JP2010142158A - Method for supplying iron into water - Google Patents

Method for supplying iron into water Download PDF

Info

Publication number
JP2010142158A
JP2010142158A JP2008322398A JP2008322398A JP2010142158A JP 2010142158 A JP2010142158 A JP 2010142158A JP 2008322398 A JP2008322398 A JP 2008322398A JP 2008322398 A JP2008322398 A JP 2008322398A JP 2010142158 A JP2010142158 A JP 2010142158A
Authority
JP
Japan
Prior art keywords
iron
water
fulvic acid
clay
steelmaking slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008322398A
Other languages
Japanese (ja)
Other versions
JP4805338B2 (en
Inventor
Satoru Shimizu
悟 清水
Akio Hayashi
明夫 林
Nobuo Kobayashi
延郎 小林
Akira Takano
明 鷹野
Hiroyuki Koto
浩之 光藤
Etsuro Udagawa
悦郎 宇田川
Osamu Hasegawa
治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Mineral Co Ltd
Original Assignee
JFE Steel Corp
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Mineral Co Ltd filed Critical JFE Steel Corp
Priority to JP2008322398A priority Critical patent/JP4805338B2/en
Publication of JP2010142158A publication Critical patent/JP2010142158A/en
Application granted granted Critical
Publication of JP4805338B2 publication Critical patent/JP4805338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Seaweed (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for supplying iron into water, supplying soluble iron easily ingestible by aquatic plants such as marine alga and sea grass into the water for a long period, usable in general purpose applications by using a material available in a large amount at a low cost, and applicable to a wide water area such as a lake and a sea area. <P>SOLUTION: The method for supplying iron into water includes setting in the water a mixture mixed with dredged soil containing steelmaking slag and fulvic acid, preferably the dredged soil having ≥0.002 mass% of fulvic acid. As a result of this, iron (bivalent iron) eluting from steelmaking slag, and fulvic acid contained in the dredged soil are bonded to produce fulvic acid iron, and the fulvic acid iron is supplied into the water for a long period. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、湖沼や海域などにおいて、鉄分を水生植物(海藻、海草、水草など)が容易に摂取できるような形態で水中に供給するための方法に関するものである。   The present invention relates to a method for supplying iron into water in a form such that aquatic plants (seaweeds, seaweeds, aquatic plants, etc.) can be easily ingested in lakes and marine areas.

近年、沿岸海域において海藻や海草の生育が低下し、問題視されている。この問題は、海藻や海草が利用可能な溶解性鉄の不足が一因と考えられている。また、ノリの脱色も鉄不足が原因の一つと考えられている。
沿岸海域では鉄の濃度自体は高いが、海水中では鉄は容易に酸化されて3価の鉄になって不溶化するため、海藻や海草が摂取できないと考えられる。
このような問題を解決し、鉄分を海藻や海草が容易に摂取できるような形態で水中に供給する方法として、例えば、特許文献1には、有機鉄(フルボ酸鉄)を含有する農林水産廃棄物および腐植土を含むコンクリート製の多孔質人工礁を水中に設置し、この人工礁から有機鉄を水中に供給する方法が示されている。
In recent years, the growth of seaweeds and seaweeds in coastal sea areas has declined and is regarded as a problem. This problem is thought to be due in part to the lack of soluble iron available to seaweed and seaweed. In addition, the decolorization of laver is thought to be one of the causes of iron shortage.
In coastal waters, the iron concentration itself is high, but in seawater, iron is easily oxidized to become trivalent iron and insolubilized, so seaweed and seaweed cannot be ingested.
As a method for solving such problems and supplying iron in water in a form that can be easily ingested by seaweeds and seaweeds, for example, Patent Document 1 discloses the disposal of agriculture, forestry and fisheries containing organic iron (iron fulvic acid). A method is shown in which a porous artificial reef made of concrete containing objects and humus soil is installed in the water, and organic iron is supplied from the artificial reef into the water.

また、特許文献2,3には、鉄鋼スラグと木質系腐植物や水産廃棄物を混合したものを透水性の袋体などに充填して、これを水中に設置し、鉄鋼スラグ中の二価鉄と木質系腐植物等に含まれるフルボ酸とが結合したフルボ酸鉄を水中に供給する方法が示されている。
特開2001−61368号公報 特開2005−34140号公報 特開2006−345738号公報
In Patent Documents 2 and 3, a mixture of steel slag, woody humus, and marine waste is filled into a water-permeable bag and the like is placed in water. A method for supplying fulvic acid iron in which iron and fulvic acid contained in a woody humic plant or the like are combined to water is shown.
JP 2001-61368 A JP 2005-34140 A JP 2006-345738 A

しかしながら、従来技術では腐植物や水産廃棄物などの資材を必要とするが、これらの資材を大量に安定して入手することは困難であり、したがって、凡用的な利用は難しく、また、湖沼や海域などの広い水域に適用することも難しい。
したがって本発明の目的は、海藻や海草などの水生植物が容易に摂取できる溶解性鉄を長期間にわたって水中に供給することができ、しかも大量且つ安価に入手可能な資材を用いることで、凡用的な利用が可能であり、湖沼や海域などの広い水域に適用可能な鉄分の供給方法を提供することにある。
However, the conventional technology requires materials such as humus and marine waste, but it is difficult to stably obtain a large amount of these materials. It is also difficult to apply to large water areas such as water.
Therefore, the object of the present invention is to provide soluble iron that can be easily ingested by aquatic plants such as seaweed and seaweed over a long period of time, and by using materials that are available in large quantities and at low cost, The purpose is to provide a method for supplying iron that can be applied to a wide range of water such as lakes and marshes.

本発明者らは、フルボ酸を含有する浚渫土があることに着目し、検討した結果、そのような浚渫土をフルボ酸源として利用でき、この浚渫土を製鋼スラグと混合し、この混合物を水中に設置することにより、製鋼スラグから溶出する鉄分(二価鉄)と浚渫土中のフルボ酸が結合してフルボ酸鉄が生成し、このフルボ酸鉄を水中に長期間にわたって供給できることを見出した。   The present inventors paid attention to the fact that there is a clay containing fulvic acid, and as a result of examination, such a clay can be used as a source of fulvic acid, and this clay is mixed with steelmaking slag, and this mixture is used as a mixture. By installing in water, iron (divalent iron) eluted from steelmaking slag and fulvic acid in the clay are combined to form iron fulvic acid, and it is found that this fulvic acid iron can be supplied into water for a long time. It was.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]製鋼スラグとフルボ酸を含む浚渫土を混合した混合物を水中に設置することを特徴とする水中への鉄分の供給方法。
[2]上記[1]の供給方法において、浚渫土のフルボ酸含有量が0.002質量%以上であることを特徴とする水中への鉄分の供給方法。
[3]上記[1]または[2]の供給方法において、製鋼スラグ(x)と浚渫土(y)の混合比x/y(質量比)が10/90〜30/70であることを特徴とする水中への鉄分の供給方法。
[4]上記[1]〜[3]のいずれかの供給方法において、浚渫土の硫黄含有量が0.86質量%以下であることを特徴とする水中への鉄分の供給方法。
The present invention has been made on the basis of such findings and has the following gist.
[1] A method for supplying iron into water, comprising installing a mixture of steelmaking slag and clay containing fulvic acid in water.
[2] A method for supplying iron into water, wherein the fulvic acid content of the clay is 0.002% by mass or more in the supply method of [1].
[3] The supply method of [1] or [2] above, wherein a mixing ratio x / y (mass ratio) of the steelmaking slag (x) and the clay (y) is 10/90 to 30/70. How to supply iron to the water.
[4] A method for supplying iron into water, wherein the sulfur content of the clay is 0.86% by mass or less in any one of the above [1] to [3].

本発明によれば、製鋼スラグから溶出する鉄分(二価鉄)と浚渫土中に含まれるフルボ酸が結合してフルボ酸鉄が生成し、このフルボ酸鉄を水中に長期間にわたって供給することができる。また、特に浚渫土を用いることにより、(i)浚渫土の分解によって酸性化された底質により製鋼スラグからの鉄の溶出が促進される、(ii)浚渫土の分解によって生じた炭酸により炭酸鉄が生成し、製鋼スラグからの鉄の溶解が促進される、(iii)浚渫土中に含まれるフルボ酸のなかにはアルカリに良く溶解するものがあるため、製鋼スラグから溶出するアルカリによりフルボ酸自体の溶解性も高まる、などの効果も期待できる。
以上のことから、海藻、海草などの水生植物が摂取可能な溶解性の鉄分を水中に持続的に供給することができる。しかも、製鋼スラグと浚渫土という大量且つ安価に入手可能な資材を用いるため、凡用的な利用が可能であり、また、湖沼や海域などの広い水域にも容易に適用できる。このため、特に沿岸の広大な海域における海藻や海草の生育促進、藻場や海草場の修復などに有効である。
According to the present invention, iron (bivalent iron) eluted from steelmaking slag and fulvic acid contained in the clay are combined to produce fulvic acid iron, and this fulvic acid iron is supplied to water for a long period of time. Can do. In particular, by using dredged soil, (i) the elution of iron from steelmaking slag is promoted by the bottom sediment acidified by dredging of dredged soil, and (ii) carbonation by carbonic acid generated by dredging of dredged soil. Iron is generated and the dissolution of iron from the steelmaking slag is promoted. (Iii) Some fulvic acids contained in the clay are well soluble in alkali. The effect of increasing the solubility of can also be expected.
From the above, soluble iron that can be ingested by aquatic plants such as seaweed and seaweed can be continuously supplied into water. In addition, since materials such as steelmaking slag and dredged material that can be obtained in large quantities and at low cost are used, they can be used universally and can be easily applied to wide water areas such as lakes and marine areas. For this reason, it is particularly effective for promoting the growth of seaweeds and seaweeds in a vast sea area along the coast, and restoring seaweed beds and seaweed beds.

本発明による水中への鉄分の供給方法は、製鋼スラグとフルボ酸を含む浚渫土を混合した混合物を水中に設置するものであり、製鋼スラグから溶出する鉄分(二価鉄)と浚渫土中に含まれるフルボ酸が結合してフルボ酸鉄が生成し、このフルボ酸鉄が水中に長期間にわたって供給される。
本発明で使用する製鋼スラグは、鉄鋼製造プロセスの製鋼工程で発生するスラグである。このような製鋼スラグとしては、例えば、転炉スラグ(脱炭スラグ)、溶銑予備処理スラグ(脱燐スラグ、脱硫スラグ、脱珪スラグなど)、電気炉スラグなどが挙げられるが、これらに限定されるものではない。但し、鉄分溶出源として使用するものであるため、トータル鉄含有量が10質量%以上のものが好ましい。
The method for supplying iron into water according to the present invention is to install a mixture of steelmaking slag and clay containing fulvic acid in water, and the iron (divalent iron) eluted from the steelmaking slag and the clay The fulvic acid contained is combined to produce iron fulvic acid, and this fulvic acid iron is supplied into water for a long period of time.
The steelmaking slag used in the present invention is slag generated in the steelmaking process of the steelmaking process. Examples of such steelmaking slag include, but are not limited to, converter slag (decarburization slag), hot metal pretreatment slag (dephosphorization slag, desulfurization slag, desiliconization slag, etc.), electric furnace slag, and the like. It is not something. However, since it is used as an iron elution source, it is preferable that the total iron content is 10% by mass or more.

製鋼スラグの粒度も特に限定されるものではないが、鉄分の溶出効率の面からは粒径25mm以下、より好ましくは粒径10mm以下のものが望ましい。
製鋼スラグと混合する浚渫土は、フルボ酸を含有していることが必要である。
浚渫土に含まれるフルボ酸は生物遺体に由来するものであるが、浚渫土によって、フルボ酸を殆ど含まないもの、フルボ酸を豊富に含むもの、など様々である。
The particle size of the steelmaking slag is not particularly limited, but in view of the elution efficiency of iron, a particle size of 25 mm or less, more preferably 10 mm or less is desirable.
The clay mixed with steelmaking slag needs to contain fulvic acid.
The fulvic acid contained in the dredged soil is derived from biological remains, but depending on the dredged soil, there are various types such as those containing little fulvic acid and those containing a lot of fulvic acid.

本発明で使用する浚渫土は、フルボ酸含有量は高いほど好ましいが、特にフルボ酸含有量が0.002質量%以上であることが好ましい。この理由は以下のとおりである。
まず、海藻や海草の生育の必要な海水中の溶解性Fe濃度は10μg/L以上であると考えられている。ここで、水中に設置される製鋼スラグ+浚渫土の混合物(以下、単に「混合物」という)と海水の割合を大略1:10程度と考えると、海水中の溶解性Fe濃度を10μg/Lとするのに必要な混合物から海水へのFe供給量は以下のようになる。
Fe供給量=100μg/100g-混合物
=1mg/kg-混合物
ここで、フルボ酸と溶解性Feの割合を分子量当たり1:1と考え、フルボ酸平均分子量:1000とすると、フルボ酸:Fe=1000:55.85≒18:1となり、浚渫土中に必要なフルボ酸濃度は18mg/kg-浚渫土ということになる。したがって、浚渫土のフルボ酸含有量は約0.002質量%以上であることが好ましい。
The clay used in the present invention is preferably as the fulvic acid content is high, but the fulvic acid content is particularly preferably 0.002% by mass or more. The reason for this is as follows.
First, it is considered that the soluble Fe concentration in seawater necessary for the growth of seaweed and seaweed is 10 μg / L or more. Here, assuming that the ratio of steelmaking slag + dredged soil mixture (hereinafter simply referred to as “mixture”) and seawater installed in water is about 1:10, the soluble Fe concentration in seawater is 10 μg / L. The amount of Fe supplied from the mixture required to the seawater is as follows.
Fe supply amount = 100 μg / 100 g-mixture
= 1 mg / kg-mixture Here, assuming that the ratio of fulvic acid to soluble Fe is 1: 1 per molecular weight, and the average molecular weight of fulvic acid is 1000, fulvic acid: Fe = 1000: 55.85≈18: 1 Therefore, the concentration of fulvic acid required in the clay is 18 mg / kg-soil. Accordingly, the fulvic acid content of the clay is preferably about 0.002% by mass or more.

浚渫土には硫化水素が含まれる場合が多いが、この硫黄分が製鋼スラグから溶出する鉄分と反応するため、フルボ酸鉄の生成の阻害要因となる。このため浚渫土の硫黄含有量は0.86質量%以下であることが好ましい。この理由は以下のとおりである。
製鋼スラグと浚渫土との混合比(質量比)を30:70、製鋼スラグ中のFe含有量を10質量%としたとき、製鋼スラグ+浚渫土の混合物(以下、単に「混合物」という)中のFe含有量は、30×0.1=30g/kg-混合物となる。製鋼スラグからのFeの溶出効率を5%とすると、混合物からのFe溶出量は、30×0.05=1.5g/kg-混合物となる。
製鋼スラグから溶出するFeと浚渫土中のSの反応は1:1(Fe+S=FeS)であり、製鋼スラグから溶出するFeと浚渫土中のSの反応効率を10%と考えると、浚渫土中のS許容量(S含有量の好ましい上限)は、以下のようになる。
S許容量=1.5/55.85/0.1×32
=8.6g/kg-浚渫土
したがって、浚渫土の硫黄含有量は0.86質量%以下であることが好ましい。
The dredged material often contains hydrogen sulfide, but this sulfur content reacts with the iron content eluted from the steelmaking slag, which is an inhibiting factor for the production of iron fulvic acid. For this reason, it is preferable that the sulfur content of the clay is 0.86% by mass or less. The reason for this is as follows.
When the steelmaking slag and clay mixing ratio (mass ratio) is 30:70 and the Fe content in the steelmaking slag is 10% by mass, the mixture of steelmaking slag + clay (hereinafter simply referred to as “mixture”) The Fe content of 30 × 0.1 = 30 g / kg-mixture. When the elution efficiency of Fe from steelmaking slag is 5%, the Fe elution amount from the mixture is 30 × 0.05 = 1.5 g / kg-mixture.
The reaction between Fe eluted from steelmaking slag and S in the clay is 1: 1 (Fe + S = FeS), and the reaction efficiency of Fe eluted from steelmaking slag and S in the clay is 10%. The allowable S content (preferably upper limit of S content) is as follows.
S tolerance = 1.5 / 55.85 / 0.1 × 32
= 8.6 g / kg-Soil Therefore, the sulfur content of the clay is preferably 0.86% by mass or less.

製鋼スラグと浚渫土の混合比に特別な制限はないが、製鋼スラグが少なすぎるとFe溶出量が不足し、浚渫土が少なすぎるとフルボ酸量が不足し、フルボ酸鉄の供給量も減少する。このため製鋼スラグ(x)と浚渫土(y)の混合比x/y(質量比)は10/90〜30/70程度とすることが好ましい。
製鋼スラグと浚渫土との混合方法や水中への設置(敷設)方法などに特別な制限はない。例えば、製鋼スラグと浚渫土は陸上で混合してもよいし、水中に設置するための船上で混合してもよいが、特に好ましいのは、製鋼スラグと浚渫土の混合物を水底に管体で送給するとともに、その管体内で製鋼スラグと浚渫土が混合されるようにする方法(管中混合法)である。この方法は、製鋼スラグと浚渫土とが十分に混合され、しかも施工時に水の濁りが発生しにくいという利点がある。
また、製鋼スラグと浚渫土の混合物の設置(敷設)形態も任意であるが、通常は、水底に層状に敷設される。
There are no special restrictions on the mixing ratio of steelmaking slag and clay, but if the amount of steelmaking slag is too small, the amount of Fe elution will be insufficient, and if the amount of clay is too small, the amount of fulvic acid will be insufficient and the supply of fulvic acid will be reduced. To do. For this reason, it is preferable that the mixing ratio x / y (mass ratio) of the steelmaking slag (x) and the clay (y) is about 10/90 to 30/70.
There are no special restrictions on the method of mixing steelmaking slag and dredged soil or the method of installation (laying) in water. For example, steelmaking slag and dredged soil may be mixed on land or on a ship for installation in water, but it is particularly preferable that the steelmaking slag and dredged soil mixture is piped to the bottom of the water. In this method, steelmaking slag and clay are mixed in the pipe while being fed. This method has the advantage that the steelmaking slag and the clay are sufficiently mixed, and that water turbidity does not easily occur during construction.
Moreover, although the installation (laying) form of the steelmaking slag and clay mixture is arbitrary, it is usually laid in layers on the bottom of the water.

製鋼スラグとして、250μm以下の粒度(Fe溶出促進のための試験用の粒度)に粉砕した脱炭スラグを用いた。浚渫土としては、フルボ酸含有量:0.005質量%の浚渫土A、フルボ酸含有量:0.0005質量%の浚渫土Bを用いた。
試験材としては、比較例として製鋼スラグ単体、浚渫土A単体、浚渫土B単体をそれぞれ用い、発明例として製鋼スラグと浚渫土Aの混合物(製鋼スラグ/浚渫土の質量比=1/9)、製鋼スラグと浚渫土Bの混合物(製鋼スラグ/浚渫土の質量比=1/9)をそれぞれ用いた。
As the steelmaking slag, decarburized slag pulverized to a particle size of 250 μm or less (particle size for testing for promoting Fe dissolution) was used. As the clay, a clay A having a fulvic acid content of 0.005% by mass and a clay B having a fulvic acid content of 0.0005% by mass were used.
As test materials, steelmaking slag alone, clay A alone, and clay B alone were used as comparative examples, respectively, and a mixture of steelmaking slag and clay A as invention examples (mass ratio of steelmaking slag / soil = 1/9) A mixture of steelmaking slag and clay B (steelmaking slag / silica mass ratio = 1/9) was used.

各試験材50gを人工海水500mLとともにポリ容器(500mL)内に入れ、200rpmによる往復振とう混合を72時間行い、その後、容器内容物を0.45μmメンブランによりろ過し、このろ液を濃縮カラムにて50倍濃縮した後、原子吸光計でFe濃度を測定した。その結果を表1に示す。

Figure 2010142158
50 g of each test material is placed in a plastic container (500 mL) together with 500 mL of artificial seawater, and reciprocally shaken and mixed at 200 rpm for 72 hours. Thereafter, the contents of the container are filtered through a 0.45 μm membrane, and the filtrate is placed in a concentration column. Then, the Fe concentration was measured with an atomic absorption spectrometer. The results are shown in Table 1.
Figure 2010142158

Claims (4)

製鋼スラグとフルボ酸を含む浚渫土を混合した混合物を水中に設置することを特徴とする水中への鉄分の供給方法。   A method for supplying iron into water, comprising installing a mixture of steelmaking slag and clay containing fulvic acid in water. 浚渫土のフルボ酸含有量が0.002質量%以上であることを特徴とする請求項1に記載の水中への鉄分の供給方法。   The method for supplying iron into water according to claim 1, wherein the fulvic acid content of the clay is 0.002 mass% or more. 製鋼スラグ(x)と浚渫土(y)の混合比x/y(質量比)が10/90〜30/70であることを特徴とする請求項1または2に記載の水中への鉄分の供給方法。   The supply ratio of iron to water according to claim 1 or 2, wherein a mixing ratio x / y (mass ratio) of the steelmaking slag (x) and the clay (y) is 10/90 to 30/70. Method. 浚渫土の硫黄含有量が0.86質量%以下であることを特徴とする請求項1〜3のいずれか一項に記載の水中への鉄分の供給方法。   The method for supplying iron into water according to any one of claims 1 to 3, wherein the sulfur content of the clay is 0.86% by mass or less.
JP2008322398A 2008-12-18 2008-12-18 Supplying iron into water Active JP4805338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008322398A JP4805338B2 (en) 2008-12-18 2008-12-18 Supplying iron into water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008322398A JP4805338B2 (en) 2008-12-18 2008-12-18 Supplying iron into water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011118625A Division JP5571617B2 (en) 2011-05-27 2011-05-27 Supplying iron into water

Publications (2)

Publication Number Publication Date
JP2010142158A true JP2010142158A (en) 2010-07-01
JP4805338B2 JP4805338B2 (en) 2011-11-02

Family

ID=42563252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008322398A Active JP4805338B2 (en) 2008-12-18 2008-12-18 Supplying iron into water

Country Status (1)

Country Link
JP (1) JP4805338B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102743A (en) * 2011-11-15 2013-05-30 Nippon Steel & Sumitomo Metal Corp Artificial material for supplying minerals for preserving aquatic environment and method for preserving aquatic environment
JP2016194195A (en) * 2015-03-31 2016-11-17 新日鐵住金株式会社 Application method for water area environment conservation material
WO2024189693A1 (en) * 2023-03-10 2024-09-19 株式会社朝日テック Covering material for underwater structure, underwater structure, and manufacturing method for covering material-equipped underwater structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061368A (en) * 1999-08-26 2001-03-13 Japan Science & Technology Corp Artificial reef and its production
JP2005034140A (en) * 2003-07-02 2005-02-10 Nishimatsu Constr Co Ltd Environmental preservation material for water area and method for preservation
JP2006306733A (en) * 2005-04-26 2006-11-09 Mie Univ Method for separating/recovering humic material in mud
JP2009254243A (en) * 2008-04-14 2009-11-05 Eco Green:Kk Environmental preservation material for water area, method for producing the material, and method for composting the material
JP2010110255A (en) * 2008-11-06 2010-05-20 Eco Green:Kk Structure of artificial seaweed bed, and construction method for creating artificial seaweed bed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061368A (en) * 1999-08-26 2001-03-13 Japan Science & Technology Corp Artificial reef and its production
JP2005034140A (en) * 2003-07-02 2005-02-10 Nishimatsu Constr Co Ltd Environmental preservation material for water area and method for preservation
JP2006306733A (en) * 2005-04-26 2006-11-09 Mie Univ Method for separating/recovering humic material in mud
JP2009254243A (en) * 2008-04-14 2009-11-05 Eco Green:Kk Environmental preservation material for water area, method for producing the material, and method for composting the material
JP2010110255A (en) * 2008-11-06 2010-05-20 Eco Green:Kk Structure of artificial seaweed bed, and construction method for creating artificial seaweed bed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102743A (en) * 2011-11-15 2013-05-30 Nippon Steel & Sumitomo Metal Corp Artificial material for supplying minerals for preserving aquatic environment and method for preserving aquatic environment
JP2016194195A (en) * 2015-03-31 2016-11-17 新日鐵住金株式会社 Application method for water area environment conservation material
WO2024189693A1 (en) * 2023-03-10 2024-09-19 株式会社朝日テック Covering material for underwater structure, underwater structure, and manufacturing method for covering material-equipped underwater structure

Also Published As

Publication number Publication date
JP4805338B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP4616087B2 (en) Fertilizing material and fertilizing method
CN101412547B (en) Mineral composite material for removing lake endogenous pollution and use thereof
JP5665254B2 (en) Hydrated solidified body for submerged submergence
CN101863601A (en) Flocculation curing agent, composition thereof and stabilization improvement method of silt type soil
JP2005272510A (en) Soil solidification agent, method for solidifying soil, and solidified product of soil
JP6012128B2 (en) Artificial mineral supply material for water environment conservation and its water environment conservation method
JP2011160764A (en) Iron ion feeding material, method for producing the same, and method for feeding iron ion
ZA200801824B (en) Porous media for autotrophic denitrification using sulfur
JP4805338B2 (en) Supplying iron into water
JP5571617B2 (en) Supplying iron into water
Otieno et al. Struvite recovery from anaerobically digested waste-activated sludge: A short review
JP2009142783A (en) Method and material for modifying bottom mud in closed water area or tidal flat
JP5994383B2 (en) Sediment modification and odor reduction method
JP6079986B2 (en) How to disassemble sludge and turn it into sand
JP2011012202A (en) Method for treating sedimented soil at bottom of water
JPH09206800A (en) Treatment of water-area bottom mud
JP2013215184A (en) Civil engineering material for use in marine area
JP5627283B2 (en) Treatment method of seabed sediment
JP6891844B2 (en) Phosphorus supply materials for water bodies and their manufacturing methods
JP5884631B2 (en) Water environment container
JP6651982B2 (en) Iron supply material, iron supply material manufacturing method, and iron supply method
JP4473623B2 (en) Sludge improving material and sludge improving method
JP2015101528A (en) Material for civil engineering, and manufacturing method thereof
JP7299502B2 (en) SLAG MOLDED PRODUCT AND METHOD FOR MANUFACTURING THE SAME
Devatha et al. Recovery of phosphorus as struvite from the dewatered liquor through crystallization using seawater as magnesium source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100827

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4805338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250