ1495に進み、本ルーチンを一旦終了する。この結果、点火時期SAはMBT近傍の点火時期となる。よって、燃焼効率の良いMBT燃焼による運転が実現される。
<バルブオーバーラップ量OL及び排気弁開弁時期EXOの制御>
CPU71は、所定時間が経過する毎に図15にフローチャートにより示したルーチンを実行するようになっている。従って、所定のタイミングになると、CPU71はステップ1500から処理を開始してステップ1510に進み、触媒暖機指標値TempCとバルブオーバーラップ量OLとの関係を予め定めたテーブルMapOL(TempC)に、図8のステップ835にて取得されている触媒暖機指標値TempCを適用することにより、達成すべきバルブオーバーラップ量OLを決定する。このテーブルMapOL(TempC)によれば、触媒暖機指標値Tempが大きくなるほどバルブオーバーラップ量OL(従って、既燃ガス量)は減少するように決定される。但し、触媒暖機指標値Tempが最大指標値Tm(例えば、暖機完了閾値TempCth)以上となると、バルブオーバーラップ量OLは一定値に維持される。
CPU71は、所定時間が経過する毎に図15にフローチャートにより示したルーチンを実行するようになっている。従って、所定のタイミングになると、CPU71はステップ1500から処理を開始してステップ1510に進み、触媒暖機指標値TempCとバルブオーバーラップ量OLとの関係を予め定めたテーブルMapOL(TempC)に、図8のステップ835にて取得されている触媒暖機指標値TempCを適用することにより、達成すべきバルブオーバーラップ量OLを決定する。このテーブルMapOL(TempC)によれば、触媒暖機指標値Tempが大きくなるほどバルブオーバーラップ量OL(従って、既燃ガス量)は減少するように決定される。但し、触媒暖機指標値Tempが最大指標値Tm(例えば、暖機完了閾値TempCth)以上となると、バルブオーバーラップ量OLは一定値に維持される。
実際には、CPU71はステップ1510にて、バルブオーバーラップ量OLを定める「吸気弁開弁時期INO及び排気弁閉弁時期EXC」を触媒暖機指標値TempCと所定のテーブルとに基いて決定する。そして、CPU71は、その決定した吸気弁開弁時期INOにて吸気弁32を開弁し、その決定した排気弁閉弁時期EXCにて排気弁35を閉弁する。
次に、CPU71はステップ1520に進み、触媒暖機指標値TempCと排気弁開弁時期EXOとの関係を予め定めたテーブルMapEXO(TempC)に、図8のステップ835にて取得されている触媒暖機指標値TempCを適用することにより、達成すべき排気弁開弁時期EXOを決定する。このテーブルMapEXO(TempC)によれば、触媒暖機指標値Tempが大きくなるほど排気弁開弁時期EXOは遅角側に移行するように決定される。但し、触媒暖機指標値Tempが最大指標値Tm(例えば、暖機完了閾値TempCth)以上となると、排気弁開弁時期EXOは一定値に維持される。そして、CPU71は、その決定した排気弁開弁時期EXOにて排気弁35を開弁する。その後、CPU71はステップ1595に進み、本ルーチンを一旦終了する。
<燃料噴射制御>
更に、CPUは、図16にフローチャートにより示した燃料噴射ルーチンを任意の気筒のクランク角が吸気上死点前の所定クランク角度(例えば、吸気上死点前90度クランク角)θfに一致する毎に繰り返し実行するようになっている。このクランク角が吸気上死点前の所定クランク角θfに一致して吸気行程を迎える気筒は、以下「燃料噴射気筒」とも称呼される。従って、任意の気筒のクランク角度が上記所定クランク角θfになると、CPU71は図16のステップ1600から処理を開始し、以下に述べるステップ1610乃至ステップ1670の処理を順に行い、ステップ1695に進んで本ルーチンを一旦終了する。
更に、CPUは、図16にフローチャートにより示した燃料噴射ルーチンを任意の気筒のクランク角が吸気上死点前の所定クランク角度(例えば、吸気上死点前90度クランク角)θfに一致する毎に繰り返し実行するようになっている。このクランク角が吸気上死点前の所定クランク角θfに一致して吸気行程を迎える気筒は、以下「燃料噴射気筒」とも称呼される。従って、任意の気筒のクランク角度が上記所定クランク角θfになると、CPU71は図16のステップ1600から処理を開始し、以下に述べるステップ1610乃至ステップ1670の処理を順に行い、ステップ1695に進んで本ルーチンを一旦終了する。
ステップ1610:CPU71は、機関回転速度NE及び吸入空気量Gaと筒内吸入空気量Mcとの関係を予め定めたテーブルMapMc(Ga,NE)に現時点の機関回転速度NE及び現時点の吸入空気量Gaを適用することにより、燃料噴射気筒に吸入される今回の筒内吸入空気量Mcを推定・決定する。なお、筒内吸入空気量Mcは周知の空気モデルにより求められてもよい。
ステップ1620:CPU71は、目標空燃比abyfrに理論空燃比stoichを設定する。この理論空燃比stoichは、燃料のエタノール濃度が0体積%である場合(つまり、燃料がガソリンのみからなっている場合)の値(例えば、14.5)である。
ステップ1630:CPU71は、上記筒内吸入空気量Mcを目標空燃比abyfr(即ち、理論空燃比stoich)で除することにより、基本燃料噴射量Fbaseを算出する。
ステップ1620:CPU71は、目標空燃比abyfrに理論空燃比stoichを設定する。この理論空燃比stoichは、燃料のエタノール濃度が0体積%である場合(つまり、燃料がガソリンのみからなっている場合)の値(例えば、14.5)である。
ステップ1630:CPU71は、上記筒内吸入空気量Mcを目標空燃比abyfr(即ち、理論空燃比stoich)で除することにより、基本燃料噴射量Fbaseを算出する。
ステップ1640:CPU71は、先に説明した図9のルーチンにより算出されているエタノール濃度EtOHをバックアップRAM74から読み出す。
ステップ1650:CPU71は、補正係数k(アルコール濃度補正係数)を、エタノール濃度EtOHと補正係数kとの関係を予め定めたテーブルMapkにステップ1640にて読み込んだエタノール濃度EtOHを適用することにより決定する。このMapkによれば、補正係数kは、エタノール濃度EtOHが0体積%であるときに1.0であり、エタノール濃度EtOHが大きくなるほど大きくなるように決定される。
ステップ1660:CPU71は、基本燃料噴射量Fbaseにステップ1650にて求められた補正係数kを乗じることにより(基本燃料噴射量Fbaseを補正係数kにて補正することにより)最終燃料噴射量Fiを求める。
ステップ1670:CPU71は、最終燃料噴射量Fiの燃料(指示燃料供給量)が燃料噴射気筒に対するインジェクタ39から噴射されるように、そのインジェクタ39に対して噴射指示を行う。
ステップ1670:CPU71は、最終燃料噴射量Fiの燃料(指示燃料供給量)が燃料噴射気筒に対するインジェクタ39から噴射されるように、そのインジェクタ39に対して噴射指示を行う。
以上により、エタノールが全く含まれていない燃料が供給された場合に理論空燃比(目標空燃比abyfr)を得るために必要な基本燃料噴射量Fbaseが補正係数kにより補正される。即ち、エタノール濃度EtOHが大きくなるほど最終燃料噴射量Fiは大きくなる。
以上、説明したように、制御装置は、
燃焼室25の内部の圧力である筒内圧を取得する筒内圧取得手段(筒内圧センサ64等)、
前記燃焼室25に燃料及び空気を含む混合ガスを供給する混合ガス供給手段(インジェクタ39及び図16のルーチン等)と、
前記燃焼室25に対して設けられている排気弁35が膨張行程中に閉弁状態から開弁状態へと変化する排気弁開弁時EXOにおいて前記筒内圧取得手段により取得された筒内圧(Pexo)と同排気弁開弁時EXOにおける同燃焼室の容積(Vexo)との積(Pexo・Vexo)に基いて同排気弁開弁時における前記燃焼室内のガスの内部エネルギーに相当する量(Uexo)を算出するとともに(図8のステップ810及びステップ815等)、同膨張行程において生成された排ガスであって前記燃焼室から前記排気通路に排出される排ガスの熱エネルギー(ΔU)に起因する「前記触媒53の温度上昇分を表す量である第1温度上昇対応量(ΔTa)」を「前記算出された内部エネルギーに相当する量(Uexo=ΔU)に基づいて取得する」温度上昇対応量取得手段(図8、特に、ステップ820等)と、
前記取得された第1温度上昇対応量(ΔTa)を積算することにより前記触媒53の暖機状態の進行程度を示す触媒暖機指標値(TempC)を取得し(図8のステップ835)、且つ、同取得された触媒暖機指標値(TempC)に応じて前記機関の運転制御量を変更するとともに同変更された運転制御量に基づいて前記機関を制御する運転制御手段(図14及び図15のルーチン)と、
を備える。
燃焼室25の内部の圧力である筒内圧を取得する筒内圧取得手段(筒内圧センサ64等)、
前記燃焼室25に燃料及び空気を含む混合ガスを供給する混合ガス供給手段(インジェクタ39及び図16のルーチン等)と、
前記燃焼室25に対して設けられている排気弁35が膨張行程中に閉弁状態から開弁状態へと変化する排気弁開弁時EXOにおいて前記筒内圧取得手段により取得された筒内圧(Pexo)と同排気弁開弁時EXOにおける同燃焼室の容積(Vexo)との積(Pexo・Vexo)に基いて同排気弁開弁時における前記燃焼室内のガスの内部エネルギーに相当する量(Uexo)を算出するとともに(図8のステップ810及びステップ815等)、同膨張行程において生成された排ガスであって前記燃焼室から前記排気通路に排出される排ガスの熱エネルギー(ΔU)に起因する「前記触媒53の温度上昇分を表す量である第1温度上昇対応量(ΔTa)」を「前記算出された内部エネルギーに相当する量(Uexo=ΔU)に基づいて取得する」温度上昇対応量取得手段(図8、特に、ステップ820等)と、
前記取得された第1温度上昇対応量(ΔTa)を積算することにより前記触媒53の暖機状態の進行程度を示す触媒暖機指標値(TempC)を取得し(図8のステップ835)、且つ、同取得された触媒暖機指標値(TempC)に応じて前記機関の運転制御量を変更するとともに同変更された運転制御量に基づいて前記機関を制御する運転制御手段(図14及び図15のルーチン)と、
を備える。
従って、少ない計算量により触媒暖機指標値(TempC)を得ることができる。更に、精度良く求めることが困難な「図示仕事Wi、発熱量Qh及び冷却損失エネルギーQw等」を個別に算出する必要がないので、精度が良好な触媒暖機指標値(TempC)を容易に得ることができる。
加えて、前記温度上昇対応量取得手段は、
「前記膨張行程において生成された排ガスに含まれ且つ前記燃焼室25から前記排気通路に排出される未燃成分が前記触媒53内において酸化されることに起因する前記触媒53の温度上昇分」を表す量である「第2温度上昇対応量(ΔTb)」を、前記算出された内部エネルギーが大きいほど小さくなるように取得し(図8のステップ810、ステップ815及びステップ830等)、
前記運転制御手段は、
前記取得された第1温度上昇対応量ΔTaと前記取得された第2温度上昇対応量ΔTbとの和(ΔTa+ΔTb)を積算することにより前記触媒暖機指標値(TempC)を取得するように構成される(図8のステップ835等)。
これによれば、未燃成分の触媒53内における酸化による触媒53の温度上昇分も考慮されるので、触媒暖機指標値(TempC)をより一層精度良く取得することができる。
「前記膨張行程において生成された排ガスに含まれ且つ前記燃焼室25から前記排気通路に排出される未燃成分が前記触媒53内において酸化されることに起因する前記触媒53の温度上昇分」を表す量である「第2温度上昇対応量(ΔTb)」を、前記算出された内部エネルギーが大きいほど小さくなるように取得し(図8のステップ810、ステップ815及びステップ830等)、
前記運転制御手段は、
前記取得された第1温度上昇対応量ΔTaと前記取得された第2温度上昇対応量ΔTbとの和(ΔTa+ΔTb)を積算することにより前記触媒暖機指標値(TempC)を取得するように構成される(図8のステップ835等)。
これによれば、未燃成分の触媒53内における酸化による触媒53の温度上昇分も考慮されるので、触媒暖機指標値(TempC)をより一層精度良く取得することができる。
更に、前記温度上昇対応量取得手段は、
前記燃料に含まれるアルコールの濃度に対応した値をアルコール濃度対応値(EtOH)として取得するアルコール濃度対応値取得手段(図9のルーチン)。を含み、同取得されたアルコール濃度対応値により示されるアルコール濃度が高いほど前記第2温度上昇対応量が小さくなるように同第2温度上昇対応量ΔTbを取得する(図8のステップ830)。これにより、エタノール(アルコール)濃度が変化した場合においても、触媒暖機指標値(TempC)をより一層精度良く取得することができる。
前記燃料に含まれるアルコールの濃度に対応した値をアルコール濃度対応値(EtOH)として取得するアルコール濃度対応値取得手段(図9のルーチン)。を含み、同取得されたアルコール濃度対応値により示されるアルコール濃度が高いほど前記第2温度上昇対応量が小さくなるように同第2温度上昇対応量ΔTbを取得する(図8のステップ830)。これにより、エタノール(アルコール)濃度が変化した場合においても、触媒暖機指標値(TempC)をより一層精度良く取得することができる。
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記吸気弁制御装置33は、指示信号に応答して、カムシャフトとインテークカム(図示せず)との相対回転角度(位相角度)を油圧により調整・制御する周知の構成を備え、吸気弁開弁時期及び吸気弁閉弁時期を変更することができるようになっていてもよい。同様に、上記排気弁制御装置36は、吸気弁制御装置33と同様な構成を備え、指示信号に応答して、エキゾーストカムシャフトとエキゾーストカム(図示せず)との相対回転角度(位相角度)を油圧により調整・制御する周知の構成を備え、排気弁開弁時期及び排気弁閉弁時期を変更することができるようになっていてもよい。
更に、上記制御装置は、点火時期、バルブオーバーラップ量及び排気弁開弁時期のうちの少なくとも1つの運転制御量を、触媒暖機指標値(TempC)に応じて変更するように構成されていてもよい。加えて、上記制御装置は、点火時期を触媒暖機指標値(TempC)の変化に対して連続的に変更(触媒暖機指標値TempCが大きくなるほど点火時期をMBTに向けて進角するように変更)してもよい。
加えて、上記制御装置は、第2の温度上昇分ΔTbを、排ガスのエネルギーΔUと第2テーブルMapΔTbとから求めていたが、最終燃料噴射量Fi、点火時期SA及び排気弁開弁時期EXOをパラメータとして基準内部エネルギーΔUbaseを求め、その基準内部エネルギーΔUbaseと排ガスのエネルギーΔUとの差dΔUと、テーブルMapΔTb’(dΔU)とから、第2の温度上昇分ΔTbを求めるように構成されていてもよい。
10…内燃機関、20…シリンダブロック部、21…シリンダ、22…ピストン、24…クランク軸、25…燃焼室、30…シリンダヘッド部、31…吸気ポート、32…吸気弁、33…吸気弁制御装置、34…排気ポート、35…排気弁、36…排気弁制御装置、37…点火プラグ、38…イグナイタ、39…インジェクタ、40…吸気系統、41…インテークマニホールド、42…吸気管、44…スロットル弁、50…排気系統、51…エキゾーストマニホールド、52…エキゾーストパイプ、53…触媒、64…筒内圧センサ、65…冷却水温センサ、70…電気制御装置、71…CPU、74…バックアップRAM(不揮発性メモリ)。
Claims (8)
- 排気通路に排気浄化触媒を有する内燃機関の制御装置であって、
燃焼室の内部の圧力である筒内圧を取得する筒内圧取得手段と、
前記燃焼室に燃料及び空気を含む混合ガスを供給する混合ガス供給手段と、
前記燃焼室に対して設けられている排気弁が膨張行程中に閉弁状態から開弁状態へと変化する排気弁開弁時において前記筒内圧取得手段により取得された筒内圧と同排気弁開弁時における前記燃焼室の容積との積に基いて同排気弁開弁時における前記燃焼室内のガスの内部エネルギーに相当する量を算出するとともに、前記膨張行程において生成された排ガスであって前記燃焼室から前記排気通路に排出される排ガスの熱エネルギーに起因する前記触媒の温度上昇分を表す量である第1温度上昇対応量を前記算出された内部エネルギーに相当する量に基づいて取得する温度上昇対応量取得手段と、
前記取得された第1温度上昇対応量を積算することにより前記触媒の暖機状態の進行程度を示す触媒暖機指標値を取得し、且つ、同取得された触媒暖機指標値に応じて前記機関の運転制御量を変更するとともに同変更された運転制御量に基づいて前記機関を制御する運転制御手段と、
を備えた制御装置。 - 請求項1に記載の内燃機関の制御装置において、
前記温度上昇対応量取得手段は、
前記算出された内部エネルギーが大きいほど前記第1温度上昇対応量が大きくなるように同第1温度上昇対応量を取得する制御装置。 - 請求項2に記載の内燃機関の制御装置において、
前記温度上昇対応量取得手段は、
前記膨張行程において生成された排ガスに含まれ且つ前記燃焼室から前記排気通路に排出される未燃成分が前記触媒内において酸化されることに起因する前記触媒の温度上昇分を表す量である第2温度上昇対応量を、前記算出された内部エネルギーが大きいほど小さくなるように取得し、
前記運転制御手段は、
前記取得された第1温度上昇対応量と前記取得された第2温度上昇対応量との和を積算することにより前記触媒暖機指標値を取得するように構成された制御装置。 - 請求項3に記載の内燃機関の制御装置において、
前記温度上昇対応量取得手段は、
前記燃料に含まれるアルコールの濃度に対応した値をアルコール濃度対応値として取得するアルコール濃度対応値取得手段を含み、同取得されたアルコール濃度対応値により示されるアルコール濃度が高いほど前記第2温度上昇対応量が小さくなるように同第2温度上昇対応量を取得する制御装置。 - 請求項1乃至請求項4の何れか一項に記載の内燃機関の制御装置において、
前記運転制御手段は、
前記触媒暖機指標値によって示される前記触媒の暖機状態の進行程度が進むほど前記排気弁開弁時における前記燃焼室内のガスの内部エネルギーが小さくなるように前記運転制御量を決定する制御装置。 - 請求項5に記載の内燃機関の制御装置において、
前記運転制御手段は、前記運転制御量としての前記機関の点火時期を、前記触媒暖機指標値によって示される前記触媒の暖機状態の進行程度が進むほど進角側に移行させるように構成された制御装置。 - 請求項5に記載の内燃機関の制御装置において、
前記運転制御手段は、前記運転制御量としての前記膨張行程開始前の時点における前記燃焼室内の既燃ガス量を、前記触媒暖機指標値によって示される前記触媒の暖機状態の進行程度が進むほど減少させるように構成された制御装置。 - 請求項5に記載の内燃機関の制御装置において、
前記運転制御手段は、前記運転制御量としての前記排気弁開弁時期を、前記触媒暖機指標値によって示される前記触媒の暖機状態の進行程度が進むほど遅角側に移行させるように構成された制御装置。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008321519A JP2010144584A (ja) | 2008-12-17 | 2008-12-17 | 内燃機関の制御装置 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008321519A JP2010144584A (ja) | 2008-12-17 | 2008-12-17 | 内燃機関の制御装置 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2010144584A true JP2010144584A (ja) | 2010-07-01 |
Family
ID=42565275
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2008321519A Pending JP2010144584A (ja) | 2008-12-17 | 2008-12-17 | 内燃機関の制御装置 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2010144584A (ja) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012077729A (ja) * | 2010-10-06 | 2012-04-19 | Toyota Motor Corp | 筒内圧センサの異常判定装置 |
| JP2012219618A (ja) * | 2011-04-04 | 2012-11-12 | Toyota Motor Corp | 内燃機関の制御装置 |
| JP2014117962A (ja) * | 2012-12-13 | 2014-06-30 | Mitsubishi Electric Corp | 排ガス発電機を備えたハイブリッド車両の制御装置および排ガス発電機を備えたハイブリッド車両の制御方法 |
-
2008
- 2008-12-17 JP JP2008321519A patent/JP2010144584A/ja active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012077729A (ja) * | 2010-10-06 | 2012-04-19 | Toyota Motor Corp | 筒内圧センサの異常判定装置 |
| JP2012219618A (ja) * | 2011-04-04 | 2012-11-12 | Toyota Motor Corp | 内燃機関の制御装置 |
| JP2014117962A (ja) * | 2012-12-13 | 2014-06-30 | Mitsubishi Electric Corp | 排ガス発電機を備えたハイブリッド車両の制御装置および排ガス発電機を備えたハイブリッド車両の制御方法 |
| US9008878B2 (en) | 2012-12-13 | 2015-04-14 | Mitsubishi Electric Corporation | Control device for hybrid vehicle including exhaust-gas driven generator and method of controlling hybrid vehicle including exhaust-gas driven generator |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4882787B2 (ja) | 内燃機関の制御装置 | |
| US9249740B2 (en) | Control device for internal combustion engine | |
| EP2128411B1 (en) | Ignition timing control system and method for internal combustion engine | |
| JP5028245B2 (ja) | 内燃機関の内部egr制御装置 | |
| JP2009275573A (ja) | 内燃機関の制御装置 | |
| JP6551317B2 (ja) | 内燃機関の排気温度推定装置 | |
| JP2007120392A (ja) | 内燃機関の空燃比制御装置 | |
| JP4670888B2 (ja) | 内燃機関用燃料のアルコール濃度対応値取得装置 | |
| JP4761072B2 (ja) | 内燃機関の点火時期制御装置 | |
| JP2010144584A (ja) | 内燃機関の制御装置 | |
| JP2009257128A (ja) | 内燃機関の制御装置 | |
| CN102787929B (zh) | 用于运行内燃机的方法 | |
| JP5077562B2 (ja) | 内燃機関の制御装置 | |
| JP2012219757A (ja) | 内燃機関の制御装置 | |
| JP4534914B2 (ja) | 内燃機関の燃料噴射制御装置 | |
| JP5303349B2 (ja) | 内燃機関のegr制御装置 | |
| JP5514635B2 (ja) | 内燃機関の制御装置 | |
| JP2007077838A (ja) | 圧縮自着火式内燃機関の制御装置 | |
| JP2010007607A (ja) | 多気筒内燃機関の制御装置 | |
| JP5145455B2 (ja) | 触媒の温度制御装置 | |
| JP4985384B2 (ja) | 内燃機関の点火時期制御装置 | |
| JP5343719B2 (ja) | 内燃機関の排気導入制御装置 | |
| JP2006144642A (ja) | 内燃機関の制御装置および制御方法 | |
| JP6497202B2 (ja) | 点火時期制御装置 | |
| JP5844170B2 (ja) | 内燃機関の制御装置 |
