JP2010143794A - Ozonizer - Google Patents

Ozonizer Download PDF

Info

Publication number
JP2010143794A
JP2010143794A JP2008323750A JP2008323750A JP2010143794A JP 2010143794 A JP2010143794 A JP 2010143794A JP 2008323750 A JP2008323750 A JP 2008323750A JP 2008323750 A JP2008323750 A JP 2008323750A JP 2010143794 A JP2010143794 A JP 2010143794A
Authority
JP
Japan
Prior art keywords
electrode tube
spacer
tube
high voltage
ozone generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008323750A
Other languages
Japanese (ja)
Other versions
JP5072817B2 (en
Inventor
Shizuyasu Yoshida
静安 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2008323750A priority Critical patent/JP5072817B2/en
Publication of JP2010143794A publication Critical patent/JP2010143794A/en
Application granted granted Critical
Publication of JP5072817B2 publication Critical patent/JP5072817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ozonizer where a gap is easily uniformly maintained even if the gap is a discharging space having a double cylindrical structure like a high voltage electrode tube and a grounding electrode tube, where the high voltage electrode tube is easily inserted into the grounding electrode tube and where the efficiency of ozone generation is not lowered. <P>SOLUTION: An outer electrode is a grounding electrode made of a metal, an inner electrode is a high voltage electrode made of a metal and both are arranged to be concentric. An insulating layer 3 of a dielectric material is formed on an inner surface of the grounding electrode tube 1 and the discharging space 5 is made between the grounding electrode tube 1 and the high voltage electrode tube 2. A spacer 4 to keep the distance of the discharging space 5 is fixed on the surface of the high voltage electrode tube 2. A rectangular spacer 4a obtained by laminating two kinds of metal layers, whose thermal expansion coefficients are different, into two layers is set at an upper part in the circumferential direction of the high voltage electrode tube 2. The plate thickness of the spacer 4a is a little smaller than a discharging space distance. Meanwhile, a spacer 4b at a lower part in the circumferential direction of the high voltage electrode tube 2 is set at the same thickness as the distance of the discharging space of a single metal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸素又は酸素を含む気体が供給された放電空間において無声放電することで酸素からオゾンを発生させるオゾン発生装置に関する。   The present invention relates to an ozone generator that generates ozone from oxygen by silent discharge in a discharge space supplied with oxygen or a gas containing oxygen.

上下水処理、パルプ漂白処理又は殺菌処理の各分野において、殺菌・脱色・脱臭力を有するオゾンが利用されている。オゾン発生装置として無声放電型のオゾン発生装置がある(例えば、特許文献1参照)。無声放電型のオゾン発生装置では、一定の間隔を空けて配置した一対の電極の片側、もしくは両側を絶縁体(誘電体)で覆い、電極間に交流電圧をかけて放電させる。電極が絶縁体で覆われているため電極に電荷が流れ込むことができず、大きな電流が流れないため、火花放電やコロナ放電のように放電時に音がしない特徴がある。   In each field of water and sewage treatment, pulp bleaching treatment or sterilization treatment, ozone having sterilization, decolorization, and deodorizing power is used. There exists a silent discharge type ozone generator as an ozone generator (for example, refer patent document 1). In a silent discharge type ozone generator, one side or both sides of a pair of electrodes arranged at a certain interval are covered with an insulator (dielectric material), and an AC voltage is applied between the electrodes for discharge. Since the electrode is covered with an insulator, electric charges cannot flow into the electrode, and a large current does not flow. Therefore, there is a feature that no sound is generated during discharge, such as spark discharge or corona discharge.

図8、9は無声放電型のオゾン発生装置の構成図であり、図8は断面側視図、図9は管径側断面図である。同図に示すオゾン発生装置は、外筒を構成する接地電極管1と、内筒を構成する高電圧電極管2との二重円筒構造を有している。接地電極管1の内面に誘電体の絶縁層3が形成されており、この接地電極管1の内面と高電圧電極管2の外周面との間に設けられた複数のスペーサ4により1mm前後の微小な放電空間5が形成されている。スペーサ4は、管軸方向の両端に複数個設けられており、図9では管軸方向の両端部に電極管円周方向の4か所に均等配置されている。電極管円周方向の4か所に配置されたスペーサ4a,4bによって高電圧電極管2が接地電極管1に対して同軸位置に維持される。両電極管1、2には4〜10kVの交流電圧を印加する高電圧電源6が接続されている。   8 and 9 are configuration diagrams of a silent discharge type ozone generator, FIG. 8 is a sectional side view, and FIG. 9 is a tube diameter side sectional view. The ozone generator shown in the figure has a double cylindrical structure of a ground electrode tube 1 constituting an outer cylinder and a high voltage electrode tube 2 constituting an inner cylinder. A dielectric insulating layer 3 is formed on the inner surface of the ground electrode tube 1. A plurality of spacers 4 provided between the inner surface of the ground electrode tube 1 and the outer peripheral surface of the high-voltage electrode tube 2 have a thickness of about 1 mm. A minute discharge space 5 is formed. A plurality of spacers 4 are provided at both ends in the tube axis direction, and in FIG. 9, the spacers 4 are equally arranged at the four ends in the electrode tube circumferential direction at both ends in the tube axis direction. The high voltage electrode tube 2 is maintained at a coaxial position with respect to the ground electrode tube 1 by the spacers 4 a and 4 b arranged at four locations in the electrode tube circumferential direction. Both electrode tubes 1 and 2 are connected to a high voltage power supply 6 for applying an AC voltage of 4 to 10 kV.

上記オゾン発生装置の電極管の一端から酸素を含む原料ガス7を供給し、高電圧電源6から両電極管1、2間に4〜10kVの交流電圧を印加して放電空間5において無声放電を生じさせ、他端よりオゾン化ガス8を排出する。原料ガス7としては、乾燥された酸素や空気が用いられている。   A source gas 7 containing oxygen is supplied from one end of the electrode tube of the ozone generator, and an AC voltage of 4 to 10 kV is applied between the electrode tubes 1 and 2 from the high voltage power source 6 to cause silent discharge in the discharge space 5. The ozonized gas 8 is discharged from the other end. As the source gas 7, dried oxygen or air is used.

絶縁層3が施された接地電極管1と高電圧電極管2との間に交流高電圧を印加して微小な放電空間5内に無声放電を生じせしめると、原料ガス中の酸素分子の一部が加速電子に従って酸素原子に変換され、この酸素原子と酸素分子とが結合することにより、オゾンが形成される。   When an alternating high voltage is applied between the ground electrode tube 1 and the high voltage electrode tube 2 provided with the insulating layer 3 to cause a silent discharge in the minute discharge space 5, one of oxygen molecules in the source gas is generated. The portion is converted into oxygen atoms according to the accelerated electrons, and the oxygen atoms and oxygen molecules are combined to form ozone.

酸素分子をオゾン化する微小な放電空間5の距離は、絶縁層3が施された接地電極管1の内径寸法と高電圧電極管2の外形寸法との差によって形成されるものであり、放電空間5の距離の維持と高電圧電極管2の支持とは、高電圧電極管2の両端に複数個設置されたスペーサ4により行なわれている。これらスペーサ4は、高電圧電極管2に溶接等で固定されている。
特開2006−45037号公報 特開平4−214003号公報
The distance of the minute discharge space 5 that ozonizes oxygen molecules is formed by the difference between the inner diameter dimension of the ground electrode tube 1 provided with the insulating layer 3 and the outer dimension dimension of the high voltage electrode tube 2. The maintenance of the distance of the space 5 and the support of the high voltage electrode tube 2 are performed by a plurality of spacers 4 installed at both ends of the high voltage electrode tube 2. These spacers 4 are fixed to the high voltage electrode tube 2 by welding or the like.
JP 2006-45037 A JP-A-4-214003

しかしながら、上記したようにスペーサ4で放電空間5を維持しているオゾン発生装置は、スペーサ4の厚みと放電空間5の間隔とがほぼ同じであるため、内筒となる高電圧電極管2を外筒となる接地電極管1内に挿入する作業が非常に困難であった。高電圧電極管2を接地電極管1内に無理に挿入しようとすると、高電圧電極管2に溶接固定したスペーサ4が接地電極管1の内面と接触し、スペーサ4が外れてしまう恐れがある。   However, as described above, the ozone generator that maintains the discharge space 5 with the spacer 4 has substantially the same thickness as the spacer 4 and the interval between the discharge spaces 5, so that the high-voltage electrode tube 2 that forms the inner cylinder is provided. The operation of inserting into the grounded electrode tube 1 serving as an outer cylinder was very difficult. If the high voltage electrode tube 2 is forcibly inserted into the ground electrode tube 1, the spacer 4 welded and fixed to the high voltage electrode tube 2 may come into contact with the inner surface of the ground electrode tube 1 and the spacer 4 may come off. .

一方、高電圧電極管2を接地電極管1内に挿入するために、スペーサ4の寸法を小さくすると、図8のように横置きされたオゾン発生装置では、内筒となる高電圧電極管2が外筒となる接地電極管1に対して電極管の下部側に偏芯した状態で配置され、放電空間5は管上部の空隙と管下部の空隙が不均一になり、オゾン発生特性を低下させる。   On the other hand, if the size of the spacer 4 is reduced in order to insert the high voltage electrode tube 2 into the ground electrode tube 1, the high voltage electrode tube 2, which is an inner cylinder, in the ozone generator horizontally disposed as shown in FIG. 8. Is arranged in an eccentric state on the lower side of the electrode tube with respect to the grounded electrode tube 1 serving as an outer cylinder, and in the discharge space 5, the gap at the upper part of the tube and the gap at the lower part of the tube are non-uniform, thereby reducing the ozone generation characteristics Let

また、内筒となる高電圧電極管2の挿入を容易にするために、管上部のスペーサ4aを設置せず、管下部のスペーサ4bだけの2点で放電空間5を維持しようとした場合、管上方の放電空間を正確に維持することができず、これについてもオゾン発生特性を低下させる原因になる。   Further, in order to facilitate the insertion of the high-voltage electrode tube 2 serving as the inner cylinder, when the discharge space 5 is to be maintained at two points only by the spacer 4b at the bottom of the tube without installing the spacer 4a at the top of the tube, The discharge space above the tube cannot be accurately maintained, and this also causes a decrease in ozone generation characteristics.

他方、スペーサ4を管長手方向に延出して、スペーサ4の管長手方向の断面積が大きすぎると、ガスの流れを阻害するので、圧力損失が増大して、オゾン発生特性を低下させることとなる。   On the other hand, if the spacer 4 is extended in the longitudinal direction of the pipe and the cross-sectional area of the spacer 4 in the longitudinal direction of the pipe is too large, the gas flow is hindered. Become.

また、スペーサにばね部材を使用し、放電空間の間隔を維持する提案がされている(例えば、特許文献2参照)。特許文献2記載のオゾン発生装置では、ばね部材の自由端部が誘電体に対してほぼ接線方向に向いていて、外部電極の内壁に接している。しかしながら、ガスの流れ方向である電極管長手方向に対し、スペーサとして使用しているばね部材の断面積が大きくなるので、ガスの流れを阻害して圧力損失となり、オゾン発生効率が低下するおそれがある。また、ばね部材は、まっすぐ、折り畳まれたもの、端部を折り曲げられたもの、T形、H形の形状のものであり、ばね材自体が大きく変形することはない。内部電極挿入前、これらのばね部材は中央部1点のみで内部電極に接しており、端部はどこにも接していない。これは、ばね部材の曲げ量を微小にするためであるが、これでは、内部電極挿入時に電極管内部とばね部材が接触し、ばね部材が外れてしまうおそれがある。   Moreover, the proposal which maintains a space | interval of discharge space using a spring member for a spacer is made (for example, refer patent document 2). In the ozone generator described in Patent Document 2, the free end of the spring member is substantially tangential to the dielectric and is in contact with the inner wall of the external electrode. However, since the cross-sectional area of the spring member used as the spacer is larger with respect to the longitudinal direction of the electrode tube, which is the gas flow direction, there is a risk that the gas flow will be hindered and pressure loss will occur, resulting in a decrease in ozone generation efficiency. is there. Further, the spring member is straight, folded, end-bent, or T-shaped or H-shaped, and the spring material itself is not greatly deformed. Before inserting the internal electrode, these spring members are in contact with the internal electrode at only one central portion, and the end portions are not in contact with anything. This is to make the amount of bending of the spring member very small. However, in this case, when the internal electrode is inserted, the inside of the electrode tube and the spring member may come into contact with each other, and the spring member may come off.

本発明は、かかる点に鑑みてなされたものであり、高電圧電極管と接地電極管のような二重筒構造の放電空間であっても間隙を容易に均一に維持することができ、かつ接地電極管内に高電圧電極管を容易に挿入することができ、かつオゾン発生効率を低下させない無声放電形のオゾン発生装置を提供することを目的とする。   The present invention has been made in view of such points, and even in a discharge space having a double cylinder structure such as a high voltage electrode tube and a ground electrode tube, the gap can be easily maintained uniformly, and An object of the present invention is to provide a silent discharge type ozone generator in which a high voltage electrode tube can be easily inserted into a ground electrode tube and the ozone generation efficiency is not lowered.

本発明のオゾン発生装置は、接地電極が形成される外側電極管と、前記外側電極管内に挿入して配置され高圧電極が形成される内側電極管と、前記外側電極管及び前記内側電極管の互いの対向面のいずれか一方に形成された誘電体層と、前記外側電極管と前記内側電極管との間であって円周方向の複数個所に配設され放電空間を形成する複数のスペーサと、前記外側電極管と前記内側電極管との間に交流電圧を印加する交流電圧源とを備え、前記複数のスペーサは、両電極管の管軸中心を挟んで一方の側に配置される第1のスペーサと、他方の側に配置される第2のスペーサとからなり、前記第1のスペーサは、熱膨張係数の異なる複数の金属が張り合わされた構造を有し、自由端を確保した状態で前記外側電極管又は前記内側電極管のいずれかに固定され、前記放電空間での放電電流により加熱されて前記自由端が管径方向に変形することを特徴とする。   The ozone generator according to the present invention includes an outer electrode tube in which a ground electrode is formed, an inner electrode tube that is inserted into the outer electrode tube and is formed with a high voltage electrode, and the outer electrode tube and the inner electrode tube. Dielectric layers formed on either one of the opposing surfaces, and a plurality of spacers disposed between the outer electrode tube and the inner electrode tube at a plurality of locations in the circumferential direction to form discharge spaces And an AC voltage source that applies an AC voltage between the outer electrode tube and the inner electrode tube, and the plurality of spacers are arranged on one side with the tube axis centers of both electrode tubes interposed therebetween. The first spacer is composed of a first spacer and a second spacer disposed on the other side, and the first spacer has a structure in which a plurality of metals having different thermal expansion coefficients are bonded to each other, thereby securing a free end. Either the outer electrode tube or the inner electrode tube in a state Is crab fixed, the free end is heated by the discharge current in the discharge space, characterized in that the deformation in the tube diameter direction.

この構成によれば、両電極管の管軸中心を挟んで第1のスペーサと第2のスペーサとが配置され、第1のスペーサは放電空間での放電による熱を受けて自由端が管径方向に変形するので、外側電極管内に内側電極管を挿入し又は取り外す作業時には第1のスペーサが変形していないので第1のスペーサと対向面との間には隙間が形成されている。このため、組み立て又は分解作業時には第1のスペーサの寸法が小さく、外側電極管に対する内側電極管の挿入又は取り外しをスムーズに行うことができる。しかも、組み立て後の運転時には、第1のスペーサは放電電流により加熱されて自由端が管径方向に変形するので、第1のスペーサと対向面との間に形成されていた隙間がなくなり、第1のスペーサが対向する一方の電極管の面を押圧し、第1及び第2のスペーサにより放電空間が維持される。このため、第1のスペーサの変形時の管径方向の寸法と第2のスペーサの管径方向の寸法とを調整することで、運転時には外側電極管と内側電極管とを自動的に同軸位置に位置決めでき、放電空間における電極管長手方向と直交する方向の距離が均一化され、オゾン発生効率の低下を防止できる。   According to this configuration, the first spacer and the second spacer are disposed across the tube axis center of both electrode tubes, and the first spacer receives heat from the discharge in the discharge space and the free end has a tube diameter. Since the first spacer is not deformed during the operation of inserting or removing the inner electrode tube from the outer electrode tube, a gap is formed between the first spacer and the facing surface. For this reason, the size of the first spacer is small during assembly or disassembly work, and the inner electrode tube can be smoothly inserted or removed from the outer electrode tube. In addition, during operation after assembly, the first spacer is heated by the discharge current, and the free end is deformed in the tube radial direction. One spacer presses the surface of one of the electrode tubes facing, and the discharge space is maintained by the first and second spacers. For this reason, the outer electrode tube and the inner electrode tube are automatically coaxially positioned during operation by adjusting the dimension in the tube diameter direction when the first spacer is deformed and the dimension in the tube diameter direction of the second spacer. The distance in the direction perpendicular to the longitudinal direction of the electrode tube in the discharge space can be made uniform, and a decrease in ozone generation efficiency can be prevented.

上記オゾン発生装置において、前記第1のスペーサは、前記放電空間での放電による熱変形前の厚さが、前記放電空間の距離よりも小さく、前記第2のスペーサは、前記放電空間の距離と同じ厚さを有する単一金属からなり、前記第1のスペーサと同一電極管に固定される構成とすることができる。   In the ozone generator, the thickness of the first spacer before thermal deformation due to discharge in the discharge space is smaller than the distance of the discharge space, and the second spacer has a distance of the discharge space. It can be made of a single metal having the same thickness and fixed to the same electrode tube as the first spacer.

第2のスペーサは、放電空間の距離と同じ厚さを有していて、かつ熱膨張差による管径方向の変形は実質的にない。したがって、第2のスペーサに対して管軸中心を挟んで他方の側に配置された第1のスペーサだけが放電熱で管径方向に変形して対向する電極管を管径方向に押圧し、外側電極管と内側電極管とを同軸位置に位置決めする。これにより、第2のスペーサの厚さが放電空間の距離となるので、放電空間の距離を高い精度で維持することができる。   The second spacer has the same thickness as the distance of the discharge space, and there is substantially no deformation in the tube diameter direction due to the difference in thermal expansion. Therefore, only the first spacer disposed on the other side across the tube axis center with respect to the second spacer is deformed in the tube radial direction by the discharge heat and presses the opposing electrode tube in the tube radial direction, The outer electrode tube and the inner electrode tube are positioned at a coaxial position. Thereby, since the thickness of the second spacer becomes the distance of the discharge space, the distance of the discharge space can be maintained with high accuracy.

上記オゾン発生装置において、前記第1のスペーサは、スペーサ中央部又は片端部が前記外側電極管又は前記内側電極管のいずれかに固定される構成とすることができる。スペーサ中央部が固定される構成であれば、両端部が自由端となって加熱によって管径方向に変位する。また、スペーサ片端部が固定される構成であれば、固定端部と反対側の端部が自由端となって放電熱によって管径方向に変位する。   In the ozone generator, the first spacer may be configured such that a spacer central portion or one end portion is fixed to either the outer electrode tube or the inner electrode tube. If it is the structure which a spacer center part is fixed, both ends will become a free end and will be displaced to a pipe diameter direction by heating. If the spacer one end is fixed, the end opposite to the fixed end becomes a free end and is displaced in the tube radial direction by the discharge heat.

第1のスペーサは、熱膨張係数の異なる第1の金属層と第2の金属層とを張り合わせた二重構造を有し、前記第1の金属層が電極管側に固定され、前記第1の金属層の熱膨張係数が大で、前記第2の金属層の熱膨張係数が小である。このようなバイメタル構造にすることで、自由端を管径方向に変位させることができる。   The first spacer has a double structure in which a first metal layer and a second metal layer having different thermal expansion coefficients are bonded together, and the first metal layer is fixed to the electrode tube side, and the first spacer is The metal layer has a large coefficient of thermal expansion, and the second metal layer has a small coefficient of thermal expansion. By using such a bimetal structure, the free end can be displaced in the tube diameter direction.

上記オゾン発生装置において、前記外側電極管内に前記内側電極管を挿入してなる電極管は、電極管長手方向が水平方向となる横向きに設置され、前記第1のスペーサは、電極管の円周方向における上部に配置され、前記第2のスペーサは、電極管の円周方向における下部に配置された構成とすることができる。   In the ozone generator, an electrode tube formed by inserting the inner electrode tube into the outer electrode tube is installed in a horizontal direction in which the longitudinal direction of the electrode tube is a horizontal direction, and the first spacer is a circumference of the electrode tube. The second spacer may be arranged at the lower part in the circumferential direction of the electrode tube.

上記オゾン発生装置において、前記外側電極管及び前記内側電極管は、筒状をなす金属材からなり、前記外側電極管の内面に前記誘電体層が形成され、前記内側電極管の外周面に前記第1及び第2のスペーサを溶接固定した構成とすることができる。   In the ozone generator, the outer electrode tube and the inner electrode tube are made of a cylindrical metal material, the dielectric layer is formed on the inner surface of the outer electrode tube, and the outer electrode tube has an outer peripheral surface. It can be set as the structure which welded and fixed the 1st and 2nd spacer.

上記オゾン発生装置において、前記外側電極管は、筒状をなす金属材からなり、前記内側電極管は、誘電体からなり一方端が開放した絶縁管と、前記絶縁管の内周面に形成された高圧電極とからなり、前記外側電極管の内周面に前記第1及び第2のスペーサを溶接固定した構成とすることができる。   In the ozone generator, the outer electrode tube is made of a metal material having a cylindrical shape, and the inner electrode tube is made of a dielectric and is formed on an inner peripheral surface of the insulating tube having one end opened. The first and second spacers can be welded and fixed to the inner peripheral surface of the outer electrode tube.

上記オゾン発生装置において、前記外側電極管及び前記内側電極管は、筒状をなす金属材からなり、前記内側電極管の外周面に前記誘電体層が形成され、前記外側電極管の内周面に前記第1及び第2のスペーサを溶接固定した構成とすることができる。   In the ozone generator, the outer electrode tube and the inner electrode tube are made of a metal material having a cylindrical shape, the dielectric layer is formed on an outer peripheral surface of the inner electrode tube, and an inner peripheral surface of the outer electrode tube The first and second spacers may be fixed by welding.

本発明によれば、高電圧電極管と接地電極管のような二重筒構造の放電空間であっても間隙を容易に均一に維持することができ、かつ接地電極管内に高電圧電極管を容易に挿入することができ、かつオゾン発生効率の低下を防止できる。   According to the present invention, even in a discharge space having a double cylinder structure such as a high voltage electrode tube and a ground electrode tube, the gap can be easily maintained uniformly, and the high voltage electrode tube is provided in the ground electrode tube. It can be easily inserted, and a decrease in ozone generation efficiency can be prevented.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
本発明の実施の形態は、無声放電方式で二重円筒型のオゾン発生装置である。全体構成は、図8,9に示すオゾン発生装置と同一であり、放電空間を維持するためのスペーサの構造が異なる。図1は本実施の形態に係るオゾン発生装置を図8におけるA-A線矢視方向から見た断面模式図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
The embodiment of the present invention is a silent discharge type double cylinder type ozone generator. The overall configuration is the same as that of the ozone generator shown in FIGS. 8 and 9, and the structure of the spacer for maintaining the discharge space is different. FIG. 1 is a schematic cross-sectional view of the ozone generator according to the present embodiment as viewed from the direction of arrows AA in FIG.

接地電極管1は、低炭素鋼またはステンレス合金鋼の金属材料からなる円筒管であり、その内面表面には絶縁材料であるガラスやセラミックスを鋼材の機械的特性に合わせた下地層の上にオゾン発生装置に適した低誘電率、低誘電損失でかつ温度的に安定した電気特性を持つ絶縁層3が形成されている。   The ground electrode tube 1 is a cylindrical tube made of a metal material of low carbon steel or stainless alloy steel. On the inner surface, glass or ceramics, which is an insulating material, is formed on an underlayer that matches the mechanical properties of the steel material. An insulating layer 3 having a low dielectric constant, a low dielectric loss, and a temperature stable electrical property suitable for the generator is formed.

高電圧電極管2は、低炭素鋼またはステンレス合金鋼の金属材料からなる円筒管であり、その両端部には、溶接あるいはシボリ加工により形成した蓋が設けられている。この高電圧電極管2の蓋には、不図示の高電圧給電用端子が設けられている。   The high voltage electrode tube 2 is a cylindrical tube made of a metal material of low carbon steel or stainless alloy steel, and lids formed by welding or shivering are provided at both ends thereof. A high voltage power supply terminal (not shown) is provided on the lid of the high voltage electrode tube 2.

横置きされた接地電極管1の内面と高電圧電極管2の外周面との間には上部スペーサ4a及び下部スペーサ4bが配置され、1mm前後の微小な放電空間5を形成している。上部スペーサ4a及び下部スペーサ4bは、外形が長方形をなしており、放電空間5の距離を維持するために、高電圧電極管2の両端部および中央部に円周方向の各位置に溶接により固定されている。なお、図8では高電圧電極管2の中央部に配置したスペーサは図示していない。   An upper spacer 4a and a lower spacer 4b are arranged between the inner surface of the horizontally placed ground electrode tube 1 and the outer peripheral surface of the high voltage electrode tube 2 to form a minute discharge space 5 of about 1 mm. The upper spacer 4a and the lower spacer 4b have a rectangular outer shape, and are fixed to respective positions in the circumferential direction at both ends and the center of the high-voltage electrode tube 2 in order to maintain the distance of the discharge space 5 by welding. Has been. In FIG. 8, the spacer disposed at the center of the high voltage electrode tube 2 is not shown.

横置きされた電極管(接地電極管1及びそこに挿入された高電圧電極管2)において、管軸中心を挟んで一方の側となる上側に2つの上部スペーサ4aが配置され、他方の側となる下側に2つの下部スペーサ4bが配置されている。   In the horizontally placed electrode tube (the ground electrode tube 1 and the high voltage electrode tube 2 inserted therein), two upper spacers 4a are arranged on the upper side which is one side across the tube axis center, and the other side. Two lower spacers 4b are arranged on the lower side.

上部スペーサ4aは、熱膨張係数の異なる2種類の金属層11,12を張り合わせて構成される。高電圧電極管2に固定される1層目の金属層11は、熱膨張係数が14〜16×10−6/℃のSUS304またはSUS316のステンレス合金で構成することができる。2層目の金属層12は、熱膨張係数が3〜6×10−6/℃の低膨張金属インバー、コバールの鉄−ニッケル合金で構成することができる。これらの金属層11、12を重ね合わせ、冷間または加熱圧延によって接合された2層の板材とする。上部スペーサ4aは、この2層の板材をスペーサとなる様に一定形状に切断、加工して作製される。また、上部スペーサ4aは、放電空間5よりも薄い厚さの板厚に加工し、高電圧電極管2の外周面の上部にスポット溶接機により溶接固定される。上部スペーサ4aの溶接方向は、高電圧電極管2に接する側を熱膨張係数の大きいステンレス合金側の金属層11とする。金属層11の溶接位置は、長方形の中央部であり、上部スペーサ4aの長辺方向の両端部が自由端を形成する。   The upper spacer 4a is configured by bonding two types of metal layers 11 and 12 having different thermal expansion coefficients. The first metal layer 11 fixed to the high voltage electrode tube 2 can be made of SUS304 or SUS316 stainless alloy having a thermal expansion coefficient of 14 to 16 × 10 −6 / ° C. The second metal layer 12 can be composed of a low expansion metal invar having a thermal expansion coefficient of 3 to 6 × 10 −6 / ° C., or a Kovar iron-nickel alloy. These metal layers 11 and 12 are overlapped to form a two-layer plate material joined by cold or hot rolling. The upper spacer 4a is produced by cutting and processing the two-layer plate material into a fixed shape so as to become a spacer. Further, the upper spacer 4a is processed to have a thickness smaller than that of the discharge space 5, and is welded and fixed to the upper portion of the outer peripheral surface of the high voltage electrode tube 2 by a spot welder. As for the welding direction of the upper spacer 4a, the side in contact with the high-voltage electrode tube 2 is the metal layer 11 on the stainless alloy side having a large thermal expansion coefficient. The welding position of the metal layer 11 is a rectangular central portion, and both end portions in the long side direction of the upper spacer 4a form free ends.

ここで使用されるスペーサ材は、放電やオゾンに耐えられるものでなければならない。従って、1層目の金属層11の金属材料は、前記に上げたステンレス合金以外に、熱膨張係数が10×10−6/℃以上の耐熱合金であれば良く、ニッケルおよびニッケルを含むモネル、インコネル、ハステロイ、およびクロム合金でも良い。また2層目の金属層12の金属材料は、熱膨張係数が3〜6×10−6/℃の低膨張金属で1層目の金属層11と同様にニッケル、クロムまたはコバルトを含む耐熱性のある金属合金が良い。   The spacer material used here must be able to withstand discharge and ozone. Therefore, the metal material of the first metal layer 11 may be a heat-resistant alloy having a thermal expansion coefficient of 10 × 10 −6 / ° C. or more in addition to the above-described stainless steel alloy, and includes monel containing nickel and nickel, Inconel, Hastelloy, and chromium alloys may be used. Further, the metal material of the second metal layer 12 is a low expansion metal having a thermal expansion coefficient of 3 to 6 × 10 −6 / ° C., and similarly to the first metal layer 11, heat resistance including nickel, chromium or cobalt. A metal alloy with good is good.

下部スペーサ4bは、接地電極管1と高電圧電極管2との間に形成される放電空間5が均一な間隔となる必要であることから、放電空間5の距離と同じ厚さを有している。下側のスペーサ4bは、単一金属のSUS304またはSUS316のステンレス合金の板厚を放電空間5の距離と同じ厚さに加工して作製される。下部スペーサ4bは高電圧電極管2の外周面であって管軸中心を挟んで上部スペーサ4aと対向する位置にスポット溶接機により溶接固定される。   The lower spacer 4b has the same thickness as the distance of the discharge space 5 because the discharge space 5 formed between the ground electrode tube 1 and the high-voltage electrode tube 2 needs to be evenly spaced. Yes. The lower spacer 4 b is manufactured by processing a plate thickness of a single metal SUS304 or SUS316 stainless alloy to the same thickness as the distance of the discharge space 5. The lower spacer 4b is welded and fixed to the outer peripheral surface of the high voltage electrode tube 2 by a spot welder at a position facing the upper spacer 4a across the tube axis center.

このように、高電圧電極管2表面であって円周方向の下部に設置された下部スペーサ4bが放電空間5と同じ厚さである一方、高電圧電極管2表面であって円周方向の上部に設置された上部スペーサ4aが放電空間5よりも板厚が薄くされている。このため、接地電極管1内に高電圧電極管2を挿入する場合、接地電極管1と上部スペーサ4aとの間に隙間が生じる。その結果、高電圧電極管2の挿入が容易に行えることとなる。この隙間の距離は、0.05〜0.3mmであった。   Thus, the lower spacer 4b installed on the surface of the high-voltage electrode tube 2 and in the lower portion in the circumferential direction has the same thickness as the discharge space 5, while the surface of the high-voltage electrode tube 2 is disposed in the circumferential direction. The upper spacer 4 a installed at the upper part is thinner than the discharge space 5. For this reason, when the high voltage electrode tube 2 is inserted into the ground electrode tube 1, a gap is generated between the ground electrode tube 1 and the upper spacer 4a. As a result, the high voltage electrode tube 2 can be easily inserted. The distance of this gap was 0.05 to 0.3 mm.

次に、以上のように構成された本実施の形態に係るオゾン発生装置の動作について説明する。接地電極管1に高電圧電極管2を挿入した電極間に、高電圧電源6より交流高電圧を印加すると、放電空間5で無声放電が開始され、一部放電電流が上部スペーサ4aを通して流れ、この電流が上部スペーサ4aを加熱し温度が上昇する。この温度上昇により、上部スペーサ4aを構成する2層の金属層11,12の膨張係数差により、2層の金属層11,12間に膨張差が生じ、この膨張差により2層金属板である上部スペーサ4aが、図2に示すように管径方向に変形(湾曲)する。金属層11の中央部が溶接固定されているので、両端部の自由端が管径方向へ変化する。この変形した管径方向の距離は、0.05〜0.3mm以上であり、接地電極管1の内面に上部スペーサ4aの自由端部が接することとなる。上部スペーサ4aの管径方向への湾曲する変位量は、張り合わされる金属材料の熱膨張係数、板厚、スペーサに長さおよび巾および高電圧電極管に設置する接地部と湾曲するスペーサ端部の距離によって、放電空間の距離によって設計し、決定される。   Next, operation | movement of the ozone generator which concerns on this Embodiment comprised as mentioned above is demonstrated. When an AC high voltage is applied from the high voltage power source 6 between the electrodes in which the high voltage electrode tube 2 is inserted into the ground electrode tube 1, a silent discharge is started in the discharge space 5, and a part of the discharge current flows through the upper spacer 4a. This current heats the upper spacer 4a and the temperature rises. Due to this temperature rise, a difference in expansion coefficient is generated between the two metal layers 11 and 12 due to the difference in expansion coefficient between the two metal layers 11 and 12 constituting the upper spacer 4a. The upper spacer 4a is deformed (curved) in the tube diameter direction as shown in FIG. Since the central part of the metal layer 11 is fixed by welding, the free ends of both end parts change in the pipe diameter direction. The deformed distance in the tube diameter direction is 0.05 to 0.3 mm or more, and the free end portion of the upper spacer 4a is in contact with the inner surface of the ground electrode tube 1. The amount of displacement of the upper spacer 4a in the tube diameter direction is the coefficient of thermal expansion of the metal material to be bonded, the plate thickness, the length and width of the spacer, and the end of the spacer that curves with the grounding portion installed in the high-voltage electrode tube The distance is designed and determined by the distance of the discharge space.

両電極間の高電圧印加を止め、放電空間5での放電が停止されると、上部スペーサ4aに流れる電流も無くなることから、温度が低下し、上部スペーサ4aの変形が戻り、高電圧電極管2の上部スペーサ4aと接地電極管1との間に隙間が生じ、高電圧電極管2を接地電極管1から容易に取り出すことができる。   When the high voltage application between the electrodes is stopped and the discharge in the discharge space 5 is stopped, the current flowing through the upper spacer 4a is also eliminated, so that the temperature is lowered and the deformation of the upper spacer 4a is restored. 2 is formed between the upper spacer 4a and the ground electrode tube 1, and the high voltage electrode tube 2 can be easily taken out from the ground electrode tube 1.

このように、本実施の形態によれば、高電圧電極管2の円周方向に設置される複数のスペーサの内、上部スペーサ4aの熱変形前の厚さを放電空間5の距離より薄いものを設置したので、スペーサを高電圧電極管2に溶接等で固着したときは、上部スペーサ4aが伸びた状態であり、接地電極管1に高電圧電極管2の挿入時に、上部スペーサ4aの高さは所定の放電空間5の距離より小さくなることから、高電圧電極管2の円周上部の上部スペーサ4aが接地電極管1内と接触することがなく、接地電極管1への高電圧電極管2の挿入が容易に行える。   As described above, according to the present embodiment, among the plurality of spacers installed in the circumferential direction of the high-voltage electrode tube 2, the thickness of the upper spacer 4 a before thermal deformation is thinner than the distance of the discharge space 5. When the spacer is fixed to the high voltage electrode tube 2 by welding or the like, the upper spacer 4a is in an extended state. When the high voltage electrode tube 2 is inserted into the ground electrode tube 1, the upper spacer 4a is Since the height is smaller than the distance of the predetermined discharge space 5, the upper spacer 4a on the circumference of the high voltage electrode tube 2 does not come into contact with the inside of the ground electrode tube 1, and the high voltage electrode to the ground electrode tube 1 is The tube 2 can be easily inserted.

また、オゾン発生のため、接地電極管1と高電圧電極管2の間に高電圧を印加し、放電空間5で放電が生じると、上部スペーサ4aは、熱膨張係数の異なる2枚の金属の張り合わせた板であることから、バイメタル効果により湾曲し、接地電極管1内面に接触する。これにより、円環状をなす放電空間5の距離が均一に維持され、かつ高電圧電極管2が保持される。放電を停止すると、スペーサ4の温度は低下し、上部スペーサ4aの湾曲は戻り、接地電極管1から離脱し、高電圧電極管2をスムーズに取り出すことができる。   In addition, when ozone is generated and a high voltage is applied between the ground electrode tube 1 and the high voltage electrode tube 2 and discharge occurs in the discharge space 5, the upper spacer 4a is formed of two metals having different thermal expansion coefficients. Since it is a laminated plate, it is bent by the bimetal effect and contacts the inner surface of the ground electrode tube 1. Thereby, the distance of the discharge space 5 which makes an annular shape is maintained uniformly, and the high voltage electrode tube 2 is held. When the discharge is stopped, the temperature of the spacer 4 decreases, the curvature of the upper spacer 4a returns, and the spacer 4 is detached from the ground electrode tube 1 so that the high voltage electrode tube 2 can be taken out smoothly.

なお、上部スペーサ4aだけでなく、下部スペーサ4bを上部スペーサ4aと同様のバイメタル構成としても良い。上部及び下部の区別をすることなく、すべてのスペーサ又は任意の一部のスペーサを上記バイメタル構成とすることで、接地電極管1への高電圧電極管2の挿入が容易に行える効果を得ることができる。   Note that not only the upper spacer 4a but also the lower spacer 4b may have a bimetal configuration similar to that of the upper spacer 4a. It is possible to easily insert the high-voltage electrode tube 2 into the ground electrode tube 1 by making all the spacers or any part of the spacers have the above bimetal configuration without distinguishing between the upper and lower portions. Can do.

また本実施の形態によれば、スペーサ4を高電圧電極管2に設置することにより、接地電極管1と高電圧電極管2との中心円精度が向上し、円周内の放電空間5での絶縁層3を介した無声放電が安定しかつ均一に行なわれる。   Further, according to the present embodiment, by installing the spacer 4 on the high voltage electrode tube 2, the accuracy of the center circle between the ground electrode tube 1 and the high voltage electrode tube 2 is improved, and the discharge space 5 in the circumference is improved. Silent discharge through the insulating layer 3 is performed stably and uniformly.

また、スペーサ4a,4bを小さいサイズに抑えることができるので、放電空間5におけるガスの流れを阻害することがなく、放電空間5を均一に維持できることから、安定してオゾン発生効率を改善できる。   Further, since the spacers 4a and 4b can be suppressed to a small size, the gas flow in the discharge space 5 is not hindered, and the discharge space 5 can be maintained uniformly, so that the ozone generation efficiency can be stably improved.

なお、図1に示す上部スペーサ4aは、1層目の金属層11の中央部を溶接固定していたが、1層目の金属層11と2層目の金属層12との膨張差によって変形可能な自由端が確保されれば溶接個所は限定されない。   The upper spacer 4a shown in FIG. 1 is welded and fixed at the center of the first metal layer 11, but is deformed by the difference in expansion between the first metal layer 11 and the second metal layer 12. If a possible free end is ensured, the welding point is not limited.

例えば、図3(a)に示すように、1層目の金属層11の片方の端部を溶接固定しても良い。この場合、図3(b)に示すように自由端は溶接固定されていない反対側の端部となる。このように、1層目の金属層11の片方の端部を溶接固定しても、上部スペーサ4aの変位により高電圧電極管2を接地電極管1と同軸位置に移動させることができる。   For example, as shown in FIG. 3A, one end of the first metal layer 11 may be fixed by welding. In this case, as shown in FIG.3 (b), a free end turns into the edge part of the other side which is not fixed by welding. Thus, even if one end of the first metal layer 11 is fixed by welding, the high voltage electrode tube 2 can be moved to the same position as the ground electrode tube 1 by the displacement of the upper spacer 4a.

本発明は、図4及び図5に示す二重筒型のオゾン発生装置にも適用可能である。
図4は、高電圧電極が形成される内部電極管がガラス管で構成されたオゾン発生装置の構成例を示す図である。接地電極管21はSUS金属管を加工して作製する。また、一端が開放したガラス管の内面に導電性の高圧電極23を形成(例えば、アルミニウムを蒸着)して絶縁管24を作製する。この絶縁管24を接地電極管21内に挿入し、スペーサ4で放電空間5を形成する。上部スペーサ4a及び下部スペーサ4bは、接地電極管21の内面に溶接固定される。なお、高電圧電源6は、高圧電極23に対して給電電極25を介して交流電圧を印加する。
The present invention is also applicable to the double cylinder type ozone generator shown in FIGS.
FIG. 4 is a diagram illustrating a configuration example of an ozone generator in which an internal electrode tube in which a high voltage electrode is formed is configured by a glass tube. The ground electrode tube 21 is manufactured by processing a SUS metal tube. Further, the conductive high voltage electrode 23 is formed on the inner surface of the glass tube whose one end is open (for example, aluminum is vapor-deposited) to produce the insulating tube 24. The insulating tube 24 is inserted into the ground electrode tube 21, and the discharge space 5 is formed by the spacer 4. The upper spacer 4a and the lower spacer 4b are fixed to the inner surface of the ground electrode tube 21 by welding. The high voltage power supply 6 applies an alternating voltage to the high voltage electrode 23 via the power supply electrode 25.

図5は高電圧電極が形成される内部電極管をセラミックまたはガラスで構成されたオゾン発生装置の構成例を示す図である。接地電極管21はSUS金属管を加工して作製する。高電圧電極管22の表面にセラミック又はガラスからなる絶縁層26を形成し、この高電圧電極管22を接地電極管21内に挿入し、スペーサ4で放電空間5を形成する。図1で示されるオゾン発生装置と同様に、上部スペーサ4a、下部スペーサ4bは、接地電極管21の内面に溶接固定される。   FIG. 5 is a diagram showing a configuration example of an ozone generator in which an internal electrode tube in which a high voltage electrode is formed is made of ceramic or glass. The ground electrode tube 21 is manufactured by processing a SUS metal tube. An insulating layer 26 made of ceramic or glass is formed on the surface of the high voltage electrode tube 22, the high voltage electrode tube 22 is inserted into the ground electrode tube 21, and the discharge space 5 is formed by the spacer 4. Similar to the ozone generator shown in FIG. 1, the upper spacer 4 a and the lower spacer 4 b are welded and fixed to the inner surface of the ground electrode tube 21.

図4及び図5に示すように構成されたオゾン発生装置において、少なくとも上部スペーサ4aを放電空間5の距離よりも小さい厚さを有するバイメタル構造とし、放電電流にて加熱して管径方向へ湾曲させる。   In the ozone generator configured as shown in FIGS. 4 and 5, at least the upper spacer 4a has a bimetal structure having a thickness smaller than the distance of the discharge space 5, and is heated by the discharge current and curved in the tube diameter direction. Let

本発明者は、上述した二重筒型のオゾン発生装置における放電空間の位置ズレとオゾン発生濃度との関係について検証した。以下に検証内容について説明する。   The inventor has examined the relationship between the displacement of the discharge space and the ozone generation concentration in the above-described double cylinder type ozone generator. The contents of verification will be described below.

図6は放電空間比とオゾン発生濃度との関係を示す図であり、図7は放電空間の距離比a:bを示す図である。図7に示すように、放電空間5は、接地電極管1の内径と高電圧電極管2の外径およびスペーサ4により、その放電空間の距離が決定される。管軸中心を挟んで上部の放電空間5aの距離をaとし、下部の放電空間5bの距離をbとしている。   FIG. 6 is a diagram showing the relationship between the discharge space ratio and the ozone generation concentration, and FIG. 7 is a diagram showing the distance ratio a: b of the discharge space. As shown in FIG. 7, the distance of the discharge space 5 is determined by the inner diameter of the ground electrode tube 1, the outer diameter of the high-voltage electrode tube 2, and the spacer 4. The distance of the upper discharge space 5a across the tube axis center is a, and the distance of the lower discharge space 5b is b.

放電空間5のオゾン発生条件の最適な距離0.2mmから1mmの範囲(実際のオゾン発生装置では、酸素0.3mm、空気0.5mmである)において、上部の放電空間5aと下部の放電空間5bとの距離比a:bを1:1で、オゾン発生濃度を100%とした(オゾン発生装置の注入電力および酸素または空気のガス量一定とする)。放電空間5aと5bの距離を変えた結果、オゾン発生濃度は、図6に示す様にa:bの比率が1:1よりaまたはbが増加すると、すなわち高電圧電極管2の中心位置が接地電極管1の中心位置からズレて放電空間5の距離のaまたはbが広く、または狭くなると、オゾンの発生濃度が低下することが判る。なお、冷却方式やガス空気、酸素および流量、注入電力条件により、発生濃度が異なるため%表示とした。   The upper discharge space 5a and the lower discharge space are within the optimum distance of 0.2 mm to 1 mm of ozone generation conditions in the discharge space 5 (in the actual ozone generator, oxygen is 0.3 mm and air is 0.5 mm). The distance ratio a: b to 5b was 1: 1, and the ozone generation concentration was 100% (the injection power of the ozone generator and the amount of oxygen or air gas were constant). As a result of changing the distance between the discharge spaces 5a and 5b, as shown in FIG. 6, the ozone generation concentration is such that the ratio of a: b increases from 1: 1 to a or b, that is, the center position of the high-voltage electrode tube 2 changes. It can be seen that when the distance a or b of the discharge space 5 is deviated from the center position of the ground electrode tube 1 and becomes narrower or narrower, the ozone generation concentration decreases. Since the generated concentration varies depending on the cooling method, gas air, oxygen, flow rate, and injection power conditions, it is indicated in%.

このオゾン発生濃度の低下原因として、以下のことが考察される。
ガス流量の偏流で、放電空間が広い場合には、多くのガスが流れ、より多くのガスが流れるため、放電空間でのガスの放電滞留時間が短く、そのため酸素の解離やオゾン生成が低下し、これにともないオゾン発生濃度の低下も示す。狭い放電空間では、ガスの流れが悪く、生成効率が低下する。
The following is considered as a cause of the decrease in the ozone generation concentration.
When the discharge space is wide due to the drift of the gas flow rate, more gas flows and more gas flows, so the discharge residence time of the gas in the discharge space is short, which reduces oxygen dissociation and ozone generation. Along with this, a decrease in ozone generation concentration is also shown. In a narrow discharge space, the gas flow is poor and the production efficiency is reduced.

一方、放電空間が広がることにより、他方の狭い放電空間の接地電極管と高電圧電極管とに印加される高周波電源からの電圧分担に差が生じ、発生効率が高い条件とする放電空間5の距離よりも広いと放電密度が小さくなり、オゾンの生成効率が低下する。   On the other hand, when the discharge space is widened, a difference occurs in the voltage sharing from the high-frequency power source applied to the ground electrode tube and the high-voltage electrode tube in the other narrow discharge space, and the discharge space 5 having a high generation efficiency is used. If it is wider than the distance, the discharge density becomes small, and the ozone generation efficiency decreases.

他方、狭いと放電の集中が生じ、放電空間内でのオゾンの効率的な生成が妨げられる。更に放電空間が狭くなると、パッシェンの法則により、放電しない部分が生じ、放電空間内での均一なオゾン発生ができなくなる。   On the other hand, if it is narrow, the concentration of discharge occurs, preventing efficient generation of ozone in the discharge space. When the discharge space is further narrowed, a portion that does not discharge occurs due to Paschen's law, and uniform ozone generation in the discharge space becomes impossible.

従って、接地電極管の中心に対し、高電圧電極管もその中心に位置し、放電空間が均一である場合には、オゾン濃度は、最も高く、発生効率も良い。図6に示す様に、電極管の位置がズレ、すなわち放電空間の距離が偏ると、オゾン発生濃度の高い最適な放電空間の距離からズレが生じ、更には有効な放電面積が低下し、オゾン発生濃度並びに発生効率が低下する。   Therefore, when the high voltage electrode tube is located at the center of the ground electrode tube and the discharge space is uniform, the ozone concentration is the highest and the generation efficiency is good. As shown in FIG. 6, when the position of the electrode tube is shifted, that is, when the distance of the discharge space is biased, a shift occurs from the optimum distance of the discharge space where the ozone generation concentration is high, and further, the effective discharge area is reduced. The generation concentration and generation efficiency are reduced.

よって、高いオゾン発生濃度および発生効率を維持するには、接地電極管1と高電圧電極管2の放電空間5の距離は、円周方向の全周に渡って均等であることが必要である。   Therefore, in order to maintain a high ozone generation concentration and generation efficiency, the distance between the discharge space 5 of the ground electrode tube 1 and the high voltage electrode tube 2 needs to be uniform over the entire circumference in the circumferential direction. .

一実施の形態に係るオゾン発生装置を図8のA-A線矢視方向から見た断面模式図The cross-sectional schematic diagram which looked at the ozone generator which concerns on one Embodiment from the AA arrow direction of FIG. 図1に示すオゾン発生装置において上部スペーサが変形した状態を示す図The figure which shows the state which the upper spacer deform | transformed in the ozone generator shown in FIG. (a)スペーサの片側を溶接固定した変形例において加熱前の電極管の部分断面図、(b)同変形例において加熱後の電極管の部分断面図(A) Partial sectional view of the electrode tube before heating in the modified example in which one side of the spacer is fixed by welding, (b) Partial sectional view of the electrode tube after heating in the modified example ガラス管型のオゾン発生装置の構成図Configuration diagram of glass tube type ozone generator セラミック管型のオゾン発生装置の構成図Configuration diagram of ceramic tube type ozone generator 放電空間比とオゾン発生濃度との関係を示す図Diagram showing the relationship between discharge space ratio and ozone generation concentration 放電空間の距離比a:bを示す図Figure showing distance ratio a: b of discharge space 無声放電型のオゾン発生装置の断面側視図Cross section side view of silent discharge type ozone generator 無声放電型のオゾン発生装置の管径側断面図Pipe diameter side cross section of silent discharge type ozone generator

符号の説明Explanation of symbols

1 接地電極管
2 高電圧電極管
3 絶縁層
4a 上部スペーサ
4b 下部スペーサ
5 放電空間
6 高電圧電源
7 原料ガス
8 オゾン化ガス
11 金属層(第1の層)
12 金属層(第2の層)
13 溶接部

DESCRIPTION OF SYMBOLS 1 Ground electrode tube 2 High voltage electrode tube 3 Insulating layer 4a Upper spacer 4b Lower spacer 5 Discharge space 6 High voltage power source 7 Source gas 8 Ozonized gas 11 Metal layer (1st layer)
12 Metal layer (second layer)
13 Welded part

Claims (8)

接地電極が形成される外側電極管と、前記外側電極管内に挿入して配置され高圧電極が形成される内側電極管と、前記外側電極管及び前記内側電極管の互いの対向面のいずれか一方に形成された誘電体層と、前記外側電極管と前記内側電極管との間であって円周方向の複数個所に配設され放電空間を形成する複数のスペーサと、前記外側電極管と前記内側電極管との間に交流電圧を印加する交流電圧源とを備え、
前記複数のスペーサは、両電極管の管軸中心を挟んで一方の側に配置される第1のスペーサと、他方の側に配置される第2のスペーサとからなり、
前記第1のスペーサは、熱膨張係数の異なる複数の金属が張り合わされた構造を有し、自由端を確保した状態で前記外側電極管又は前記内側電極管のいずれかに固定され、前記放電空間での放電電流により加熱されて前記自由端が管径方向に変形する、
ことを特徴とするオゾン発生装置。
One of an outer electrode tube on which a ground electrode is formed, an inner electrode tube that is inserted into the outer electrode tube to form a high-voltage electrode, and an opposing surface of the outer electrode tube and the inner electrode tube A plurality of spacers formed between the outer electrode tube and the inner electrode tube at a plurality of locations in the circumferential direction to form discharge spaces; the outer electrode tube; An AC voltage source for applying an AC voltage to the inner electrode tube,
The plurality of spacers comprises a first spacer disposed on one side across the tube axis center of both electrode tubes, and a second spacer disposed on the other side,
The first spacer has a structure in which a plurality of metals having different thermal expansion coefficients are bonded to each other, and is fixed to either the outer electrode tube or the inner electrode tube with a free end secured, and the discharge space The free end is deformed in the tube radial direction by being heated by the discharge current at
An ozone generator characterized by that.
前記第1のスペーサは、前記放電空間での放電による熱変形前の厚さが、前記放電空間の距離よりも小さく、
前記第2のスペーサは、前記放電空間の距離と同じ厚さを有する単一金属からなり、前記第1のスペーサと同一電極管に固定されたことを特徴とする請求項1記載のオゾン発生装置。
The thickness of the first spacer before thermal deformation due to discharge in the discharge space is smaller than the distance of the discharge space,
2. The ozone generator according to claim 1, wherein the second spacer is made of a single metal having the same thickness as the distance of the discharge space, and is fixed to the same electrode tube as the first spacer. .
前記第1のスペーサは、スペーサ中央部又は片端部が前記外側電極管又は前記内側電極管のいずれかに固定されたことを特徴とする請求項1又は請求項2記載のオゾン発生装置。   The ozone generator according to claim 1 or 2, wherein the first spacer has a spacer central portion or one end fixed to either the outer electrode tube or the inner electrode tube. 前記第1のスペーサは、熱膨張係数の異なる第1の金属層と第2の金属層とを張り合わせた二重構造を有し、前記第1の金属層が電極管側に固定され、前記第1の金属層の熱膨張係数が大で、前記第2の金属層の熱膨張係数が小であることを特徴とする請求項1から請求項3のいずれかに記載のオゾン発生装置。   The first spacer has a double structure in which a first metal layer and a second metal layer having different thermal expansion coefficients are bonded to each other, the first metal layer being fixed to the electrode tube side, The ozone generator according to any one of claims 1 to 3, wherein the thermal expansion coefficient of the first metal layer is large and the thermal expansion coefficient of the second metal layer is small. 前記外側電極管内に前記内側電極管を挿入してなる電極管は、電極管長手方向が水平方向となる横向きに設置され、
前記第1のスペーサは、電極管の円周方向における上部に配置され、前記第2のスペーサは、電極管の円周方向における下部に配置された、
ことを特徴とする請求項2記載のオゾン発生装置。
An electrode tube formed by inserting the inner electrode tube into the outer electrode tube is installed in a horizontal direction in which the electrode tube longitudinal direction is a horizontal direction,
The first spacer is disposed at an upper portion in the circumferential direction of the electrode tube, and the second spacer is disposed at a lower portion in the circumferential direction of the electrode tube.
The ozone generator according to claim 2.
前記外側電極管及び前記内側電極管は、筒状をなす金属材からなり、前記外側電極管の内面に前記誘電体層が形成され、前記内側電極管の外周面に前記第1及び第2のスペーサを溶接固定したことを特徴とする請求項1から請求項5のいずれかに記載のオゾン発生装置。   The outer electrode tube and the inner electrode tube are made of a cylindrical metal material, the dielectric layer is formed on the inner surface of the outer electrode tube, and the first and second outer electrodes are formed on the outer peripheral surface of the inner electrode tube. The ozone generator according to any one of claims 1 to 5, wherein the spacer is fixed by welding. 前記外側電極管は、筒状をなす金属材からなり、
前記内側電極管は、誘電体からなり一方端が開放した絶縁管と、前記絶縁管の内周面に形成された高圧電極とからなり、
前記外側電極管の内周面に前記第1及び第2のスペーサを溶接固定したことを特徴とする請求項1から請求項5のいずれかに記載のオゾン発生装置。
The outer electrode tube is made of a cylindrical metal material,
The inner electrode tube is composed of an insulating tube made of a dielectric and one end open, and a high voltage electrode formed on the inner peripheral surface of the insulating tube,
The ozone generator according to any one of claims 1 to 5, wherein the first and second spacers are fixed by welding to an inner peripheral surface of the outer electrode tube.
前記外側電極管及び前記内側電極管は、筒状をなす金属材からなり、前記内側電極管の外周面に前記誘電体層が形成され、前記外側電極管の内周面に前記第1及び第2のスペーサを溶接固定したことを特徴とする請求項1から請求項5のいずれかに記載のオゾン発生装置。   The outer electrode tube and the inner electrode tube are made of a cylindrical metal material, the dielectric layer is formed on an outer peripheral surface of the inner electrode tube, and the first and first electrodes are formed on an inner peripheral surface of the outer electrode tube. The ozone generator according to any one of claims 1 to 5, wherein two spacers are fixed by welding.
JP2008323750A 2008-12-19 2008-12-19 Ozone generator Active JP5072817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323750A JP5072817B2 (en) 2008-12-19 2008-12-19 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323750A JP5072817B2 (en) 2008-12-19 2008-12-19 Ozone generator

Publications (2)

Publication Number Publication Date
JP2010143794A true JP2010143794A (en) 2010-07-01
JP5072817B2 JP5072817B2 (en) 2012-11-14

Family

ID=42564611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323750A Active JP5072817B2 (en) 2008-12-19 2008-12-19 Ozone generator

Country Status (1)

Country Link
JP (1) JP5072817B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271302A (en) * 1993-03-22 1994-09-27 Shimadzu Corp Ozonizer
JPH07242403A (en) * 1994-03-04 1995-09-19 Meidensha Corp Ozonizer
JP2001026404A (en) * 1999-07-13 2001-01-30 Toshiba Corp Spacer for ozonizer
JP2008013404A (en) * 2006-07-06 2008-01-24 Mitsubishi Electric Corp Ozone generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271302A (en) * 1993-03-22 1994-09-27 Shimadzu Corp Ozonizer
JPH07242403A (en) * 1994-03-04 1995-09-19 Meidensha Corp Ozonizer
JP2001026404A (en) * 1999-07-13 2001-01-30 Toshiba Corp Spacer for ozonizer
JP2008013404A (en) * 2006-07-06 2008-01-24 Mitsubishi Electric Corp Ozone generator

Also Published As

Publication number Publication date
JP5072817B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP6271833B2 (en) Tube-type ozone generator and manufacturing method thereof
JP5048714B2 (en) Ozone generator
US4960569A (en) Corona discharge ozonator with cooled flow path
JP2009081134A (en) Plasma electrode
US4307433A (en) Ozonizer
JP5072817B2 (en) Ozone generator
JP2012206898A (en) Ozone generator
JP4634928B2 (en) Ozone generator
KR102415353B1 (en) Discharge Tube For Double Ozone Generation
JP5669685B2 (en) Ozone generator and method for manufacturing ozone generator
JP5395142B2 (en) Ozone generator
JPS6317207A (en) Ozone-generation tube
JP2009096693A (en) Ozone generating device
JP2002255514A (en) Ozone generator
JP3804229B2 (en) Ozonizer
JP5836808B2 (en) Ozone generator
JP2000226202A (en) Tubular ozonizer
JP4138684B2 (en) Ozone generation method and ozone generator
JP5215686B2 (en) Ozone generator and assembly method thereof
CN113023683A (en) Ozone generator, discharge tube and method for manufacturing discharge tube
JP3837931B2 (en) Ozonizer
RU2046753C1 (en) Ozone generator
JPH0781904A (en) Multiple-cylinder ozonizer
JP5202066B2 (en) Ozone generator
JP2008080294A (en) Discharge reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R150 Certificate of patent or registration of utility model

Ref document number: 5072817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250