JP2010137220A - Method of forming thin film by spray and electrode formation method using the thin film - Google Patents

Method of forming thin film by spray and electrode formation method using the thin film Download PDF

Info

Publication number
JP2010137220A
JP2010137220A JP2009261558A JP2009261558A JP2010137220A JP 2010137220 A JP2010137220 A JP 2010137220A JP 2009261558 A JP2009261558 A JP 2009261558A JP 2009261558 A JP2009261558 A JP 2009261558A JP 2010137220 A JP2010137220 A JP 2010137220A
Authority
JP
Japan
Prior art keywords
substrate
composition
thin film
electrode
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009261558A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yamazaki
和彦 山崎
Yoshiaki Takada
佳明 高田
Toshiharu Hayashi
年治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009261558A priority Critical patent/JP2010137220A/en
Publication of JP2010137220A publication Critical patent/JP2010137220A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form an electrode with low specific resistance, reflectance, surface roughness, and cohesiveness, equivalent to or more than those obtained by the vacuum process and spin coating method, on a surface of a substrate efficiently and continuously without limiting the quality and configuration of the substrate on which a composition is applied and also without adjusting the drying conditions in accordance with the configuration of the substrate and the character of the composition. <P>SOLUTION: At first, the composition with a viscosity of 30 mPa s or less is prepared by having metal nanoparticle, containing 75 wt.% or more of silver nanoparticles, dispersed into a dispersion medium. Next, a thin film is formed by applying the composition on the surface of the substrate by the spray coating method. A gas for crushing the drops is aerated in air atmosphere with a flow rate of 5,000 to 100,000 times with respect to the flow rate 1 of the composition in terms of the volume ratio when the composition is applied on the surface of the substrate by the spray coating method. Then, the thin film is formed by applying the drops of the composition on the surface of the substrate while refining the drops of the composition. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基材表面に金属ナノ粒子を含む塗液(組成物)をスプレー塗工法により塗布することで、導電性を有する薄膜を形成する方法と、この方法で形成された薄膜を用いた電極形成方法に関する。更に詳しくは太陽電池基板上に金属電極となる薄膜を形成する方法と、この方法で形成された薄膜を用いて電極を形成する方法に関するものである。   The present invention uses a method of forming a conductive thin film by applying a coating liquid (composition) containing metal nanoparticles on the surface of a substrate by a spray coating method, and the thin film formed by this method. The present invention relates to an electrode forming method. More specifically, the present invention relates to a method for forming a thin film to be a metal electrode on a solar cell substrate and a method for forming an electrode using the thin film formed by this method.

従来、基材上に導電性を有する薄膜を形成する際に、CVD法やPVD法等の真空プロセスを用いる場合と、スピンコーティング法やスプレー塗工法等の塗布プロセスを用いる場合がある。塗布プロセスの一つであるスプレー塗工法を用いて、基材表面に金属微粒子を含む塗液を塗布することで、導電性を有する薄膜を形成する方法が知られている(例えば、特許文献1及び2参照。)。特許文献1に示された有機EL表示素子の製造方法では、有機層を形成する材料を含む溶液を、ノズルから霧状に噴出し、ノズルと対向する位置に配置した基板に塗布し、有機層を形成する。また上記基板を保持する基板保持台或いはその近傍に乾燥源を備え、基板上に塗布された上記溶液の乾燥速度を制御し、有機層の形成速度を調整するように構成される。例えば、乾燥源として、ヒータを設置し、熱電対の温度モニタリングにより温度調節器でヒータ電源の電力を制御し、基板保持台の温度を50℃にコントロールするように構成される。
このように構成された有機EL表示素子の製造方法では、有機層を形成する材料を含む溶液をノズル先端から霧状に基板上に塗布することで、基板上に有機層の形成位置を限定したマスク板を用いた場合、或いは正孔注入電極の凹凸のある場合でも塗布が可能になる。また基板保持台内に乾燥源を備えることで、有機層の凝集が無くなり、均一な膜厚の有機層が得られるようになっている。
Conventionally, when forming a conductive thin film on a substrate, a vacuum process such as a CVD method or a PVD method is used, and a coating process such as a spin coating method or a spray coating method is sometimes used. A method of forming a conductive thin film by applying a coating liquid containing metal fine particles on the surface of a substrate using a spray coating method which is one of coating processes is known (for example, Patent Document 1). And 2). In the method of manufacturing an organic EL display element disclosed in Patent Document 1, a solution containing a material for forming an organic layer is sprayed in a mist form from a nozzle, applied to a substrate disposed at a position facing the nozzle, and an organic layer Form. Further, a drying source is provided at or near the substrate holding table for holding the substrate, and the drying rate of the solution applied on the substrate is controlled to adjust the formation rate of the organic layer. For example, a heater is installed as a drying source, the power of the heater power source is controlled by a temperature controller by monitoring the temperature of a thermocouple, and the temperature of the substrate holder is controlled to 50 ° C.
In the manufacturing method of the organic EL display element configured as described above, the formation position of the organic layer is limited on the substrate by applying the solution containing the material for forming the organic layer on the substrate in a mist form from the tip of the nozzle. Application is possible even when a mask plate is used or the hole injection electrode is uneven. In addition, by providing a drying source in the substrate holder, the organic layer is not aggregated, and an organic layer having a uniform thickness can be obtained.

一方、特許文献2に示された薄膜形成方法では、基板の一面に薄膜材料の微粒子を分散させた薬液を均一に塗布した後であって、この薬液中に分散している薄膜材料の微粒子が凝集する前に、基板を80〜150℃程度の温度雰囲気中に曝して薬液を乾燥させることにより、均一な薄膜を形成する。また上記薬液の塗布は、基板面に対して相対的に二次元移動するスプレーノズルで薬液を噴霧して行う。更に上記スプレーノズルは、導入された高圧気体の高速噴射で負圧となった薬液送入口より吸引される薬液を、上記高速噴射する気体で破砕し微粒子化して噴射するノズルである。
このように構成された薄膜形成方法では、基板の一面に均一に塗布された薬液中に分散している薄膜材料の微粒子が凝集する前に、所定の温度雰囲気中に上記基板を曝し、この基板の全体に塗布された薬液を均一な温度下で同時に乾燥させることにより、薬液に分散された薄膜材料の微粒子を凝集させることなく均一な薄膜を形成できる。またスプレーノズルを基板に対して相対的に二次元移動して所定部分に薬液を噴霧して塗布するので、薬液の無駄な使用を抑制できる。更に高圧気体の高速噴射で薬液送入口に負圧を発生させ、薬液送入口から薬液を吸引し、この薬液を高速噴射する気体で破砕し微粒子化して噴射するので、薬液の噴霧量の調節が容易になり、均一な薄膜を形成できるようになっている。
On the other hand, in the thin film forming method disclosed in Patent Document 2, the thin film material fine particles dispersed in the chemical liquid are uniformly applied to one surface of the substrate after the chemical liquid in which the fine particles of the thin film material are dispersed uniformly. Before aggregation, the substrate is exposed to a temperature atmosphere of about 80 to 150 ° C. to dry the chemical solution, thereby forming a uniform thin film. The chemical solution is applied by spraying the chemical solution with a spray nozzle that moves two-dimensionally relative to the substrate surface. Furthermore, the spray nozzle is a nozzle that crushes the chemical liquid sucked from the chemical liquid inlet port that has become negative pressure by the high-speed injection of the introduced high-pressure gas with the gas that is jetted at high speed, and atomizes the chemical liquid.
In the thin film forming method thus configured, the substrate is exposed to a predetermined temperature atmosphere before the fine particles of the thin film material dispersed in the chemical solution uniformly applied to one surface of the substrate are aggregated. By simultaneously drying the chemical solution applied to the whole at a uniform temperature, a uniform thin film can be formed without agglomerating fine particles of the thin film material dispersed in the chemical solution. Further, since the spray nozzle is moved two-dimensionally relative to the substrate and the chemical liquid is sprayed and applied to a predetermined portion, useless use of the chemical liquid can be suppressed. In addition, negative pressure is generated at the chemical solution inlet by high-speed injection of high-pressure gas, the chemical solution is sucked from the chemical solution inlet, and this chemical solution is crushed and atomized by the gas that is injected at high speed. It becomes easy and a uniform thin film can be formed.

特開2001−297876号公報(請求項1及び4、段落[0032])JP 2001-297876 A (claims 1 and 4, paragraph [0032]) 特開2004− 66138号公報(請求項1〜3、段落[0025]、段落[0051]〜[0053])JP 2004-66138 A (Claims 1 to 3, paragraphs [0025] and paragraphs [0051] to [0053])

しかし、上記従来の特許文献1に示された有機EL表示素子の製造方法では、加熱により変形又は変質し易い材質の基板を使用できず、また基板のサイズが大きく熱容量が大きい場合や、基板の塗布面が加熱し難い形状である場合に、基板を加熱するのに多くの時間を要するとともに、溶媒の蒸発によって降温した基板を再び昇温するのに比較的多くの時間を要し、更に基板の形状や溶液の性状に応じて乾燥条件を調整しなければならず、作業性が悪い問題点があった。
また、上記従来の特許文献2に示された薄膜形成方法では、微粒子同士が強固に凝集する傾向の強い金属ナノ粒子を用いた場合、基板とともにスプレーノズルを80〜150℃程度の温度雰囲気中に曝すと、スプレーノズルの吐出口に付着した薬液の乾燥及び凝集が著しく速く進行してしてしまい、ノズルが閉塞してしまうおそれがあった。
本発明の第1の目的は、組成物を塗布する基材の材質及び形状を制限することなく、また基材の形状や組成物の性状に応じた乾燥条件を調整することなく、真空プロセスやスピンコーティング法と同等以上の低比抵抗、反射率、表面粗さ及び密着性を有する電極を、効率良く連続的に基材表面に形成できる、スプレーによる薄膜形成方法及びこの薄膜を用いた電極形成方法を提供することにある。
本発明の第2の目的は、スプレーノズルを閉塞させることなく、また凹凸面を有する基材であっても、均一な厚さを有する薄膜又は電極を基材表面に形成できる、スプレーによる薄膜形成方法及びこの薄膜を用いた電極形成方法を提供することにある。
However, in the method of manufacturing the organic EL display element disclosed in the above-described conventional Patent Document 1, a substrate made of a material that is easily deformed or altered by heating cannot be used, and the substrate has a large size and a large heat capacity. When the coated surface has a shape that is difficult to heat, it takes a long time to heat the substrate, and it takes a relatively long time to raise the temperature of the substrate that has been lowered due to the evaporation of the solvent. The drying conditions had to be adjusted according to the shape of the solution and the properties of the solution, and there was a problem that workability was poor.
Moreover, in the conventional thin film forming method shown in Patent Document 2, when metal nanoparticles having a strong tendency to agglomerate fine particles are used, the spray nozzle is placed in a temperature atmosphere of about 80 to 150 ° C. together with the substrate. When exposed, the chemical solution adhering to the discharge port of the spray nozzle may be dried and agglomerated rapidly, and the nozzle may be clogged.
The first object of the present invention is to provide a vacuum process without limiting the material and shape of the substrate on which the composition is applied, and without adjusting the drying conditions according to the shape of the substrate and the properties of the composition. Thin film formation method by spraying and electrode formation using this thin film, which can efficiently and continuously form electrodes having low specific resistance, reflectance, surface roughness and adhesion equivalent to or better than those of spin coating method It is to provide a method.
The second object of the present invention is to form a thin film by spraying which can form a thin film or an electrode having a uniform thickness on the surface of the base material even if it is a base material having an uneven surface without blocking the spray nozzle. The present invention provides a method and an electrode forming method using the thin film.

本発明の第1の観点は、75重量%以上の銀ナノ粒子を含有する金属ナノ粒子を分散媒に分散させて30mPa・s以下の粘度の組成物を調製する工程と、この組成物をスプレー塗工法により基材表面に塗布して薄膜を形成する工程とを含むスプレーによる薄膜形成方法であって、スプレー塗工法による組成物の基材表面への塗布時に、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で5000倍以上かつ100000倍以下の流量で通気して組成物の液滴を微細化しながら基材表面に塗布して薄膜を形成することを特徴とする。
この第1の観点に記載されたスプレーによる薄膜形成方法では、比較的低い温度での焼結性に優れた金属ナノ粒子を含む組成物が、高圧の液滴破砕用ガスの高速噴射により発生する負圧により吸引されて液滴となり、更にこの組成物の液滴が高圧の液滴破砕用ガスの高速噴射により破砕されて微粒子化した後に、基材表面に塗布されて基材表面に薄膜が形成される。このとき微粒子化した液滴同士が基材上で再び結合しないので、基材表面に均一な厚さの薄膜を形成することができる。
また銀ナノ粒子以外の金属ナノ粒子として、金、白金、パラジウム、ルテニウム、ニッケル、銅、錫、インジウム、亜鉛、クロム、鉄及びマンガンからなる群より選ばれた1種又は2種以上の金属ナノ粒子を含有し、銀ナノ粒子以外の金属ナノ粒子の含有量が、全ての金属ナノ粒子100重量%に対し0.02重量%以上かつ25重量%以下であることが好ましい。
また分散媒はアルコール類又はアルコール類含有水溶液であることが好ましいが、これらに限定されない。
According to a first aspect of the present invention, a step of preparing a composition having a viscosity of 30 mPa · s or less by dispersing metal nanoparticles containing 75% by weight or more of silver nanoparticles in a dispersion medium, and spraying the composition. A method of forming a thin film by spraying, comprising a step of forming a thin film by applying to a substrate surface by a coating method, wherein the composition has a flow rate of 1 in volume ratio when applied to the substrate surface by a spray coating method. On the other hand, a gas for crushing droplets is ventilated in an air atmosphere at a flow rate of 5000 times or more and 100000 times or less, and a thin film is formed by applying the droplets of the composition to the surface of the substrate while miniaturizing the composition. .
In the method for forming a thin film by spray described in the first aspect, a composition containing metal nanoparticles excellent in sinterability at a relatively low temperature is generated by high-speed jetting of a high-pressure droplet crushing gas. After being sucked by negative pressure to form droplets, the composition droplets are crushed into fine particles by high-speed jetting of high-pressure droplet crushing gas, and then applied to the substrate surface to form a thin film on the substrate surface. It is formed. At this time, since the finely divided droplets do not bind again on the substrate, a thin film having a uniform thickness can be formed on the surface of the substrate.
In addition, as the metal nanoparticles other than silver nanoparticles, one or more metal nanoparticles selected from the group consisting of gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, chromium, iron and manganese are used. It is preferable that the content of metal nanoparticles other than silver nanoparticles is 0.02 wt% or more and 25 wt% or less with respect to 100 wt% of all metal nanoparticles.
The dispersion medium is preferably an alcohol or an alcohol-containing aqueous solution, but is not limited thereto.

本発明の第4の観点は、第1ないし第3の観点のいずれかに記載の方法により基材の表面に薄膜を形成する工程と、この表面に薄膜が形成された基材を大気雰囲気中又は不活性ガス雰囲気中で130〜400℃の温度で焼成して、基材表面に電極を形成する工程を含む電極形成方法である。
この第4の観点に記載された電極形成方法では、表面に薄膜が形成された基材を130〜400℃という比較的低い温度で焼成しても、真空プロセスやスピンコーティング法と同等以上の低比抵抗、反射率、表面粗さ及び密着性を有する電極が得られる。
本発明の第5の観点は、表面粗さ10〜500nmの凹凸を有する基材表面に、第4の観点に記載の電極形成方法を用いて形成され、基材表面の凹凸に追随して厚さのばらつきが中心値の30%以内であって表面粗さが10〜600nmとなるように形成された電極である。
この第5の観点に記載された電極では、基材の表面の凹凸に追随した均一な厚さの電極を形成できる。このため真空プロセスやスピンコーティング法と同等以上の低比抵抗、反射率、表面粗さ及び密着性を有する電極が得られる。
According to a fourth aspect of the present invention, there is provided a step of forming a thin film on the surface of the substrate by the method according to any one of the first to third aspects, and the substrate having the thin film formed on the surface in the atmosphere. Or it is an electrode formation method including the process of baking at the temperature of 130-400 degreeC in inert gas atmosphere, and forming an electrode on the base-material surface.
In the electrode forming method described in the fourth aspect, even when a base material having a thin film formed on the surface is baked at a relatively low temperature of 130 to 400 ° C., it is as low as the vacuum process or the spin coating method. An electrode having specific resistance, reflectance, surface roughness and adhesion is obtained.
A fifth aspect of the present invention is formed on the surface of a substrate having irregularities with a surface roughness of 10 to 500 nm using the electrode forming method described in the fourth aspect, and follows the irregularities on the surface of the substrate. It is an electrode formed so that the variation in thickness is within 30% of the center value and the surface roughness is 10 to 600 nm.
With the electrode described in the fifth aspect, it is possible to form an electrode having a uniform thickness following the unevenness of the surface of the substrate. For this reason, an electrode having a low specific resistance, reflectance, surface roughness and adhesiveness equivalent to or higher than those of a vacuum process or spin coating method can be obtained.

本発明によれば、スプレー塗工法による組成物の基材表面への塗布時に、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で5000倍以上かつ100000倍以下の流量で通気して組成物の液滴を微細化しながら基材表面に塗布して薄膜を形成したので、基材の平坦面に薄膜を形成した後に焼成して電極を形成した場合のスピンコーティング法と同等以上の低比抵抗、反射率、表面粗さ及び密着性を有する電極を、スプレー塗工法という比較的簡素な塗布プロセスにより基材表面に形成できる。またスプレー塗工法を用いたので、大型の基材やロールトゥーロール型の基材(一方のロールから他方のロールに巻取られるフィルム状の基材)に連続的に塗布でき、スピンコーティング法より生産性を向上できる。
また基材上の凹凸面にスピンコーティング法により組成物を塗布すると、組成物が凹凸面の谷の部分に残留するため、凹凸の高低差より薄膜の厚さが薄い場合、均一な厚さの薄膜を形成することが難しかったけれども、本発明の薄膜形成方法では、組成物の液滴が微細化されており、着弾後すぐに乾燥することから、組成物の液滴が基材の凹凸の斜面に着弾した後も、この斜面に残留させることができ、均一な厚さの薄膜を形成できる。この結果、組成物の基材に対する濡れ性を調整せずに、薄膜の厚さの均一性を更に向上できる。従って、組成物を塗布する基材の材質及び形状は制限されず、基材の形状や組成物の性状に応じた乾燥条件を調整する必要もない。なお、組成物の基材に対する濡れ性は、例えばアルコール類の添加量により調整される。
According to the present invention, when the composition is applied to the substrate surface by the spray coating method, the flow rate of the liquid droplet crushing gas is 5000 times or more and 100000 times or less in the atmospheric air with respect to the flow rate 1 of the composition in volume ratio. Since the thin film was formed by applying the material to the surface of the substrate while finely pulverizing the droplets of the composition, the spin coating method when the electrode was formed by baking after forming the thin film on the flat surface of the substrate and An electrode having a low specific resistance, reflectance, surface roughness and adhesiveness equivalent to or higher can be formed on the surface of the substrate by a relatively simple coating process called spray coating. Also, since the spray coating method is used, it can be applied continuously to large substrates and roll-to-roll type substrates (film-like substrates wound from one roll to the other roll). Productivity can be improved.
In addition, when the composition is applied to the uneven surface on the base material by spin coating, the composition remains in the valley portion of the uneven surface. Although it was difficult to form a thin film, in the method for forming a thin film according to the present invention, the droplets of the composition are miniaturized and dried immediately after landing. Even after landing on the slope, it can remain on this slope, and a thin film having a uniform thickness can be formed. As a result, the uniformity of the thin film thickness can be further improved without adjusting the wettability of the composition with respect to the substrate. Therefore, the material and shape of the substrate to which the composition is applied are not limited, and there is no need to adjust the drying conditions according to the shape of the substrate and the properties of the composition. In addition, the wettability with respect to the base material of a composition is adjusted with the addition amount of alcohol, for example.

また比較的煩雑な工程を含む真空プロセスを用いずに、真空プロセスと同等以上の低比抵抗、反射率、表面粗さ及び密着性を有する電極を、スプレー塗工法という比較的簡素な塗布プロセスにより基材表面に形成できる。この結果、プロセスの大幅な簡素化を図ることができる。
また基材を室温より高い80〜150℃程度の温度雰囲気中に曝さずに済むので、スプレー塗工法に用いられるスプレーノズルの吐出口に付着した組成物が乾燥しない。この結果、スプレーノズルを閉塞させることなく、組成物を基材表面に塗布できる。
また上記方法により表面に薄膜を形成し、この表面に薄膜が形成された基材を大気雰囲気中又は不活性ガス雰囲気中で130〜400℃の温度で焼成して基材表面に電極を形成すれば、真空プロセスやスピンコーティング法と同等以上の低比抵抗、反射率、表面粗さ及び密着性を有する電極が得られる。
更に表面粗さ10〜500nmの凹凸を有する基材表面に、上記電極形成方法を用いて形成され、基材表面の凹凸に追随して厚さのばらつきが中心値の30%以内であって表面粗さが10〜600nmとなるように電極を形成すれば、基材の表面の凹凸に追随した均一な厚さの電極を形成できる。この結果、真空プロセスやスピンコーティング法と同等以上の低比抵抗、反射率、表面粗さ及び密着性を有する電極が得られる。
In addition, without using a vacuum process including relatively complicated steps, an electrode having a low specific resistance, reflectance, surface roughness and adhesiveness equivalent to or higher than those of the vacuum process can be obtained by a relatively simple coating process called spray coating. It can be formed on the substrate surface. As a result, the process can be greatly simplified.
Moreover, since it is not necessary to expose a base material in the temperature atmosphere of about 80-150 degreeC higher than room temperature, the composition adhering to the discharge port of the spray nozzle used for a spray coating method does not dry. As a result, the composition can be applied to the substrate surface without blocking the spray nozzle.
A thin film is formed on the surface by the above method, and the substrate on which the thin film is formed is baked at a temperature of 130 to 400 ° C. in an air atmosphere or an inert gas atmosphere to form an electrode on the surface of the substrate. For example, an electrode having a low specific resistance, reflectivity, surface roughness, and adhesion equivalent to or higher than those of a vacuum process or spin coating method can be obtained.
Further, the surface is formed on the surface of the substrate having irregularities with a surface roughness of 10 to 500 nm by using the above electrode forming method, and the variation in thickness is within 30% of the center value following the irregularities on the surface of the substrate. If the electrode is formed so as to have a roughness of 10 to 600 nm, an electrode having a uniform thickness following the irregularities on the surface of the substrate can be formed. As a result, an electrode having a low specific resistance, reflectivity, surface roughness, and adhesion equivalent to or better than those of a vacuum process or spin coating method can be obtained.

次に本発明を実施するための形態を説明する。
本発明の薄膜形成方法は、75重量%以上、好ましくは80重量%以上の銀ナノ粒子を含有する金属ナノ粒子を分散媒に分散させて、30mPa・s以下、好ましくは10mPa・s以下の粘度の組成物を調製する工程と、この組成物をスプレー塗工法により基材表面に塗布して薄膜を形成する工程とを含む。またスプレー塗工法による組成物の基材表面への塗布時に、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で5000倍以上かつ100000倍以下、好ましくは10000〜50000倍の流量で通気して組成物の液滴を微細化しながら基材表面に塗布して薄膜を形成する。ここで、銀ナノ粒子の含有量を全ての金属ナノ粒子100重量%に対して75重量%以上に限定したのは、75重量%未満ではこの組成物を用いて形成された薄膜を焼成して得られる電極(例えば、太陽電池の電極)の反射率が低下してしまうからである。また組成物の粘度を30mPa・s以下に限定したのは、30mPa・sを越えると粘度が高すぎてスプレー塗工が困難になるからである。更にスプレー塗工法による組成物の基材表面への塗布時に、体積比で組成物の流量1に対する液滴破砕用ガスの流量を5000倍以上かつ100000倍以下の範囲に限定したのは、5000倍未満では組成物の液滴を十分に微細化できず、100000倍を越えても基材表面に塗布された薄膜を焼成して得られる電極の特性が向上しないからである。なお、組成物の流量はスプレー塗工法に用いられるスプレーノズルの大きさ(噴射能力)によって異なるけれども、例えば組成物の流量を1〜10ミリリットル/分とした場合、液滴破砕用ガスの流量は5〜50リットル/分の範囲に設定される。
Next, the form for implementing this invention is demonstrated.
In the thin film forming method of the present invention, metal nanoparticles containing 75% by weight or more, preferably 80% by weight or more of silver nanoparticles are dispersed in a dispersion medium, and the viscosity is 30 mPa · s or less, preferably 10 mPa · s or less. And a step of applying the composition to the surface of a substrate by a spray coating method to form a thin film. Further, when the composition is applied to the substrate surface by the spray coating method, the droplet crushing gas is 5000 times or more and 100,000 times or less, preferably 10,000 to 50,000 times in the air atmosphere with respect to the flow rate 1 of the composition in volume ratio. A thin film is formed by applying air to the substrate surface while finely pulverizing the composition droplets. Here, the content of the silver nanoparticles is limited to 75% by weight or more with respect to 100% by weight of all the metal nanoparticles. If the content is less than 75% by weight, the thin film formed using this composition is fired. This is because the reflectance of the obtained electrode (for example, an electrode of a solar cell) is lowered. The reason why the viscosity of the composition is limited to 30 mPa · s or less is that when it exceeds 30 mPa · s, the viscosity is too high and spray coating becomes difficult. Furthermore, when applying the composition to the substrate surface by the spray coating method, the flow rate of the droplet crushing gas with respect to the flow rate 1 of the composition by volume ratio was limited to the range of 5000 times to 100,000 times 5000 times. If the ratio is less than 1, the composition droplets cannot be sufficiently miniaturized, and even if the composition exceeds 100000 times, the characteristics of the electrode obtained by firing the thin film applied to the substrate surface are not improved. Although the flow rate of the composition varies depending on the size (spraying ability) of the spray nozzle used in the spray coating method, for example, when the flow rate of the composition is 1 to 10 ml / min, the flow rate of the droplet crushing gas is It is set in the range of 5 to 50 liters / minute.

金属ナノ粒子は炭素骨格が炭素数1〜3の有機分子主鎖の保護剤で化学修飾される。金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を1〜3の範囲に限定したのは、炭素数が4以上であると焼成時の熱により保護剤が脱離或いは分解(分離・燃焼)し難く、上記薄膜内に有機残渣が多く残り、変質又は劣化してしまい、薄膜を焼成して得られた電極の導電性及び反射率が低下してしまうからである。更に金属ナノ粒子は一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上、好ましくは75%以上含有する。一次粒径10〜50nmの範囲内の金属ナノ粒子の含有量を、数平均で全ての金属ナノ粒子100%に対して70%以上の範囲に限定したのは、70%未満では金属ナノ粒子の比表面積が増大して保護剤である有機物の占める割合が大きくなり、焼成時の熱により脱離或いは分解(分離・燃焼)し易い有機分子であっても、この有機分子の占める割合が多いため、薄膜内に有機残渣が多く残り、この残渣が変質又は劣化してしまい、薄膜を焼成して得られる電極の導電性及び反射率が低下したり、或いは金属ナノ粒子の粒度分布が広くなり薄膜の密度が低下し易くなって、薄膜を焼成して得られる電極の導電性及び反射率が低下してしまうからである。更に上記金属ナノ粒子の一次粒径を10〜50nmの範囲内に限定したのは、統計的手法より一次粒径が10〜50nmの範囲内にある金属ナノ粒子が経時安定性(経年安定性)と相関しているからである。   The metal nanoparticles are chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 1 to 3 carbon atoms. The number of carbons in the carbon skeleton of the organic molecular main chain of the protective agent that chemically modifies the metal nanoparticles was limited to the range of 1 to 3 because the protective agent was released by the heat during firing when the carbon number was 4 or more. Alternatively, it is difficult to decompose (separate and burn), and a large amount of organic residue remains in the thin film, resulting in deterioration or deterioration, and the conductivity and reflectivity of the electrode obtained by firing the thin film are reduced. . Further, the metal nanoparticles contain 70% or more, preferably 75% or more of metal nanoparticles having a primary particle size in the range of 10 to 50 nm in terms of number average. The content of the metal nanoparticles in the range of the primary particle size of 10 to 50 nm is limited to a range of 70% or more with respect to 100% of all metal nanoparticles on the number average. The specific surface area increases and the proportion of the organic substance that is the protective agent increases, and even if the organic molecule is easily desorbed or decomposed (separated or burned) by the heat during firing, the proportion of this organic molecule is large. Many organic residues remain in the thin film, and the residue is altered or deteriorated, and the conductivity and reflectance of the electrode obtained by firing the thin film are reduced, or the particle size distribution of the metal nanoparticles is widened. This is because the conductivity and reflectivity of the electrode obtained by firing the thin film are reduced. Furthermore, the primary particle size of the metal nanoparticles was limited to the range of 10 to 50 nm because the metal nanoparticles having a primary particle size within the range of 10 to 50 nm are stable over time (statistical stability). It is because it correlates.

一方、組成物を構成する金属ナノ粒子のうち、銀ナノ粒子以外の金属ナノ粒子として、金、白金、パラジウム、ルテニウム、ニッケル、銅、錫、インジウム、亜鉛、クロム、鉄及びマンガンからなる群より選ばれた1種又は2種以上の金属ナノ粒子を含有することが好ましい。この銀ナノ粒子以外の金属ナノ粒子の含有量は、全ての金属ナノ粒子100重量%に対し0.02重量%以上かつ25重量%以下、好ましくは0.03〜20重量%である。ここで、銀ナノ粒子以外の金属ナノ粒子の含有量を全ての金属ナノ粒子100重量%に対して0.02重量%以上かつ25重量%以下の範囲に限定したのは、0.02重量%未満では特に大きな問題はないけれども、0.02〜25重量%の範囲内においては、耐候性試験(温度100℃かつ湿度50%の恒温恒湿槽に1000時間保持する試験)後の薄膜を焼成して得られる電極の導電性及び反射率が耐候性試験前より悪化しないという特徴があり、25重量%を越えると薄膜の焼成直後の電極の導電性及び反射率が低下し、しかも耐候性試験後の電極が耐候性試験前の電極より導電性及び反射率が低下してしまうからである。   On the other hand, among metal nanoparticles constituting the composition, as metal nanoparticles other than silver nanoparticles, from the group consisting of gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, chromium, iron and manganese It is preferable to contain one or more selected metal nanoparticles. The content of metal nanoparticles other than the silver nanoparticles is 0.02 wt% or more and 25 wt% or less, preferably 0.03 to 20 wt% with respect to 100 wt% of all metal nanoparticles. Here, the content of metal nanoparticles other than silver nanoparticles was limited to a range of 0.02 wt% or more and 25 wt% or less with respect to 100 wt% of all metal nanoparticles. If it is less than 0, there is no particular problem, but within the range of 0.02 to 25% by weight, the thin film after the weather resistance test (the test kept in a constant temperature and humidity chamber at a temperature of 100 ° C. and a humidity of 50% for 1000 hours) is fired. The conductivity and reflectivity of the electrode obtained in this way are not deteriorated from those before the weather resistance test, and if it exceeds 25% by weight, the conductivity and reflectivity of the electrode immediately after firing the thin film are reduced, and the weather resistance test This is because the conductivity and reflectance of the later electrode are lower than those of the electrode before the weather resistance test.

また組成物を構成する分散媒は、アルコール類又はアルコール類含有水溶液からなることが好ましい。分散媒として使用するアルコール類としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセロール、イソボニルヘキサノール及びエリトリトールからなる群より選ばれた1種又は2種以上が挙げられる。アルコール類の添加は、基材との濡れ性の改善のためであり、基材の種類に合わせて水とアルコール類の混合割合を自由に変えることができる。また分散媒は、全ての分散媒100重量%に対して、1重量%以上、好ましくは2重量%以上の水と、2重量%以上、好ましくは3重量%以上のアルコール類とを含有することが好適である。例えば、分散媒が水及びアルコール類のみからなる場合、水を2重量%含有するときはアルコール類を98重量%含有し、アルコール類を2重量%含有するときは水を98重量%含有する。更に分散媒、即ち金属ナノ粒子表面に化学修飾している保護分子は、水酸基(−OH)又はカルボニル基(−C=O)のいずれか一方又は双方を含有する。水の含有量を全ての分散媒100重量%に対して1重量%以上の範囲が好適であるとしたのは、1重量%未満では、金属ナノ粒子の分散性の悪化により、薄膜の焼成後の電極の導電性と反射率が低下してしまい、アルコール類の含有量を全ての分散媒100重量%に対して2重量%以上の範囲が好適であるとしたのは、2重量%未満では、組成物の基材への濡れ性が悪いため均一な薄膜が形成できず、薄膜の焼成後の電極の導電性と反射率が低下してしまうからである。なお、水酸基(−OH)が銀ナノ粒子等の金属ナノ粒子を化学修飾する保護剤に含有されると、組成物の分散安定性に優れ、薄膜の低温焼結にも効果的な作用があり、カルボニル基(−C=O)が銀ナノ粒子等の金属ナノ粒子を化学修飾する保護剤に含有されると、上記と同様に組成物の分散安定性に優れ、薄膜の低温焼結にも効果的な作用がある。   Moreover, it is preferable that the dispersion medium which comprises a composition consists of alcohol or alcohol containing aqueous solution. Examples of the alcohols used as the dispersion medium include one or more selected from the group consisting of methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, diethylene glycol, glycerol, isobornyl hexanol and erythritol. The addition of alcohols is for improving wettability with the substrate, and the mixing ratio of water and alcohols can be freely changed in accordance with the type of substrate. The dispersion medium contains 1% by weight or more, preferably 2% by weight or more of water and 2% by weight or more, preferably 3% by weight or more of alcohols with respect to 100% by weight of all the dispersion media. Is preferred. For example, when the dispersion medium is composed of only water and alcohols, it contains 98% by weight of alcohol when it contains 2% by weight of water and 98% by weight of water when it contains 2% by weight of alcohol. Further, the dispersion medium, that is, the protective molecule chemically modified on the surface of the metal nanoparticles contains one or both of a hydroxyl group (—OH) and a carbonyl group (—C═O). The content of water is preferably in the range of 1% by weight or more with respect to 100% by weight of all the dispersion media. If the content is less than 1% by weight, the dispersibility of the metal nanoparticles is deteriorated, and the film is fired. The conductivity and reflectivity of the electrode of this sample are reduced, and the content of alcohol is preferably in the range of 2% by weight or more with respect to 100% by weight of all the dispersion media. Because the wettability of the composition to the substrate is poor, a uniform thin film cannot be formed, and the conductivity and reflectance of the electrode after the thin film is fired are reduced. In addition, when a hydroxyl group (—OH) is contained in a protective agent that chemically modifies metal nanoparticles such as silver nanoparticles, the composition has excellent dispersion stability and has an effective action for low-temperature sintering of a thin film. , When a carbonyl group (—C═O) is contained in a protective agent for chemically modifying metal nanoparticles such as silver nanoparticles, the composition has excellent dispersion stability as described above, and can be used for low-temperature sintering of thin films. There is an effective action.

更に組成物中の銀ナノ粒子を含む金属ナノ粒子の含有量は、金属ナノ粒子及び分散媒からなる組成物100重量%に対して0.01重量%以上かつ30重量%以下、好ましくは1〜10重量%含有することが好適である。銀ナノ粒子を含む金属ナノ粒子の含有量を金属ナノ粒子及び分散媒からなる組成物100重量%に対して0.01重量%以上かつ30重量%以下の範囲に限定したのは、0.01重量%未満では特に焼成後の電極の特性には影響はないけれども、必要な厚さの電極を得ることが難しく、30重量%を越えると組成物の粘度を30mPa・s以下にすることができず、組成物のスプレー塗工時にインク或いはペーストとしての必要な流動性を失ってしまうからである。なお、基材上の薄膜の厚さの調整は、組成物を基材表面に塗布して乾燥後に更に組成物を基材表面に塗布するという重ね塗りが有効である。   Furthermore, the content of the metal nanoparticles including silver nanoparticles in the composition is 0.01% by weight or more and 30% by weight or less, preferably 1 to 100% by weight with respect to 100% by weight of the composition comprising the metal nanoparticles and the dispersion medium. It is preferable to contain 10% by weight. The content of the metal nanoparticles including silver nanoparticles is limited to a range of 0.01 wt% or more and 30 wt% or less with respect to 100 wt% of the composition comprising the metal nanoparticles and the dispersion medium. If it is less than% by weight, the characteristics of the electrode after firing are not particularly affected, but it is difficult to obtain an electrode having the required thickness, and if it exceeds 30% by weight, the viscosity of the composition can be reduced to 30 mPa · s or less. This is because the necessary fluidity as an ink or paste is lost during spray coating of the composition. In addition, the adjustment of the thickness of the thin film on a base material is effective by applying the composition on the surface of the base material and drying the composition further on the surface of the base material after drying.

一方、スプレー塗工法に用いられるスプレーノズルは、この実施の形態では、ノズルボディ内部の空洞に挿入されたパイプ状の中子と、この中子のノズル孔回りに形成された複数のスリット状の旋回導孔とを有する。これらの旋回導孔がノズル孔回りに略スパイラル状に形成され、これによりノズルボディ外周面に形成されたガス送入口から入った液滴破砕用ガスがノズル孔に向う旋回流となるように構成される。また組成物(液体)は中子の内部を通ってノズル孔側に送込まれるようになっている。なお、本発明のスプレー塗工法に用いられるスプレーノズルは、旋回流を発生しない通常のスプレーノズル、或いはその他のスプレーノズルでもよい。   On the other hand, the spray nozzle used in the spray coating method is, in this embodiment, a pipe-shaped core inserted into a cavity inside the nozzle body and a plurality of slit-shaped holes formed around the nozzle holes of the core. And a swivel guide hole. These swirl guide holes are formed in a substantially spiral shape around the nozzle hole, so that the droplet crushing gas entered from the gas inlet formed on the outer peripheral surface of the nozzle body is swirled toward the nozzle hole. Is done. The composition (liquid) is fed to the nozzle hole side through the inside of the core. The spray nozzle used in the spray coating method of the present invention may be a normal spray nozzle that does not generate a swirl flow, or another spray nozzle.

上記組成物を製造する方法を説明する。
(a) 銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を3とする場合
先ず硝酸銀を脱イオン水等の水に溶解して金属塩水溶液を調製する。一方、クエン酸ナトリウムを脱イオン水等の水に溶解させて得られた濃度10〜40%のクエン酸ナトリウム水溶液に、窒素ガス等の不活性ガスの気流中で粒状又は粉状の硫酸第一鉄を直接加えて溶解させ、クエン酸イオンと第一鉄イオンを3:2のモル比で含有する還元剤水溶液を調製する。次に上記不活性ガス気流中で上記還元剤水溶液を撹拌しながら、この還元剤水溶液に上記金属塩水溶液を滴下して混合する。ここで、金属塩水溶液の添加量は還元剤水溶液の量の1/10以下になるように、各溶液の濃度を調整することで、室温の金属塩水溶液を滴下しても反応温度が30〜60℃に保持されるようにすることが好ましい。また上記両水溶液の混合比は、金属塩水溶液中の金属イオンの総原子価数に対する、還元剤水溶液中のクエン酸イオンと第一鉄イオンのモル比がいずれも3倍モルとなるようにする。金属塩水溶液の滴下が終了した後、混合液の撹拌を更に10〜300分間続けて金属コロイドからなる分散液を調製する。この分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションや遠心分離法等により分離した後、この分離物に脱イオン水等の水を加えて分散体とし、限外ろ過により脱塩処理し、更に引き続いてアルコール類で置換洗浄して、金属(銀)の含有量を2.5〜50重量%にする。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上含有するように調製する、即ち数平均で全ての金属ナノ粒子100%に対する一次粒径10〜50nmの範囲内の金属ナノ粒子の占める割合が70%以上になるように調整する。
A method for producing the composition will be described.
(a) When the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying the silver nanoparticles is set to 3 First, silver nitrate is dissolved in water such as deionized water to prepare an aqueous metal salt solution. On the other hand, the aqueous solution of sodium citrate having a concentration of 10 to 40% obtained by dissolving sodium citrate in deionized water or the like is mixed with granular or powdered sulfuric acid in a stream of inert gas such as nitrogen gas. Iron is directly added and dissolved to prepare an aqueous reducing agent solution containing citrate ions and ferrous ions in a molar ratio of 3: 2. Next, the aqueous metal salt solution is added dropwise to the reducing agent aqueous solution while stirring the reducing agent aqueous solution in the inert gas stream. Here, by adjusting the concentration of each solution so that the addition amount of the metal salt aqueous solution is 1/10 or less of the amount of the reducing agent aqueous solution, the reaction temperature is 30 to 30 even when the metal salt aqueous solution at room temperature is dropped. It is preferable to keep the temperature at 60 ° C. The mixing ratio of the two aqueous solutions is such that the molar ratio of the citrate ions and the ferrous ions in the reducing agent aqueous solution is 3 times the total valence of the metal ions in the metal salt aqueous solution. . After the dropping of the aqueous metal salt solution is completed, the mixture is further stirred for 10 to 300 minutes to prepare a dispersion composed of metal colloid. This dispersion is allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles are separated by decantation, centrifugation, etc., and then water such as deionized water is added to the separation to form a dispersion, followed by ultrafiltration. The metal (silver) content is adjusted to 2.5 to 50% by weight. Thereafter, by adjusting the centrifugal force of the centrifuge using a centrifuge and separating coarse particles, the metal nanoparticles having a primary particle diameter in the range of 10 to 50 nm are 70% or more in average number of metal nanoparticles. It adjusts so that the ratio for which the metal nanoparticle in the range of the primary particle size of 10-50 nm with respect to 100% of all the metal nanoparticles may be 70% or more may be prepared.

なお、金属ナノ粒子と記載したが、この(a)の場合では、数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの範囲内の銀ナノ粒子の占める割合が70%以上になるように調整している。また数平均の測定方法は、先ず得られた金属ナノ粒子をTEM(Transmission Electron Microscope、透過型電子顕微鏡)により約50万倍程度の倍率で撮影する。次に得られた画像から金属ナノ粒子200個について一次粒径を測定し、この測定結果をもとに粒径分布を作成する。更にこの粒径分布から、一次粒径10〜50nmの範囲内の金属ナノ粒子が全金属ナノ粒子で占める個数割合を求める。   Although described as metal nanoparticles, in the case of (a), the proportion of silver nanoparticles in the range of the primary particle size of 10 to 50 nm with respect to 100% of all silver nanoparticles is 70% or more. It is adjusted so that In addition, the number average measurement method is to first photograph the obtained metal nanoparticles with a TEM (Transmission Electron Microscope) at a magnification of about 500,000 times. Next, the primary particle size is measured for 200 metal nanoparticles from the obtained image, and a particle size distribution is created based on the measurement result. Furthermore, from this particle size distribution, the number ratio of the metal nanoparticles in the range of the primary particle size of 10 to 50 nm to the total metal nanoparticles is determined.

これにより銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数が3である分散体(組成物)が得られる。なお、この分散体100重量%に対する最終的な金属含有量(銀含有量)は2.5〜95重量%とするとともに、溶媒の水及びアルコール類をそれぞれ1%以上及び2%以上にそれぞれ調整する。   As a result, a dispersion (composition) having 3 carbon atoms in the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying the silver nanoparticles is obtained. The final metal content (silver content) with respect to 100% by weight of the dispersion is 2.5 to 95% by weight, and the solvent water and alcohol are adjusted to 1% or more and 2% or more, respectively. To do.

(b) 銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を2とする場合
還元剤水溶液を調製するときに用いたクエン酸ナトリウムをりんご酸ナトリウムに替えること以外は上記(a)と同様にして分散体を調製する。これにより銀ナノ粒子を化学修飾する有機分子主鎖の炭素骨格の炭素数が2である分散体(組成物)が得られる。
(c) 銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を1とする場合
還元剤水溶液を調製するときに用いたクエン酸ナトリウムをグリコール酸ナトリウムに替えること以外は上記(a)と同様にして分散体を調製する。これにより銀ナノ粒子を化学修飾する有機分子主鎖の炭素骨格の炭素数が1である分散体(組成物)が得られる。
(d) 銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を3とする場合
銀ナノ粒子以外の金属ナノ粒子を構成する金属としては、金、白金、パラジウム、ルテニウム、ニッケル、銅、錫、インジウム又は亜鉛が挙げられる。金属塩水溶液を調製するときに用いた硝酸銀を、塩化金酸、塩化白金酸、硝酸パラジウム、三塩化ルテニウム、塩化ニッケル、硝酸第一銅、二塩化錫、硝酸インジウム又は塩化亜鉛に替えること以外は上記(a)と同様にして分散体を調製する。これにより銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数が3である分散体(組成物)が得られる。
(b) When the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent that chemically modifies the silver nanoparticles is 2, except that the sodium citrate used when preparing the reducing agent aqueous solution is replaced with sodium malate A dispersion is prepared in the same manner as in the above (a). As a result, a dispersion (composition) in which the carbon skeleton of the organic molecular main chain that chemically modifies the silver nanoparticles has 2 carbon atoms is obtained.
(c) When the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying the silver nanoparticles is 1, except that sodium citrate used when preparing the reducing agent aqueous solution is replaced with sodium glycolate A dispersion is prepared in the same manner as in the above (a). As a result, a dispersion (composition) having a carbon skeleton of the carbon skeleton of the organic molecular main chain that chemically modifies the silver nanoparticles is obtained.
(d) When the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying metal nanoparticles other than silver nanoparticles is 3, the metal constituting the metal nanoparticles other than silver nanoparticles is gold, Platinum, palladium, ruthenium, nickel, copper, tin, indium or zinc may be mentioned. Except for replacing silver nitrate used in preparing the aqueous metal salt solution with chloroauric acid, chloroplatinic acid, palladium nitrate, ruthenium trichloride, nickel chloride, cuprous nitrate, tin dichloride, indium nitrate or zinc chloride A dispersion is prepared in the same manner as in the above (a). As a result, a dispersion (composition) having 3 carbon atoms in the carbon skeleton of the organic molecular main chain of the protective agent that chemically modifies the metal nanoparticles other than the silver nanoparticles is obtained.

なお、銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を1や2とする場合、金属塩水溶液を調製するときに用いた硝酸銀を、上記種類の金属塩に替えること以外は上記(b)や上記(c)と同様にして分散体を調製する。これにより、銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数が1や2である分散体(組成物)が得られる。
金属ナノ粒子として、銀ナノ粒子とともに、銀ナノ粒子以外の金属ナノ粒子を含有させる場合には、上記(a)の方法で製造した銀ナノ粒子を含む分散体を第1分散体とし、上記(d)の方法で製造した銀ナノ粒子以外の金属ナノ粒子を含む分散体を第2分散体とすると、75重量%以上の第1分散体と25重量%未満の第2分散体とを第1及び第2分散体の合計含有量が100重量%となるように混合する。なお、第1分散体は、上記(a)の方法で製造した銀ナノ粒子を含む分散体に留まらず、上記(b)の方法で製造した銀ナノ粒子を含む分散体や上記(c)の方法で製造した銀ナノ粒子を含む分散体を使用してもよい。
In addition, when the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent that chemically modifies the metal nanoparticles other than the silver nanoparticles is 1 or 2, the silver nitrate used when preparing the metal salt aqueous solution is the above kind. A dispersion is prepared in the same manner as in the above (b) and (c) except that the metal salt is replaced. Thereby, the dispersion (composition) whose carbon number of the carbon skeleton of the organic molecular principal chain of the protective agent for chemically modifying the metal nanoparticles other than the silver nanoparticles is 1 or 2 is obtained.
When metal nanoparticles other than silver nanoparticles are contained together with silver nanoparticles as metal nanoparticles, a dispersion containing silver nanoparticles produced by the method of (a) is used as the first dispersion, and ( When the dispersion containing metal nanoparticles other than silver nanoparticles produced by the method of d) is defined as the second dispersion, the first dispersion of 75% by weight or more and the second dispersion of less than 25% by weight are the first. And it mixes so that the total content of a 2nd dispersion may be 100 weight%. The first dispersion is not limited to the dispersion containing the silver nanoparticles produced by the method (a), but the dispersion containing the silver nanoparticles produced by the method (b) or the above (c). Dispersions containing silver nanoparticles produced by the method may be used.

次に、このように製造された組成物(分散体)を用いて基材表面に薄膜を形成する方法を説明する。
先ず組成物を基材表面にスプレー塗工法により塗布して薄膜を形成する。具体的には、組成物が中子の内部を通ってノズル孔側に送込まれるとともに、ガス送入口から空洞に供給された高圧の液滴破砕用ガスが旋回導孔を通りノズル孔に向う旋回流となって噴出孔内に高速噴射される。高圧の液滴破砕用ガスの高速噴射により噴出口内が負圧となり、この負圧により中子内の組成物が吸引されて液滴となる。この液滴となった組成物は高圧の液滴破砕用ガスの高速噴射により破砕されて微粒子化した後に、基材表面に塗布されて基材表面に薄膜が形成される。このとき微粒子化した液滴同士が基材上で再び結合しないので、基材表面に均一な厚さの薄膜を形成することができる。
Next, a method for forming a thin film on the substrate surface using the composition (dispersion) thus produced will be described.
First, a thin film is formed by applying the composition to the surface of a substrate by a spray coating method. Specifically, the composition is sent to the nozzle hole side through the inside of the core, and the high-pressure droplet crushing gas supplied from the gas inlet to the cavity passes through the swirl guide hole toward the nozzle hole. It is swirled and injected at high speed into the ejection hole. Due to the high-speed jetting of the high-pressure droplet-breaking gas, the inside of the jet port becomes negative pressure, and the composition in the core is sucked into droplets by this negative pressure. The composition in the form of droplets is crushed and atomized by high-speed jetting of a high-pressure droplet crushing gas, and then applied onto the substrate surface to form a thin film on the substrate surface. At this time, since the finely divided droplets do not bind again on the substrate, a thin film having a uniform thickness can be formed on the surface of the substrate.

また基材表面に塗布された薄膜を乾燥させるために、基材を室温より高い80〜150℃程度の温度雰囲気中に曝さずに済むので、スプレー塗工法に用いられるスプレーノズルの吐出口に付着した組成物が乾燥することはない。この結果、スプレーノズルを閉塞させることなく、組成物を基材表面に塗布できる。更に基材上の凹凸面にスピンコーティング法により組成物を塗布すると、組成物が凹凸面の谷の部分に残留するため、凹凸の高低差より薄膜の厚さが薄い場合、均一な厚さの薄膜を形成することが難しかったけれども、本発明の薄膜形成方法では、組成物の基材に対する濡れ性を調整することにより、組成物の液滴が基材の凹凸の斜面に着弾した後も、この斜面に残留させることができ、均一な厚さの薄膜を形成できる。この結果、組成物を塗布する基材の材質及び形状は制限されず、基材の形状や組成物の性状に応じた乾燥条件を調整する必要もない。なお、組成物の基材に対する濡れ性は、上述したようにアルコール類の添加量により調整される。また基材表面に塗布された薄膜の乾燥時間を短縮するためには、分散媒の低沸点化と、基材温度や雰囲気温度の上昇とが有効であるけれども、金属ナノ粒子は焼結し易く、低温で強固に凝集してしまうため、基材温度や雰囲気温度の選定は金属ナノ粒子が凝集しない範囲で設定される。更に上記薄膜を焼成した後の電極の厚さが0.1〜2.0μm、好ましくは0.3〜1.5μmの範囲内となるように基材表面に塗布して形成されることが好ましい。ここで、焼成後の電極の厚さを0.1〜2.0μmの範囲に限定したのは、0.1μm未満では電極が太陽電池の電極である場合に必要な電極の表面抵抗値が不十分となり、2.0μmを越えると特性上の不具合はないけれども、材料の使用量が必要以上に多くなって材料が無駄になるからである。   In addition, in order to dry the thin film applied to the surface of the substrate, it is not necessary to expose the substrate to a temperature atmosphere of about 80 to 150 ° C., which is higher than room temperature, so it adheres to the discharge port of the spray nozzle used in the spray coating method. The resulting composition does not dry. As a result, the composition can be applied to the substrate surface without blocking the spray nozzle. Furthermore, when the composition is applied to the concavo-convex surface of the substrate by spin coating, the composition remains in the valleys of the concavo-convex surface. Although it was difficult to form a thin film, in the thin film forming method of the present invention, by adjusting the wettability of the composition to the substrate, the droplets of the composition landed on the uneven slope of the substrate, A thin film having a uniform thickness can be formed on the slope. As a result, the material and shape of the substrate to which the composition is applied are not limited, and there is no need to adjust the drying conditions according to the shape of the substrate and the properties of the composition. In addition, the wettability with respect to the base material of a composition is adjusted with the addition amount of alcohol as mentioned above. In order to shorten the drying time of the thin film applied to the substrate surface, it is effective to lower the boiling point of the dispersion medium and increase the substrate temperature and the ambient temperature, but the metal nanoparticles are easily sintered. Since the agglomeration is strongly aggregated at a low temperature, the selection of the substrate temperature and the ambient temperature is set within a range in which the metal nanoparticles do not aggregate. Further, it is preferable that the electrode is formed by coating on the surface of the substrate so that the thickness of the electrode after firing the thin film is in the range of 0.1 to 2.0 μm, preferably 0.3 to 1.5 μm. . Here, the thickness of the electrode after firing was limited to the range of 0.1 to 2.0 μm because the surface resistance value of the electrode required when the electrode is a solar cell electrode is less than 0.1 μm. This is because if the thickness exceeds 2.0 μm, there is no problem in characteristics, but the amount of material used is increased more than necessary and the material is wasted.

上記基材としては、シリコン、ガラス、透明導電材料を含むセラミックス、高分子材料又は金属からなる基板のいずれか、或いはシリコン、ガラス、透明導電材料を含むセラミックス、高分子材料及び金属からなる群より選ばれた2種以上の積層体であることができる。また透明導電膜のいずれか1種を少なくとも含む基材や、透明導電膜を表面に成膜した基材を用いてもよい。透明導電膜としては、酸化インジウム系、酸化スズ系、酸化亜鉛系が挙げられる。酸化インジウム系としては、酸化インジウム、ITO(Indium Tin Oxide:インジウム錫酸化物)、IZO(Indium Zic Oxide)が挙げられる。酸化錫系としては、ネサ(酸化錫SnO2)、ATO(Antimony Tin Oxide:アンチモンドープ酸化錫)、フッ素ドープ酸化錫が挙げられる。酸化亜鉛系としては、酸化亜鉛、AZO(アルミドープ酸化亜鉛)、ガリウムドープ酸化亜鉛が挙げられる。基材は太陽電池素子又は透明電極付き太陽電池素子のいずれかであることが好ましい。透明電極としては、ITO、ATO、ネサ、IZO、AZO等などが挙げられる。高分子基板としては、ポリイミドやPET(ポリエチレンテレフタレート)等の有機ポリマーにより形成された基板が挙げられる。 As the base material, either silicon, glass, ceramics containing a transparent conductive material, a substrate made of a polymer material or a metal, or a group consisting of silicon, glass, ceramics containing a transparent conductive material, a polymer material and a metal It can be a laminate of two or more selected. Moreover, you may use the base material which contains any 1 type of transparent conductive films, and the base material which formed the transparent conductive film on the surface. Examples of the transparent conductive film include indium oxide, tin oxide, and zinc oxide. Examples of indium oxide include indium oxide, ITO (Indium Tin Oxide), and IZO (Indium Zic Oxide). Examples of tin oxide include Nesa (tin oxide SnO 2 ), ATO (Antimony Tin Oxide), and fluorine-doped tin oxide. Examples of the zinc oxide system include zinc oxide, AZO (aluminum doped zinc oxide), and gallium doped zinc oxide. The substrate is preferably either a solar cell element or a solar cell element with a transparent electrode. Examples of the transparent electrode include ITO, ATO, Nesa, IZO, AZO and the like. Examples of the polymer substrate include a substrate formed of an organic polymer such as polyimide or PET (polyethylene terephthalate).

次に表面に薄膜が形成された基材を大気雰囲気中又は不活性ガス雰囲気中で130〜400℃、好ましくは140〜300℃の温度に、10分間〜1時間、好ましくは15〜40分間保持して焼成する。ここで、表面に薄膜が形成された基板の焼成温度を130〜400℃の範囲に限定したのは、130℃未満では金属ナノ粒子同士の焼結が不十分になるとともに保護剤の焼成時の熱により脱離或いは分解(分離・燃焼)し難いため、焼成後の電極内に有機残渣が多く残り、この残渣が変質又は劣化して導電性及び反射率が低下してしまい、400℃を越えると低温プロセスという生産上のメリットを生かせない、即ち製造コストが増大し生産性が低下してしまうからである。また基材表面に形成された薄膜の焼成時間を10分間〜1時間の範囲に限定したのは、10分間未満では金属ナノ粒子同士の焼結が不十分になるとともに保護剤の焼成時の熱により脱離或いは分解(分離・燃焼)し難いため、焼成後の電極内に有機残渣が多く残り、この残渣が変質又は劣化して電極の導電性及び反射率が低下してしまい、1時間を越えると特性には影響しないけれども、必要以上に製造コストが増大して生産性が低下してしまうからである。なお、不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガス、ネオンガス等が挙げられる。   Next, the base material with a thin film formed on the surface is held at a temperature of 130 to 400 ° C., preferably 140 to 300 ° C. in an air atmosphere or an inert gas atmosphere for 10 minutes to 1 hour, preferably 15 to 40 minutes. And fired. Here, the firing temperature of the substrate with the thin film formed on the surface was limited to the range of 130 to 400 ° C. The reason why the sintering between the metal nanoparticles became insufficient and the protective agent was fired at less than 130 ° C. Since it is difficult to desorb or decompose (separate / combust) due to heat, a large amount of organic residue remains in the electrode after firing, and this residue is altered or deteriorated, resulting in a decrease in conductivity and reflectance, exceeding 400 ° C. This is because the production advantage of the low temperature process cannot be utilized, that is, the manufacturing cost increases and the productivity decreases. The reason for limiting the firing time of the thin film formed on the surface of the substrate to the range of 10 minutes to 1 hour is that the sintering between the metal nanoparticles becomes insufficient and the heat during firing of the protective agent if less than 10 minutes. It is difficult to desorb or decompose (separate / combust) due to the above, so that a lot of organic residue remains in the electrode after firing, and this residue is altered or deteriorated to reduce the conductivity and reflectance of the electrode for 1 hour. If it exceeds, the characteristics will not be affected, but the manufacturing cost will increase more than necessary and the productivity will decrease. Examples of the inert gas include nitrogen gas, argon gas, helium gas, neon gas, and the like.

このように基材表面に形成された薄膜を焼成して得られた電極は、基材の平坦面に電極を形成した場合のスピンコーティング法と同等以上の低比抵抗、反射率、表面粗さ及び密着性を有する。具体的には、表面に電極が形成された基材を、温度を100℃に保ちかつ湿度を50%に保った恒温恒湿槽に1000時間収容した後であっても、波長750〜1500nmの電磁波、即ち可視光領域から赤外線領域までの電磁波を80%以上電極により反射できるとともに、電極の導電性、即ち電極の体積抵抗率を2×10-5Ω・cm(20×10-6Ω・cm)未満と極めて低い値に維持できる。このようにして形成された電極を太陽電池の電極として用いると、この太陽電池は、長年使用しても高導電率及び高反射率を維持することができ、経年安定性に優れる。また表面粗さ10〜500nm、好ましくは20〜100nmの凹凸を有する基材表面に、上記電極形成方法を用いて電極を形成した場合、この電極は基材表面の凹凸に追随して形成され、電極の厚さのばらつきは中心値の30%以内、好ましくは中心値の10%以内であって、電極の表面粗さは10〜600nm、好ましくは20〜100nmとなる。この結果、基材の表面の凹凸に追随した均一な厚さの電極を形成できる。なお、本明細書及び特許請求の範囲において、表面粗さとは、JIS B 0601−2001に示された基準長さ毎の最低谷底から最大山頂までの高さを原子間力顕微鏡(AFM)で測定し、この高さで表される表面粗さ(Rz)を意味するものである。 The electrode obtained by firing the thin film formed on the substrate surface in this way has a low resistivity, reflectivity, and surface roughness equal to or higher than those of the spin coating method when the electrode is formed on the flat surface of the substrate. And has adhesiveness. Specifically, even after the substrate on which the electrode is formed on the surface is accommodated for 1000 hours in a constant temperature and humidity chamber maintained at a temperature of 100 ° C. and a humidity of 50%, a wavelength of 750 to 1500 nm. Electromagnetic waves, that is, electromagnetic waves from the visible light region to the infrared region can be reflected by 80% or more by the electrode, and the conductivity of the electrode, that is, the volume resistivity of the electrode is 2 × 10 −5 Ω · cm (20 × 10 −6 Ω · cm) and can be maintained at a very low value. When the electrode thus formed is used as an electrode of a solar cell, the solar cell can maintain high conductivity and high reflectance even when used for many years, and is excellent in aging stability. Further, when an electrode is formed on the surface of a substrate having a surface roughness of 10 to 500 nm, preferably 20 to 100 nm using the above electrode forming method, this electrode is formed following the surface roughness of the substrate, The variation in the thickness of the electrode is within 30% of the center value, preferably within 10% of the center value, and the surface roughness of the electrode is 10 to 600 nm, preferably 20 to 100 nm. As a result, it is possible to form an electrode having a uniform thickness following the unevenness of the surface of the substrate. In the present specification and claims, the surface roughness refers to the height from the lowest valley bottom to the highest mountain peak for each reference length shown in JIS B 0601-2001, measured by an atomic force microscope (AFM). The surface roughness (Rz) represented by this height is meant.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず平均粒径が約30nmの銀ナノ粒子0.1重量%を、水、エタノール及びメタノールの混合溶液99.9重量%に分散させて、粘度0.7mPa・s(20℃)の組成物を調製した。銀ナノ粒子を化学修飾する有機分子の炭素骨格は炭素数3であり、銀ナノ粒子に含まれる一次粒径10〜50nmの範囲内の銀ナノ粒子の数平均は80%であった。次に上記組成物をスプレー塗工法を用いて大気雰囲気中でシリコン基板表面に塗布して薄膜を形成した。このときの組成物の流量を10ミリリットル/分とし、液滴破砕用ガスの流量を100リットル/分とした。即ち、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で10000倍の流量で通気した。更にこの基板を大気雰囲気中で130℃に30分間保持して熱処理することにより、基板表面に電極を形成した。この表面に電極が形成された基板を実施例1とした。なお、水、エタノール及びメタノールの混合割合は重量比で1:3:6であった。なお、本明細書において、銀ナノ粒子や金ナノ粒子等の平均粒径とは、走査型電子顕微鏡(日立ハイテクノロジーズ製 S−4300SE及びS−900)により観察した画像において、任意の100個の粒子について粒径を実測したときの平均粒径とする。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, 0.1% by weight of silver nanoparticles having an average particle diameter of about 30 nm is dispersed in 99.9% by weight of a mixed solution of water, ethanol and methanol to obtain a composition having a viscosity of 0.7 mPa · s (20 ° C.). Prepared. The carbon skeleton of the organic molecule that chemically modifies the silver nanoparticles has 3 carbon atoms, and the average number of silver nanoparticles in the primary particle size range of 10 to 50 nm contained in the silver nanoparticles was 80%. Next, the said composition was apply | coated to the silicon substrate surface in air | atmosphere atmosphere using the spray coating method, and the thin film was formed. At this time, the flow rate of the composition was 10 ml / min, and the flow rate of the droplet crushing gas was 100 l / min. That is, the droplet crushing gas was vented at a flow rate of 10,000 times in the air atmosphere with respect to the flow rate 1 of the composition in volume ratio. Further, the substrate was heat-treated while being held at 130 ° C. for 30 minutes in an air atmosphere to form electrodes on the substrate surface. A substrate having an electrode formed on this surface was designated as Example 1. The mixing ratio of water, ethanol and methanol was 1: 3: 6 by weight. In the present specification, the average particle diameter of silver nanoparticles, gold nanoparticles, etc. is an arbitrary 100 pieces of images observed with a scanning electron microscope (S-4300SE and S-900 manufactured by Hitachi High-Technologies). The average particle size when the particle size is actually measured for the particles is used.

<実施例2>
先ず平均粒径が約30nmの銀ナノ粒子9.998重量%と、平均粒径が約10nmの金ナノ粒子0.002重量%とを、水、エタノール及びメタノールの混合溶液90重量%に分散させて、粘度5mPa・s(20℃)の組成物を調製した。銀ナノ粒子及び金ナノ粒子を化学修飾する有機分子の炭素骨格はそれぞれ炭素数3であり、銀ナノ粒子及び金ナノ粒子からなる金属ナノ粒子に含まれる一次粒径10〜50nmの範囲内の銀ナノ粒子の数平均は85%であった。次に上記組成物をスプレー塗工法を用いて大気雰囲気中でガラス基板表面に塗布して薄膜を形成した。このときの組成物の流量を11ミリリットル/分とし、液滴破砕用ガスの流量を1100リットル/分とした。即ち、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で100000倍の流量で通気した。更にこの基板を大気雰囲気中で200℃に60分間保持して熱処理することにより、基板表面に電極を形成した。この表面に電極が形成された基板を実施例2とした。なお、水、エタノール及びメタノールの混合割合は重量比で2:3:5であった。
<Example 2>
First, 9.998% by weight of silver nanoparticles having an average particle diameter of about 30 nm and 0.002% by weight of gold nanoparticles having an average particle diameter of about 10 nm are dispersed in 90% by weight of a mixed solution of water, ethanol and methanol. Thus, a composition having a viscosity of 5 mPa · s (20 ° C.) was prepared. The carbon skeleton of the organic molecule that chemically modifies the silver nanoparticles and the gold nanoparticles each has 3 carbon atoms, and the silver within the primary particle size range of 10 to 50 nm contained in the metal nanoparticles composed of the silver nanoparticles and the gold nanoparticles. The number average of nanoparticles was 85%. Next, the said composition was apply | coated to the glass substrate surface in the air atmosphere using the spray coating method, and the thin film was formed. The flow rate of the composition at this time was 11 ml / min, and the flow rate of the droplet crushing gas was 1100 l / min. That is, the droplet crushing gas was vented at a flow rate of 100,000 times in the air atmosphere with respect to the flow rate 1 of the composition in volume ratio. Further, the substrate was heat-treated at 200 ° C. for 60 minutes in an air atmosphere to form an electrode on the substrate surface. A substrate having an electrode formed on this surface was designated as Example 2. The mixing ratio of water, ethanol and methanol was 2: 3: 5 by weight.

<実施例3>
先ず平均粒径が約20nmの銀ナノ粒子4.9重量%と、平均粒径が約5nmの白金ナノ粒子0.1重量%を、水、エタノール及びメタノールの混合溶液95重量%に分散させて、粘度2mPa・s(20℃)の組成物を調製した。銀ナノ粒子及び白金ナノ粒子を化学修飾する有機分子の炭素骨格はそれぞれ炭素数3であり、銀ナノ粒子及び白金ナノ粒子からなる金属ナノ粒子に含まれる一次粒径10〜50nmの範囲内の銀ナノ粒子の数平均は95%であった。次に上記組成物をスプレー塗工法を用いて大気雰囲気中でガラス基板表面に塗布して薄膜を形成した。このときの組成物の流量を1ミリリットル/分とし、液滴破砕用ガスの流量を10リットル/分とした。即ち、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で10000倍の流量で通気した。更にこの基板を窒素ガス雰囲気中で220℃に30分間保持して熱処理することにより、基板表面に電極を形成した。この表面に電極が形成された基板を実施例3とした。なお、水、エタノール及びメタノールの混合割合は重量比で1:2:6であった。
<Example 3>
First, 4.9% by weight of silver nanoparticles having an average particle diameter of about 20 nm and 0.1% by weight of platinum nanoparticles having an average particle diameter of about 5 nm are dispersed in 95% by weight of a mixed solution of water, ethanol and methanol. A composition having a viscosity of 2 mPa · s (20 ° C.) was prepared. Silver skeletons of organic molecules that chemically modify silver nanoparticles and platinum nanoparticles each have 3 carbon atoms, and silver within a primary particle size range of 10 to 50 nm contained in metal nanoparticles composed of silver nanoparticles and platinum nanoparticles. The number average of the nanoparticles was 95%. Next, the said composition was apply | coated to the glass substrate surface in the air atmosphere using the spray coating method, and the thin film was formed. The flow rate of the composition at this time was 1 milliliter / minute, and the flow rate of the droplet crushing gas was 10 liters / minute. That is, the droplet crushing gas was vented at a flow rate of 10,000 times in the air atmosphere with respect to the flow rate 1 of the composition in volume ratio. Further, this substrate was heated at 220 ° C. for 30 minutes in a nitrogen gas atmosphere to form an electrode on the substrate surface. A substrate having an electrode formed on this surface was taken as Example 3. The mixing ratio of water, ethanol and methanol was 1: 2: 6 by weight.

<実施例4>
先ず平均粒径が約40nmの銀ナノ粒子4.8重量%と、平均粒径が約5nmのルテニウムナノ粒子0.2重量%とを、水、エタノール及びメタノールの混合溶液95重量%に分散させて、粘度2mPa・s(20℃)の組成物を調製した。銀ナノ粒子及びルテニウムナノ粒子を化学修飾する有機分子の炭素骨格はそれぞれ炭素数3であり、銀ナノ粒子及びルテニウムナノ粒子からなる金属ナノ粒子に含まれる一次粒径10〜50nmの範囲内の金属ナノ粒子の数平均は75%であった。次に上記組成物をスプレー塗工法を用いて大気雰囲気中でシリコン基板表面に塗布して薄膜を形成した。このときの組成物の流量を0.1ミリリットル/分とし、液滴破砕用ガスの流量を10リットル/分とした。即ち、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で100000倍の流量で通気した。更にこの基板を窒素ガス雰囲気中で250℃に30分間保持して熱処理することにより、基板表面に電極を形成した。この表面に電極が形成された基板を実施例4とした。なお、水、エタノール及びメタノールの混合割合は重量比で1:2:7であった。
<Example 4>
First, 4.8% by weight of silver nanoparticles having an average particle diameter of about 40 nm and 0.2% by weight of ruthenium nanoparticles having an average particle diameter of about 5 nm are dispersed in 95% by weight of a mixed solution of water, ethanol and methanol. Thus, a composition having a viscosity of 2 mPa · s (20 ° C.) was prepared. The carbon skeleton of the organic molecule that chemically modifies silver nanoparticles and ruthenium nanoparticles has 3 carbon atoms, respectively, and the metal has a primary particle size in the range of 10 to 50 nm contained in the metal nanoparticles composed of silver nanoparticles and ruthenium nanoparticles. The number average of nanoparticles was 75%. Next, the said composition was apply | coated to the silicon substrate surface in air | atmosphere atmosphere using the spray coating method, and the thin film was formed. The flow rate of the composition at this time was 0.1 ml / min, and the flow rate of the droplet crushing gas was 10 l / min. That is, the droplet crushing gas was vented at a flow rate of 100,000 times in the air atmosphere with respect to the flow rate 1 of the composition in volume ratio. Further, this substrate was heated at 250 ° C. for 30 minutes in a nitrogen gas atmosphere to form an electrode on the substrate surface. A substrate having an electrode formed on this surface was taken as Example 4. The mixing ratio of water, ethanol and methanol was 1: 2: 7 by weight.

<実施例5>
先ず平均粒径が約30nmの銀ナノ粒子4.8重量%と、平均粒径が約20nmのニッケルナノ粒子0.1重量%と、平均粒径が約5nmの銅ナノ粒子0.1重量%とを、水、エタノール及びメタノールの混合溶液95重量%に分散させて、粘度2mPa・s(20℃)の組成物を調製した。銀ナノ粒子、ニッケルナノ粒子及び銅ナノ粒子を化学修飾する有機分子の炭素骨格はそれぞれ炭素数3であり、銀ナノ粒子、ニッケルナノ粒子及び銅ナノ粒子からなる金属ナノ粒子に含まれる一次粒径10〜50nmの範囲内の金属ナノ粒子の数平均は80%であった。次に上記組成物をスプレー塗工法を用いて大気雰囲気中でガラス基板表面に塗布して薄膜を形成した。このときの組成物の流量を0.1ミリリットル/分とし、液滴破砕用ガスの流量を10リットル/分とした。即ち、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で100000倍の流量で通気した。更にこの基板を窒素ガス雰囲気中で350℃に30分間保持して熱処理することにより、基板表面に電極を形成した。この表面に電極が形成された基板を実施例5とした。なお、水、エタノール及びメタノールの混合割合は重量比で1:5:3であった。
<Example 5>
First, 4.8% by weight of silver nanoparticles having an average particle size of about 30 nm, 0.1% by weight of nickel nanoparticles having an average particle size of about 20 nm, and 0.1% by weight of copper nanoparticles having an average particle size of about 5 nm Were dispersed in 95% by weight of a mixed solution of water, ethanol and methanol to prepare a composition having a viscosity of 2 mPa · s (20 ° C.). The carbon skeletons of organic molecules that chemically modify silver nanoparticles, nickel nanoparticles, and copper nanoparticles each have 3 carbon atoms, and the primary particle size contained in metal nanoparticles composed of silver nanoparticles, nickel nanoparticles, and copper nanoparticles The number average of the metal nanoparticles in the range of 10 to 50 nm was 80%. Next, the said composition was apply | coated to the glass substrate surface in the air atmosphere using the spray coating method, and the thin film was formed. The flow rate of the composition at this time was 0.1 ml / min, and the flow rate of the droplet crushing gas was 10 l / min. That is, the droplet crushing gas was vented at a flow rate of 100,000 times in the air atmosphere with respect to the flow rate 1 of the composition in volume ratio. Further, this substrate was heated at 350 ° C. for 30 minutes in a nitrogen gas atmosphere to form an electrode on the substrate surface. A substrate having an electrode formed on this surface was taken as Example 5. The mixing ratio of water, ethanol and methanol was 1: 5: 3 by weight.

<実施例6>
先ず平均粒径が約20nmの銀ナノ粒子4.8重量%と、平均粒径が約5nmのインジウムナノ粒子0.19重量%と、平均粒径が約5nmの錫ナノ粒子0.01重量%とを、水、エタノール及びメタノールの混合溶液95重量%に分散させて、粘度2mPa・s(20℃)の組成物を調製した。銀ナノ粒子、インジウムナノ粒子及び錫ナノ粒子を化学修飾する有機分子の炭素骨格はそれぞれ炭素数3であり、銀ナノ粒子、インジウムナノ粒子及び錫ナノ粒子からなる金属ナノ粒子に含まれる一次粒径10〜50nmの範囲内の金属ナノ粒子の数平均は90%であった。次に上記組成物をスプレー塗工法を用いて大気雰囲気中でガラス基板表面に塗布して薄膜を形成した。このときの組成物の流量を0.1ミリリットル/分とし、液滴破砕用ガスの流量を10リットル/分とした。即ち、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で100000倍の流量で通気した。更にこの基板を窒素ガス雰囲気中で400℃に30分間保持して熱処理することにより、基板表面に電極を形成した。この表面に電極が形成された基板を実施例6とした。なお、水、エタノール及びメタノールの混合割合は重量比で2:1:6であった。
<Example 6>
First, 4.8% by weight of silver nanoparticles having an average particle diameter of about 20 nm, 0.19% by weight of indium nanoparticles having an average particle diameter of about 5 nm, and 0.01% by weight of tin nanoparticles having an average particle diameter of about 5 nm Were dispersed in 95% by weight of a mixed solution of water, ethanol and methanol to prepare a composition having a viscosity of 2 mPa · s (20 ° C.). The carbon skeletons of organic molecules that chemically modify silver nanoparticles, indium nanoparticles, and tin nanoparticles each have 3 carbon atoms, and the primary particle size contained in metal nanoparticles composed of silver nanoparticles, indium nanoparticles, and tin nanoparticles. The number average of metal nanoparticles in the range of 10 to 50 nm was 90%. Next, the said composition was apply | coated to the glass substrate surface in the air atmosphere using the spray coating method, and the thin film was formed. The flow rate of the composition at this time was 0.1 ml / min, and the flow rate of the droplet crushing gas was 10 l / min. That is, the droplet crushing gas was vented at a flow rate of 100,000 times in the air atmosphere with respect to the flow rate 1 of the composition in volume ratio. Further, this substrate was heated at 400 ° C. for 30 minutes in a nitrogen gas atmosphere to form an electrode on the substrate surface. A substrate having an electrode formed on this surface was taken as Example 6. The mixing ratio of water, ethanol and methanol was 2: 1: 6 by weight.

<実施例7>
先ず平均粒径が約30nmの銀ナノ粒子4.9重量%と、平均粒径が約10nmの亜鉛ナノ粒子0.1重量%とを、水、エタノール及びメタノールの混合溶液95重量%に分散させて、粘度2mPa・s(20℃)の組成物を調製した。銀ナノ粒子及び亜鉛ナノ粒子を化学修飾する有機分子の炭素骨格はそれぞれ炭素数3であり、銀ナノ粒子及び亜鉛ナノ粒子からなる金属ナノ粒子に含まれる一次粒径10〜50nmの範囲内の金属ナノ粒子の数平均は70%であった。次に上記組成物をスプレー塗工法を用いて大気雰囲気中でガラス基板表面に塗布して薄膜を形成した。このときの組成物の流量を0.1ミリリットル/分とし、液滴破砕用ガスの流量を10リットル/分とした。即ち、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で100000倍の流量で通気した。更にこの基板を窒素ガス雰囲気中で400℃に30分間保持して熱処理することにより、基板表面に電極を形成した。この表面に電極が形成された基板を実施例7とした。なお、水、エタノール及びメタノールの混合割合は重量比で3:1:5であった。
<Example 7>
First, 4.9% by weight of silver nanoparticles having an average particle diameter of about 30 nm and 0.1% by weight of zinc nanoparticles having an average particle diameter of about 10 nm are dispersed in 95% by weight of a mixed solution of water, ethanol and methanol. Thus, a composition having a viscosity of 2 mPa · s (20 ° C.) was prepared. The carbon skeleton of the organic molecule that chemically modifies the silver nanoparticles and the zinc nanoparticles has 3 carbon atoms, and the metal has a primary particle size of 10 to 50 nm contained in the metal nanoparticles composed of the silver nanoparticles and the zinc nanoparticles. The number average of the nanoparticles was 70%. Next, the said composition was apply | coated to the glass substrate surface in the air atmosphere using the spray coating method, and the thin film was formed. The flow rate of the composition at this time was 0.1 ml / min, and the flow rate of the droplet crushing gas was 10 l / min. That is, the droplet crushing gas was vented at a flow rate of 100,000 times in the air atmosphere with respect to the flow rate 1 of the composition in volume ratio. Further, this substrate was heated at 400 ° C. for 30 minutes in a nitrogen gas atmosphere to form an electrode on the substrate surface. A substrate having an electrode formed on this surface was taken as Example 7. The mixing ratio of water, ethanol and methanol was 3: 1: 5 by weight.

<実施例8>
先ず平均粒径が約30nmの銀ナノ粒子4.5重量%と、平均粒径が約10nmのクロムナノ粒子0.3重量%と、平均粒径が約15nmの鉄ナノ粒子0.2重量%とを、水、エタノール及びメタノールの混合溶液95重量%に分散させて、粘度2mPa・s(20℃)の組成物を調製した。銀ナノ粒子、クロムナノ粒子及び鉄ナノ粒子を化学修飾する有機分子の炭素骨格はそれぞれ炭素数3であり、銀ナノ粒子、クロムナノ粒子及び鉄ナノ粒子からなる金属ナノ粒子に含まれる一次粒径10〜50nmの範囲内の金属ナノ粒子の数平均は85%であった。次に上記組成物をスプレー塗工法を用いて大気雰囲気中でガラス基板表面に塗布して薄膜を形成した。このときの組成物の流量を0.1ミリリットル/分とし、液滴破砕用ガスの流量を10リットル/分とした。即ち、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で100000倍の流量で通気した。更にこの基板を窒素ガス雰囲気中で300℃に30分間保持して熱処理することにより、基板表面に電極を形成した。この表面に電極が形成された基板を実施例8とした。なお、水、エタノール及びメタノールの混合割合は重量比で3:10:1であった。
<Example 8>
First, 4.5% by weight of silver nanoparticles having an average particle size of about 30 nm, 0.3% by weight of chromium nanoparticles having an average particle size of about 10 nm, and 0.2% by weight of iron nanoparticles having an average particle size of about 15 nm Was dispersed in 95% by weight of a mixed solution of water, ethanol and methanol to prepare a composition having a viscosity of 2 mPa · s (20 ° C.). The carbon skeletons of organic molecules that chemically modify silver nanoparticles, chromium nanoparticles, and iron nanoparticles each have 3 carbon atoms, and have a primary particle size of 10 to 10 contained in metal nanoparticles composed of silver nanoparticles, chromium nanoparticles, and iron nanoparticles. The number average of the metal nanoparticles in the range of 50 nm was 85%. Next, the said composition was apply | coated to the glass substrate surface in the air atmosphere using the spray coating method, and the thin film was formed. The flow rate of the composition at this time was 0.1 ml / min, and the flow rate of the droplet crushing gas was 10 l / min. That is, the droplet crushing gas was vented at a flow rate of 100,000 times in the air atmosphere with respect to the flow rate 1 of the composition in volume ratio. Further, the substrate was heated at 300 ° C. for 30 minutes in a nitrogen gas atmosphere to form an electrode on the substrate surface. A substrate having an electrode formed on this surface was designated as Example 8. The mixing ratio of water, ethanol and methanol was 3: 10: 1 by weight.

<実施例9>
先ず平均粒径が約30nmの銀ナノ粒子4.9重量%と、平均粒径が約15nmのマンガンナノ粒子0.1重量%とを、水、エタノール及びメタノールの混合溶液95重量%に分散させて、粘度2mPa・s(20℃)の組成物を調製した。銀ナノ粒子及び亜鉛ナノ粒子を化学修飾する有機分子の炭素骨格はそれぞれ炭素数3であり、銀ナノ粒子及びマンガンナノ粒子からなる金属ナノ粒子に含まれる一次粒径10〜50nmの範囲内の金属ナノ粒子の数平均は93%であった。次に上記組成物をスプレー塗工法を用いて大気雰囲気中で磨りガラス基板(表面粗さ500nm)表面に塗布して薄膜を形成した。このときの組成物の流量を0.1ミリリットル/分とし、液滴破砕用ガスの流量を10リットル/分とした。即ち、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で100000倍の流量で通気した。更にこの基板を窒素ガス雰囲気中で300℃に30分間保持して熱処理することにより、基板表面に電極を形成した。この表面に電極が形成された基板を実施例9とした。なお、水、エタノール及びメタノールの混合割合は重量比で2:9:2であった。
<Example 9>
First, 4.9% by weight of silver nanoparticles having an average particle diameter of about 30 nm and 0.1% by weight of manganese nanoparticles having an average particle diameter of about 15 nm are dispersed in 95% by weight of a mixed solution of water, ethanol and methanol. Thus, a composition having a viscosity of 2 mPa · s (20 ° C.) was prepared. The carbon skeleton of the organic molecule that chemically modifies the silver nanoparticles and the zinc nanoparticles has 3 carbon atoms, respectively, and the metal has a primary particle size of 10 to 50 nm contained in the metal nanoparticles composed of silver nanoparticles and manganese nanoparticles. The number average of the nanoparticles was 93%. Next, the composition was polished in an air atmosphere using a spray coating method and applied to the surface of a glass substrate (surface roughness 500 nm) to form a thin film. The flow rate of the composition at this time was 0.1 ml / min, and the flow rate of the droplet crushing gas was 10 l / min. That is, the droplet crushing gas was vented at a flow rate of 100,000 times in the air atmosphere with respect to the flow rate 1 of the composition in volume ratio. Further, the substrate was heated at 300 ° C. for 30 minutes in a nitrogen gas atmosphere to form an electrode on the substrate surface. A substrate having an electrode formed on this surface was designated as Example 9. The mixing ratio of water, ethanol and methanol was 2: 9: 2 by weight.

<実施例10>
先ず平均粒径が約10nmの銀ナノ粒子30重量%を、水及びエチレングリコールの混合溶液70重量%に分散させて、粘度30mPa・s(20℃)の組成物を調製した。銀ナノ粒子を化学修飾する有機分子の炭素骨格は炭素数3であり、銀ナノ粒子に含まれる一次粒径10〜50nmの範囲内の金属ナノ粒子の数平均は95%であった。次に上記組成物をスプレー塗工法を用いて大気雰囲気中でガラス基板表面に塗布して薄膜を形成した。このときの組成物の流量を0.1ミリリットル/分とし、液滴破砕用ガスの流量を10リットル/分とした。即ち、体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で100000倍の流量で通気した。更にこの基板を大気雰囲気中で200℃に30分間保持して熱処理することにより、基板表面に電極を形成した。この表面に電極が形成された基板を実施例10とした。なお、水及びエチレングリコールの混合割合は重量比で1:4であった。
<Example 10>
First, 30% by weight of silver nanoparticles having an average particle diameter of about 10 nm was dispersed in 70% by weight of a mixed solution of water and ethylene glycol to prepare a composition having a viscosity of 30 mPa · s (20 ° C.). The carbon skeleton of the organic molecule that chemically modifies the silver nanoparticles has 3 carbon atoms, and the average number of metal nanoparticles in the primary particle size range of 10 to 50 nm contained in the silver nanoparticles was 95%. Next, the said composition was apply | coated to the glass substrate surface in the air atmosphere using the spray coating method, and the thin film was formed. The flow rate of the composition at this time was 0.1 ml / min, and the flow rate of the droplet crushing gas was 10 l / min. That is, the droplet crushing gas was vented at a flow rate of 100,000 times in the air atmosphere with respect to the flow rate 1 of the composition in volume ratio. Further, the substrate was heat-treated at 200 ° C. for 30 minutes in an air atmosphere to form an electrode on the substrate surface. A substrate having an electrode formed on this surface was taken as Example 10. The mixing ratio of water and ethylene glycol was 1: 4 by weight.

<比較例1>
組成物を基板表面に塗布するときに、組成物の流量を10ミリリットル/分とし、液滴破砕用ガスの流量を40リットル/分とした、即ち体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で4000倍の流量で通気したこと以外は、実施例1と同様にして表面に電極が形成された基板を作製した。この基板を比較例1とした。
<比較例2>
組成物を基板表面に塗布するときに、組成物の流量を1ミリリットル/分とし、液滴破砕用ガスの流量を4リットル/分とした、即ち体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で4000倍の流量で通気したこと以外は、実施例2と同様にして表面に電極が形成された基板を作製した。この基板を比較例2とした。
<比較例3>
組成物を基板表面に塗布するときに、組成物の流量を1ミリリットル/分とし、液滴破砕用ガスの流量を1リットル/分とした、即ち体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で1000倍の流量で通気したこと以外は、実施例3と同様にして表面に電極が形成された基板を作製した。この基板を比較例3とした。
<比較例4>
組成物を基板表面に塗布するときに、組成物の流量を1ミリリットル/分とし、液滴破砕用ガスの流量を2リットル/分とした、即ち体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で2000倍の流量で通気したこと以外は、実施例4と同様にして表面に電極が形成された基板を作製した。この基板を比較例4とした。
<Comparative Example 1>
When the composition is applied to the substrate surface, the flow rate of the composition is set to 10 ml / min, and the flow rate of the droplet crushing gas is set to 40 liters / min. A substrate having an electrode formed on the surface was produced in the same manner as in Example 1 except that the crushing gas was vented at a flow rate of 4000 times in the air atmosphere. This substrate was referred to as Comparative Example 1.
<Comparative example 2>
When the composition is applied to the substrate surface, the flow rate of the composition is set to 1 ml / min, and the flow rate of the droplet crushing gas is set to 4 liters / min. A substrate having an electrode formed on the surface was prepared in the same manner as in Example 2 except that the crushing gas was vented at a flow rate of 4000 times in the air atmosphere. This substrate was designated as Comparative Example 2.
<Comparative Example 3>
When the composition is applied to the substrate surface, the flow rate of the composition is set to 1 ml / min, and the flow rate of the droplet crushing gas is set to 1 liter / min. A substrate having an electrode formed on the surface was prepared in the same manner as in Example 3 except that the crushing gas was vented at a flow rate 1000 times in the air atmosphere. This substrate was designated as Comparative Example 3.
<Comparative example 4>
When the composition is applied to the substrate surface, the flow rate of the composition is set to 1 ml / min, and the flow rate of the droplet crushing gas is set to 2 liters / min. A substrate having an electrode formed on the surface was produced in the same manner as in Example 4 except that the crushing gas was vented at a flow rate of 2000 times in the air atmosphere. This substrate was designated as Comparative Example 4.

<比較例5>
組成物を基板表面に塗布するときに、組成物の流量を1ミリリットル/分とし、液滴破砕用ガスの流量を3リットル/分とした、即ち体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で3000倍の流量で通気したこと以外は、実施例5と同様にして表面に電極が形成された基板を作製した。この基板を比較例5とした。
<比較例6>
組成物を基板表面に塗布するときに、組成物の流量を1ミリリットル/分とし、液滴破砕用ガスの流量を1リットル/分とした、即ち体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で1000倍の流量で通気したこと以外は、実施例6と同様にして表面に電極が形成された基板を作製した。この基板を比較例6とした。
<比較例7>
組成物を基板表面に塗布するときに、組成物の流量を1ミリリットル/分とし、液滴破砕用ガスの流量を1リットル/分とした、即ち体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で1000倍の流量で通気したこと以外は、実施例7と同様にして表面に電極が形成された基板を作製した。この基板を比較例7とした。
<比較例8>
組成物を基板表面に塗布するときに、組成物の流量を1ミリリットル/分とし、液滴破砕用ガスの流量を3リットル/分とした、即ち体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で3000倍の流量で通気したこと以外は、実施例8と同様にして表面に電極が形成された基板を作製した。この基板を比較例8とした。
<Comparative Example 5>
When the composition is applied to the substrate surface, the flow rate of the composition is set to 1 ml / min, and the flow rate of the droplet crushing gas is set to 3 liters / min. A substrate having an electrode formed on the surface was prepared in the same manner as in Example 5 except that the crushing gas was vented at a flow rate of 3000 times in the air atmosphere. This substrate was designated as Comparative Example 5.
<Comparative Example 6>
When the composition is applied to the substrate surface, the flow rate of the composition is set to 1 ml / min, and the flow rate of the droplet crushing gas is set to 1 liter / min. A substrate having an electrode formed on the surface was prepared in the same manner as in Example 6 except that the crushing gas was vented at a flow rate 1000 times in the air atmosphere. This substrate was designated as Comparative Example 6.
<Comparative Example 7>
When the composition is applied to the substrate surface, the flow rate of the composition is set to 1 ml / min, and the flow rate of the droplet crushing gas is set to 1 liter / min. A substrate with an electrode formed on the surface was prepared in the same manner as in Example 7 except that the crushing gas was vented at a flow rate 1000 times in the air atmosphere. This substrate was designated as Comparative Example 7.
<Comparative Example 8>
When the composition is applied to the substrate surface, the flow rate of the composition is set to 1 ml / min, and the flow rate of the droplet crushing gas is set to 3 liters / min. A substrate having an electrode formed on the surface was prepared in the same manner as in Example 8 except that the crushing gas was vented at a flow rate of 3000 times in the air atmosphere. This substrate was referred to as Comparative Example 8.

<比較例9>
組成物を基板表面に塗布するときに、組成物の流量を1ミリリットル/分とし、液滴破砕用ガスの流量を3リットル/分とした、即ち体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で3000倍の流量で通気したこと以外は、実施例9と同様にして表面に電極が形成された基板を作製した。この基板を比較例9とした。
<比較例10>
組成物を基板表面に塗布するときに、組成物の流量を1ミリリットル/分とし、液滴破砕用ガスの流量を4リットル/分とした、即ち体積比で組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で4000倍の流量で通気したこと以外は、実施例10と同様にして表面に電極が形成された基板を作製した。この基板を比較例10とした。
<比較例11>
平均粒径が約10nmの銀ナノ粒子40重量%を、水及びエチレングリコールの混合溶液60重量%に分散させて、粘度50mPa・s(20℃)の組成物を調製したこと以外は、実施例10と同様にして表面に電極が形成された基板を作製した。この基板を比較例11とした。
<Comparative Example 9>
When the composition is applied to the substrate surface, the flow rate of the composition is set to 1 ml / min, and the flow rate of the droplet crushing gas is set to 3 liters / min. A substrate having an electrode formed on the surface was produced in the same manner as in Example 9 except that the crushing gas was vented at a flow rate of 3000 times in the air atmosphere. This substrate was designated as Comparative Example 9.
<Comparative Example 10>
When the composition is applied to the substrate surface, the flow rate of the composition is set to 1 ml / min, and the flow rate of the droplet crushing gas is set to 4 liters / min. A substrate having an electrode formed on the surface was prepared in the same manner as in Example 10 except that the crushing gas was vented at a flow rate of 4000 times in the air atmosphere. This substrate was designated as Comparative Example 10.
<Comparative Example 11>
Example except that 40% by weight of silver nanoparticles having an average particle diameter of about 10 nm were dispersed in 60% by weight of a mixed solution of water and ethylene glycol to prepare a composition having a viscosity of 50 mPa · s (20 ° C.). In the same manner as in Example 10, a substrate having an electrode formed on the surface was produced. This substrate was designated as Comparative Example 11.

<比較試験1及び評価>
実施例1〜10及び比較例1〜11の表面に電極が形成された基材について、反射率、比抵抗、平均表面粗さ及び基板(基材)への接着性を評価した。電極の反射率評価は、紫外可視分光光度計と積分球の組合せにより、波長800nmにおける電極の反射率を測定した。また比抵抗は、四探針法により電極の表面抵抗を測定し、走査型電子顕微鏡(Scanning Electron Microscope;SEM)により電極の厚さを測定し、それぞれ測定した表面抵抗と電極の厚さとから計算により求めた。また平均表面粗さは、原子間力顕微鏡(Atomic Force Microscope;AFM)によって得られた表面形状に関する評価値をJIS B0601に従って評価することで得た。更に基板への密着性は、電極を形成した基板への接着テープ引き剥がし試験により定性的に評価し、『良好』とは、基板から接着テープのみが剥がれた場合を示し、『不良』とは、接着テープの剥がれと基板表面が露出した状態が混在した場合を示し、『極めて不良』とは、接着テープ引き剥がしによって基材表面の全面が露出した場合を示す。その結果を、組成物の粘度と、組成物の流量Lに対する液滴破砕用ガスの流量Gの体積比での倍率(表1ではG/Lと表記する。)と、電極の厚さとともに表1に示す。
<Comparative test 1 and evaluation>
About the base material with which the electrode was formed in the surface of Examples 1-10 and Comparative Examples 1-11, the reflectance, specific resistance, average surface roughness, and the adhesiveness to a board | substrate (base material) were evaluated. For the evaluation of the reflectance of the electrode, the reflectance of the electrode at a wavelength of 800 nm was measured by a combination of an ultraviolet-visible spectrophotometer and an integrating sphere. The specific resistance is calculated from the measured surface resistance and electrode thickness by measuring the surface resistance of the electrode using the four-probe method and measuring the thickness of the electrode using a scanning electron microscope (SEM). Determined by The average surface roughness was obtained by evaluating an evaluation value relating to the surface shape obtained by an atomic force microscope (AFM) according to JIS B0601. Furthermore, the adhesion to the substrate is qualitatively evaluated by an adhesive tape peeling test on the substrate on which the electrode is formed. “Good” indicates that only the adhesive tape is peeled off from the substrate. The case where the peeling of the adhesive tape and the state where the substrate surface is exposed coexist is shown, and “very bad” means the case where the entire surface of the base material is exposed due to the peeling of the adhesive tape. The results are shown together with the viscosity of the composition, the magnification in the volume ratio of the flow rate G of the droplet crushing gas to the flow rate L of the composition (indicated as G / L in Table 1), and the thickness of the electrode. It is shown in 1.

Figure 2010137220
表1から明らかなように、比較例1〜10では電極の反射率が80〜92%R(800nm)と低かったのに対し、G/Lのみを変えて比較例1〜10にそれぞれ対応する実施例1〜10では電極の反射率が90〜98%R(800nm)と高くなった。また比較例1〜10では電極の比抵抗が6×10-5〜20×10-5Ω・cmと大きかったのに対し、G/Lのみを変えて比較例1〜10にそれぞれ対応する実施例1〜10では電極の比抵抗が3×10-5〜6×10-5Ω・cmと低くなった。また比較例1〜8及び10では電極の平均表面粗さが30〜200nmと大きかったのに対し、G/Lのみを変えて比較例1〜8及び10にそれぞれ対応する実施例1〜8及び10では電極の平均表面粗さが20〜100nmと小さくなった。また比較例9では電極の平均表面粗さが200nmと小さかったのに対し、G/Lのみを変えて比較例9に対応する実施例9では電極の平均表面粗さが450nmと大きくなった。これは、実施例9では、磨りガラス基板(表面粗さ500nm)表面の凹凸に追随する形で薄膜が成膜されたため、電極の表面粗さが磨りガラス基板の表面粗さと同等となったのに対し、比較例9では、磨りガラス基板(表面粗さ500nm)表面の凹凸の凹部を埋める形で薄膜が成膜されたため、電極の表面粗さが磨りガラス基板の表面粗さより小さくなったものである。更に比較例1〜10では電極の基板に対する密着性が不良であったものが10枚中6枚もあったのに対し、G/Lのみを変えて比較例1〜10にそれぞれ対応する実施例1〜10では電極の基板に対する密着性が全て良好であった。なお、比較例11は組成物の粘度が高すぎて、スプレーノズルが著しく閉塞したため、組成物を基板に塗布できなかった。
Figure 2010137220
As is clear from Table 1, in Comparative Examples 1 to 10, the reflectance of the electrode was as low as 80 to 92% R (800 nm), whereas only G / L was changed to correspond to Comparative Examples 1 to 10, respectively. In Examples 1 to 10, the reflectivity of the electrode was as high as 90 to 98% R (800 nm). In Comparative Examples 1 to 10, the specific resistance of the electrode was as large as 6 × 10 −5 to 20 × 10 −5 Ω · cm, whereas only G / L was changed to correspond to Comparative Examples 1 to 10, respectively. In Examples 1 to 10, the specific resistance of the electrode was as low as 3 × 10 −5 to 6 × 10 −5 Ω · cm. Further, in Comparative Examples 1 to 8 and 10, the average surface roughness of the electrodes was as large as 30 to 200 nm, whereas only G / L was changed, and Examples 1 to 8 and 10 corresponding to Comparative Examples 1 to 8 and 10 respectively. In No. 10, the average surface roughness of the electrode was as small as 20 to 100 nm. In Comparative Example 9, the average surface roughness of the electrode was as small as 200 nm, whereas in Example 9 corresponding to Comparative Example 9 by changing only G / L, the average surface roughness of the electrode was increased as 450 nm. In Example 9, since the thin film was formed in a form following the irregularities on the surface of the polished glass substrate (surface roughness 500 nm), the surface roughness of the electrode was equivalent to the surface roughness of the polished glass substrate. On the other hand, in Comparative Example 9, since the thin film was formed so as to fill the concave and convex recesses on the surface of the polished glass substrate (surface roughness 500 nm), the surface roughness of the electrode was smaller than the surface roughness of the polished glass substrate. It is. Further, in Comparative Examples 1 to 10, there were 6 out of 10 sheets in which the adhesion of the electrodes to the substrate was poor, whereas only the G / L was changed to correspond to Comparative Examples 1 to 10, respectively. In 1-10, all the adhesiveness with respect to the board | substrate of an electrode was favorable. In Comparative Example 11, since the viscosity of the composition was too high and the spray nozzle was clogged, the composition could not be applied to the substrate.

本発明の薄膜形成方法は、太陽電池に代表される基材表面への電極(導電性を有する薄膜)を必要とする部材の製造方法として利用できる。   The thin film formation method of this invention can be utilized as a manufacturing method of the member which requires the electrode (thin film | membrane which has electroconductivity) to the base-material surface represented by the solar cell.

Claims (5)

75重量%以上の銀ナノ粒子を含有する金属ナノ粒子を分散媒に分散させて30mPa・s以下の粘度の組成物を調製する工程と、
前記組成物をスプレー塗工法により基材表面に塗布して薄膜を形成する工程と
を含むスプレーによる薄膜形成方法であって、
前記スプレー塗工法による前記組成物の前記基材表面への塗布時に、体積比で前記組成物の流量1に対し液滴破砕用ガスを大気雰囲気中で5000倍以上かつ100000倍以下の流量で通気して前記組成物の液滴を微細化しながら前記基材表面に塗布して前記薄膜を形成することを特徴とするスプレーによる薄膜形成方法。
A step of preparing a composition having a viscosity of 30 mPa · s or less by dispersing metal nanoparticles containing 75% by weight or more of silver nanoparticles in a dispersion medium;
A method of forming a thin film by spraying the composition onto a substrate surface by a spray coating method,
When the composition is applied to the substrate surface by the spray coating method, a droplet crushing gas is vented at a flow rate of 5000 times or more and 100000 times or less in an air atmosphere with respect to the flow rate 1 of the composition by volume ratio. A thin film formation method by spraying, wherein the thin film is formed by applying droplets of the composition onto the surface of the base material while miniaturizing the droplets.
銀ナノ粒子以外の金属ナノ粒子として、金、白金、パラジウム、ルテニウム、ニッケル、銅、錫、インジウム、亜鉛、クロム、鉄及びマンガンからなる群より選ばれた1種又は2種以上の金属ナノ粒子を含有し、
前記銀ナノ粒子以外の金属ナノ粒子の含有量が、全ての金属ナノ粒子100重量%に対し0.02重量%以上かつ25重量%以下である請求項1記載のスプレーによる薄膜形成方法。
As metal nanoparticles other than silver nanoparticles, one or more metal nanoparticles selected from the group consisting of gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, chromium, iron and manganese Containing
The method for forming a thin film by spraying according to claim 1, wherein the content of metal nanoparticles other than the silver nanoparticles is 0.02 wt% or more and 25 wt% or less with respect to 100 wt% of all metal nanoparticles.
分散媒がアルコール類又はアルコール類含有水溶液である請求項1記載のスプレーによる薄膜形成方法。   The method of forming a thin film by spraying according to claim 1, wherein the dispersion medium is an alcohol or an alcohol-containing aqueous solution. 請求項1ないし3いずれか1項に記載の方法により基材の表面に薄膜を形成する工程と、
この表面に薄膜が形成された基材を大気雰囲気中又は不活性ガス雰囲気中で130〜400℃の温度で焼成して、前記基材表面に電極を形成する工程と
を含むスプレーによる薄膜形成方法で形成された薄膜を用いた電極形成方法。
Forming a thin film on the surface of the substrate by the method according to any one of claims 1 to 3,
A method of forming a thin film by spraying, comprising: baking a substrate having a thin film formed on the surface thereof in an air atmosphere or an inert gas atmosphere at a temperature of 130 to 400 ° C. to form an electrode on the surface of the substrate. The electrode formation method using the thin film formed by.
表面粗さ10〜500nmの凹凸を有する基材表面に、請求項4記載の電極形成方法を用いて形成され、前記基材表面の凹凸に追随して厚さのばらつきが中心値の30%以内であって表面粗さが10〜600nmとなるように形成された電極。   It is formed on the surface of a substrate having irregularities with a surface roughness of 10 to 500 nm using the electrode forming method according to claim 4, and the thickness variation follows the irregularities on the surface of the substrate and is within 30% of the center value. An electrode formed to have a surface roughness of 10 to 600 nm.
JP2009261558A 2008-11-17 2009-11-17 Method of forming thin film by spray and electrode formation method using the thin film Withdrawn JP2010137220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261558A JP2010137220A (en) 2008-11-17 2009-11-17 Method of forming thin film by spray and electrode formation method using the thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008292871 2008-11-17
JP2009261558A JP2010137220A (en) 2008-11-17 2009-11-17 Method of forming thin film by spray and electrode formation method using the thin film

Publications (1)

Publication Number Publication Date
JP2010137220A true JP2010137220A (en) 2010-06-24

Family

ID=42347813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261558A Withdrawn JP2010137220A (en) 2008-11-17 2009-11-17 Method of forming thin film by spray and electrode formation method using the thin film

Country Status (1)

Country Link
JP (1) JP2010137220A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120183674A1 (en) * 2011-01-18 2012-07-19 Bonn-Savage Nathan G Method of Selectively Applying an Antimicrobial Coating to a Medical Device or Device Material
JP2015178538A (en) * 2014-03-18 2015-10-08 田中貴金属工業株式会社 Metal-containing composition for spray coating to metal base material
JPWO2014061612A1 (en) * 2012-10-17 2016-09-05 旭硝子株式会社 Manufacturing method of glass substrate with conductive thin film, thin film solar cell, low emission glass substrate, glass substrate with conductive thin film
JP2017069001A (en) * 2015-09-29 2017-04-06 コニカミノルタ株式会社 Method for forming conductive pattern, and conductive pattern
CN109823051A (en) * 2018-12-29 2019-05-31 华中科技大学 A kind of drop injection fusion overall process volume control methodology, system and printer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120183674A1 (en) * 2011-01-18 2012-07-19 Bonn-Savage Nathan G Method of Selectively Applying an Antimicrobial Coating to a Medical Device or Device Material
JPWO2014061612A1 (en) * 2012-10-17 2016-09-05 旭硝子株式会社 Manufacturing method of glass substrate with conductive thin film, thin film solar cell, low emission glass substrate, glass substrate with conductive thin film
JP2015178538A (en) * 2014-03-18 2015-10-08 田中貴金属工業株式会社 Metal-containing composition for spray coating to metal base material
JP2017069001A (en) * 2015-09-29 2017-04-06 コニカミノルタ株式会社 Method for forming conductive pattern, and conductive pattern
CN109823051A (en) * 2018-12-29 2019-05-31 华中科技大学 A kind of drop injection fusion overall process volume control methodology, system and printer

Similar Documents

Publication Publication Date Title
CN101523511B (en) Composition for electrode formation and method for forming electrode by using the composition
TWI399759B (en) Composition for forming electrode of solar cell, method for forming same electrode, and solar cell employing electrode formed by same method
CN101803037B (en) Composite membrane for super straight solar cell, process for producing the composite membrane for super straight solar cell, composite membrane for substraight solar cell, and process for producing the composite membrane for substraight solar cell
JP5309440B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
CN100449652C (en) Method for forming transparent conductive film and transparent electrode
JP5453813B2 (en) Metal nanoparticle dispersion and method for producing the same
JP6845015B2 (en) Rollerball pens formed on the substrate and conductive ink for conductive tracing
TWI472041B (en) Conductive reflecting film and forming method thereof
KR20090115854A (en) Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle
JP5747941B2 (en) Method for synthesizing metal nanoparticles
WO2004096470A1 (en) Method for preparing liquid colloidal dispersion of silver particles, liquid colloidal dispersion of silver particles, and silver conductive film
JP2010137220A (en) Method of forming thin film by spray and electrode formation method using the thin film
WO2008047641A1 (en) Composition for electrode formation and method for forming electrode by using the composition
JP5248006B2 (en) Method for forming electrode of solar cell
WO2009031849A2 (en) Conductive ink compositions incorporating nano glass frit and nano metal for enhanced adhesion with glass and ceramic substrates used in displays
JP2010199196A (en) Composition for forming electrode for solar cell, method of forming electrode, and solar cell using electrode obtained by method
WO2007066416A1 (en) Silver microparticle colloid dispersion liquid, coating liquid for silver film formation and process for producing the same, and silver film
JP2010202910A (en) Silver nanoparticle, composition using the silver nanoparticle, and conductive coating film using the composition
JP2008135416A (en) Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
JP5151230B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP2012147014A (en) Composition for forming electrode of solar cell and formation method of the electrode, and solar cell using electrode obtained by the formation method
JP6235828B2 (en) Method for producing a silver miniwire film
KR20100137633A (en) Metal-glass nano composite powders
TWI791829B (en) Photosintering composition and method of forming conductive film using the same
JP5435088B2 (en) Method for forming solar cell electrodes

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130205