JP2010138054A - Nanocarbon manufacturing apparatus - Google Patents

Nanocarbon manufacturing apparatus Download PDF

Info

Publication number
JP2010138054A
JP2010138054A JP2008318716A JP2008318716A JP2010138054A JP 2010138054 A JP2010138054 A JP 2010138054A JP 2008318716 A JP2008318716 A JP 2008318716A JP 2008318716 A JP2008318716 A JP 2008318716A JP 2010138054 A JP2010138054 A JP 2010138054A
Authority
JP
Japan
Prior art keywords
furnace
nanocarbon
carbon
pyrolysis
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008318716A
Other languages
Japanese (ja)
Other versions
JP4869325B2 (en
Inventor
Katsunori Ide
勝記 井手
Hidekazu Sugiyama
英一 杉山
Hidetake Shiire
英武 仕入
Koji Hayashi
幸司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008318716A priority Critical patent/JP4869325B2/en
Publication of JP2010138054A publication Critical patent/JP2010138054A/en
Application granted granted Critical
Publication of JP4869325B2 publication Critical patent/JP4869325B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently mass-produce high functional nanocarbon having high purity and high stability. <P>SOLUTION: The nanocarbon manufacturing apparatus is provided with: a container 1 having refractory arranged inside and an insulating material 5 arranged outside; a pyrolytic furnace 2; a carbon forming furnace 3, and a combustion furnace 4, which are respectively arranged on the uppermost stage, a middle stage and the lowermost stage in the container 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有用性の高い繊維状のナノカーボン例えばカーボンナノチューブを効率的に製造するナノカーボン製造装置に関する。   The present invention relates to a nanocarbon production apparatus for efficiently producing highly useful fibrous nanocarbon such as carbon nanotubes.

カーボンナノチューブの生成法には、アーク放電法、レーザー蒸着法、化学気相成長法(CVD法)などが挙げられる。
アーク放電法は、正負のグラファイト電極間にアーク放電を起こすことでグラファイトが蒸発し、陰極先端に凝縮したカーボンの堆積物の中にカーボンナノチューブが生成される方法である(例えば、特許文献1参照)。レーザー蒸着法は、高温に過熱した不活性ガス中に金属触媒を混合したグラファイト試料を入れ、レーザー照射することによりカーボンナノチューブを生成する方法である(例えば、特許文献2参照)。
Examples of the method for producing the carbon nanotube include an arc discharge method, a laser vapor deposition method, and a chemical vapor deposition method (CVD method).
The arc discharge method is a method in which graphite is evaporated by causing an arc discharge between positive and negative graphite electrodes, and carbon nanotubes are generated in a carbon deposit condensed at the tip of the cathode (see, for example, Patent Document 1). ). The laser vapor deposition method is a method of generating a carbon nanotube by putting a graphite sample mixed with a metal catalyst in an inert gas heated to a high temperature and irradiating it with a laser (see, for example, Patent Document 2).

一般に、上記アーク放電法やレーザー蒸発法では結晶性の良いカーボンナノチューブが生成できるが、生成するカーボンナノチューブの量が少なく大量生成に難しいと言われている。
CVD法には、反応炉の中に配置した基板にカーボンナノチューブを生成させる気相成長基板法(例えば、特許文献3参照)と、触媒金属と炭素源を一緒に高温の炉に流動させカーボンナノチューブを生成する流動気相法(例えば、特許文献4参照)の二つの方法がある。
In general, the arc discharge method or the laser evaporation method can produce carbon nanotubes with good crystallinity, but it is said that the amount of carbon nanotubes to be produced is small and difficult to produce in large quantities.
In the CVD method, a vapor phase growth substrate method (for example, refer to Patent Document 3) in which carbon nanotubes are generated on a substrate disposed in a reaction furnace, and a catalyst metal and a carbon source are flowed together in a high-temperature furnace. There are two methods such as a fluidized gas phase method (see, for example, Patent Document 4).

しかし、上記気相成長基板法は、バッジ処理であるので大量生産が難しい。また、流動気相法は、温度の均一性が低く結晶性の良いカーボンナノチューブを生成するのが難しいとされている。さらに、流動気相法の発展型として、高温の炉の中に、触媒兼用流動材で流動層を形成し、炭素原料を供給して繊維状のナノカーボンを生成する方法も提案されている。しかし、炉内の温度の均一性が低く結晶性の良いカーボンナノチューブを生成するのが難しいと考えられる。   However, since the vapor phase growth substrate method is a badge process, mass production is difficult. Further, the fluidized gas phase method is said to be difficult to produce carbon nanotubes with low temperature uniformity and good crystallinity. Further, as a development type of the fluidized gas phase method, a method of forming a fibrous nanocarbon by forming a fluidized bed with a fluid material also serving as a catalyst in a high-temperature furnace and supplying a carbon raw material has been proposed. However, it is considered difficult to produce carbon nanotubes with low temperature uniformity in the furnace and good crystallinity.

しかして、純度及び安定性の高いカーボンナノチューブを低コストで効率よく量産することができるようになれば、カーボンナノチューブの特性を生かしたナノテクノロジー製品を低コストで大量に供給することが可能になる。
特開2000−95509号公報 特開平10−273308号公報 特開2000−86217号公報 特開2003−342840号公報
If carbon nanotubes with high purity and stability can be mass-produced efficiently at low cost, it will be possible to supply large quantities of nanotechnology products that make use of the characteristics of carbon nanotubes at low cost. .
JP 2000-95509 A Japanese Patent Laid-Open No. 10-273308 JP 2000-86217 A JP 2003-342840 A

本発明はこうした事情を考慮してなされたもので、純度および安定性の高い高機能のナノカーボンを低コストで効率よく量産することができるナノカーボン製造装置を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a nanocarbon production apparatus capable of efficiently mass-producing highly functional nanocarbon having high purity and stability at low cost.

本発明に係るナノカーボン製造装置は、内側に耐火材を配置するとともに外側に断熱材を配置した筐体と、この筐体内部に最上段,中段,最下段に順次配置された、熱分解炉,カーボン生成炉及び燃焼炉とを具備することを特徴とする。   The nanocarbon production apparatus according to the present invention includes a housing in which a refractory material is disposed on the inside and a heat insulating material is disposed on the outside, and a pyrolysis furnace sequentially disposed in the uppermost, middle, and lowermost stages inside the housing. And a carbon generating furnace and a combustion furnace.

本発明によれば、純度および安定性の高い高機能のナノカーボンを低コストで効率よく量産することができる。   According to the present invention, highly functional nanocarbon having high purity and stability can be mass-produced efficiently at low cost.

以下、本発明のナノカーボン製造装置について更に詳しく説明する。
(1)上述したように、本発明に係るナノカーボン製造装置は、筐体と、この筐体内部に最上段,中段,最下段に順次配置された、熱分解炉,カーボン生成炉及び燃焼炉とを備えている。こうした構成によれば、熱分解炉、カーボン生成炉及び燃焼炉を個別に配置した場合に比べてコンパクトな構成のナノカーボン製造装置を実現できる。
(2)上記(1)の熱分解炉としては、前記筐体に固定された熱分解炉ドラムと、このドラム内に配置された移送スクリューと、前記熱分解炉ドラム内に原料を投入する原料投入装置とを具備した間接外部加熱型であり、被処理物を移動しながら還元雰囲気で炭化処理してナノカーボンの原料を生成する構成である場合が挙げられる。
Hereinafter, the nanocarbon production apparatus of the present invention will be described in more detail.
(1) As described above, the nanocarbon manufacturing apparatus according to the present invention includes a casing, and a pyrolysis furnace, a carbon generation furnace, and a combustion furnace, which are sequentially arranged in the uppermost, middle, and lowermost stages inside the casing. And has. According to such a configuration, it is possible to realize a nanocarbon production apparatus having a compact configuration as compared with the case where the pyrolysis furnace, the carbon generation furnace, and the combustion furnace are individually arranged.
(2) As the pyrolysis furnace of (1) above, a pyrolysis furnace drum fixed to the casing, a transfer screw arranged in the drum, and a raw material into which the raw material is charged into the pyrolysis furnace drum Indirect external heating type equipped with a charging device, and a configuration in which a raw material of nanocarbon is generated by carbonizing in a reducing atmosphere while moving an object to be processed.

(3)上記(1)又は(2)において、炭化物は前記燃焼炉で燃焼し、燃焼ガスを前記熱分解炉及びカーボン生成炉の夫々の熱源として用いる構成であることが好ましい。こうした構成の場合、燃焼炉で発生する高温の燃焼ガスは、断熱構造の筐体内での熱移動となるため、熱ロスの低減を図ることができる。
(4)上記(1)〜(3)において、前記熱分解炉と前記カーボン生成炉は両者間の距離が最短となる配管で接続し、熱分解炉で発生した炭化水素を含む熱分解ガスを前記配管によりカーボン生成炉に送り、ナノカーボン生成の原料ガスとする構成であることが好ましい。こうした構成にすることにより、熱分解ガスを有効に利用することができ、ナノカーボンの生成効率を上げることができる。
(3) In the above (1) or (2), it is preferable that the carbide is combusted in the combustion furnace and the combustion gas is used as a heat source for each of the pyrolysis furnace and the carbon generation furnace. In the case of such a configuration, the high-temperature combustion gas generated in the combustion furnace becomes a heat transfer in the casing of the heat insulating structure, so that heat loss can be reduced.
(4) In the above (1) to (3), the pyrolysis furnace and the carbon production furnace are connected by a pipe having the shortest distance between them, and pyrolysis gas containing hydrocarbons generated in the pyrolysis furnace is used. It is preferable that the pipe is sent to a carbon generation furnace to form a raw material gas for producing nanocarbon. With such a configuration, the pyrolysis gas can be used effectively, and the production efficiency of nanocarbon can be increased.

(5)上記(1)〜(4)において、前記筐体に、前記カーボン生成炉内に触媒金属を注入する注入手段を設けることが好ましい。こうした構成にすることにより、カーボン生成炉内に配置する生成板にナノカーボンを生成することができる。この場合、触媒金属としては例えば鉄粉等が挙げられる。
(6)上記(1)〜(5)において、前記燃焼炉は前記カーボン生成炉から出る反応残ガスと炭化物と補助燃料とを混合して燃焼させ、燃焼ガスを前記カーボン生成炉及び熱分解炉の熱源とする構成であることが好ましい。こうした構成にすることにより、燃焼炉で発生した燃焼ガスをカーボン生成炉及び熱分解炉の熱源として有効利用することができる。
(5) In the above (1) to (4), it is preferable that an injection means for injecting a catalytic metal into the carbon generating furnace is provided in the casing. By setting it as such a structure, nanocarbon can be produced | generated by the production | generation board arrange | positioned in a carbon production furnace. In this case, examples of the catalyst metal include iron powder.
(6) In the above (1) to (5), the combustion furnace mixes and burns the reaction residual gas, carbide, and auxiliary fuel that come out of the carbon generation furnace, and burns the combustion gas into the carbon generation furnace and the pyrolysis furnace. It is preferable that the heat source be configured as a heat source. With this configuration, the combustion gas generated in the combustion furnace can be effectively used as a heat source for the carbon generation furnace and the pyrolysis furnace.

(7)上記(1)〜(6)において、前記筐体に設けられた、前記熱分解炉と前記カーボン生成炉間の領域、及び前記カーボン生成炉と燃焼炉間の領域に希釈空気を導入するための空気導入手段と、前記両領域に設けられた、前記希釈空気の流動を調整するための流動調整板とを更に備えていることが好ましい。こうした構成では、流動調整板により燃焼炉からカーボン生成炉へ供給される燃焼ガス、およびカーボン生成炉から熱分解炉へ供給される燃焼ガスの流動を調節して、カーボン生成炉や熱分解炉に必要な温度分布を作ることができ、燃焼ガスを有効に利用することができる。   (7) In (1) to (6) above, dilution air is introduced into the region between the pyrolysis furnace and the carbon generation furnace and the region between the carbon generation furnace and the combustion furnace provided in the casing. It is preferable that the apparatus further includes an air introduction unit for adjusting the flow of the dilution air provided in both the regions. In such a configuration, the flow regulating plate regulates the flow of the combustion gas supplied from the combustion furnace to the carbon generating furnace and the combustion gas supplied from the carbon generating furnace to the pyrolysis furnace, so that the carbon generating furnace and the pyrolysis furnace are used. The necessary temperature distribution can be created, and the combustion gas can be used effectively.

次に、本発明の一実施形態に係るナノカーボン製造装置について図1を参照して説明する。なお、本実施形態は下記に述べることに限定されない。
本実施形態に係るナノカーボン製造装置は、筐体1と、この筐体1内部で最上段,中段及び最下段に順次配置された、熱分解炉2,カーボン生成炉3及び燃焼炉4とを備えている。前記筐体1は、内側に耐火材5を配置するとともに外側に断熱材(図示せず)を配置した構成になっている。
Next, a nanocarbon production apparatus according to an embodiment of the present invention will be described with reference to FIG. Note that the present embodiment is not limited to the following description.
The nanocarbon manufacturing apparatus according to the present embodiment includes a casing 1 and a pyrolysis furnace 2, a carbon generation furnace 3, and a combustion furnace 4 that are sequentially arranged in the uppermost, middle, and lowermost stages inside the casing 1. I have. The casing 1 has a configuration in which a refractory material 5 is disposed on the inner side and a heat insulating material (not shown) is disposed on the outer side.

前記熱分解炉2は間接外部加熱型であり、前記筐体1に固定された熱分解炉ドラム6と、この熱分解炉ドラム6内に配置された熱分解残渣移送スクリュー(以下、移送スクリューと呼ぶ)7と、熱分解炉ドラム6内に原料を投入する原料投入装置8とを具備し、被処理物を移動しながら還元雰囲気で炭化処理してナノカーボンの原料を生成する構成になっている。前記熱分解炉2には、該熱分解炉2内の圧力を測定するための圧力計9が配置されている。前記移送スクリュー7は、駆動モータ10により駆動する。   The pyrolysis furnace 2 is an indirect external heating type, and a pyrolysis furnace drum 6 fixed to the housing 1 and a pyrolysis residue transfer screw (hereinafter referred to as a transfer screw) disposed in the pyrolysis furnace drum 6. 7) and a raw material charging device 8 for charging the raw material into the pyrolysis furnace drum 6, and a carbonized material is generated in a reducing atmosphere while moving the object to be processed to generate a nanocarbon raw material. Yes. The pyrolysis furnace 2 is provided with a pressure gauge 9 for measuring the pressure in the pyrolysis furnace 2. The transfer screw 7 is driven by a drive motor 10.

前記原料投入装置8は、バイオマス(木、竹等),汚泥,廃棄物等の炭化水素を含む原料11を投入するためのホッパー12と、このホッパー12の下部側に配置されて原料9を熱分解炉ドラム6に送るための投入スクリュー13と、この投入スクリュー13を駆動するための駆動モータ14から構成されている。   The raw material charging device 8 is disposed on the lower side of the hopper 12 for charging a raw material 11 containing hydrocarbons such as biomass (wood, bamboo, etc.), sludge, waste, etc., and heats the raw material 9. The feeding screw 13 for feeding to the cracking furnace drum 6 and a drive motor 14 for driving the feeding screw 13 are configured.

前記カーボン生成炉3は、カーボン生成炉容器15と、カーボン移送手段16と、カーボン生成炉容器15内に触媒を供給するための触媒供給手段17と、カーボン生成炉容器15内に配置された複数の生成板18とを備えている。
前記カーボン移送手段16は、カーボン生成炉容器15に連通したケーシング19と、このケーシング19及びカーボン生成炉容器15内に配置された移送スクリュー20と、この移送スクリュー20を駆動する駆動モータ21と、前記ケーシング19に接続する配管22に介装されたロータリーバルブ23と、カーボン生成炉容器15に連通する反応残ガス配管24を備えている。カーボン生成炉容器15内のカーボン生成室25の温度は、温度計26により計測される。
The carbon generation furnace 3 includes a carbon generation furnace vessel 15, a carbon transfer means 16, a catalyst supply means 17 for supplying a catalyst into the carbon generation furnace vessel 15, and a plurality of carbon generators arranged in the carbon generation furnace vessel 15. The production | generation board 18 is provided.
The carbon transfer means 16 includes a casing 19 communicating with the carbon generating furnace vessel 15, a transfer screw 20 disposed in the casing 19 and the carbon generating furnace vessel 15, a drive motor 21 for driving the transfer screw 20, A rotary valve 23 interposed in a pipe 22 connected to the casing 19 and a reaction residual gas pipe 24 communicating with the carbon generating furnace vessel 15 are provided. The temperature of the carbon generation chamber 25 in the carbon generation furnace container 15 is measured by a thermometer 26.

前記燃焼炉4は、燃焼炉容器27と、熱分解残渣投入装置28と、焼却残渣排出装置29と、補助バーナ30とを備えている。前記熱分解残渣投入装置28は、熱分解炉2からの熱分解残渣31を投入するホッパー32と、熱分解残渣31を前記燃焼炉容器27に供給する投入スクリュー33と、この投入スクリュー33を駆動する駆動モータ34とを備えている。燃焼炉容器25の上部には、この燃焼炉容器25内の燃焼室35からの燃焼ガス36をカーボン生成炉3側に供給する複数の燃焼ガス出口ノズル37が設けられている。燃焼室35内の温度は温度計38により計測される。   The combustion furnace 4 includes a combustion furnace container 27, a pyrolysis residue charging device 28, an incineration residue discharging device 29, and an auxiliary burner 30. The pyrolysis residue charging device 28 has a hopper 32 for charging the pyrolysis residue 31 from the pyrolysis furnace 2, a charging screw 33 for supplying the pyrolysis residue 31 to the combustion furnace container 27, and driving the charging screw 33. Drive motor 34. A plurality of combustion gas outlet nozzles 37 for supplying the combustion gas 36 from the combustion chamber 35 in the combustion furnace vessel 25 to the carbon generating furnace 3 side are provided on the upper portion of the combustion furnace vessel 25. The temperature in the combustion chamber 35 is measured by a thermometer 38.

前記焼却残渣排出装置29は、燃焼炉容器27に連通するケーシング39と、前記燃焼炉容器25及びケーシング39内に配置された燃焼残渣移送スクリュー40と、この移送スクリュー40を駆動する駆動モータ41と、前記ケーシング39に連通する配管42に介装されたロータリーバルブ43とを備えている。   The incineration residue discharge device 29 includes a casing 39 communicating with the combustion furnace container 27, a combustion residue transfer screw 40 disposed in the combustion furnace container 25 and the casing 39, and a drive motor 41 for driving the transfer screw 40. And a rotary valve 43 interposed in a pipe 42 communicating with the casing 39.

前記筐体1の上部には、熱分解炉2の上部の領域の排ガス44の温度を測定するための温度計45が配置されている。また、筐体1の上部には、排ガス44を排出するための煙突46が設けられている。前記熱分解炉2とカーボン生成炉3のカーボン生成炉容器15は、両者を最短距離で接続するように熱分解ガス配管47により連通されている。   A thermometer 45 for measuring the temperature of the exhaust gas 44 in the upper region of the pyrolysis furnace 2 is disposed at the upper portion of the housing 1. In addition, a chimney 46 for discharging the exhaust gas 44 is provided at the top of the housing 1. The pyrolysis furnace 2 and the carbon generating furnace vessel 15 of the carbon generating furnace 3 are communicated with each other by a pyrolysis gas pipe 47 so as to connect them at the shortest distance.

前記熱分解炉2とカーボン生成炉3間の領域、及びカーボン生成炉3と燃焼炉4間の領域には、空気導入手段としての空気導入管48及び導入される空気の流動を調整する流動調整板49が夫々設けられている。なお、図中の符番51は熱分解炉2で生じた熱分解ガス、符番52は燃焼炉4に供給する補助燃焼、符番53は燃焼空気、符番54は反応残ガス燃焼火炎、符番55は補助バーナ火炎、符番56は燃焼炉4から排出される焼却残渣を示す。また、図中の符番57は、カーボン生成炉3のカーボン生成炉容器15に触媒を導入するための触媒供給管(触媒供給手段)を示す。 In the region between the pyrolysis furnace 2 and the carbon generating furnace 3 and in the region between the carbon generating furnace 3 and the combustion furnace 4, an air introduction pipe 48 as an air introduction means and a flow adjustment for adjusting the flow of the introduced air. Each plate 49 is provided. In the figure, reference numeral 51 denotes pyrolysis gas generated in the pyrolysis furnace 2, reference numeral 52 denotes auxiliary combustion supplied to the combustion furnace 4, reference numeral 53 denotes combustion air, reference numeral 54 denotes a reaction residual gas combustion flame, Reference numeral 55 indicates the auxiliary burner flame, and reference numeral 56 indicates the incineration residue discharged from the combustion furnace 4. Reference numeral 57 in the figure indicates a catalyst supply pipe (catalyst supply means) for introducing a catalyst into the carbon generation furnace vessel 15 of the carbon generation furnace 3.

次に、図1のナノカーボン製造装置でナノカーボンを生成する場合の作用について説明する。
まず、熱分解炉2には間接外部加熱型を採用し、固定して熱分解炉ドラム5の外部を熱し、移送スクリュー7により被処理物を移動しながら還元雰囲気で炭化する。この炭化物は、燃焼炉4で燃焼し、熱分解炉2及びカーボン生成炉3の熱源となる。熱分解炉2で発生した熱分解ガスは冷やさないままカーボン生成炉3へ送る。従って、熱分解炉2ではタールは発生しない。
Next, the operation in the case of producing nanocarbon with the nanocarbon production apparatus of FIG. 1 will be described.
First, an indirect external heating type is adopted for the pyrolysis furnace 2 and fixed, the outside of the pyrolysis furnace drum 5 is heated and carbonized in a reducing atmosphere while the workpiece is moved by the transfer screw 7. This carbide burns in the combustion furnace 4 and becomes a heat source for the pyrolysis furnace 2 and the carbon generation furnace 3. The pyrolysis gas generated in the pyrolysis furnace 2 is sent to the carbon generation furnace 3 without being cooled. Therefore, tar is not generated in the pyrolysis furnace 2.

炭化水素を含む熱分解ガスは、熱分解ガス配管47により最短距離でカーボン生成炉3に送り、ナノカーボン58の生成の原料ガスとなる。なお、カーボン生成炉3も外部加熱し、還元雰囲気でカーボン生成する。ここで、カーボン生成炉3のカーボン生成炉容器15内には、ナノカーボン58を生成するため触媒供給管57より、例えば鉄粉などの触媒金属を注入する。   The pyrolysis gas containing hydrocarbons is sent to the carbon generating furnace 3 through the pyrolysis gas pipe 47 at the shortest distance, and becomes a raw material gas for producing the nanocarbon 58. The carbon generation furnace 3 is also externally heated to generate carbon in a reducing atmosphere. Here, a catalytic metal such as iron powder is injected into the carbon generating furnace vessel 15 of the carbon generating furnace 3 from the catalyst supply pipe 57 in order to generate nanocarbon 58.

炭化物は、燃焼炉4でカーボン生成炉3から出る反応残ガス59と補助燃料52を混合して燃焼させる。燃焼炉4で発生した高温の燃焼ガス36は、カーボン生成炉3を外部加熱し、更に続けて、熱分解炉2を外部加熱する。ここで、燃焼ガス36は断熱構造の筐体1内での熱移動となるため、熱ロスの低減を図ることができる。
煙突46のドラフト効果で筐体1内を若干の負圧に保ち、外部の空気が入らないシール構造にすることにより、熱分解炉2とカーボン生成炉3の内部を還元雰囲気に保っている。
The carbide is burned by mixing the residual reaction gas 59 and the auxiliary fuel 52 that are discharged from the carbon generating furnace 3 in the combustion furnace 4. The high-temperature combustion gas 36 generated in the combustion furnace 4 heats the carbon generation furnace 3 to the outside, and further heats the pyrolysis furnace 2 to the outside. Here, since the combustion gas 36 performs heat transfer in the housing 1 having a heat insulating structure, heat loss can be reduced.
The inside of the housing 1 is kept at a slight negative pressure by the draft effect of the chimney 46, and the inside of the pyrolysis furnace 2 and the carbon generating furnace 3 is maintained in a reducing atmosphere by making a seal structure in which outside air does not enter.

上述したように、上記実施形態に係るナノカーボン製造装置は、図1に示すように、内側に耐火材を配置するとともに外側に断熱材5を配置した筐体1と、この筐体1内部に最上段,中段,最下段に夫々配置された、熱分解炉2,カーボン生成炉3及び燃焼炉4とを具備し、燃焼炉4で発生した高温の燃焼ガス36でカーボン生成炉3、熱分解炉2を外部加熱する構成となっている。この場合、高温の燃焼ガス36は、断熱構造の筐体1内での熱移動となるため、熱ロスを低減することができる。
また、煙突46のドラフト効果で筐体1内を若干の負圧に保ち、外部の空気が入らないシール構造にすることにより、熱分解炉2とカーボン生成炉3の内部を還元雰囲気に保つことができる。
As described above, the nanocarbon manufacturing apparatus according to the above embodiment includes a housing 1 in which a refractory material is disposed on the inside and a heat insulating material 5 is disposed on the outside, as shown in FIG. A pyrolysis furnace 2, a carbon generation furnace 3, and a combustion furnace 4 are disposed in the uppermost stage, the middle stage, and the lowermost stage, respectively. The furnace 2 is configured to be externally heated. In this case, since the high-temperature combustion gas 36 becomes a heat transfer in the housing 1 having a heat insulating structure, heat loss can be reduced.
Further, the inside of the housing 1 is kept at a slight negative pressure by the draft effect of the chimney 46, and the inside of the pyrolysis furnace 2 and the carbon generating furnace 3 is maintained in a reducing atmosphere by adopting a seal structure in which outside air does not enter. Can do.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。具体的には、上記実施形態において、例えば煙突に吸引ファンを設けて排ガスを引き込むようにしてもよい。この場合、吸引ファンにより、熱分解炉とカーボン生成炉をより確実に還元雰囲気に保つことができる。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment. Specifically, in the above embodiment, for example, a suction fan may be provided in the chimney to draw in the exhaust gas. In this case, the pyrolysis furnace and the carbon generation furnace can be more reliably maintained in a reducing atmosphere by the suction fan.

本発明の一実施形態に係るナノカーボン製造装置の概略図である。It is the schematic of the nanocarbon manufacturing apparatus which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1…筐体、2…熱分解炉、3…カーボン生成炉、4…燃焼炉、5…断熱材、7,20…移送スクリュー、8…原料投入装置、9…熱分解炉内圧力計、10,14,21,34,41…駆動モータ、12,32…ホッパー、13,33…投入スクリュー、13…断熱材、15…カーボン生成炉容器、16…カーボン移送スクリュー、17…触媒供給管(触媒供給手段)、18…生成板、19,39…ケーシング、23,43…ロータリーバルブ、24…反応残ガス配管、25…カーボン生成室、26…カーボン生成炉温度計、27…燃焼炉容器、28…熱分解残渣投入装置、29…焼却残渣輩出装置、30…補助バーナ、31…熱分解残渣、35…燃焼室、36…燃焼ガス、37…燃焼ガス出口ノズル、38…燃焼室温度計、40…燃焼残渣移送スクリュー、44…排ガス、45…排ガス温度計、47…熱分解ガス配管、48…空気導入配管、49…流動調整板、51…熱分解ガス。   DESCRIPTION OF SYMBOLS 1 ... Housing | casing, 2 ... Pyrolysis furnace, 3 ... Carbon production furnace, 4 ... Combustion furnace, 5 ... Thermal insulation, 7,20 ... Transfer screw, 8 ... Raw material charging device, 9 ... Pyrolysis furnace pressure gauge, 10 , 14, 21, 34, 41 ... drive motor, 12, 32 ... hopper, 13, 33 ... charging screw, 13 ... heat insulating material, 15 ... carbon generating furnace vessel, 16 ... carbon transfer screw, 17 ... catalyst supply pipe (catalyst (Supply means), 18 ... generating plate, 19, 39 ... casing, 23, 43 ... rotary valve, 24 ... reaction residual gas piping, 25 ... carbon generating chamber, 26 ... carbon generating furnace thermometer, 27 ... combustion furnace vessel, 28 ... Pyrolysis residue charging device, 29 ... Incineration residue production device, 30 ... Auxiliary burner, 31 ... Pyrolysis residue, 35 ... Combustion chamber, 36 ... Combustion gas, 37 ... Combustion gas outlet nozzle, 38 ... Combustion chamber thermometer, 40 ... combustion residue transfer Screw, 44 ... exhaust gas 45 ... exhaust gas thermometer, 47 ... pyrolysis gas pipe, 48 ... air introduction pipe, 49 ... flow control plate, 51 ... pyrolysis gas.

Claims (7)

内側に耐火材を配置するとともに外側に断熱材を配置した筐体と、この筐体内部に最上段,中段,最下段に順次配置された、熱分解炉,カーボン生成炉及び燃焼炉とを具備することを特徴とするナノカーボン製造装置。 A housing having a refractory material on the inside and a heat insulating material on the outside, and a pyrolysis furnace, a carbon generation furnace, and a combustion furnace sequentially arranged in the uppermost, middle, and lowermost stages inside the housing. An apparatus for producing nanocarbon, characterized in that: 前記熱分解炉は、前記筐体に固定された熱分解炉ドラムと、このドラム内に配置された移送スクリューと、前記熱分解炉ドラム内に原料を投入する原料投入装置とを具備した間接外部加熱型であり、被処理物を移動しながら還元雰囲気で炭化処理してナノカーボンの原料を生成する構成であることを特徴とする請求項1記載のナノカーボン製造装置。 The pyrolysis furnace is an indirect external unit comprising a pyrolysis furnace drum fixed to the casing, a transfer screw disposed in the drum, and a raw material charging device for charging the raw material into the pyrolysis furnace drum. 2. The nanocarbon production apparatus according to claim 1, wherein the nanocarbon production apparatus is a heating type and is configured to generate a nanocarbon raw material by carbonizing in a reducing atmosphere while moving an object to be processed. 炭化物は前記燃焼炉で燃焼し、燃焼ガスを前記熱分解炉及びカーボン生成炉の夫々の熱源として用いる構成であることを特徴とする請求項1もしくは請求項2記載のナノカーボン製造装置。 3. The nanocarbon production apparatus according to claim 1, wherein the carbide is burned in the combustion furnace, and the combustion gas is used as a heat source for each of the pyrolysis furnace and the carbon generation furnace. 前記熱分解炉と前記カーボン生成炉は両者間の距離が最短となる配管で接続し、熱分解炉で発生した炭化水素を含む熱分解ガスを前記配管によりカーボン生成炉に送り、ナノカーボン生成の原料ガスとする構成であることを特徴とする請求項1乃至3いずれか一記載のナノカーボン製造装置。 The pyrolysis furnace and the carbon production furnace are connected by a pipe having the shortest distance between them, and a pyrolysis gas containing hydrocarbons generated in the pyrolysis furnace is sent to the carbon production furnace through the pipe to generate nanocarbon. The apparatus for producing nanocarbon according to any one of claims 1 to 3, wherein the apparatus is configured as a raw material gas. 前記筐体に、前記カーボン生成炉内に触媒金属を注入する注入手段を設けたことを特徴とする請求項1乃至4いずれか一記載のナノカーボン製造装置。 The nanocarbon production apparatus according to any one of claims 1 to 4, wherein an injection means for injecting a catalytic metal into the carbon generating furnace is provided in the casing. 前記燃焼炉は前記カーボン生成炉から出る反応残ガスと炭化物と補助燃料とを混合して燃焼させ、燃焼ガスを前記カーボン生成炉及び熱分解炉の熱源とする構成であることを特徴とする請求項1乃至5いずれか一記載のナノカーボン製造装置。 The combustion furnace has a configuration in which a reaction residual gas, a carbide, and an auxiliary fuel that come out of the carbon generation furnace are mixed and burned, and the combustion gas is used as a heat source for the carbon generation furnace and the pyrolysis furnace. Item 6. The nanocarbon production apparatus according to any one of Items 1 to 5. 前記筐体に設けられた、前記熱分解炉と前記カーボン生成炉間の領域、及び前記カーボン生成炉と燃焼炉間の領域に希釈空気を導入するための空気導入手段と、前記両領域に設けられた、前記希釈空気の流動を調整するための流動調整板とを更に備えていることを特徴とする請求項1乃至6いずれか一記載のナノカーボン製造装置。 Air introduction means for introducing dilution air to the region between the pyrolysis furnace and the carbon generation furnace and the region between the carbon generation furnace and the combustion furnace provided in the casing, and provided in both the regions The apparatus for producing nanocarbon according to claim 1, further comprising a flow adjusting plate for adjusting the flow of the diluted air.
JP2008318716A 2008-12-15 2008-12-15 Nanocarbon production equipment Expired - Fee Related JP4869325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008318716A JP4869325B2 (en) 2008-12-15 2008-12-15 Nanocarbon production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008318716A JP4869325B2 (en) 2008-12-15 2008-12-15 Nanocarbon production equipment

Publications (2)

Publication Number Publication Date
JP2010138054A true JP2010138054A (en) 2010-06-24
JP4869325B2 JP4869325B2 (en) 2012-02-08

Family

ID=42348519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318716A Expired - Fee Related JP4869325B2 (en) 2008-12-15 2008-12-15 Nanocarbon production equipment

Country Status (1)

Country Link
JP (1) JP4869325B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339327A (en) * 2003-05-14 2004-12-02 Tetsuo Murata Carbonization apparatus
JP2005023131A (en) * 2003-06-30 2005-01-27 Kaneko:Kk Carbonization apparatus
JP2008094694A (en) * 2006-10-16 2008-04-24 Toshiba Corp Nanocarbon production apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339327A (en) * 2003-05-14 2004-12-02 Tetsuo Murata Carbonization apparatus
JP2005023131A (en) * 2003-06-30 2005-01-27 Kaneko:Kk Carbonization apparatus
JP2008094694A (en) * 2006-10-16 2008-04-24 Toshiba Corp Nanocarbon production apparatus

Also Published As

Publication number Publication date
JP4869325B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
US8936886B2 (en) Method for generating syngas from biomass including transfer of heat from thermal cracking to upstream syngas
CN100338811C (en) Hydrogen generating apparatus and fuel cell power energy generating system
US10119076B2 (en) Gasifier and method of using the same for gasification of biomass and solid waste
JP5342664B2 (en) Pyrolysis gasifier
WO2012063773A1 (en) Gasification furnace, gasification system, reforming device, and reforming system
JP2007127330A (en) Cogeneration method and system using carbonization furnace
RU2509052C2 (en) Method and apparatus for producing synthesis gas
CN112513225A (en) Pyrolysis reaction system and method for pyrolyzing organic feed
JP4963573B2 (en) Activated carbon production apparatus and activated carbon production method
JP5118338B2 (en) Carbonization and gasification method and system
KR101397378B1 (en) Apparatus for two-stage pyrolysis and gasfication and method thereof
JP4869300B2 (en) Nanocarbon production equipment
JP5688636B2 (en) Gasification furnace and gasification system
JP4869325B2 (en) Nanocarbon production equipment
JP4473568B2 (en) CO-containing reducing gas production equipment
BR112013008796B1 (en) method and equipment for producing coke during an indirectly heated gasification procedure
JP5748333B2 (en) Electric heating biomass gasifier
JP2009102594A (en) Gasification furnace system
JP2012246503A (en) Carbonization and gasification method and system
JP2003253278A (en) Method for producing charcoal and device for producing the same
JP2009196869A (en) Method for reforming hydrocarbon by oxyhydrogen flame using two burners
CN109956640A (en) The system for handling sludge
JP6055586B2 (en) Reformer
JP2013213647A (en) Waste gasification melting device
JP5300403B2 (en) Nanocarbon generation system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees