JP2010138455A - Stainless steel sintered compact and manufacturing method thereof - Google Patents

Stainless steel sintered compact and manufacturing method thereof Download PDF

Info

Publication number
JP2010138455A
JP2010138455A JP2008316248A JP2008316248A JP2010138455A JP 2010138455 A JP2010138455 A JP 2010138455A JP 2008316248 A JP2008316248 A JP 2008316248A JP 2008316248 A JP2008316248 A JP 2008316248A JP 2010138455 A JP2010138455 A JP 2010138455A
Authority
JP
Japan
Prior art keywords
stainless steel
sintered body
phase
sintered compact
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008316248A
Other languages
Japanese (ja)
Other versions
JP5446237B2 (en
Inventor
Masahisa Miyahara
正久 宮原
Tomohiro Sakai
智宏 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2008316248A priority Critical patent/JP5446237B2/en
Publication of JP2010138455A publication Critical patent/JP2010138455A/en
Application granted granted Critical
Publication of JP5446237B2 publication Critical patent/JP5446237B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stainless steel sintered compact having corrosion resistance and sulfuric acid resistance comparable to or higher than those of an austenitic stainless sintered compact, and a manufacturing method thereof. <P>SOLUTION: The sintered compact showing sulfuric acid resistance comparable to that of an austenitic stainless steel can be obtained by adding a specific amount of Cu within the range of 0.2-1.8% to a sintered compact which comprises Fe as a base and, by mass, 13.0-22.0% Cr, 3.5-6.5% Ni, 1.0-2.5% Mo, 0.2-1.8% Cu, ≤0.1% C, ≤2.0% Si, ≤0.3% Mn and the balance being unavoidable impurities and has a metallic structure comprising 70-90 vol% of ferrite phase and 30-10 vol% of austenitic phase. The sintered compact contains substantially reduced amount (3.5-6.5%) of Ni, which is added for ensuring corrosion resistance, compared to an austenitic stainless steel, contains 13.0-22.0% Cr and 1.0-2.5% Mo and comprises the ferrite phase as a main phase and the austenitic phase as a second phase. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ステンレス鋼焼結体とその製造方法に係わり、特に耐食性、耐硫酸性に優れたステンレス鋼焼結体に関する。   The present invention relates to a stainless steel sintered body and a method for producing the same, and particularly to a stainless steel sintered body having excellent corrosion resistance and sulfuric acid resistance.

SUS304L(Cr:18質量%、Ni:8.0質量%、残りをFeと不可避不純物)に代表されるオーステナイト系ステンレスは、優れた耐食性を備え、特に良好な耐硫酸性を示す。   Austenitic stainless steel represented by SUS304L (Cr: 18% by mass, Ni: 8.0% by mass, the balance being Fe and inevitable impurities) has excellent corrosion resistance and particularly good sulfuric acid resistance.

また、その焼結体は、粉末成形,焼結,サイジングの簡便な工程で製造することができ、機械加工や電気加工などの手間やコストを減らすことができるため、広く用いられている。   In addition, the sintered body is widely used because it can be manufactured by a simple process of powder molding, sintering, and sizing, and the labor and cost of machining and electrical processing can be reduced.

例えば、13重量%Niを含有し、Cu粉末の添加量を全重量の2〜8重量%にした焼結時の寸法収縮率の小さいステンレス鋼焼結体の製造方法(例えば特許文献1)や、高強度を要求されるステンレス鋼焼結体の製造方法において、Ni:3.0〜5.0%,Cu:3.0〜5.0%としたフェライト相を主体とする粉末とオーステナイト相を主体とした粉末を混合し、これを成形及び焼結するステンレス鋼焼結体の製造方法(例えば特許文献2)が提案されている。
特開平9−59741号公報 特開平7−109540号公報
For example, a method for producing a stainless steel sintered body containing 13 wt% Ni and having a small dimensional shrinkage ratio during sintering in which the amount of Cu powder added is 2 to 8 wt% of the total weight In a method for producing a sintered stainless steel that requires high strength, Ni: 3.0 to 5.0%, Cu: 3.0 to 5.0%, a ferrite-based powder and an austenite phase There has been proposed a method for producing a sintered stainless steel body (for example, Patent Document 2) in which powders mainly composed of are mixed, molded and sintered.
JP-A-9-59741 JP 7-109540 A

上記特許文献1のステンレス鋼焼結体では、希少資源で高価なNiの削減が課題となっている。これに対して、Niを削減したステンレス鋼焼結体として、特許文献2のステンレス鋼焼結体やSUS430Lを代表とするフェライト系ステンレスなどは、耐食性、特に耐硫酸性はオーステナイト系ステンレスに比べ著しく劣り、その改善が望まれている。   In the stainless steel sintered body of Patent Document 1, reduction of expensive and rare Ni is a problem. On the other hand, the stainless steel sintered body of Patent Document 2 and the ferritic stainless steel represented by SUS430L, etc. as the stainless steel sintered body with reduced Ni are significantly more resistant to corrosion, particularly sulfuric acid, than austenitic stainless steel. It is inferior and its improvement is desired.

そこで、本発明は、Niの使用量を削減しながら、オーステナイト系ステンレス焼結体と同等以上の耐食性、耐硫酸性を持つステンレス鋼焼結体とその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a stainless steel sintered body having corrosion resistance and sulfuric acid resistance equal to or higher than that of an austenitic stainless sintered body while reducing the amount of Ni used, and a method for producing the same.

請求項1の発明は、
Feをベースとして、質量%で、
Cr:13.0〜22.0%、
Ni:3.5〜6.5%、
Mo:1.0〜2.5%、
Cu:0.2〜1.8%、
C:0.1%以下、
Si:2.0%以下、
Mn:0.3%以下、
と不可避不純物を含有し、
体積%で、フェライト相が70〜90%、オーステナイト相が30〜10%からなる金属組織を有するものである。
The invention of claim 1
Based on Fe, in mass%,
Cr: 13.0-22.0%,
Ni: 3.5-6.5%
Mo: 1.0-2.5%,
Cu: 0.2 to 1.8%,
C: 0.1% or less,
Si: 2.0% or less,
Mn: 0.3% or less,
And contains inevitable impurities,
It has a metal structure composed of 70% to 90% ferrite phase and 30% to 10% austenite phase.

尚、以下の説明では、%はいずれも質量%を示す。   In the following description,% indicates mass%.

また、請求項2の発明は、オーステナイト系ステンレス合金粉,フェライト系ステンレス合金粉及びCu粉を混合した原料粉末を成形して圧粉体を形成し、この圧粉体を焼結して焼結体を形成する製造方法である。   Further, the invention of claim 2 is to form a green compact by forming a raw powder mixed with austenitic stainless alloy powder, ferritic stainless alloy powder and Cu powder, and sintering and sintering the green compact. A manufacturing method for forming a body.

また、請求項3の発明は、単一の合金粉末を成形して圧粉体を形成し、この圧粉体を焼結して焼結体を形成する製造方法である。   The invention of claim 3 is a manufacturing method in which a single alloy powder is formed to form a green compact, and the green compact is sintered to form a sintered body.

また、請求項4の発明は、前記焼結体をサイジングする製造方法である。   The invention of claim 4 is a manufacturing method for sizing the sintered body.

上記構成によれば、オーステナイト系ステンレスに比べて、耐食性を確保するために添加されるNi量を3.5〜6.5%に大幅に低減し、Cr13.0〜22.0%、Mo1.0〜2.5%を含有してフェライト相が主相、オーステナイト相が第二相からなる焼結体に、Cuを0.2〜1.8%の特定量添加することにより、オーステナイト系ステンレスと同等の耐硫酸性を示す焼結体が得られる。   According to the said structure, compared with austenitic stainless steel, the amount of Ni added in order to ensure corrosion resistance is reduced significantly to 3.5-6.5%, Cr13.0-22.0%, Mo1. By adding a specific amount of Cu of 0.2 to 1.8% to a sintered body containing 0 to 2.5% and containing a ferrite phase as a main phase and an austenite phase as a second phase, an austenitic stainless steel is added. As a result, a sintered body having the same sulfuric acid resistance can be obtained.

また、Cu量:0.2〜1.8%を含有し、これがマトリックスに固溶して耐食性、特に耐硫酸性の向上に有効であり、0.2%未満では、その効果が得られず、1.8%を超えるとフリーのCu相が析出し、却ってその効果が減少する。   Also, Cu content: 0.2 to 1.8%, which is effective in improving the corrosion resistance, particularly sulfuric acid resistance by solid solution in the matrix, if less than 0.2%, the effect is not obtained If it exceeds 1.8%, a free Cu phase is precipitated, and the effect is reduced.

また、上記製造方法によれば、オーステナイト系ステンレス焼結体と同等以上の耐食性、耐硫酸性を持つステンレス鋼焼結体を製造することができる。   Moreover, according to the said manufacturing method, the stainless steel sintered compact which has corrosion resistance and sulfuric acid resistance equivalent to or more than an austenitic stainless sintered body can be manufactured.

また、製造方法において、所要組成からなる単一の合金粉末を用いても、得られる焼結体はフェライト相とオーステナイト相からなり、同様な特性を有する製品が得られる。   Moreover, even if a single alloy powder having a required composition is used in the manufacturing method, the obtained sintered body is composed of a ferrite phase and an austenite phase, and a product having similar characteristics can be obtained.

本発明における好適な実施の形態について、添付図面を参照しながら詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。各実施例では、従来とは異なる新規なステンレス鋼焼結体とその製造方法を採用することにより、従来にないステンレス鋼焼結体とその製造方法が得られ、ステンレス鋼焼結体とその製造方法を夫々記述する。   Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all the configurations described below are not necessarily essential requirements of the present invention. In each example, by adopting a new stainless steel sintered body different from the conventional one and its manufacturing method, an unprecedented stainless steel sintered body and its manufacturing method can be obtained. Each method is described.

本発明では、オーステナイト系ステンレス合金粉,フェライト系ステンレス合金粉及びCu粉を所定の配合量で混合した原料粉末を用い、この原料粉末を圧縮して所定形状の圧粉体を形成し、この圧粉体を焼結してステンレス鋼焼結体を形成し、この焼結体をサイジングしてステンレス鋼焼結体の製品を製造する。あるいは所要組成からなる単一の合金粉末を用い、この合金粉末を圧縮して所定形状の圧粉体を形成し、この圧粉体を焼結してステンレス鋼焼結体を形成し、この焼結体をサイジングしてステンレス鋼焼結体の製品を製造する。   In the present invention, a raw material powder obtained by mixing austenitic stainless alloy powder, ferritic stainless alloy powder and Cu powder in a predetermined blending amount is compressed to form a green compact having a predetermined shape. The powder is sintered to form a stainless steel sintered body, and the sintered body is sized to produce a stainless steel sintered body product. Alternatively, a single alloy powder having the required composition is used, the alloy powder is compressed to form a green compact of a predetermined shape, and the green compact is sintered to form a stainless steel sintered body. Sizing the body to produce a sintered stainless steel product.

本発明のステンレス鋼焼結体は、
Feをベースとして、質量%で、
Cr:13.0〜22.0%、
Ni:3.5〜6.5%、
Mo:1.0〜2.5%、
Cu:0.2〜1.8%、
C:0.1%以下、
Si:2.0%以下、
Mn:0.3%以下、
と不可避不純物を含有し、
体積%で、フェライト相が70〜90%、オーステナイト相が30〜10%からなる金属組織を有する。
The sintered stainless steel of the present invention is
Based on Fe, in mass%,
Cr: 13.0-22.0%,
Ni: 3.5-6.5%
Mo: 1.0-2.5%,
Cu: 0.2 to 1.8%,
C: 0.1% or less,
Si: 2.0% or less,
Mn: 0.3% or less,
And contains inevitable impurities,
It has a metal structure composed of 70% to 90% ferrite phase and 30% to 10% austenite phase.

Crは耐食性の向上に効果的であるが、13.0%に満たないと効果が十分でなく、また、22.0%を超えると成形時の圧縮性の低下を招くため13.0%〜22.0%とする。   Cr is effective in improving the corrosion resistance, but the effect is not sufficient if it is less than 13.0%, and if it exceeds 22.0%, the compressibility at the time of molding is reduced, so that it is 13.0%- 22.0%.

Niは耐食性の向上に効果的であるが、3.5%に満たないと効果が十分でなく、また、6.5%を超えると焼結性の低下、及び高価にもなるため3.5%〜6.5%とする。   Ni is effective for improving the corrosion resistance, but the effect is not sufficient if it is less than 3.5%, and if it exceeds 6.5%, the sinterability is lowered and the cost is also increased. % To 6.5%.

MoはNi,Cuとの共存で耐食性の向上に効果的であるが、1.0%に満たないと効果が十分でなく、また、2.5%を超えると成形時の圧縮性を低下させるため1.0%〜2.5%とする。   Mo is effective in improving corrosion resistance in the presence of Ni and Cu. However, if less than 1.0%, the effect is not sufficient, and if over 2.5%, the compressibility during molding is lowered. Therefore, the content is set to 1.0% to 2.5%.

CuはNi,Moとの共存で耐食性を向上させるが、0.2%に満たないと効果が十分でなく、また、1.8%を超えると粒界、粒内に析出し耐食性を低下させるため0.2%〜1.8%とする。   Cu improves the corrosion resistance in coexistence with Ni and Mo, but the effect is not sufficient if it is less than 0.2%, and if it exceeds 1.8%, it precipitates at the grain boundaries and within the grains and lowers the corrosion resistance. Therefore, the content is set to 0.2% to 1.8%.

Cは0.1%を超えると成形時の圧縮性の低下を招く。また、焼結後の合金中に含まれると耐食性を阻害するので0.1%以下とする
Siは2.0%を超えると粉末の硬度が増し、成形性の低下を招くため2.0%以下とする。
When C exceeds 0.1%, the compressibility during molding is reduced. Further, if contained in the sintered alloy, the corrosion resistance is hindered, so 0.1% or less. If Si exceeds 2.0%, the hardness of the powder increases and the formability is lowered. The following.

Mnは0.3%を超えると成形時の圧縮性の低下を招くため0.3%以下とする。   If Mn exceeds 0.3%, the compressibility at the time of molding is reduced, so 0.3% or less.

特に、Cuが1.8質量%以内であると、マトリックスに固溶して耐食性,特に耐硫酸性を向上させ、一方、Cuが1.8質量%を超えると、フリーのCu相が析出し、その効果が減少するため、上記の範囲とした。   In particular, when Cu is within 1.8% by mass, the solid solution dissolves in the matrix to improve corrosion resistance, particularly sulfuric acid resistance. On the other hand, when Cu exceeds 1.8% by mass, a free Cu phase is precipitated. Since the effect is reduced, the above range is adopted.

以下、本発明の実施例を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

オーステナイト系合金粉末及びフェライト系合金粉末は下記の表1に示す成分のものを用いた。尚、表1に示す成分の残部はFeと不可避不純物である。   As the austenitic alloy powder and the ferrite alloy powder, those shown in Table 1 below were used. The balance of the components shown in Table 1 is Fe and inevitable impurities.

上記表1に示す成分のオーステナイト系合金粉末とフェライト系合金粉末と電解Cu粉末(-200mesh)を配合し、V型ブレンダーで30min混合して下記の表2に示す原料粉末を得た。 The austenitic alloy powder, ferrite alloy powder and electrolytic Cu powder (-200mesh) having the components shown in Table 1 above were blended and mixed for 30 minutes with a V-type blender to obtain the raw material powder shown in Table 2 below.

前記原料粉末を成形圧力588MPaにて、縦60mm×横10mm×高さ10mmの直方体形状の圧粉体を成形し、この圧粉体を真空中で1250℃で1時間焼結を行い、実施例a〜d、比較例e〜n及び実施例o,pの試験片を得た。 The raw material powder was molded into a green compact of 60 mm length × 10 mm width × 10 mm height at a molding pressure of 588 MPa, and the green compact was sintered in vacuum at 1250 ° C. for 1 hour. Test pieces of a to d, comparative examples ene and examples o and p were obtained.

次に、各試験片より縦8mm×横8mm×高さ4mmの試料を機械加工により採取し、この試料の硫酸水溶液浸漬試験を行い、試験前後での腐食重量減少率を測定した。   Next, a sample having a length of 8 mm, a width of 8 mm, and a height of 4 mm was sampled from each test piece by machining, and a sulfuric acid aqueous solution immersion test of the sample was performed to measure the corrosion weight reduction rate before and after the test.

硫酸水溶液浸漬試験は、硫酸溶液濃度5%、硫酸溶液温度20℃、浸漬時間10時間の条件で行い、この後の試料の重量減少率を測定し、下記の表3に示す結果が得られた。   The sulfuric acid aqueous solution immersion test was performed under the conditions of a sulfuric acid solution concentration of 5%, a sulfuric acid solution temperature of 20 ° C., and an immersion time of 10 hours, and the weight reduction rate of the subsequent samples was measured. The results shown in Table 3 below were obtained. .

比較例f〜iは、フェライト系SUS430LへのCuの添加量を変えたものである。比較例eはフェライト系SUS430Lの単一合金である。Cu粉を0.5%添加した比較例fとCu粉を1.0%添加した比較例gとに比べて、Cu粉を2.0%以上添加した比較例h,iでは、腐食重量減少率が増加し、さらに、Cu粉を4.0%添加した比較例iでは、粒内にフリーのCu相が析出した。 Comparative Examples f to i are obtained by changing the amount of Cu added to ferrite SUS430L. Comparative example e is a single alloy of ferritic SUS430L. Compared with Comparative Example f in which Cu powder is added by 0.5% and Comparative Example g in which Cu powder is added by 1.0%, in Comparative Examples h and i in which Cu powder is added by 2.0% or more, corrosion weight reduction In Comparative Example i in which the rate was increased and 4.0% of Cu powder was added, a free Cu phase was precipitated in the grains.

比較例jは、Crを22%を超えて添加したため、Cu粉を1.0%添加した効果が得られず、腐食重量減少率が高くなった。   Since the comparative example j added Cr exceeding 22%, the effect of adding 1.0% of Cu powder was not obtained, and the corrosion weight reduction rate was increased.

比較例kは、Ni成分を増加してCuを添加したが、Moを含有しないため、十分な耐食性が得られない。比較例lのように、NiとMoを添加しても、Cuを添加しないと、耐食性が向上しない。比較例mのように、MoとCuを添加しても、Moの添加量が範囲外の場合、耐食性が向上しない。   In Comparative Example k, the Ni component was increased and Cu was added, but since Mo was not contained, sufficient corrosion resistance was not obtained. Even if Ni and Mo are added as in Comparative Example 1, the corrosion resistance is not improved unless Cu is added. Even if Mo and Cu are added as in Comparative Example m, the corrosion resistance is not improved if the amount of Mo added is out of range.

比較例nはオーステナイト系SUS304Lの単一合金である。   Comparative Example n is an austenitic SUS304L single alloy.

上記のように、Cu粉の添加により耐食性の向上効果が見られるが、後述するように、1.8%を超えるとフリーのCu相が析出し、その効果は減少する。また、比較例に示したように、Cu,Mo量が範囲未満の場合、効果は減少する。   As described above, the effect of improving the corrosion resistance can be seen by the addition of Cu powder. However, as will be described later, when it exceeds 1.8%, a free Cu phase is precipitated and the effect is reduced. Moreover, as shown in the comparative example, when the amount of Cu and Mo is less than the range, the effect is reduced.

また、単一の合金粉末を用いた実施例o,pにおいても、同様の効果が得られる。   The same effect can be obtained also in Examples o and p using a single alloy powder.

図1は、Cuの添加量の変化による腐食の影響を示すグラフであり、Cuの質量%が0%,0.5%,1.0%,2.0%,4.0%の前記実験例e〜iの硫酸水溶液浸漬試験の結果を示している。   FIG. 1 is a graph showing the influence of corrosion due to a change in the amount of Cu added, and the experiment in which the mass% of Cu is 0%, 0.5%, 1.0%, 2.0%, and 4.0%. The result of the sulfuric acid aqueous solution immersion test of Example ei is shown.

この結果、Cuの添加量が0.5%と1.0%では、極めて高い耐食性が得られ、Cuが2.0%を超えると、耐食性が低下し、略1.8%(図示せず)まで高い耐食性が得られ、一方、Cuが0%では、耐食性が低下し、略0.2%(図示せず)まで高い耐食性が得られることが分かった。   As a result, when the addition amount of Cu is 0.5% and 1.0%, extremely high corrosion resistance is obtained, and when Cu exceeds 2.0%, the corrosion resistance is reduced to about 1.8% (not shown). On the other hand, it was found that when Cu is 0%, the corrosion resistance is lowered, and high corrosion resistance is obtained up to about 0.2% (not shown).

図2は、比較例h,iの金属組織の拡大写真であり、金属顕微鏡を用いて400倍に拡大している。図2(A)がCuを2.0質量%含有する比較例hを示し、図2(B)がCuを4.0質量%含有する比較例iを示す。   FIG. 2 is an enlarged photograph of the metal structure of Comparative Examples h and i, which is magnified 400 times using a metal microscope. 2A shows Comparative Example h containing 2.0% by mass of Cu, and FIG. 2B shows Comparative Example i containing 4.0% by mass of Cu.

図2(A)では、粒界にCuが析出し、図2(B)では、粒界だけでなく粒内にもCuが析出し、Cuを2.0質量%以上含有すると、耐食性が低下することが分かる。   In FIG. 2 (A), Cu precipitates at the grain boundaries, and in FIG. 2 (B), Cu precipitates not only at the grain boundaries but also within the grains. When Cu is contained in an amount of 2.0% by mass or more, the corrosion resistance decreases. I understand that

次に、製品の寸法精度に係る測定を行った。前記実施例a〜d及びo,pの原料粉末を成形圧力588MPaにて、直径11.3mm×高さ10mmの円筒形状の圧粉体を成形し、この圧粉体を真空中で1250℃で1時間焼結を行い焼結体を得た。この焼結体の真円度測定を真円度測定機にて行った。また、同焼結体を490MPaの圧力にてサイジングを行い、同様に真円度を測定し、標準偏差を求め、下記の表4に示す結果が得られた。   Next, measurements related to the dimensional accuracy of the product were performed. The raw material powders of Examples a to d, o, and p were formed into a green compact having a diameter of 11.3 mm and a height of 10 mm at a molding pressure of 588 MPa, and the green compact was vacuumed at 1250 ° C. Sintering was performed for 1 hour to obtain a sintered body. The roundness of the sintered body was measured with a roundness measuring machine. Further, the sintered body was sized at a pressure of 490 MPa, the roundness was measured in the same manner, the standard deviation was obtained, and the results shown in Table 4 below were obtained.

尚、上記表4において、「焼結」はサイジング前の焼結体の測定結果であり、「サイジング」は、サイジング後の焼結体の測定結果である。 In Table 4, “sintering” is the measurement result of the sintered body before sizing, and “sizing” is the measurement result of the sintered body after sizing.

上記の表4に示すように、本実施例では、焼結体をサイジングすることにより、寸法精度を高め、ばらつきの少ない製品を製造することができる。   As shown in Table 4 above, in this example, by sizing the sintered body, it is possible to increase the dimensional accuracy and manufacture a product with little variation.

このように本実施例では、Feをベースとして、Cr:13.0〜22.0%、Ni:3.5〜6.5%、Mo:1.0〜2.5%、Cu:0.2〜1.8%、C:0.1%以下、Si:2.0%以下、Mn:0.3%以下、とその他の不可避不純物を含有し、体積%で、フェライト相が70〜90%、オーステナイト相が30〜10%からなる金属組織を有するものであり、オーステナイト系ステンレスに比べて耐食性を確保するために添加されるNi量を3.5〜6.5%に大幅に低減し、Crを13.0〜22.0%、Moを1.0〜2.5%含有してフェライト相が主相、オーステナイト相が第二相からなる焼結体に、Cuを0.2〜1.8%(好ましくは0.5〜1.0%)の特定量添加することにより、オーステナイト系ステンレスと同等の耐硫酸性を示す焼結体が得られる。   As described above, in this example, based on Fe, Cr: 13.0 to 22.0%, Ni: 3.5 to 6.5%, Mo: 1.0 to 2.5%, Cu: 0.00. 2 to 1.8%, C: 0.1% or less, Si: 2.0% or less, Mn: 0.3% or less, and other inevitable impurities, and the ferrite phase is 70 to 90% by volume. %, The austenite phase has a metal structure composed of 30 to 10%, and the amount of Ni added to ensure corrosion resistance compared to austenitic stainless steel is greatly reduced to 3.5 to 6.5%. In a sintered body containing 13.0 to 22.0% Cr, 1.0 to 2.5% Mo, the ferrite phase being the main phase, and the austenite phase being the second phase, By adding a specific amount of 1.8% (preferably 0.5 to 1.0%), austenitic stainless steel is added. Sintered body showing a scan equivalent sulfuric acid is obtained.

また、好ましくは、Niの添加量を3.5〜5.0%とすることにより、一層耐食性を向上することできる。   Preferably, the corrosion resistance can be further improved by setting the amount of Ni added to 3.5 to 5.0%.

また、Cu量:0.2〜1.8%を含有し、これがマトリックスに固溶して耐食性、特に耐硫酸性の向上に有効であり、0.2%未満では、その効果が得られず、1.8%を超えるとフリーのCu相が析出し、却ってその効果が減少する。   Also, Cu content: 0.2 to 1.8%, which is effective in improving the corrosion resistance, particularly sulfuric acid resistance by solid solution in the matrix, if less than 0.2%, the effect is not obtained If it exceeds 1.8%, a free Cu phase is precipitated, and the effect is reduced.

また、このように本実施例では、オーステナイト系ステンレス合金粉,フェライト系ステンレス合金粉及びCu粉を混合した原料粉末を成形して圧粉体を形成し、この圧粉体を焼結して焼結体を形成してなるものであり、オーステナイト系ステンレス焼結体と同等以上の耐食性、耐硫酸性を持つステンレス鋼焼結体を製造することができる。   As described above, in this embodiment, a raw powder mixed with austenitic stainless alloy powder, ferritic stainless alloy powder and Cu powder is formed to form a green compact, and this green compact is sintered and sintered. A stainless steel sintered body having a corrosion resistance and sulfuric acid resistance equal to or higher than that of an austenitic stainless sintered body can be produced.

また、このように本実施例では、単一の合金粉末を成形して圧粉体を形成し、この圧粉体を焼結して焼結体を形成する製造方法であり、所要組成からなる単一の合金粉末を用いても、得られる焼結体は同様な特性を有する製品が得られる。   Further, in this embodiment, a single alloy powder is formed to form a green compact, and this green compact is sintered to form a sintered body, which has a required composition. Even when a single alloy powder is used, a product having similar characteristics can be obtained from the obtained sintered body.

また、このように本実施例では、焼結体をサイジングする製造方法であり、寸法精度の高い製品が得られる。   In this way, the present embodiment is a manufacturing method for sizing a sintered body, and a product with high dimensional accuracy can be obtained.

尚、本発明は、前記実施形態に限定されるものではなく、種々の変形実施が可能である。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible.

本発明に係る腐食試験の結果を示すグラフ図である。It is a graph which shows the result of the corrosion test which concerns on this invention. 同上、金属組織の拡大写真である。The above is an enlarged photograph of the metal structure.

Claims (4)

Feをベースとして、質量%で、
Cr:13.0〜22.0%、
Ni:3.5〜6.5%、
Mo:1.0〜2.5%、
Cu:0.2〜1.8%、
C:0.1%以下、
Si:2.0%以下、
Mn:0.3%以下、
と不可避不純物を含有し、
体積%で、フェライト相が70〜90%、オーステナイト相が30〜10%からなる金属組織を有することを特徴とするステンレス鋼焼結体。
Based on Fe, in mass%,
Cr: 13.0-22.0%,
Ni: 3.5-6.5%
Mo: 1.0-2.5%,
Cu: 0.2 to 1.8%,
C: 0.1% or less,
Si: 2.0% or less,
Mn: 0.3% or less,
And contains inevitable impurities,
A stainless steel sintered body characterized by having a metal structure consisting of 70% to 90% ferrite phase and 30% to 10% austenite phase in volume%.
オーステナイト系ステンレス合金粉,フェライト系ステンレス合金粉及びCu粉を混合した原料粉末を成形して圧粉体を形成し、この圧粉体を焼結して焼結体を形成することを特徴とする請求項1記載のステンレス鋼焼結体の製造方法。 A green compact is formed by forming a raw powder mixed with austenitic stainless alloy powder, ferritic stainless alloy powder and Cu powder, and the green compact is sintered to form a sintered body. The manufacturing method of the stainless steel sintered compact of Claim 1. 単一の合金粉末を成形して圧粉体を形成し、この圧粉体を焼結して焼結体を形成することを特徴とする請求項1記載のステンレス鋼焼結体の製造方法。 The method for producing a sintered body of stainless steel according to claim 1, wherein a single alloy powder is formed to form a green compact, and the green compact is sintered to form a sintered body. 前記焼結体をサイジングすることを特徴とする請求項2又は3記載のステンレス鋼焼結体の製造方法。 The method for manufacturing a stainless steel sintered body according to claim 2 or 3, wherein the sintered body is sized.
JP2008316248A 2008-12-11 2008-12-11 Manufacturing method of sintered stainless steel Expired - Fee Related JP5446237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008316248A JP5446237B2 (en) 2008-12-11 2008-12-11 Manufacturing method of sintered stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008316248A JP5446237B2 (en) 2008-12-11 2008-12-11 Manufacturing method of sintered stainless steel

Publications (2)

Publication Number Publication Date
JP2010138455A true JP2010138455A (en) 2010-06-24
JP5446237B2 JP5446237B2 (en) 2014-03-19

Family

ID=42348828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008316248A Expired - Fee Related JP5446237B2 (en) 2008-12-11 2008-12-11 Manufacturing method of sintered stainless steel

Country Status (1)

Country Link
JP (1) JP5446237B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622939A (en) * 2018-12-12 2019-04-16 江苏阳明船舶装备制造技术有限公司 Copper alloy surface wear-resistant coating and preparation method are prepared with CuMnNi

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102391013B1 (en) * 2017-12-13 2022-04-27 현대자동차주식회사 Stainless steel powder and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110904A (en) * 1977-03-09 1978-09-28 Daido Steel Co Ltd Stainless steel powder
JPS6130601A (en) * 1984-07-19 1986-02-12 Mitsubishi Steel Mfg Co Ltd Deposition hardening type stainless steel powder having excellent compressibility and sintered body thereof
JPS62222044A (en) * 1986-03-24 1987-09-30 Sumitomo Metal Ind Ltd Hot-working method for two-phase stainless steel powder
JPH07109540A (en) * 1993-10-08 1995-04-25 Daido Steel Co Ltd Production of stainless steel sintered compact
JPH0959741A (en) * 1995-08-25 1997-03-04 Daido Steel Co Ltd Premixed powder for sintered stainless steel compact, reduced in dimensional shrinkage factor at sintering, and production of sintered stainless steel compact
JP2001172703A (en) * 1999-12-10 2001-06-26 Fukui Sinter Kk Method and apparatus for sizing sintered metal molding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110904A (en) * 1977-03-09 1978-09-28 Daido Steel Co Ltd Stainless steel powder
JPS6130601A (en) * 1984-07-19 1986-02-12 Mitsubishi Steel Mfg Co Ltd Deposition hardening type stainless steel powder having excellent compressibility and sintered body thereof
JPS62222044A (en) * 1986-03-24 1987-09-30 Sumitomo Metal Ind Ltd Hot-working method for two-phase stainless steel powder
JPH07109540A (en) * 1993-10-08 1995-04-25 Daido Steel Co Ltd Production of stainless steel sintered compact
JPH0959741A (en) * 1995-08-25 1997-03-04 Daido Steel Co Ltd Premixed powder for sintered stainless steel compact, reduced in dimensional shrinkage factor at sintering, and production of sintered stainless steel compact
JP2001172703A (en) * 1999-12-10 2001-06-26 Fukui Sinter Kk Method and apparatus for sizing sintered metal molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622939A (en) * 2018-12-12 2019-04-16 江苏阳明船舶装备制造技术有限公司 Copper alloy surface wear-resistant coating and preparation method are prepared with CuMnNi

Also Published As

Publication number Publication date
JP5446237B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
KR101910744B1 (en) Medium-entropy alloys with excellent cryogenic properties
JP5902091B2 (en) Nitrogen-containing low nickel sintered stainless steel
KR101728936B1 (en) High entropy alloy having excellent strength and ductility
JP6106323B1 (en) Sintered tungsten-based alloy and method for producing the same
JP2011122194A (en) Pd ALLOY FOR ELECTRIC-ELECTRONIC EQUIPMENT
CA2725206A1 (en) Iron-nickel alloy
JP7471078B2 (en) A multi-component alloy with excellent resistance to softening, balance of strength and elongation, and excellent wear resistance.
JP2018115378A (en) W-Cr-BASED ALLOY OR MOLD, ELECTRODE OR EXTRUSION DIE PREPARED THEREWITH
EP2043801A1 (en) Fabrication method of alloy parts by metal injection molding and the alloy parts
JP5114233B2 (en) Iron-based sintered alloy and method for producing the same
JP5446237B2 (en) Manufacturing method of sintered stainless steel
WO1994006588A1 (en) Iron powder and mixed powder for powder metallurgy and production of iron powder
JPH0790318A (en) Production of titanium sintered body by metal powder injection molding method
JP2015004098A (en) Iron-based sintered body and production method thereof
WO2017199819A1 (en) Iron-based sintered alloy and method for producing same
JP2006503981A (en) Method for controlling dimensional changes during sintering of iron-based powder mixtures
JP2007182593A (en) Method for manufacturing high-nitrogen sintered alloy steel
JP5786755B2 (en) Method for producing ferrous sintered material
TW200418998A (en) Alloy steel powder and sinterer thereof for improving sintering property in metal injection moudling process
JPH10317009A (en) Production of stainless sintered body
JP6299714B2 (en) Sintered forged product and manufacturing method thereof
JP6601031B2 (en) Reed switch wire, reed switch lead piece and reed switch
JP6804777B2 (en) Method for manufacturing metal test piece for corrosion resistance evaluation
JP2004232089A (en) Method of producing component made of iron-based sintered alloy
JP2010202923A (en) Soft magnetic stainless steel having improved designability, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5446237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees