JP2011187286A - Transparent conductive film and method of manufacturing the same - Google Patents

Transparent conductive film and method of manufacturing the same Download PDF

Info

Publication number
JP2011187286A
JP2011187286A JP2010050666A JP2010050666A JP2011187286A JP 2011187286 A JP2011187286 A JP 2011187286A JP 2010050666 A JP2010050666 A JP 2010050666A JP 2010050666 A JP2010050666 A JP 2010050666A JP 2011187286 A JP2011187286 A JP 2011187286A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
coating
film
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010050666A
Other languages
Japanese (ja)
Other versions
JP5546907B2 (en
Inventor
Akiko Kito
朗子 鬼頭
Ryo Nomura
涼 野村
Toshio Kanzaki
寿夫 神崎
Kimihiko Konno
公彦 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2010050666A priority Critical patent/JP5546907B2/en
Publication of JP2011187286A publication Critical patent/JP2011187286A/en
Application granted granted Critical
Publication of JP5546907B2 publication Critical patent/JP5546907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a transparent conductive film having a high antistatic function and superior transparency on a transparent substrate in a simple process. <P>SOLUTION: The method of manufacturing a transparent conductive film includes a step of manufacturing a coating composition containing conductive particles, resin fat, and a solvent capable of dissolving the resin fact and moreover having a boiling point of ≥120°C, a step of forming a coated film by coating the coating composition on the transparent substrate by a spray coater, and a step of drying the coated film to form a transparent conductive film. Further, the transparent conductive film is manufactured by the above method of manufacturing the transparent conductiv film. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、塗布型透明導電膜及びその製造方法に関する。   The present invention relates to a coating-type transparent conductive film and a method for producing the same.

塗布型透明導電膜、特に導電性無機粒子を含む透明導電膜は、一般にポリエチレンテレフタレート(PET)フィルムなどのフレキシブルシートに塗布されて形成され、ディスプレイの帯電防止、タッチパネル電極、配線電極などに用いられている。   A coating-type transparent conductive film, particularly a transparent conductive film containing conductive inorganic particles, is generally formed by being applied to a flexible sheet such as a polyethylene terephthalate (PET) film, and is used for antistatic display, touch panel electrodes, wiring electrodes, and the like. ing.

従来、PETフィルムなどのフレキシブルシートに透明導電膜を形成する方法としては、導電性無機粒子を含有するコーティング組成物を、グラビア印刷などの連続的な塗布方法によって塗布、乾燥する工程が行われている。   Conventionally, as a method for forming a transparent conductive film on a flexible sheet such as a PET film, a step of applying and drying a coating composition containing conductive inorganic particles by a continuous application method such as gravure printing is performed. Yes.

一方、ガラス上に直接塗布型透明導電膜を形成する方法としては、導電性無機粒子を含むシリカゾルをガラス上に吹き付け塗布した後に熱処理して透明導電膜を形成する方法(特許文献1)や、インクジェット方式により塗液をガラス基板上に直接パターニングしながら出射して塗膜を形成する方法(特許文献2)などが提案されている。   On the other hand, as a method of directly forming a coating-type transparent conductive film on glass, a method of forming a transparent conductive film by applying heat treatment after spraying silica sol containing conductive inorganic particles on glass (Patent Document 1), There has been proposed a method of forming a coating film by emitting a coating liquid directly on a glass substrate by an ink jet method (Patent Document 2).

特開平2−312136号公報Japanese Patent Laid-Open No. 2-312136 特開2004−055363号公報JP 2004-055363 A

液晶モジュールなどのガラス基板上に直接帯電防止機能を付与する場合、特許文献1に記載のように塗液を吹き付ける方法によれば、比較的容易に透明導電膜を形成することが可能であるが、塗布後の高温での熱処理によって液晶モジュールが損傷する問題がある。また、特許文献2に記載のようにインクジェット方式では、面積の小さい基板に均一に塗布することは可能であるが、大面積の基板に均一に塗布するには不向きという問題がある。   When an antistatic function is directly provided on a glass substrate such as a liquid crystal module, a method of spraying a coating liquid as described in Patent Document 1 can form a transparent conductive film relatively easily. There is a problem that the liquid crystal module is damaged by heat treatment at a high temperature after coating. In addition, as described in Patent Document 2, the inkjet method can be applied uniformly to a substrate having a small area, but has a problem that it is not suitable for applying uniformly to a substrate having a large area.

本発明は、上記問題を解決するもので、導電性粒子、樹脂、溶剤を含むコーティング組成物をスプレーコーターを用いて基板上に塗布することにより、剛直な基板の上に直接透明導電膜を形成する方法を提供する。   The present invention solves the above problem, and a transparent conductive film is directly formed on a rigid substrate by applying a coating composition containing conductive particles, a resin, and a solvent onto the substrate using a spray coater. Provide a way to do it.

本発明の透明導電膜の製造方法は、導電性粒子と、樹脂と、前記樹脂を溶解可能で且つ沸点が120℃以上の溶剤とを含むコーティング組成物を作製する工程と、透明基板の上に、前記コーティング組成物をスプレーコーターにより塗布して塗膜を形成する工程と、前記塗膜を乾燥して透明導電膜を形成する工程とを含むことを特徴とする。   The method for producing a transparent conductive film of the present invention comprises a step of producing a coating composition comprising conductive particles, a resin, and a solvent capable of dissolving the resin and having a boiling point of 120 ° C. or higher, and a transparent substrate. The coating composition is applied by a spray coater to form a coating film, and the coating film is dried to form a transparent conductive film.

また、本発明の透明導電膜は、上記本発明の透明導電膜の製造方法によって形成されたことを特徴とする。   The transparent conductive film of the present invention is formed by the above-described method for producing a transparent conductive film of the present invention.

本発明によれば、簡便な工程で、帯電防止機能が高く且つ透明性に優れる透明導電膜を透明基板上に直接形成することができる。   According to the present invention, a transparent conductive film having a high antistatic function and excellent transparency can be directly formed on a transparent substrate by a simple process.

図1は、本発明の透明導電膜の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of the transparent conductive film of the present invention.

(実施形態1)
先ず、本発明の透明導電膜の製造方法について説明する。
(Embodiment 1)
First, the manufacturing method of the transparent conductive film of this invention is demonstrated.

本発明の透明導電膜の製造方法は、導電性粒子と、樹脂と、上記樹脂を溶解可能な溶剤とを含むコーティング組成物を作製する工程と、透明基板の上に、上記コーティング組成物をスプレーコーターにより塗布して塗膜を形成する工程と、上記塗膜を乾燥して透明導電膜を形成する工程とを含むことを特徴とする。   The method for producing a transparent conductive film of the present invention includes a step of producing a coating composition containing conductive particles, a resin, and a solvent capable of dissolving the resin, and spraying the coating composition on a transparent substrate. The method includes a step of coating with a coater to form a coating film, and a step of drying the coating film to form a transparent conductive film.

上記コーティング組成物をスプレーコーターにより塗布することにより、剛直な基板上に、均一な塗膜を形成することができるとともに、多層塗布が可能となり、さらに塗布速度を速くすることができるため、比較的大面積の基板にも効率的に塗膜を形成できる。   By applying the coating composition with a spray coater, a uniform coating film can be formed on a rigid substrate, multilayer coating can be performed, and the coating speed can be increased. A coating film can be efficiently formed even on a large-area substrate.

上記導電性粒子としては、透明性と導電性を兼ね備えた粒子であればよく、例えば、導電性金属酸化物粒子や導電性窒化物粒子などを用いることができる。上記導電性金属酸化物粒子としては、酸化スズ粒子、アンチモン含有酸化スズ(ATO)粒子、スズ含有酸化インジウム(ITO)粒子、アルミニウム含有酸化亜鉛(AZO)粒子、ガリウム含有酸化亜鉛(GZO)粒子などの金属酸化物粒子が挙げられる。上記導電性金属酸化物粒子は、単独で用いてもよく、二種以上を組合せて用いてもよい。また、上記導電性粒子は、酸化スズ粒子、アンチモン含有酸化スズ粒子及びスズ含有酸化インジウム粒子からなる群から選ばれる少なくとも一種を主成分とすることが好ましい。これらの化合物は透明性、導電性や化学特性に優れており、塗膜にした場合にも高い光透過率と導電性を実現することができるからである。ここで、主成分とは、導電性粒子全体に対して、70重量%以上含まれる導電性粒子をいう。   The conductive particles may be particles having both transparency and conductivity. For example, conductive metal oxide particles and conductive nitride particles can be used. Examples of the conductive metal oxide particles include tin oxide particles, antimony-containing tin oxide (ATO) particles, tin-containing indium oxide (ITO) particles, aluminum-containing zinc oxide (AZO) particles, and gallium-containing zinc oxide (GZO) particles. The metal oxide particles are mentioned. The conductive metal oxide particles may be used alone or in combination of two or more. The conductive particles preferably contain at least one selected from the group consisting of tin oxide particles, antimony-containing tin oxide particles, and tin-containing indium oxide particles as a main component. This is because these compounds are excellent in transparency, conductivity, and chemical properties, and can achieve high light transmittance and conductivity even when formed into a coating film. Here, a main component means the electroconductive particle contained 70weight% or more with respect to the whole electroconductive particle.

また、上記導電性粒子の平均粒子径は、30〜200nmであることが好ましく、より好ましくは50〜180nmである。ここで、上記平均粒子径は、透明導電膜に含まれる導電性粒子の平均分散粒子径をいう。上記平均粒子径が200nmを超えると、粒子の散乱によって塗膜のヘイズ値が上昇しすぎる傾向がある。また、導電性粒子の平均粒子径を小さくするためには1次粒子径の小さい導電性粒子を用いることが必要となるが、一般に、粒子の1次粒子径が小さいほど比表面積が増大して分散が難しくなるため、平均粒子径を30nm未満にすることは実質的に困難である。   Moreover, it is preferable that the average particle diameter of the said electroconductive particle is 30-200 nm, More preferably, it is 50-180 nm. Here, the said average particle diameter says the average dispersed particle diameter of the electroconductive particle contained in a transparent conductive film. When the average particle diameter exceeds 200 nm, the haze value of the coating film tends to increase too much due to particle scattering. In order to reduce the average particle size of the conductive particles, it is necessary to use conductive particles having a small primary particle size. In general, the smaller the primary particle size of the particles, the larger the specific surface area. Since dispersion becomes difficult, it is substantially difficult to make the average particle diameter less than 30 nm.

上記平均粒子径を30〜200nmとするためには、導電性粒子の1次粒子径は5〜180nmであることが好ましい。ここで、粒子の1次粒子径とは、導電性粒子そのものをサンプルとし、透過型電子顕微鏡(TEM)により、粒界で区切られた個々の粒子の粒子径を観察・測定した後、少なくとも100個の粒子の粒子径を平均した平均粒子径をいう。導電性粒子の1次粒子径が5nm未満であると、結晶性のよい粒子を得ることが難しい。一方、1次粒子径が180nmよりも大きいと、平均粒子径を200nm以下にすることが困難である。   In order to set the average particle size to 30 to 200 nm, the primary particle size of the conductive particles is preferably 5 to 180 nm. Here, the primary particle diameter of the particles is at least 100 after observing and measuring the particle diameter of each particle separated by a grain boundary with a transmission electron microscope (TEM) using the conductive particles themselves as a sample. The average particle size obtained by averaging the particle sizes of individual particles. When the primary particle diameter of the conductive particles is less than 5 nm, it is difficult to obtain particles with good crystallinity. On the other hand, if the primary particle diameter is larger than 180 nm, it is difficult to make the average particle diameter 200 nm or less.

上記樹脂としては、上記導電性粒子を分散して塗膜を形成できるものであればよく、例えば、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、及び光硬化性モノマーと重合開始剤とを含む光硬化性樹脂などが挙げられる。   The resin may be any resin that can disperse the conductive particles to form a coating film. For example, acrylic resin, polyester resin, polyamide resin, polycarbonate resin, polyurethane resin, polystyrene resin, polyvinyl chloride resin, Examples thereof include a vinylidene chloride resin, a polyvinyl alcohol resin, a polyvinyl acetate resin, and a photocurable resin containing a photocurable monomer and a polymerization initiator.

上記コーティング組成物は、さらに上記樹脂を溶解可能な溶剤を含む。コーティング組成物は固形分である導電性粒子を多く含むため、仮に樹脂成分が光硬化性モノマーのような液状成分であったとしても、溶剤を含まない場合にはコーティング組成物を塗布に適した粘度とすることが困難になる傾向がある。   The coating composition further includes a solvent capable of dissolving the resin. Since the coating composition contains many conductive particles that are solids, even if the resin component is a liquid component such as a photocurable monomer, the coating composition is suitable for application if it does not contain a solvent. It tends to be difficult to obtain a viscosity.

上記溶剤としては、上記樹脂を溶解し、且つ塗布後の乾燥工程によって除去できるものであればよく、例えば、エタノール、プロパノール、ブタノールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロヘキサノンなどのケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、ベンゼン、トルエン、キシレンなどの芳香族化合物、エチレングリコール、ジエチレングリコール、プロピレングリコールなどのグリコール類、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートなどのグリコールアルキルエーテルやグリコールアルキルエステルなどが挙げられる。   The solvent is not particularly limited as long as it dissolves the resin and can be removed by a drying step after coating. Examples thereof include alcohols such as ethanol, propanol, and butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, and cyclohexanone. Ketones such as diethyl ether, tetrahydrofuran, dioxane, aromatic compounds such as benzene, toluene, xylene, glycols such as ethylene glycol, diethylene glycol, propylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc. And glycol alkyl ethers and glycol alkyl esters.

上記コーティング組成物は、上記溶剤として、沸点が120℃以上の溶剤を含むことが好ましく、150℃以上の溶剤を含むことがより好ましい。コーティング組成物に含まれる溶剤が、沸点が120℃未満の溶剤のみから構成されている場合、スプレーノズルから噴射された液滴が、基板に着弾する前に乾燥してしまいやすくなり、均一な塗膜が形成できなくなる傾向があるからである。また、上記溶剤が加熱乾燥により除去できれば、その沸点は特に限定されない。   The coating composition preferably contains a solvent having a boiling point of 120 ° C. or higher, more preferably 150 ° C. or higher, as the solvent. When the solvent contained in the coating composition is composed only of a solvent having a boiling point of less than 120 ° C., the droplets ejected from the spray nozzle are liable to dry before landing on the substrate, resulting in uniform coating. This is because there is a tendency that a film cannot be formed. Moreover, the boiling point will not be specifically limited if the said solvent can be removed by heat drying.

上記沸点が120℃以上の溶剤としては、例えば、シクロヘキサノン、キシレン、エチレングリコール、ジエチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートなどが挙げられる。   Examples of the solvent having a boiling point of 120 ° C. or higher include cyclohexanone, xylene, ethylene glycol, diethylene glycol, propylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and the like.

上記沸点が120℃以上の溶剤は、コーティング組成物に含まれる溶剤の全重量に対して、10重量%以上であることが好ましく、より好ましくは20重量%以上であり、100重量%であってもよい。   The solvent having a boiling point of 120 ° C. or more is preferably 10% by weight or more, more preferably 20% by weight or more, and 100% by weight with respect to the total weight of the solvent contained in the coating composition. Also good.

上記コーティング組成物の不揮発固形分の含有量は、10重量%以上50重量%以下であることが好ましく、より好ましくは12重量%以上45重量%以下、特に好ましくは15重量%以上40%重量以下である。不揮発固形分の含有量が10重量%未満であると、乾燥後の膜厚を厚くするのが困難になり、必要な導電性が得られなくなる傾向がある。また、不揮発固形分の含有量が少なくても塗布量を多くすれば膜厚を増やすことが可能となるが、基板上のコーティング組成物の量が多くなるほど、スプレーノズルから噴射される噴射液の勢いによって液が移動しやすくなるため、均一な塗布膜を得ることが困難になる傾向がある。一方、含有量が50重量%を超えると、液滴が基板に着弾する前に乾燥してしまいやすくなり、均一な塗布膜が得られにくくなる傾向がある。   The nonvolatile solid content of the coating composition is preferably 10% by weight to 50% by weight, more preferably 12% by weight to 45% by weight, and particularly preferably 15% by weight to 40% by weight. It is. If the non-volatile solid content is less than 10% by weight, it is difficult to increase the film thickness after drying, and the necessary conductivity tends not to be obtained. Moreover, even if the content of non-volatile solids is small, it is possible to increase the film thickness by increasing the coating amount, but as the amount of the coating composition on the substrate increases, the amount of the spray liquid sprayed from the spray nozzle increases. Since the liquid easily moves due to the momentum, it tends to be difficult to obtain a uniform coating film. On the other hand, if the content exceeds 50% by weight, the droplets are likely to dry before landing on the substrate, and a uniform coating film tends to be difficult to obtain.

上記コーティング組成物の粘度は、1mPa・s以上20mPa・s以下であることが好ましく、10mPa・s以下であることが好ましい。粘度が20mPa・sを超えると、スプレーノズルより微小な液滴を均一に噴射することが困難になる傾向があり、さらに基板に着弾した液膜のレベリング性が低下し、均一な塗布膜を形成しにくくなる傾向がある。また、コーティング組成物に含まれる溶剤の粘度は1mPa・s以上であることが多いため、コーティング組成物の粘度を1mPa・s未満にすることは実質的に困難である。   The viscosity of the coating composition is preferably 1 mPa · s or more and 20 mPa · s or less, and preferably 10 mPa · s or less. When the viscosity exceeds 20 mPa · s, it tends to be difficult to uniformly eject fine droplets from the spray nozzle, and the leveling property of the liquid film that has landed on the substrate is lowered, thereby forming a uniform coating film. Tend to be difficult to do. Moreover, since the viscosity of the solvent contained in the coating composition is often 1 mPa · s or more, it is substantially difficult to make the viscosity of the coating composition less than 1 mPa · s.

上記コーティング組成物の不揮発固形分のうち、上記導電性粒子の体積含有率は、25%以上55%以下であることが好ましく、より好ましくは30%以上50%以下であり、特に好ましくは35%以上45%以下である。ここで、上記導電性粒子の体積含有率は、不揮発固形分から形成される透明導電膜中の導電性粒子の体積の比率を意味する。上記体積含有率が55%を超えると、塗膜が脆くなって耐溶剤性が悪化する傾向がある。また、上記体積含有率が25%を下回ると、塗膜強度は向上するものの、粒子間の接点が少なくなりすぎるため、塗膜の表面抵抗が上昇する傾向がある。   Of the non-volatile solid content of the coating composition, the volume content of the conductive particles is preferably 25% or more and 55% or less, more preferably 30% or more and 50% or less, and particularly preferably 35%. It is 45% or less. Here, the volume content rate of the said electroconductive particle means the ratio of the volume of the electroconductive particle in the transparent conductive film formed from non-volatile solid content. If the volume content exceeds 55%, the coating film becomes brittle and the solvent resistance tends to deteriorate. Moreover, when the said volume content rate is less than 25%, although the coating-film intensity | strength improves, since the contact between particle | grains decreases too much, there exists a tendency for the surface resistance of a coating film to rise.

上記コーティング組成物には、さらに、導電性粒子の分散性を向上させるための分散剤や、基板に対する濡れ性やレベリング性を向上させるための表面調整剤が添加されていてもよい。   The coating composition may further contain a dispersant for improving the dispersibility of the conductive particles and a surface conditioner for improving the wettability and leveling properties with respect to the substrate.

上記コーティング組成物の作製方法は、導電性粒子を樹脂及び溶剤中に分散できればよく、特に限定されない。例えば、導電性粒子を分散させるために、ボールミル、サンドミル、ピコミル、ペイントコンディショナーなどのメディアを介在させた機械的処理方法、又は超音波分散機、ホモジナイザー、ディスパー及びジェットミルなどを使用した分散処理方法などが採用できる。   The manufacturing method of the said coating composition should just be able to disperse | distribute electroconductive particle in resin and a solvent, and is not specifically limited. For example, in order to disperse the conductive particles, a mechanical processing method using a media such as a ball mill, a sand mill, a pico mill, or a paint conditioner, or a dispersion processing method using an ultrasonic disperser, a homogenizer, a disper, a jet mill, or the like Etc. can be adopted.

上記スプレー塗布に用いるスプレーコーターは、特に限定されず、ノズルの数も単数であってもよく、塗布速度を上げるために複数であってもよい。   The spray coater used for the spray coating is not particularly limited, and the number of nozzles may be singular or plural to increase the coating speed.

上記コーティング組成物を透明基板に塗布した後、乾燥によって溶剤を除去する。乾燥条件や乾燥時間は、用いる溶剤によって適宜設定すればよい。また、必要に応じて、塗膜にUV光やEB光を照射して塗膜を硬化させたりして、透明導電膜を形成してもよい。   After the coating composition is applied to the transparent substrate, the solvent is removed by drying. What is necessary is just to set drying conditions and drying time suitably with the solvent to be used. If necessary, the transparent conductive film may be formed by irradiating the coating film with UV light or EB light to cure the coating film.

上記透明基板は、透明で平滑な基板であれば特に限定されないが、ガラス基板とすることもできる。例えば、本発明では、焼成工程や加圧工程が必要ないため、液晶モジュールのガラス基板の上に直接透明導電膜を形成できる。   The transparent substrate is not particularly limited as long as it is a transparent and smooth substrate, but may be a glass substrate. For example, in the present invention, since a baking process or a pressurizing process is not required, a transparent conductive film can be formed directly on the glass substrate of the liquid crystal module.

(実施形態2)
次に、本発明の透明導電膜について説明する。
(Embodiment 2)
Next, the transparent conductive film of the present invention will be described.

本発明の透明導電膜は、上記実施形態1で説明した本発明の透明導電膜の製造方法によって形成されたことを特徴とする。上記製造方法によれば、透明導電膜を効率良く形成することができる。   The transparent conductive film of the present invention is formed by the method for manufacturing a transparent conductive film of the present invention described in the first embodiment. According to the said manufacturing method, a transparent conductive film can be formed efficiently.

また、上記透明導電膜の膜厚は、0.3μm以上3.0μm以下であることが好ましく、より好ましくは0.5μm以上2.5μm以下であり、特に好ましくは0.8μm以上2.0μm以下である。膜厚が薄いほど表面抵抗値が増加してしまい、また、膜厚が0.3μm未満になると、塗膜の光透過率は向上するものの、塗膜が薄すぎるために硬度が低下する傾向がある。また、膜厚を厚くすると表面抵抗値は低下する傾向にあるが、3μmを超えると表面抵抗値はほぼ一定となる。一方、膜厚が厚くなると光透過率が低下し、さらに材料量が増加してコスト高となることから、膜厚は3μm以下とすることが好ましい。   The film thickness of the transparent conductive film is preferably from 0.3 μm to 3.0 μm, more preferably from 0.5 μm to 2.5 μm, and particularly preferably from 0.8 μm to 2.0 μm. It is. As the film thickness decreases, the surface resistance value increases. When the film thickness is less than 0.3 μm, the light transmittance of the coating film is improved, but the hardness tends to decrease because the coating film is too thin. is there. Further, when the film thickness is increased, the surface resistance value tends to decrease, but when it exceeds 3 μm, the surface resistance value becomes substantially constant. On the other hand, when the film thickness is increased, the light transmittance is decreased, and the amount of material is further increased to increase the cost. Therefore, the film thickness is preferably 3 μm or less.

続いて、本発明の透明導電膜について図面に基づき簡単に説明する。図1は、本発明の製造方法により得られた透明導電膜の一例を示す概略断面図である。図1において、透明導電膜12は、透明基板11の一方の主面に設けられている。   Then, the transparent conductive film of this invention is demonstrated easily based on drawing. FIG. 1 is a schematic sectional view showing an example of a transparent conductive film obtained by the production method of the present invention. In FIG. 1, the transparent conductive film 12 is provided on one main surface of the transparent substrate 11.

上記透明導電膜12の表面抵抗は、1×108Ω/スクエア以下であることが好ましく、1×106Ω/スクエア以下であることがさらに好ましく、1×105Ω/スクエア以下であることが特に好ましい。上記表面抵抗値は低ければ低いほどよいが、焼成工程や加圧工程を行わず、塗布工程のみによって作製する本発明の場合は、表面抵抗を1000Ω/スクエア以下とすることは実質的に難しい。 The surface resistance of the transparent conductive film 12 is preferably 1 × 10 8 Ω / square or less, more preferably 1 × 10 6 Ω / square or less, and 1 × 10 5 Ω / square or less. Is particularly preferred. The lower the surface resistance value, the better. However, in the case of the present invention, which is produced only by the coating process without performing the firing process or the pressurizing process, it is substantially difficult to make the surface resistance 1000 Ω / square or less.

上記透明導電膜12のヘイズ値は、3.0%以下であることが好ましく、1.5%以下であることがさらに好ましく、1.0%以下であることが特に好ましい。また、導電性粒子を含有するため、ヘイズ値を0.2%以下にすることは困難である。また、上記透明導電膜の可視光透過率は、90%以上であることが好ましく、95%以上であることがさらに好ましい。   The haze value of the transparent conductive film 12 is preferably 3.0% or less, more preferably 1.5% or less, and particularly preferably 1.0% or less. Moreover, since it contains conductive particles, it is difficult to make the haze value 0.2% or less. Further, the visible light transmittance of the transparent conductive film is preferably 90% or more, and more preferably 95% or more.

以下、実施例に基づいて本発明を詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples.

先ず、以下のようにしてITO分散体組成物aを調製した。   First, an ITO dispersion composition a was prepared as follows.

<ITO分散体組成物a>
100mlのプラスチック製ビンに、下記の成分を計り取り、ペイントシェーカー(東洋精機社製)で25分間分散処理した後、ジルコニアビーズを取り除いて、ITO分散体組成物aを得た。
<ITO dispersion composition a>
The following components were weighed into a 100 ml plastic bottle and dispersed for 25 minutes with a paint shaker (manufactured by Toyo Seiki Co., Ltd.), after which the zirconia beads were removed to obtain an ITO dispersion composition a.

(1)スズ含有インジウム酸化物(ITO)粒子 12.0g
(2)分散剤“BYK111”(ビックケミー社製) 0.60g
(3)メチルエチルケトン(和光純薬社製) 27.4g
(4)トルエン(和光純薬社製) 2.27g
(5)ジルコニアビーズ(液の攪拌分散用、直径0.3mm) 60.0g
(1) Tin-containing indium oxide (ITO) particles 12.0 g
(2) Dispersant “BYK111” (manufactured by Big Chemie) 0.60 g
(3) Methyl ethyl ketone (Wako Pure Chemical Industries, Ltd.) 27.4g
(4) Toluene (Wako Pure Chemical Industries, Ltd.) 2.27g
(5) Zirconia beads (for stirring and dispersing liquid, diameter 0.3 mm) 60.0 g

ITO分散体組成物aにおける、ITO粒子の平均粒子径を動的光散乱方式の粒度分布計(コールター社製“N4PLUS”)で測定したところ、110nmであった。   In the ITO dispersion composition a, the average particle diameter of the ITO particles was measured with a dynamic light scattering particle size distribution meter (“N4PLUS” manufactured by Coulter, Inc.), and found to be 110 nm.

<ITO分散体組成物b>
また、下記の成分を計り取り、上記と同様にしてペイントシェーカーにて分散処理し、ITO分散体組成物bを得た。
<ITO dispersion composition b>
In addition, the following components were measured and dispersed with a paint shaker in the same manner as described above to obtain an ITO dispersion composition b.

(1)スズ含有インジウム酸化物(ITO)粒子 21.2g
(2)分散剤“BYK111”(ビックケミー社製) 0.85g
(3)メチルエチルケトン(和光純薬社製) 8.98g
(4)トルエン(和光純薬社製) 8.98g
(5)ジルコニアビーズ(液の攪拌分散用、直径0.3mm) 60.0g
(1) Tin-containing indium oxide (ITO) particles 21.2g
(2) Dispersant “BYK111” (by Big Chemie) 0.85 g
(3) Methyl ethyl ketone (Wako Pure Chemical Industries, Ltd.) 8.98 g
(4) Toluene (Wako Pure Chemical Industries, Ltd.) 8.98 g
(5) Zirconia beads (for stirring and dispersing liquid, diameter 0.3 mm) 60.0 g

ITO分散体組成物bにおける、ITO粒子の平均粒子径を上記と同様にして測定したところ、180nmであった。   The average particle diameter of the ITO particles in the ITO dispersion composition b was measured in the same manner as described above, and it was 180 nm.

次に、以下のようにしてコーティング組成物1〜4を調製した。   Next, coating compositions 1 to 4 were prepared as follows.

<コーティング組成物1>
プラスチック製ビンに、ITO分散体組成物a及び下記の成分を計り取り、混合・攪拌して、固形分濃度が25重量%のコーティング組成物1を30g調製した。
<Coating composition 1>
In a plastic bottle, the ITO dispersion composition a and the following components were weighed, mixed and stirred to prepare 30 g of coating composition 1 having a solid content concentration of 25% by weight.

(1)ITO分散体組成物a 20.3g
(2)アクリル樹脂“BR106”(三菱レイヨン社製) 1.12g
(3)メチルエチルケトン(和光純薬社製) 4.29g
(4)トルエン(和光純薬社製) 4.29g
(1) ITO dispersion composition a 20.3 g
(2) Acrylic resin “BR106” (Mitsubishi Rayon Co., Ltd.) 1.12 g
(3) Methyl ethyl ketone (Wako Pure Chemical Industries, Ltd.) 4.29g
(4) Toluene (Wako Pure Chemical Industries, Ltd.) 4.29g

<コーティング組成物2〜4>
下記表1に示すITO分散体組成物及びその他の成分を、表1に示す配合量で配合し、コーティング組成物1と同様にして、それぞれ、コーティング組成物2〜4をそれぞれ30g調製した。表1で、メチルエチルケトン及びトルエンは沸点が120℃未満の溶剤であり、シクロヘキサノンは沸点が120℃以上の溶剤である。
<Coating compositions 2-4>
The ITO dispersion composition and other components shown in Table 1 below were blended in the blending amounts shown in Table 1, and 30 g of the coating compositions 2 to 4 were prepared in the same manner as the coating composition 1, respectively. In Table 1, methyl ethyl ketone and toluene are solvents having a boiling point of less than 120 ° C, and cyclohexanone is a solvent having a boiling point of 120 ° C or higher.

得られたコーティング組成物1〜4の粘度を、東機産業社製の粘度測定機“VISCOMETER(TV−22)”により測定した。その結果を表1に示す。   The viscosities of the obtained coating compositions 1 to 4 were measured with a viscosity measuring device “VISCOMETER (TV-22)” manufactured by Toki Sangyo Co., Ltd. The results are shown in Table 1.

Figure 2011187286
Figure 2011187286

続いて、上記コーティング組成物1〜4を用いて、下記のとおり透明導電膜を作製した。   Then, the transparent conductive film was produced as follows using the said coating compositions 1-4.

(比較例1)
コーティング組成物1を、厚さ2mm、横150mm、縦150mmの光学ガラス基板上にスプレーコーター(サンエイテック社製のマイクロコートシステム、バルブ:780Sスプレーバルブ)にて塗布した。具体的には、塗布ロボット(JANOME社製のDESKTOP ROBOT“JR2400”)にガラス基板をセットし、ノズル高さ35mm、Y軸スキャン速度35mm/s、X軸移動ピッチ25mm、塗布列数8とし、スプレー条件は、液圧力0.2kPa、ノズル圧力0.5kPaとして塗布を行った。得られた塗膜を100℃の乾燥機で2分間乾燥させて、実施例1の透明導電膜を形成した。
(Comparative Example 1)
The coating composition 1 was applied on an optical glass substrate having a thickness of 2 mm, a width of 150 mm, and a length of 150 mm with a spray coater (Micro Coat System, valve: 780S spray valve manufactured by Sanei Tech Co., Ltd.). Specifically, a glass substrate is set on a coating robot (DESKTOP ROBOT “JR2400” manufactured by Janome), the nozzle height is 35 mm, the Y-axis scanning speed is 35 mm / s, the X-axis movement pitch is 25 mm, and the number of coating rows is 8, The spraying was performed at a liquid pressure of 0.2 kPa and a nozzle pressure of 0.5 kPa. The obtained coating film was dried with a dryer at 100 ° C. for 2 minutes to form the transparent conductive film of Example 1.

(実施例1)
コーティング組成物2を用いたこと以外は、比較例1と同様にして、実施例1の透明導電膜を得た。
Example 1
A transparent conductive film of Example 1 was obtained in the same manner as Comparative Example 1 except that the coating composition 2 was used.

(実施例2)
コーティング組成物3を用い、Y軸スキャン速度を20mm/s、X軸移動ピッチを20mm、塗布列数を10に変更した以外は、比較例1と同様にして、実施例2の透明導電膜を得た。
(Example 2)
The transparent conductive film of Example 2 was prepared in the same manner as in Comparative Example 1 except that the coating composition 3 was used, the Y-axis scanning speed was changed to 20 mm / s, the X-axis moving pitch was changed to 20 mm, and the number of coating rows was changed to 10. Obtained.

(実施例3)
コーティング組成物4を用い、Y軸スキャン速度を45mm/sに変更した以外は、比較例1と同様にして、実施例3の透明導電膜を得た。
(Example 3)
A transparent conductive film of Example 3 was obtained in the same manner as in Comparative Example 1 except that the coating composition 4 was used and the Y-axis scan speed was changed to 45 mm / s.

実施例1〜3と比較例1の透明導電膜の膜厚、表面抵抗、光透過率及びヘイズを下記のとおり測定した。その結果を表2に示す。   The film thickness, surface resistance, light transmittance, and haze of the transparent conductive films of Examples 1 to 3 and Comparative Example 1 were measured as follows. The results are shown in Table 2.

(膜厚)
透明導電膜をガラス基板ごと切断し、走査型電子顕微鏡(日立製作所社製“S−4500”)にて断面観察して、膜厚を測定した。
(Film thickness)
The transparent conductive film was cut together with the glass substrate, and the film thickness was measured by observing a cross section with a scanning electron microscope (“S-4500” manufactured by Hitachi, Ltd.).

(表面抵抗)
ダイアインスツルメンツ社製の抵抗計(“ロウレスタAP−MCP−T400”)を用いて、透明導電膜の表面抵抗を測定した。
(Surface resistance)
The surface resistance of the transparent conductive film was measured using a resistance meter ("Loresta AP-MCP-T400") manufactured by Dia Instruments.

(光透過率)
先ず、紫外可視近赤外分光光度計“V−570”(日本分光社製)を用い、450〜650nmの波長領域における光透過率スペクトルを測定した。次に、基板の光透過率を換算した塗膜のみの光透過率スペクトルについて、波長領域450〜650nmの範囲の光透過率を平均した値を光透過率とした。
(Light transmittance)
First, a light transmittance spectrum in a wavelength region of 450 to 650 nm was measured using an ultraviolet-visible near-infrared spectrophotometer “V-570” (manufactured by JASCO Corporation). Next, for the light transmittance spectrum of only the coating film obtained by converting the light transmittance of the substrate, a value obtained by averaging the light transmittance in the wavelength region of 450 to 650 nm was defined as the light transmittance.

(ヘイズ)
紫外可視近赤外分光光度計“V−570”(日本分光社製)を用いて、ヘイズ値を測定した。
(Haze)
The haze value was measured using an ultraviolet-visible near-infrared spectrophotometer “V-570” (manufactured by JASCO Corporation).

Figure 2011187286
Figure 2011187286

表2に示すように、本発明の実施例1〜3と比較例1においては、優れた導電性及び透明性を有する透明導電膜が得られた。また、沸点が120℃以上の溶剤を用いた実施例1〜3では、そうでない比較例1に比べてヘイズ値が低く、より透明な導電膜が得られたことが分かる。   As shown in Table 2, in Examples 1 to 3 and Comparative Example 1 of the present invention, a transparent conductive film having excellent conductivity and transparency was obtained. Moreover, in Examples 1-3 using the solvent whose boiling point is 120 degreeC or more, compared with the comparative example 1 which is not so, it turns out that a more transparent electrically conductive film was obtained.

本発明によれば、簡便な工程で、帯電防止機能が高く且つ透明性に優れる透明導電膜を透明基板上に直接形成することができ、その透明導電膜は帯電防止フィルム、タッチパネル用電極などへの応用が期待できる。   According to the present invention, a transparent conductive film having a high antistatic function and excellent transparency can be directly formed on a transparent substrate by a simple process, and the transparent conductive film can be applied to an antistatic film, a touch panel electrode, or the like. The application of can be expected.

11 透明基板
12 透明導電膜
11 Transparent substrate 12 Transparent conductive film

Claims (7)

導電性粒子と、樹脂と、前記樹脂を溶解可能で且つ沸点が120℃以上の溶剤とを含むコーティング組成物を作製する工程と、
透明基板の上に、前記コーティング組成物をスプレーコーターにより塗布して塗膜を形成する工程と、
前記塗膜を乾燥して透明導電膜を形成する工程とを含むことを特徴とする透明導電膜の製造方法。
Producing a coating composition comprising conductive particles, a resin, and a solvent capable of dissolving the resin and having a boiling point of 120 ° C. or higher;
On the transparent substrate, a step of applying the coating composition by a spray coater to form a coating film,
And a step of forming the transparent conductive film by drying the coating film.
前記透明基板が、ガラス基板である請求項1に記載の透明導電膜の製造方法。   The method for producing a transparent conductive film according to claim 1, wherein the transparent substrate is a glass substrate. 前記コーティング組成物の不揮発固形分の含有量が、10重量%以上50重量%以下である請求項1又は2に記載の透明導電膜の製造方法。   The method for producing a transparent conductive film according to claim 1 or 2, wherein the content of nonvolatile solids in the coating composition is 10 wt% or more and 50 wt% or less. 前記コーティング組成物の粘度が、1mPa・s以上20mPa・s以下である請求項1〜3のいずれか1項に記載の透明導電膜の製造方法。   The method for producing a transparent conductive film according to claim 1, wherein the coating composition has a viscosity of 1 mPa · s to 20 mPa · s. 前記コーティング組成物の不揮発固形分のうち、前記導電性粒子の体積含有率が、25%以上55%以下である請求項1〜4のいずれか1項に記載の透明導電膜の製造方法。   The manufacturing method of the transparent conductive film of any one of Claims 1-4 whose volume content rate of the said electroconductive particle is 25% or more and 55% or less among the non-volatile solid content of the said coating composition. 請求項1〜5のいずれか1項に記載の製造方法によって形成されたことを特徴とする透明導電膜。   A transparent conductive film formed by the manufacturing method according to claim 1. 膜厚が、0.3μm以上3.0μm以下である請求項6に記載の透明導電膜。   The transparent conductive film according to claim 6, wherein the film thickness is 0.3 μm or more and 3.0 μm or less.
JP2010050666A 2010-03-08 2010-03-08 Transparent conductive film and method for producing the same Active JP5546907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010050666A JP5546907B2 (en) 2010-03-08 2010-03-08 Transparent conductive film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050666A JP5546907B2 (en) 2010-03-08 2010-03-08 Transparent conductive film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011187286A true JP2011187286A (en) 2011-09-22
JP5546907B2 JP5546907B2 (en) 2014-07-09

Family

ID=44793342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010050666A Active JP5546907B2 (en) 2010-03-08 2010-03-08 Transparent conductive film and method for producing the same

Country Status (1)

Country Link
JP (1) JP5546907B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160033627A (en) 2014-09-18 2016-03-28 아사히 가라스 가부시키가이샤 Glass substrate with antistatic film and method of producing glass substrate with antistatic film
WO2019184954A1 (en) * 2018-03-30 2019-10-03 京东方科技集团股份有限公司 Base substrate and manufacturing method therefor, apparatus, display substrate, and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11227740A (en) * 1998-02-19 1999-08-24 Sumitomo Osaka Cement Co Ltd Conductive plate having transparent conductive film, and manufacture thereof
JP2000123658A (en) * 1998-10-09 2000-04-28 Fuji Photo Film Co Ltd Manufacture of transparent conductive film and transparent conductive film
JP2003213212A (en) * 2002-01-18 2003-07-30 Sekisui Chem Co Ltd Method for producing transparent antistatic molded article having matte surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11227740A (en) * 1998-02-19 1999-08-24 Sumitomo Osaka Cement Co Ltd Conductive plate having transparent conductive film, and manufacture thereof
JP2000123658A (en) * 1998-10-09 2000-04-28 Fuji Photo Film Co Ltd Manufacture of transparent conductive film and transparent conductive film
JP2003213212A (en) * 2002-01-18 2003-07-30 Sekisui Chem Co Ltd Method for producing transparent antistatic molded article having matte surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160033627A (en) 2014-09-18 2016-03-28 아사히 가라스 가부시키가이샤 Glass substrate with antistatic film and method of producing glass substrate with antistatic film
WO2019184954A1 (en) * 2018-03-30 2019-10-03 京东方科技集团股份有限公司 Base substrate and manufacturing method therefor, apparatus, display substrate, and display device
US11249356B2 (en) 2018-03-30 2022-02-15 Hefei Boe Optoelectronics Technology Co., Ltd. Base substrate and manufacturing method therefor, apparatus, display substrate, and display device

Also Published As

Publication number Publication date
JP5546907B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
CN107924002B (en) Light-transmitting structure, method for producing same, and article
US20140035995A1 (en) Aerosol jet printable metal conductive inks, glass coated metal conductive inks and uv-curable dielectric inks and methods of preparing and printing the same
JP4918790B2 (en) Method for producing transparent conductive film, transparent conductive film and coating solution
TW201209114A (en) Conductive paint composition and method for manufacturing conductive film using the same
JP2009280786A (en) Composition for forming transparent film and layered transparent film
JP5090808B2 (en) Photocatalytic multilayer coating
TWI421316B (en) Transparent conductive film forming composition, transparent conductive film, and display
Wang et al. Inkjet printed carbon nanotube networks: the influence of drop spacing and drying on electrical properties
KR20140147975A (en) Conductive ink composition, transparent conductive film comprising thereof and method for preparing transparent conductive film
JP2016068047A (en) Die coating apparatus and manufacturing method for transparent conductive base material
KR101736898B1 (en) Electromagnetic wave shielding coating composition
JP2010225287A (en) Ink for transparent conductive film formation and transparent conductive film
JP5405935B2 (en) Transparent conductive sheet
JP5337500B2 (en) Transparent conductive film and method for producing the same
EP3124141B1 (en) Flaky metal pigment and method of manufacturing flaky metal pigment
JP5546907B2 (en) Transparent conductive film and method for producing the same
JP5466612B2 (en) Method for producing resin-coated metal oxide particle resin dispersion composition and substrate with transparent coating
JP2015200820A (en) Formation method of optical scattering layer, and optical scattering layer
Scardaci et al. Spray deposition of Silver Nanowire transparent conductive networks
JP5020130B2 (en) Transparent conductive film forming ink and transparent conductive film
JP6136551B2 (en) Pattern forming method and coating solution
WO2016038821A1 (en) Electrode, method for producing same, and touch panel and organic el substrate, each of which is provided with said electrode
CN109749109A (en) Film
JP2012058506A (en) Optical material, tin oxide fine particle dispersion, tin oxide fine particle dispersion coating material, method for manufacturing optical material, high refractive index film, and antistatic film
JP2012054209A (en) Conductive oxide microparticle dispersion liquid and coating liquid for forming transparent conductive film, and transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140514

R150 Certificate of patent or registration of utility model

Ref document number: 5546907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250