JP2010135828A - Substrate and manufacturing method therefor, and circuit device and manufacturing method therefor - Google Patents

Substrate and manufacturing method therefor, and circuit device and manufacturing method therefor Download PDF

Info

Publication number
JP2010135828A
JP2010135828A JP2010025584A JP2010025584A JP2010135828A JP 2010135828 A JP2010135828 A JP 2010135828A JP 2010025584 A JP2010025584 A JP 2010025584A JP 2010025584 A JP2010025584 A JP 2010025584A JP 2010135828 A JP2010135828 A JP 2010135828A
Authority
JP
Japan
Prior art keywords
wiring
substrate
base material
plating film
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010025584A
Other languages
Japanese (ja)
Other versions
JP5121857B2 (en
Inventor
Yasuhiro Obara
泰浩 小原
Seiji Shibata
清司 柴田
Masayuki Nagamatsu
正幸 長松
Ryosuke Usui
良輔 臼井
Toshiya Shimizu
敏哉 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010025584A priority Critical patent/JP5121857B2/en
Publication of JP2010135828A publication Critical patent/JP2010135828A/en
Application granted granted Critical
Publication of JP5121857B2 publication Critical patent/JP5121857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate having improved moisture resistance, a method for manufacturing the substrate, a circuit device, and a method for manufacturing the circuit device. <P>SOLUTION: The substrate 20 is composed of a base material 12, wiring 14 formed on the top surface of the base material 12, a covering layer 18 which covers the wiring 14 with the exception of an region acting as a connection part, a rear surface electrode 32 formed on the bottom surface of the base material 12, and a through electrode 30 which penetrates the base material 12 to connect the wiring 14 and the rear surface electrode 32. The width of irregularities of the surface of the wiring 14 positioned at the peripheral part of the base material 12 is made larger than that positioned at the center of the base material 12, and thereby, the reliability of adhesion between the wiring 14 and the covering layer 18 at loading thermal cycling is improved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基板およびその製造方法、回路装置およびその製造方法に関する。特に、本発明は、基材の主面に形成された配線が被覆層により被覆される構成の基板およびその製造方法に関する。更に、本発明は、この様な基板を備えた回路装置およびその製造方法に関する。   The present invention relates to a substrate, a manufacturing method thereof, a circuit device, and a manufacturing method thereof. In particular, the present invention relates to a substrate having a structure in which a wiring formed on a main surface of a base material is covered with a coating layer and a method for manufacturing the same. Furthermore, the present invention relates to a circuit device including such a substrate and a manufacturing method thereof.

携帯電話等の電子機器の小型化および高機能化に伴い、その内部に収納される回路装置においては、微細な配線を具備するものが主流になっている。図16を参照して、配線基板107を有する回路装置を説明する(下記特許文献1)。   As electronic devices such as mobile phones become smaller and more functional, circuit devices housed therein are mainly equipped with fine wiring. A circuit device having a wiring board 107 will be described with reference to FIG.

ここでは、配線基板107の上面に形成された第1の配線層102Aに回路素子(半導体素子105)が実装されることで回路装置100が構成されている。   Here, the circuit device 100 is configured by mounting a circuit element (semiconductor element 105) on the first wiring layer 102 </ b> A formed on the upper surface of the wiring substrate 107.

配線基板107は、ガラスエポキシ等の樹脂から成る基材101の表面及び裏面に配線層が形成されている。ここでは、基材101の上面に第1の配線層102Aおよび第2の配線層102Bが形成されている。第1の配線層102Aと第2の配線層102Bとは、絶縁層103を介して積層されている。基材101の下面には、第3の配線層102Cおよび第4の配線層102Dが、絶縁層103を介して積層されている。また、各配線層は、絶縁層103を貫通して設けられた接続部104により所定の箇所にて接続されている。さらに第2の配線層102Bと第3の配線層102Cは基材101を貫通して設けられた接続部104により所定の箇所にて接続されている。ここで、配線基板107の厚みは、例えば1mm程度である。   In the wiring board 107, wiring layers are formed on the front surface and the back surface of the base material 101 made of a resin such as glass epoxy. Here, the first wiring layer 102 </ b> A and the second wiring layer 102 </ b> B are formed on the upper surface of the substrate 101. The first wiring layer 102A and the second wiring layer 102B are stacked with an insulating layer 103 interposed therebetween. A third wiring layer 102 </ b> C and a fourth wiring layer 102 </ b> D are stacked on the lower surface of the substrate 101 with an insulating layer 103 interposed therebetween. Each wiring layer is connected at a predetermined location by a connecting portion 104 provided through the insulating layer 103. Further, the second wiring layer 102 </ b> B and the third wiring layer 102 </ b> C are connected at a predetermined location by a connecting portion 104 provided so as to penetrate the base material 101. Here, the thickness of the wiring board 107 is, for example, about 1 mm.

また、最上層の配線層である第1の配線層102Aは、被覆層109により被覆されている。そして、電気的接続領域(金属細線108が接続される部分)の第1の配線層102Aは、被覆層109を部分的に除去して設けた開口部から露出している。ここで、被覆層109は、例えばエポキシ樹脂等の樹脂材料から成る。   In addition, the first wiring layer 102 </ b> A that is the uppermost wiring layer is covered with a covering layer 109. The first wiring layer 102A in the electrical connection region (the portion to which the thin metal wire 108 is connected) is exposed from an opening provided by partially removing the covering layer 109. Here, the covering layer 109 is made of a resin material such as an epoxy resin.

被覆層109の上面には、半導体素子105が固着されている。ここでは、半導体素子105の下面は絶縁性接着剤等を使用して固着されている。そして、半導体素子105の上面に設けた電極は、金属細線108を経由して第1の配線層102Aと電気的に接続される。   A semiconductor element 105 is fixed to the upper surface of the covering layer 109. Here, the lower surface of the semiconductor element 105 is fixed using an insulating adhesive or the like. The electrode provided on the upper surface of the semiconductor element 105 is electrically connected to the first wiring layer 102 </ b> A via the fine metal wire 108.

更に、半導体素子105および金属細線108が被覆されるように配線基板107の上面は封止樹脂106により被覆されている。   Further, the upper surface of the wiring substrate 107 is covered with a sealing resin 106 so that the semiconductor element 105 and the fine metal wires 108 are covered.

上記した構成の配線基板107の製造方法は次の通りである。先ず、エポキシ樹脂等の樹脂系の材料から成る基材101の上面及び下面に第2の配線層102Bおよび第3の配線層102Cを形成する。これらの配線層は、貼着された導電膜のエッチングまたは選択的なメッキ処理により形成される。また、基材101を貫通して第2の配線層102Bと第3の配線層102Cとを接続する接続部104を形成する。次に、第2の配線層102Bおよび第3の配線層102Cを、樹脂から成る絶縁層103により被覆する。更に、絶縁層103の表面に第1の配線層102Aおよび第4の配線層102Dを形成する。これらの配線層の形成方法は、上記した第2の配線層102B等と同様である。更に、絶縁層103を貫通して第1の配線層102Aと第2の配線層102Bとを接続する接続部104を形成する。また、最上層の配線層である第1の配線層102Aが覆われるように被覆層109が形成され、電気的接続領域と成る部分の第1の配線層102Aが外部に露出するように、被覆層109を部分的に除去して開口部が設けられる。   The manufacturing method of the wiring board 107 having the above-described configuration is as follows. First, the second wiring layer 102B and the third wiring layer 102C are formed on the upper and lower surfaces of the base material 101 made of a resin-based material such as an epoxy resin. These wiring layers are formed by etching or selectively plating the attached conductive film. Further, a connection portion 104 that penetrates the base material 101 and connects the second wiring layer 102B and the third wiring layer 102C is formed. Next, the second wiring layer 102B and the third wiring layer 102C are covered with an insulating layer 103 made of resin. Further, a first wiring layer 102A and a fourth wiring layer 102D are formed on the surface of the insulating layer 103. The method of forming these wiring layers is the same as that of the second wiring layer 102B and the like described above. Further, a connection portion 104 that penetrates the insulating layer 103 and connects the first wiring layer 102A and the second wiring layer 102B is formed. In addition, the covering layer 109 is formed so as to cover the first wiring layer 102A which is the uppermost wiring layer, and the first wiring layer 102A in the portion serving as an electrical connection region is exposed to the outside. Layer 109 is partially removed to provide an opening.

しかしながら、上記した構成の回路装置100では、最上層の第1の配線層102Aと被覆層109との密着性が十分でない問題があった。具体的には、半導体素子105に集積される回路の規模が大きくなると、半導体素子105の動作に伴う発熱量が増大する。そして、銅などの金属から成る第1の配線層102Aと、樹脂から成る被覆層109とでは、熱膨張係数が大きく異なるので、両者の界面には熱ストレスが発生する。従って、両者の界面に多数回の熱ストレスが加わることで、第1の配線層102Aから被覆層109が剥離してしまう虞がある。   However, the circuit device 100 configured as described above has a problem that the adhesion between the uppermost first wiring layer 102A and the covering layer 109 is not sufficient. Specifically, when the scale of a circuit integrated in the semiconductor element 105 increases, the amount of heat generated by the operation of the semiconductor element 105 increases. The first wiring layer 102A made of metal such as copper and the coating layer 109 made of resin have greatly different coefficients of thermal expansion, so that thermal stress is generated at the interface between them. Therefore, there is a possibility that the covering layer 109 may be peeled off from the first wiring layer 102 </ b> A due to many thermal stresses applied to the interface between them.

この問題を解決する方法が下記特許文献2に記載されている。この技術事項を図17を参照して説明する。ここでは、絶縁性の基板110の上面に導体回路111が形成されている。更に、導体回路111と絶縁樹脂部との熱膨張係数の差に起因する問題を回避するために、導体回路111の表面に均一な荒さの凹凸を形成している。   A method for solving this problem is described in Patent Document 2 below. This technical matter will be described with reference to FIG. Here, the conductor circuit 111 is formed on the upper surface of the insulating substrate 110. Further, in order to avoid a problem caused by a difference in thermal expansion coefficient between the conductor circuit 111 and the insulating resin portion, unevenness with uniform roughness is formed on the surface of the conductor circuit 111.

具体的には、特許文献2では、上記構成を実現するために、過酸化水素水と硫酸とテトラゾール等を含むエッチング液を使用して導体回路111のパターニングを行っている。このことにより、エッチング工程では、導体回路111の表面に化合物112が付着する。この結果、化合物112が付着した部分以外から一様にエッチングが進行して、均一な凹凸が導体回路111の表面に形成される。このことにより、導体回路111と他の樹脂製の部材との密着強度が向上されて、両者の剥離の問題が回避される、と下記特許文献2には記載されている。   Specifically, in Patent Document 2, in order to realize the above configuration, the conductor circuit 111 is patterned using an etching solution containing hydrogen peroxide, sulfuric acid, tetrazole, and the like. Thereby, the compound 112 adheres to the surface of the conductor circuit 111 in the etching process. As a result, the etching proceeds uniformly from the portion other than the portion where the compound 112 is adhered, and uniform unevenness is formed on the surface of the conductor circuit 111. The following Patent Document 2 describes that the adhesion strength between the conductor circuit 111 and another resin member is improved by this, and the problem of separation between the two is avoided.

特開2003−324263号公報JP 2003-324263 A

特開2002−76610号公報JP 2002-76610 A

しかしながら、上記特許文献2に記載された技術事項では、導体回路111がソルダーレジストから剥離してしまう問題があった。図18(A)は導体回路111の周辺部付近を示す断面図であり、図18(B)は被覆層114(ソルダーレジスト)が導体回路111から剥離した状態を示す断面図である。   However, the technical matter described in Patent Document 2 has a problem that the conductor circuit 111 is peeled off from the solder resist. 18A is a cross-sectional view showing the vicinity of the periphery of the conductor circuit 111, and FIG. 18B is a cross-sectional view showing a state where the coating layer 114 (solder resist) is peeled from the conductor circuit 111.

図18(A)を参照して、基板110の上面には導体回路111が形成されており、この導体回路111の端部(紙面上では右側の端部)は、電解メッキ法により形成されたメッキ膜112により被覆されている。更に、導体回路111および基板110の上面が被覆されるように、樹脂材料から成る被覆層114が形成されている。この被覆層114は、導体回路111の表面を被覆すると共に、部分的にメッキ膜112の表面も含めて被覆している。   Referring to FIG. 18A, a conductor circuit 111 is formed on the upper surface of the substrate 110, and an end portion (right end portion on the paper surface) of the conductor circuit 111 is formed by an electrolytic plating method. It is covered with a plating film 112. Furthermore, a covering layer 114 made of a resin material is formed so that the upper surfaces of the conductor circuit 111 and the substrate 110 are covered. The coating layer 114 covers the surface of the conductor circuit 111 and partially covers the surface of the plating film 112.

図18(B)を参照して、上記のように形成された被覆層114が乖離する現象を説明する。具体的には、上記したように、導体回路111と被覆層114とでは熱膨張係数が異なるので、温度変化に伴い両者の境界には熱ストレスが発生する。そしてこの熱ストレスは、被覆層114端部で大きい。この図を参照して説明すると被覆層114内部付近(紙面上では左側)に於ける上記熱ストレスの大きさF1は小さく、被覆層114端部での周辺部付近に於ける熱ストレスの大きさF2は比較的大きい。また、導体回路111の粗度は全ての領域に於いて略同一であるので、導体回路11と被覆層114との密着強度も全面的に略同一である。   With reference to FIG. 18B, a phenomenon in which the coating layer 114 formed as described above is separated will be described. Specifically, as described above, since the thermal expansion coefficient is different between the conductor circuit 111 and the covering layer 114, thermal stress is generated at the boundary between the two due to temperature change. This thermal stress is large at the end of the coating layer 114. Referring to this figure, the magnitude F1 of the thermal stress near the inside of the coating layer 114 (left side on the paper surface) is small, and the magnitude of the thermal stress near the periphery at the end of the coating layer 114. F2 is relatively large. Further, since the roughness of the conductor circuit 111 is substantially the same in all regions, the adhesion strength between the conductor circuit 11 and the covering layer 114 is substantially the same throughout.

上記のことにより、基板110の周辺部に於いては、導体回路111と被覆層114との界面には、温度変化の度に大きな熱ストレスが加わる。結果的に、この領域に於いて、被覆層114が導体回路111から剥離してしまう問題が発生する。被覆層114が剥離してしまうと、両者の界面に容易に水分が侵入してしまい、耐湿性が劣化する。   Due to the above, a large thermal stress is applied to the interface between the conductor circuit 111 and the covering layer 114 in the peripheral portion of the substrate 110 whenever the temperature changes. As a result, there arises a problem that the covering layer 114 is peeled off from the conductor circuit 111 in this region. If the covering layer 114 is peeled off, moisture easily enters the interface between the two, and the moisture resistance deteriorates.

本発明は、上述した問題を鑑みて成されたものである。本発明の主な目的は、耐湿性が向上された基板およびその製造方法、回路装置およびその製造方法を提供することにある。   The present invention has been made in view of the above-described problems. A main object of the present invention is to provide a substrate having improved moisture resistance, a manufacturing method thereof, a circuit device, and a manufacturing method thereof.

本発明の基板は、基材と、前記基材の一主面に形成されると共に接続部を有する配線と、前記接続部を除外して前記配線を被覆する被覆層と、を具備し、前記配線の前記接続部は、前記基材の上面に規定された一領域を囲むように配置され、前記一領域の周辺部に位置する前記配線の表面の凹凸の幅を、前記一領域の中心部に位置する前記配線の凹凸の幅よりも大きくすることを特徴とする。   The substrate of the present invention comprises a base material, a wiring formed on one main surface of the base material and having a connection portion, and a coating layer that covers the wiring except the connection portion, The connecting portion of the wiring is arranged so as to surround one region defined on the upper surface of the base material, and the width of the unevenness on the surface of the wiring located in the peripheral portion of the one region is set to the central portion of the one region. It is characterized in that it is made larger than the width of the unevenness of the wiring located in the area.

本発明は、基板と、前記基板に実装された回路素子とを有する回路装置であり、前記基板は、基材と、前記基材の一主面に形成されると共に、前記回路素子と電気的に接続される接続部を有する配線と、前記接続部を除外して前記配線を被覆する被覆層と、を具備し、前記配線の前記接続部は、前記基材の前記一主面の一領域を囲むように配置され、前記一領域の周辺部に位置する前記配線の表面の凹凸の幅を、前記一領域の中心部に位置する前記配線の凹凸の幅よりも大きくすることを特徴とする。   The present invention is a circuit device having a substrate and a circuit element mounted on the substrate, and the substrate is formed on a base material and one main surface of the base material, and is electrically connected to the circuit element. A wiring having a connecting portion connected to the wiring, and a coating layer covering the wiring except the connecting portion, wherein the connecting portion of the wiring is a region of the one main surface of the base material The width of the unevenness on the surface of the wiring located in the peripheral part of the one region is made larger than the width of the unevenness of the wiring located in the central part of the one region. .

本発明の基板および回路装置によれば、基板の周辺部に位置する配線表面の凹凸の幅を、基板の中心部に位置する配線表面よりも大きくしている。このことにより、基板の中心部に於いては、配線と被覆層との密着強度を向上させて両者の剥離を抑止することができる。更に、基板の周辺部に於いては、配線の表面凹凸の幅が比較的大きいため、熱ストレス(応力)が分散されて、被覆層の配線からの剥離が防止される。   According to the substrate and the circuit device of the present invention, the width of the unevenness on the wiring surface located in the peripheral portion of the substrate is made larger than that of the wiring surface located in the central portion of the substrate. As a result, in the central portion of the substrate, the adhesion strength between the wiring and the coating layer can be improved, and the separation of both can be suppressed. Further, in the peripheral part of the substrate, since the width of the surface irregularities of the wiring is relatively large, thermal stress (stress) is dispersed, and peeling of the coating layer from the wiring is prevented.

また、本発明の製造方法によれば、上記構成の基板および回路装置を効率的に製造することができる。具体的には、配線の周辺部をエッチングする工程と、配線の中心部をエッチングする工程とで、性質の異なるエッチャントを使用することにより、周辺部に位置する配線の凹凸の幅を、中心部よりも大きくすることができる。換言すると、基板の中心部に位置する配線の表面の凹凸の幅を、周辺部のものよりも細かくすることができる。   Moreover, according to the manufacturing method of the present invention, the substrate and circuit device having the above-described configuration can be efficiently manufactured. Specifically, by using etchants having different properties in the step of etching the peripheral portion of the wiring and the step of etching the central portion of the wiring, the width of the unevenness of the wiring located in the peripheral portion is reduced to the central portion. Can be larger. In other words, the width of the unevenness on the surface of the wiring located in the central portion of the substrate can be made finer than that in the peripheral portion.

更に、基板の上面全域を被覆するように形成された無電解メッキ膜を、電解メッキ処理を行う際のメッキ線として利用する場合がある。この様な場合、不要となる無電解メッキ膜を除去する工程と、周辺部に位置する配線の表面をエッチングする工程とを同一の工程で行うことができる。従って、配線の表面に粗度の変化をつけることによる工程数の増加が抑制される。   Furthermore, an electroless plating film formed so as to cover the entire upper surface of the substrate may be used as a plating wire when performing electrolytic plating. In such a case, the step of removing the unnecessary electroless plating film and the step of etching the surface of the wiring located in the peripheral portion can be performed in the same step. Therefore, an increase in the number of processes due to a change in roughness on the surface of the wiring is suppressed.

本発明の回路装置を示す図であり、(A)は断面図であり、(B)は平面図である。It is a figure which shows the circuit apparatus of this invention, (A) is sectional drawing, (B) is a top view. 本発明の回路装置を示す図であり、(A)は断面図であり、(B)は平面図である。It is a figure which shows the circuit apparatus of this invention, (A) is sectional drawing, (B) is a top view. (A)−(C)は、本発明の回路装置に含まれる配線を撮影した画像である(A)-(C) is the image which image | photographed the wiring contained in the circuit apparatus of this invention. (A)および(B)は、本発明の回路装置に含まれる配線を撮影した画像である(A) And (B) is the image which image | photographed the wiring contained in the circuit apparatus of this invention. 本発明の回路装置を示す図であり、(A)は断面図であり、(B)は平面図である。It is a figure which shows the circuit apparatus of this invention, (A) is sectional drawing, (B) is a top view. 本発明の回路装置の製造方法を示す図であり、(A)は断面図であり、(B)は平面図である。It is a figure which shows the manufacturing method of the circuit apparatus of this invention, (A) is sectional drawing, (B) is a top view. 本発明の回路装置の製造方法を示す図であり、(A)は断面図であり、(B)は平面図である。It is a figure which shows the manufacturing method of the circuit apparatus of this invention, (A) is sectional drawing, (B) is a top view. 本発明の回路装置の製造方法を示す図であり、電解メッキ膜の表面を撮影した画像である。It is a figure which shows the manufacturing method of the circuit apparatus of this invention, and is the image which image | photographed the surface of the electrolytic plating film. 本発明の回路装置の製造方法を示す図であり、(A)は断面図であり、(B)は平面図である。It is a figure which shows the manufacturing method of the circuit apparatus of this invention, (A) is sectional drawing, (B) is a top view. 本発明の回路装置の製造方法を示す図であり、(A)は断面図であり、(B)は平面図である。It is a figure which shows the manufacturing method of the circuit apparatus of this invention, (A) is sectional drawing, (B) is a top view. 本発明の回路装置の製造方法を示す図であり、(A)は断面図であり、(B)は平面図である。It is a figure which shows the manufacturing method of the circuit apparatus of this invention, (A) is sectional drawing, (B) is a top view. 本発明の回路装置の製造方法を示す図であり、(A)は断面図であり、(B)は平面図である。It is a figure which shows the manufacturing method of the circuit apparatus of this invention, (A) is sectional drawing, (B) is a top view. 本発明の回路装置の製造方法を示す図であり、(A)は断面図であり、(B)は平面図である。It is a figure which shows the manufacturing method of the circuit apparatus of this invention, (A) is sectional drawing, (B) is a top view. 本発明の回路装置の製造方法を示す図であり、(A)は断面図であり、(B)は平面図である。It is a figure which shows the manufacturing method of the circuit apparatus of this invention, (A) is sectional drawing, (B) is a top view. 本発明の回路装置の製造方法を示す図であり、(A)は断面図であり、(B)は平面図である。It is a figure which shows the manufacturing method of the circuit apparatus of this invention, (A) is sectional drawing, (B) is a top view. 背景技術の回路装置を示す断面図である。It is sectional drawing which shows the circuit apparatus of background art. 背景技術の回路装置を示す断面図である。It is sectional drawing which shows the circuit apparatus of background art. (A)および(B)は、背景技術の回路装置を示す断面図である。(A) And (B) is sectional drawing which shows the circuit apparatus of background art.

<第1の実施の形態>
図1から図5を参照して、先ず、本実施の形態の回路装置10の構造を説明する。図1は回路装置10の全体的な構造を示す図であり、図2は配線14の粗度を示す図であり、図3は配線14の表面の状態を撮影した画像であり、図4は配線表面とメッキ表面の状態を撮影した画像であり、図5は配線14の他の構造を示す図である。
<First Embodiment>
First, the structure of the circuit device 10 according to the present embodiment will be described with reference to FIGS. FIG. 1 is a diagram showing the overall structure of the circuit device 10, FIG. 2 is a diagram showing the roughness of the wiring 14, FIG. 3 is an image of the surface state of the wiring 14, and FIG. FIG. 5 is a diagram showing another structure of the wiring 14, which is an image of the state of the wiring surface and the plating surface.

先ず、図1を参照して、回路装置10の構造を説明する。図1(A)は回路装置10の断面図であり、図1(B)はその平面図である。ここで、図1(A)は、図1(B)に示す平面図の代表的な断面図である。   First, the structure of the circuit device 10 will be described with reference to FIG. FIG. 1A is a cross-sectional view of the circuit device 10, and FIG. 1B is a plan view thereof. Here, FIG. 1A is a typical cross-sectional view of the plan view shown in FIG.

回路装置10は、内蔵される半導体素子16よりも外形寸法が若干大きいサイズの樹脂封止型のCSPである。回路装置10の外観は直方体形状または立方体形状である。更に、回路装置10は、内蔵される半導体素子16と電気的に接続された接続電極34が、基板20の裏面にグリッド状に設けられるBGA(Ball Grid Array)である。   The circuit device 10 is a resin-encapsulated CSP having a size that is slightly larger in external dimensions than the built-in semiconductor element 16. The external appearance of the circuit device 10 is a rectangular parallelepiped shape or a cubic shape. Further, the circuit device 10 is a BGA (Ball Grid Array) in which connection electrodes 34 electrically connected to the built-in semiconductor element 16 are provided in a grid shape on the back surface of the substrate 20.

尚、SIP等でも可能であることから、接続電極の位置は、基板の周囲にリング状に配置されても良いし、ランダムに配置されても良い。   In addition, since it is possible also by SIP etc., the position of a connection electrode may be arrange | positioned in the ring shape around a board | substrate, and may be arrange | positioned at random.

図1(A)を参照して、回路装置10は、配線14が上面に設けられた基板20と、基板20に固着されて配線14と電気的に接続された半導体素子16と、半導体素子16を覆うように基板20の上面を被覆する封止樹脂22とを主要に具備する。   Referring to FIG. 1A, a circuit device 10 includes a substrate 20 having a wiring 14 provided on an upper surface, a semiconductor element 16 fixed to the substrate 20 and electrically connected to the wiring 14, and a semiconductor element 16 And a sealing resin 22 for covering the upper surface of the substrate 20.

基板20は、基材12と、基材12の上面に形成された配線14と、接続部となる領域を除外して配線14を被覆する被覆層18と、基材12の下面に形成された裏面電極32と、基材12を貫通して配線14と裏面電極32とを接続する貫通電極30とから成る。   The substrate 20 is formed on the base 12, the wiring 14 formed on the upper surface of the base 12, the coating layer 18 that covers the wiring 14 excluding the region to be the connection portion, and the lower surface of the base 12. It consists of a back electrode 32 and a through electrode 30 that penetrates the substrate 12 and connects the wiring 14 and the back electrode 32.

基材12は、ガラス繊維にエポキシ樹脂が含浸されたガラスエポキシ等であり、樹脂材料を主体とするインターポーザーである。基材12は、上面および裏面に配線層が形成されると共に、製造工程に於いて半導体素子16を機械的に支持する機能も有する。基材12の材料としては、樹脂を主体とする材料以外も採用可能であり、例えば、セラミックまたはSi等の無機材料から成る基板、銅やアルミニウム等の金属から成る金属基板等を基材12の材料として採用することもできる。なお、金属基板が基材12の材料として採用された場合は、基材12の上面および下面は、樹脂等から成る絶縁層により被覆され、配線14等と基材12とが絶縁される。   The substrate 12 is glass epoxy or the like in which glass fibers are impregnated with an epoxy resin, and is an interposer mainly composed of a resin material. The base material 12 has a function of mechanically supporting the semiconductor element 16 in the manufacturing process, while wiring layers are formed on the upper surface and the back surface. As the material of the base material 12, materials other than a resin-based material can be used. For example, a substrate made of an inorganic material such as ceramic or Si, a metal substrate made of metal such as copper or aluminum, or the like can be used. It can also be employed as a material. When a metal substrate is adopted as the material of the base material 12, the upper surface and the lower surface of the base material 12 are covered with an insulating layer made of resin or the like, and the wiring 14 and the base material 12 are insulated.

配線14は、銅やアルミニウム等の金属から成り、基材12の上面に積層された厚みが20μm〜50μm程度の導電箔を選択的にエッチングすることにより所定形状に形成される。選択的なメッキ膜の被着により配線14が形成されても良い。本実施の形態では、被覆層18の開口部24の周辺部に位置する配線14の表面の凹凸の幅を、開口部24の周辺部以外よりも大きくすることが特徴であるが、この特徴は後述する。更に、ここでは、基材12の上面に単層の配線14が形成されているが、絶縁層を介して積層された2層以上の多層の配線層が基材12の上面または下面に形成されても良い。更に、下から上に絶縁層を介してパターンが積層されたクラッド構造等と、基板の構造は何でも良い。   The wiring 14 is made of a metal such as copper or aluminum, and is formed into a predetermined shape by selectively etching a conductive foil having a thickness of about 20 μm to 50 μm laminated on the upper surface of the base 12. The wiring 14 may be formed by selectively depositing a plating film. The present embodiment is characterized in that the width of the unevenness on the surface of the wiring 14 located in the peripheral portion of the opening 24 of the coating layer 18 is made larger than that in the periphery of the opening 24, but this feature is It will be described later. Further, here, the single layer wiring 14 is formed on the upper surface of the base material 12, but two or more multilayer wiring layers laminated via an insulating layer are formed on the upper surface or the lower surface of the base material 12. May be. Further, the substrate structure may be anything, such as a clad structure in which patterns are laminated from the bottom to the top via an insulating layer.

図1(B)を参照して、配線14は、第1接続部14A(接続部)と、第2接続部14Bと、両接続部の間に細長く設けられた配線部14Cとを含む。第1接続部14Aは、半導体素子16(回路素子)と電気的に接続される部位であり、図では、一例として、基板20の周辺部に沿って、半導体素子16を取り囲むように複数個が形成されている。第2接続部14Bは、下面に貫通電極30が接続する部位であり、第1接続部14Aよりも回路基板20の内側に位置している。そして、第1接続部14Aと第2接続部14Bとは、両接続部よりも細長い配線部14Cにより接続されている。配線14をこの様な構成にすることにより、半導体素子16の上面に密に列状に配置される電極を、基板20の裏面にマトリックス状(行列状)に離間して形成される裏面電極32として再配置させることができる。   Referring to FIG. 1B, the wiring 14 includes a first connecting portion 14A (connecting portion), a second connecting portion 14B, and a wiring portion 14C that is elongated between both connecting portions. The first connection portion 14A is a portion that is electrically connected to the semiconductor element 16 (circuit element). In the drawing, as an example, a plurality of first connection portions 14A are provided so as to surround the semiconductor element 16 along the peripheral portion of the substrate 20. Is formed. The 2nd connection part 14B is a site | part which the penetration electrode 30 connects to a lower surface, and is located inside the circuit board 20 rather than 14 A of 1st connection parts. The first connecting portion 14A and the second connecting portion 14B are connected by a wiring portion 14C that is longer than both connecting portions. By configuring the wiring 14 in such a configuration, the back electrode 32 formed by arranging the electrodes arranged in a dense line on the upper surface of the semiconductor element 16 and spaced apart in a matrix (matrix) on the back surface of the substrate 20. Can be rearranged as

基材12の下面には、導電箔をエッチングして裏面電極32が設けられている。上記した配線14の構成により、裏面電極32同士が離間する距離は、配線14の第1接続部14A同士が離間する距離よりも長くなっている。   On the lower surface of the base material 12, a back electrode 32 is provided by etching the conductive foil. Due to the configuration of the wiring 14 described above, the distance at which the back electrodes 32 are separated from each other is longer than the distance at which the first connection portions 14 </ b> A of the wiring 14 are separated from each other.

貫通電極30は、所定箇所の基材12を厚み方向に貫通して設けた貫通孔に銅などの金属をメッキ法等により埋め込むことで形成される。図1(B)を参照すると、各配線14の第2接続部14Bの下方に、貫通電極30および裏面電極32が設けられている。ここで、接続電極34が形成される部分を除外して、裏面電極32および基材12の下面を被覆する被覆樹脂が設けられても良い。更にこの場合は、上面の配線14と同じように、被覆層18の開口部24の周辺部に位置する裏面電極32の表面の凹凸の幅を、被覆層18の開口部周辺部以外に位置する裏面電極32よりも大きくしても良い。   The through electrode 30 is formed by embedding a metal such as copper in a through hole provided by penetrating the base material 12 at a predetermined location in the thickness direction by a plating method or the like. Referring to FIG. 1B, a through electrode 30 and a back electrode 32 are provided below the second connection portion 14 </ b> B of each wiring 14. Here, except for the portion where the connection electrode 34 is formed, a coating resin that covers the back electrode 32 and the lower surface of the substrate 12 may be provided. Further, in this case, as in the case of the wiring 14 on the upper surface, the width of the unevenness on the surface of the back electrode 32 located in the peripheral portion of the opening 24 of the coating layer 18 is positioned other than the peripheral portion of the opening of the coating layer 18. It may be larger than the back electrode 32.

基材12の上面は、接続部となる箇所を除外して配線14が覆われるように被覆層18により被覆されている。被覆層18はエポキシ樹脂等の熱硬化性樹脂またはポリエチレン等の熱可塑性樹脂から成り、被覆層18が配線14の上面を被覆する厚みは、例えば20μmから100μm程度である。図1(B)を参照すると、各配線14の第1接続部14Aが露出されるように、被覆層18を部分的に除去して四角形状の開口部24が設けられている。また、被覆層18は、ソルダーレジストや、PSR(Photo solder resist)とも称されている。尚、この被覆層は、基板の裏面に設けても良い。   The upper surface of the base material 12 is covered with a covering layer 18 so as to cover the wiring 14 except for a portion to be a connection portion. The covering layer 18 is made of a thermosetting resin such as an epoxy resin or a thermoplastic resin such as polyethylene. The thickness of the covering layer 18 covering the upper surface of the wiring 14 is, for example, about 20 μm to 100 μm. Referring to FIG. 1B, a rectangular opening 24 is provided by partially removing the covering layer 18 so that the first connecting portion 14A of each wiring 14 is exposed. The covering layer 18 is also called a solder resist or PSR (Photo solder resist). In addition, you may provide this coating layer in the back surface of a board | substrate.

半導体素子16(回路素子)は基板20の上面に固着されると共に、配線14と電気的に接続されている。具体的には、半導体素子16はフェイスアップにて基板20に実装されており、その下面は絶縁性の接着剤を介して被覆層18の上面に固着されている。尚、半導体素子の裏面がGNDに固定される場合は、ロウ材または導電性ペースト等の導電性材料を介してアイランドに固定される。また、半導体素子16の上面に形成された電極は、Au等からなる金属細線26を経由して配線14に接続されている。ここでは、フェイスアップにて実装される半導体素子16が例示されているが、半導体素子16はフェイスダウンで実装されても良い。この場合は、電極が下面になるように半導体素子16が載置され、この電極に接続するバンプ状の電極を経由して、基板20の上面に形成された配線14と半導体素子16が電気的に接続される。   The semiconductor element 16 (circuit element) is fixed to the upper surface of the substrate 20 and is electrically connected to the wiring 14. Specifically, the semiconductor element 16 is mounted on the substrate 20 face up, and its lower surface is fixed to the upper surface of the coating layer 18 with an insulating adhesive. In addition, when the back surface of the semiconductor element is fixed to GND, it is fixed to the island through a conductive material such as a brazing material or a conductive paste. Further, the electrode formed on the upper surface of the semiconductor element 16 is connected to the wiring 14 via a fine metal wire 26 made of Au or the like. Here, the semiconductor element 16 mounted face-up is illustrated, but the semiconductor element 16 may be mounted face-down. In this case, the semiconductor element 16 is placed so that the electrode is on the lower surface, and the wiring 14 formed on the upper surface of the substrate 20 and the semiconductor element 16 are electrically connected via the bump-shaped electrode connected to the electrode. Connected to.

ここでは、回路装置10に内蔵される回路素子として半導体素子16が採用されているが、他の回路素子が採用されても良い。具体的には、IC、LSI、ディスクリート型のトランジスタ、ダイオード等の能動素子が回路素子として採用されても良い。更には、チップ抵抗、チップコンデンサ、センサ等の受動素子が回路素子として採用されても良い。更に、受動素子と能動素子とを複数個組み合わせて内部接続されたシステムが、回路装置10の内部に構築されても良い(SIP:System in Package)。この場合は、図1(A)を参照して、半導体素子16の隣にチップ抵抗等の受動素子が配置される。更に、半導体素子16およびその周辺部(一領域)に、上記した構成の配線14が形成される。   Here, the semiconductor element 16 is employed as the circuit element incorporated in the circuit device 10, but other circuit elements may be employed. Specifically, an active element such as an IC, LSI, discrete transistor, or diode may be employed as the circuit element. Furthermore, passive elements such as a chip resistor, a chip capacitor, and a sensor may be employed as the circuit element. Furthermore, a system in which a plurality of passive elements and active elements are combined and internally connected may be built inside the circuit device 10 (SIP: System in Package). In this case, referring to FIG. 1A, a passive element such as a chip resistor is arranged next to the semiconductor element 16. Further, the wiring 14 having the above-described configuration is formed in the semiconductor element 16 and its peripheral portion (one region).

尚、この基板は、回路素子をただ載せたモジュール、基板全体を封止した回路装置に適用可能である。更にこの基板や回路装置に載せられる回路素子として半導体チップや受動素子が考えられる。しかもこれらの回路素子は、3次元的または平面的に設けられる。つまり3次元としては、複数の半導体チップがスタックされても良い。更には複数の半導体素子が平面配置されも良い。どちらにしても複数の回路素子が設けられてシステムが構成されるものである。   This substrate can be applied to a module in which circuit elements are simply mounted and a circuit device in which the entire substrate is sealed. Further, a semiconductor chip or a passive element can be considered as a circuit element mounted on the substrate or the circuit device. Moreover, these circuit elements are provided three-dimensionally or planarly. That is, in three dimensions, a plurality of semiconductor chips may be stacked. Furthermore, a plurality of semiconductor elements may be arranged in a plane. In either case, a system is configured by providing a plurality of circuit elements.

封止樹脂22は、トランスファーモールドにより形成される熱硬化性樹脂またはインジェクションモールドにより形成される熱可塑性樹脂から成る。また、封止樹脂22は、半導体素子16、金属細線26および基板20の上面が覆われるように形成されている。更に、封止樹脂22は、基材12の上面、被覆層18の上面、配線14およびメッキ膜28に接触している。   The sealing resin 22 is made of a thermosetting resin formed by transfer molding or a thermoplastic resin formed by injection molding. Further, the sealing resin 22 is formed so as to cover the semiconductor element 16, the fine metal wire 26, and the upper surface of the substrate 20. Further, the sealing resin 22 is in contact with the upper surface of the substrate 12, the upper surface of the coating layer 18, the wiring 14 and the plating film 28.

図1(B)を参照して、回路装置10の構成を更に説明する。この図では、半導体素子16と配線14とを接続する金属細線26が省略されている。   With reference to FIG. 1 (B), the structure of the circuit apparatus 10 is further demonstrated. In this figure, the thin metal wire 26 that connects the semiconductor element 16 and the wiring 14 is omitted.

先ず、ここでは1つの半導体素子16が基板20の中央部付近に実装されている。そして、配線14の第1接続部14Aは、この半導体素子16を取り囲むように複数個が設けられている。第1接続部14Aは、半導体素子16の上面に設けられた電極に対応して設けられている。   First, here, one semiconductor element 16 is mounted near the center of the substrate 20. A plurality of first connection portions 14 </ b> A of the wiring 14 are provided so as to surround the semiconductor element 16. The first connection portion 14 </ b> A is provided corresponding to the electrode provided on the upper surface of the semiconductor element 16.

基板20の上面は、略全面が被覆層18により被覆されている。また、配線部14の第1接続部14Aが露出されるように、被覆層18を部分的に四角形状に除去して開口部24が設けられている。開口部24からは、配線14の第1接続部14A、第1接続部14Aを被覆するメッキ膜28、第1接続部14A付近の基材12の上面が露出している。   The upper surface of the substrate 20 is substantially entirely covered with the coating layer 18. In addition, the opening 24 is provided by partially removing the covering layer 18 in a quadrangular shape so that the first connection portion 14A of the wiring portion 14 is exposed. From the opening 24, the first connecting portion 14A of the wiring 14, the plating film 28 covering the first connecting portion 14A, and the upper surface of the base material 12 in the vicinity of the first connecting portion 14A are exposed.

配線14は、基材12の上面に複数個が設けられており、半導体素子16の下方(基板20の中心部付近)から基板20の周辺部に向かって放射状に延在している。第2接続部14Bは、第1接続部14Aよりも基板20の内側の位置に形成されており、下方には貫通電極30が接続している。多数の第2接続部14Bは、半導体素子16の下方に配置されるものと、半導体素子16の外側の領域に配置されるものとに分類することができる。ここで、全ての第2接続部14Bを半導体素子16の下方に配置しても良い。   A plurality of wirings 14 are provided on the upper surface of the base material 12 and extend radially from below the semiconductor element 16 (near the center of the substrate 20) toward the periphery of the substrate 20. The second connection portion 14B is formed at a position inside the substrate 20 relative to the first connection portion 14A, and the through electrode 30 is connected to the lower side. The multiple second connection portions 14B can be classified into those arranged below the semiconductor element 16 and those arranged in a region outside the semiconductor element 16. Here, all the second connection portions 14 </ b> B may be arranged below the semiconductor element 16.

図2を参照して、配線14の表面の粗度について説明する。図2(A)は配線14の第1接続部14Aおよびその付近の断面図であり、図2(B)はその平面図である。ここで、図2(A)は、図2(B)に示す平面図の代表的な断面図である。   The roughness of the surface of the wiring 14 will be described with reference to FIG. 2A is a cross-sectional view of the first connecting portion 14A of the wiring 14 and the vicinity thereof, and FIG. 2B is a plan view thereof. Here, FIG. 2A is a typical cross-sectional view of the plan view shown in FIG.

本実施の形態では、被覆層18に形成された開口部24の周辺部に位置する配線14の表面の凹凸の幅を、被覆層18に形成された開口部24の周辺部以外に位置する配線14の表面よりも大きくしている。逆の表現をすると、配線14の表面は、開口部24の周辺部以外の方が周辺部よりも凹凸の幅が小さい。このことにより、配線14と、それを被覆する被覆層18との熱サイクル負荷時の信頼性が向上する。即ち、被覆層18の配線14からの剥離が防止される。なお、ここで、配線14の表面とは、配線14の上面および側面であり、これらの面が被覆層18により被覆されている。   In the present embodiment, the width of the unevenness on the surface of the wiring 14 located in the peripheral part of the opening 24 formed in the covering layer 18 is set to be a wiring located outside the peripheral part of the opening 24 formed in the covering layer 18. 14 is larger than the surface. In other words, the surface of the wiring 14 has a width of unevenness other than the periphery of the opening 24 smaller than that of the periphery. This improves the reliability of the wiring 14 and the coating layer 18 that covers the wiring 14 under a heat cycle load. That is, peeling of the coating layer 18 from the wiring 14 is prevented. Here, the surface of the wiring 14 is the upper surface and side surfaces of the wiring 14, and these surfaces are covered with the coating layer 18.

図2(A)を参照して、基材12の上面には配線14が形成されており、配線14を被覆するように被覆層18が形成されている。更に、被覆層18の上面には半導体素子16が固着されている。ここでは、配線14の第1接続部14Aと配線部14Cが示されており、配線部14Cが被覆層18により覆われており、第1接続部14Aは被覆層18により覆われずに露出している。そして、第1接続部14Aの上面および側面はメッキ膜28により被覆されている。このメッキ膜28としては、例えばニッケル(Ni)と金(Au)とを順次成膜されたものが使用される。不図示ではあるが、メッキ膜28の上面に金属細線の一端が接続され、金属細線の他端は半導体素子16の上面に設けられた電極に接続される。   Referring to FIG. 2A, wiring 14 is formed on the upper surface of the base material 12, and a covering layer 18 is formed so as to cover the wiring 14. Further, the semiconductor element 16 is fixed to the upper surface of the covering layer 18. Here, the first connection portion 14A and the wiring portion 14C of the wiring 14 are shown, the wiring portion 14C is covered with the covering layer 18, and the first connecting portion 14A is not covered with the covering layer 18 and is exposed. ing. The upper surface and side surfaces of the first connection portion 14A are covered with a plating film 28. As the plating film 28, for example, a film in which nickel (Ni) and gold (Au) are sequentially formed is used. Although not shown, one end of a fine metal wire is connected to the upper surface of the plating film 28, and the other end of the fine metal wire is connected to an electrode provided on the upper surface of the semiconductor element 16.

配線14は、表面の凹凸の幅が比較的に小さい第1粗化領域36と、この第1粗化領域36よりも表面の凹凸の幅が大きい第2領域38に分別することができる。第1粗化領域36および第2粗化領域38の表面凹凸の幅の調整は、これらの表面をエッチングする際に使用されるエッチャントを適切に選択することにより行うことができる。   The wiring 14 can be divided into a first roughened region 36 having a relatively small surface irregularity width and a second region 38 having a larger surface irregularity width than the first roughened region 36. The widths of the surface roughness of the first roughened region 36 and the second roughened region 38 can be adjusted by appropriately selecting an etchant used for etching these surfaces.

第1粗化領域36は、配線部14Cの途中から基板20の内側(紙面上では左側)の領域の配線14が該当し、配線部14Cの一部と第2接続部14B(図1参照)とを含む。この第1粗化領域36の表面では比較的細かな凹凸が形成され、表面の凸部の大きさは、例えば高さが1.2μmであり、凸部間の幅が1.7μm程度である。第1粗化領域36では、表面の鋭利な凹凸と被覆層18との間にアンカー効果が発生するので、配線14と被覆層18との密着強度が向上する。更に、鋭利な凹凸が第1粗化領域36の表面に形成されることで、この領域の配線14の表面積が増大されて、配線14と被覆層18とが密着する面積が増大する。このことによっても、第1粗化領域36にて、配線14と被覆層18との密着強度が向上されている。   The first roughening region 36 corresponds to the wiring 14 in the region inside the substrate 20 (left side in the drawing) from the middle of the wiring portion 14C, and a part of the wiring portion 14C and the second connection portion 14B (see FIG. 1). Including. Relatively fine irregularities are formed on the surface of the first roughened region 36, and the size of the convex portions on the surface is, for example, a height of 1.2 μm, and the width between the convex portions is about 1.7 μm. . In the first roughened region 36, an anchor effect is generated between the sharp irregularities on the surface and the coating layer 18, so that the adhesion strength between the wiring 14 and the coating layer 18 is improved. Furthermore, since the sharp irregularities are formed on the surface of the first roughened region 36, the surface area of the wiring 14 in this region is increased, and the area where the wiring 14 and the coating layer 18 are in close contact with each other increases. This also improves the adhesion strength between the wiring 14 and the coating layer 18 in the first roughened region 36.

第2粗化領域38は、配線部14Cの途中から基板20の外側(紙面上では右側)の領域の配線14が該当し、配線部14Cの一部と第1接続部14Aとを含む。第2粗化領域38の表面は、上記した第1粗化領域36よりも表面の凹凸の幅は第1粗化領域36よりも小さくない形状と成っている。具体的には、第2粗化領域38の表面に形成される凸部の大きさは、例えば高さが0.8μmであり、幅が2.4μm程度である。従って、第1粗化領域36と比較すると、第2粗化領域38の表面の凸部は、幅が広い形状となっている。   The second roughening region 38 corresponds to the wiring 14 in the region outside the substrate 20 (on the right side in the drawing) from the middle of the wiring portion 14C, and includes a part of the wiring portion 14C and the first connection portion 14A. The surface of the second roughened region 38 has a shape in which the width of the unevenness on the surface is not smaller than that of the first roughened region 36 as compared with the first roughened region 36 described above. Specifically, the size of the protrusions formed on the surface of the second roughened region 38 is, for example, a height of 0.8 μm and a width of about 2.4 μm. Therefore, as compared with the first roughened region 36, the convex portion on the surface of the second roughened region 38 has a wider shape.

第2粗化領域38の表面を上記構成にすることで、第2粗化領域38に於ける配線14と被覆層18との剥離を防止することができる。具体的には、温度変化が生じた場合、樹脂から成る被覆層18と金属材料である配線14とでは熱膨張係数が異なるので、両者の境界面には熱ストレスが作用する。この熱ストレスは、配線14の上面と被覆層18との界面に沿って平行に作用する。更に、この熱ストレスは、基板20の中央部では比較的に小さく、被覆層18の開口部24(図1参照)の周辺部付近に於いては比較的に大きい。言い換えると、本実施の形態では、開口部24が基板20の周辺部に形成されているため、基板20の周辺部において熱ストレスが大きい。従って、熱ストレスに起因した両者の剥離が発生するときは、多くの場合に於いて被覆層18の開口部24近傍、すなわち基板20の周辺部にて発生する。   By configuring the surface of the second roughened region 38 to have the above-described configuration, it is possible to prevent the wiring 14 and the coating layer 18 from peeling off in the second roughened region 38. Specifically, when a temperature change occurs, the thermal expansion coefficient acts on the boundary surface between the coating layer 18 made of resin and the wiring 14 that is a metal material because the coefficients of thermal expansion are different. This thermal stress acts in parallel along the interface between the upper surface of the wiring 14 and the coating layer 18. Furthermore, this thermal stress is relatively small at the center of the substrate 20 and relatively large near the periphery of the opening 24 (see FIG. 1) of the coating layer 18. In other words, in the present embodiment, since the opening 24 is formed in the peripheral portion of the substrate 20, thermal stress is large in the peripheral portion of the substrate 20. Therefore, when peeling due to thermal stress occurs, it often occurs in the vicinity of the opening 24 of the coating layer 18, that is, in the peripheral portion of the substrate 20.

本実施の形態では、基板20の周辺部に位置する配線14を上記のように第2粗化領域38としている。このことにより、第2粗化領域38では、配線14の表面の凹凸の幅が大きいので熱ストレスの集中しやすい鋭角な形状がない。即ち、熱ストレスの集中が抑制される。このことにより、基板20の周辺部における被覆層18の配線14からの剥離が防止される。   In the present embodiment, the wiring 14 located in the peripheral portion of the substrate 20 is used as the second roughened region 38 as described above. As a result, in the second roughened region 38, since the width of the unevenness on the surface of the wiring 14 is large, there is no sharp shape where heat stress tends to concentrate. That is, the concentration of heat stress is suppressed. Thereby, peeling of the coating layer 18 from the wiring 14 in the peripheral portion of the substrate 20 is prevented.

一方、基板20の中心部に於いては、上記したように周辺部に対して熱応力が小さいため応力が集中しやすいが、アンカー効果の大きい凹凸の幅が小さい鋭角形状をとることで、配線14の第1粗化領域36と被覆層18との間に大きなアンカー効果を発生させ、被覆層18の配線14からの剥離が防止する。   On the other hand, in the central portion of the substrate 20, as described above, the thermal stress is small with respect to the peripheral portion, so that the stress is likely to be concentrated. 14 generates a large anchor effect between the first roughened region 36 and the covering layer 18, and prevents the covering layer 18 from being peeled off from the wiring 14.

以上説明したように、本実施の形態では、基板20の中心部と周辺部とで配線14の表面凹凸の幅を異ならせることにより、大きな熱応力が配線14と被覆層18との境界面に作用しても、両者の剥離が防止されている。   As described above, in the present embodiment, a large thermal stress is applied to the boundary surface between the wiring 14 and the covering layer 18 by making the width of the surface unevenness of the wiring 14 different between the central portion and the peripheral portion of the substrate 20. Even if it acts, peeling of both is prevented.

また以下の効果もある。軽薄短小の傾向から、基板に設けられる配線の幅、配線同士の間隔をより小さくして、パターンの実装密度を向上させる必要がある。つまり配線の幅がより細くなっていく。そのとき、配線全域の表面粗度が粗化領域の状態であると、被覆層またはその上の封止樹脂との熱膨張係数の不一致により、図18Bで示す応力が加わり、特に端子の付け根(首)の部分でボイドが発生し、電気抵抗の上昇の恐れがある。   There are also the following effects. Because of the tendency to be light and thin, it is necessary to reduce the width of the wiring provided on the substrate and the interval between the wirings to improve the pattern mounting density. That is, the width of the wiring becomes thinner. At that time, if the surface roughness of the entire wiring area is in the roughened region, the stress shown in FIG. 18B is applied due to the mismatch of the thermal expansion coefficient with the coating layer or the sealing resin on the coating layer. Voids are generated at the neck), which may increase the electrical resistance.

これは、この付け根の部分に応力が集中し、そこに配線内の欠陥が集中するからである。しかし図2を見ると判るように、第2粗化領域38が設けられ、応力が集中しない形状とすることでボイドの発生を抑制し、その分、信頼性を向上させることができる。   This is because stress concentrates on the base portion, and defects in the wiring concentrate there. However, as can be seen from FIG. 2, the second roughened region 38 is provided and a shape in which stress is not concentrated can suppress the generation of voids, thereby improving the reliability.

図3を参照して、配線14の各領域を撮影した画像を説明する。図3(A)は第1粗化領域36における配線14の表面の画像であり、図3(B)は第2粗化領域38における配線14の表面の画像であり、図3(C)は配線14の第1粗化領域36および第2粗化領域38の両方を撮影した画像である。   With reference to FIG. 3, the image which image | photographed each area | region of the wiring 14 is demonstrated. 3A is an image of the surface of the wiring 14 in the first roughened region 36, FIG. 3B is an image of the surface of the wiring 14 in the second roughened region 38, and FIG. It is an image obtained by photographing both the first roughened area 36 and the second roughened area 38 of the wiring 14.

図3(A)および図3(B)を参照して、配線14の第1粗化領域36と第2粗化領域38とを比較すると、第1粗化領域36の表面の方が第2粗化領域38の表面よりも、凹凸の度合いが大きいことが理解できる。即ち、第1粗化領域36に形成される凸部は、第2粗化領域38に形成される凸部よりも、高さが高く幅が狭い。この様に、第1粗化領域36と第2粗化領域38の表面の凹凸の度合いを異ならせることにより、上記した効果を得ることができる。この様な構成は、第1粗化領域36と第2粗化領域38とで、性質の異なるエッチャントでエッチングすることにより得ることができる。この事項の詳細は後述する。   3A and 3B, when the first roughened region 36 and the second roughened region 38 of the wiring 14 are compared, the surface of the first roughened region 36 is second. It can be understood that the degree of unevenness is larger than the surface of the roughened region 38. That is, the convex portion formed in the first roughened region 36 is higher in height and narrower than the convex portion formed in the second roughened region 38. As described above, the above-described effects can be obtained by making the surface roughness of the first roughened region 36 and the second roughened region 38 different. Such a configuration can be obtained by etching the first roughened region 36 and the second roughened region 38 with an etchant having different properties. Details of this matter will be described later.

図3(C)を参照して、この画像に示される配線の左側は第1粗化領域36であり、右側は第2粗化領域38である。この画像から、境界線が明確に出現するほどに、第1粗化領域36と第2粗化領域38との粗度は異なることが読み取れる。   Referring to FIG. 3C, the left side of the wiring shown in this image is the first roughened region 36, and the right side is the second roughened region 38. From this image, it can be read that the roughness of the first roughened region 36 and the second roughened region 38 is different as the boundary line clearly appears.

更に、図2(B)を参照して、被覆層18を除去して設けた開口部24からは、メッキ膜28と共に配線14の第2粗化領域38(導電材料)も露出している。そして、開口部24から露出するメッキ膜28および第2粗化領域38は、封止樹脂22(図1(A)参照)により被覆されている。換言すると、被覆層18は配線14のみを被覆しており、メッキ膜28は被覆層18により覆われていない。このことにより、封止樹脂22と配線14との密着性を向上させることができる。具体的には、最表面が金から成るメッキ膜28の表面は非常に滑らかである。一方、開口部24からは配線14の第2粗化領域38が露出するが、この第2粗化領域38は、メッキ膜28の表面よりは粗い面となっている。   Further, referring to FIG. 2B, the second roughened region 38 (conductive material) of the wiring 14 is exposed together with the plated film 28 from the opening 24 provided by removing the covering layer 18. And the plating film 28 and the 2nd roughening area | region 38 which are exposed from the opening part 24 are coat | covered with the sealing resin 22 (refer FIG. 1 (A)). In other words, the coating layer 18 covers only the wiring 14, and the plating film 28 is not covered with the coating layer 18. Thereby, the adhesiveness between the sealing resin 22 and the wiring 14 can be improved. Specifically, the surface of the plating film 28 whose outermost surface is made of gold is very smooth. On the other hand, the second roughened region 38 of the wiring 14 is exposed from the opening 24, but the second roughened region 38 is rougher than the surface of the plating film 28.

図4(A)はメッキ膜28の表面を撮影した画像であり、図4(B)は配線14の代表的な表面を撮影した画像である。これらの図から、メッキ膜28の表面よりも配線14の表面の方が粗いことが読み取れる。従って、上記構成により、封止樹脂22と他の部材(ここでは配線14)との密着強度が向上される。   FIG. 4A is an image obtained by photographing the surface of the plating film 28, and FIG. 4B is an image obtained by photographing a representative surface of the wiring 14. From these figures, it can be read that the surface of the wiring 14 is rougher than the surface of the plating film 28. Therefore, with the above configuration, the adhesion strength between the sealing resin 22 and another member (here, the wiring 14) is improved.

図5を参照して、配線14と被覆層18との他の関連構成を説明する。図5(A)は配線14の第1接続部14Aおよびその付近の断面図であり、図5(B)はその平面図である。   With reference to FIG. 5, another related configuration of the wiring 14 and the covering layer 18 will be described. 5A is a cross-sectional view of the first connecting portion 14A of the wiring 14 and the vicinity thereof, and FIG. 5B is a plan view thereof.

図5(A)および図5(B)に示された構成は、図2を参照して述べたものと基本的には同一であり、相違点は、配線14の表面およびメッキ膜28の表面の一部が被覆層18により被覆される点にある。   The configuration shown in FIGS. 5A and 5B is basically the same as that described with reference to FIG. 2, and the difference is that the surface of the wiring 14 and the surface of the plating film 28 are the same. Is partially covered by the coating layer 18.

即ち、図5(A)を参照して、被覆層18は、不図示の第2接続部14B、配線部14Cおよび第1接続部14Aの一部を被覆すると共に、メッキ膜28の一部を被覆している。換言すると、メッキ膜28により被覆されていない配線14の全ての表面が被覆層18により覆われている。   That is, referring to FIG. 5A, the coating layer 18 covers a part of the second connection part 14B, the wiring part 14C, and the first connection part 14A (not shown) and a part of the plating film 28. It is covered. In other words, the entire surface of the wiring 14 that is not covered with the plating film 28 is covered with the covering layer 18.

図5(B)を参照すると、被覆層18を除去して設けた開口部24から露出するのは、第1接続部14Aを被覆するメッキ膜28であり、配線14自体は外部に露出しない。   Referring to FIG. 5B, what is exposed from the opening 24 provided by removing the covering layer 18 is the plating film 28 covering the first connecting portion 14A, and the wiring 14 itself is not exposed to the outside.

この様な構成にすることで、配線14が外部に露出しないので、配線14の表面の酸化が抑制される。更に、第2粗化領域38は、他の領域と比較と極めて細く形成されるが、この部分も被覆層18により覆われるので、細い第2粗化領域38の断線を防止することもできる。具体的には、第2粗化領域38の幅は例えば35μm程度であり、他の領域(第1粗化領域36)の配線14の幅は45μm程度である。第2粗化領域38の幅が細くなる理由は、後の製造方法の説明により明らかになるが、この部分が複数回エッチングされるからである。   With such a configuration, since the wiring 14 is not exposed to the outside, oxidation of the surface of the wiring 14 is suppressed. Furthermore, the second roughened region 38 is formed to be extremely thin as compared with other regions, but since this portion is also covered with the coating layer 18, disconnection of the thin second roughened region 38 can be prevented. Specifically, the width of the second roughened region 38 is, for example, about 35 μm, and the width of the wiring 14 in the other region (first roughened region 36) is about 45 μm. The reason why the width of the second roughened region 38 is narrowed is that this portion is etched a plurality of times, as will be apparent from the description of the manufacturing method later.

更に、図5(A)を参照して、被覆層18でメッキ膜28も含めて配線14を覆うことにより、装置全体の耐湿性を向上させることができる。具体的には、被覆層18により、配線14およびメッキ膜28の表面に加えて、両者の境界の段差部分も被覆されている。従って、このことにより、被覆層18と配線14との異種材料間の経路が長くなり、この分だけ耐湿性が向上される。   Furthermore, referring to FIG. 5A, the covering layer 18 covers the wiring 14 including the plating film 28, whereby the moisture resistance of the entire apparatus can be improved. Specifically, in addition to the surfaces of the wiring 14 and the plating film 28, the covering layer 18 covers a step portion at the boundary between them. Therefore, this increases the path between different materials of the covering layer 18 and the wiring 14, and the moisture resistance is improved by this amount.

更に、図5(A)を参照して、メッキ膜28の終端部分の配線14には、内側に窪む凹部40が設けられている。具体的には、メッキ膜28を配線14の第1接続部14Aに被着させた後に、配線14は全面的に薄くウェットエッチングされる。ウェットエッチングは、等方性にて進行するので、メッキ膜28の終端部では、エッチングがメッキ膜28側(紙面上では右側)に進行して凹部40が形成される。そして、メッキ膜28の端部がひさし状に突出する形となる。この凹部40には、被覆層18を構成する樹脂材料が充填される。凹部40は、配線14の上面および側面のメッキ膜28の終端部に沿って設けられる。この構成により、配線14の表面と被覆層18との境界の経路が更に長くなるので、耐湿性が更に向上される。   Further, referring to FIG. 5A, the wiring 14 at the end portion of the plating film 28 is provided with a recess 40 that is recessed inward. Specifically, after the plating film 28 is deposited on the first connection portion 14A of the wiring 14, the wiring 14 is thinly wet etched on the entire surface. Since wet etching proceeds in an isotropic manner, etching proceeds toward the plating film 28 (on the right side in the drawing) at the end portion of the plating film 28 to form a recess 40. And the edge part of the plating film 28 becomes a shape protruding in eaves shape. The recess 40 is filled with a resin material constituting the coating layer 18. The recess 40 is provided along the terminal portion of the plating film 28 on the upper surface and side surface of the wiring 14. With this configuration, the route at the boundary between the surface of the wiring 14 and the coating layer 18 is further lengthened, so that the moisture resistance is further improved.

<第2の実施の形態>
本実施の形態では、図6から図15を参照して、上記構成の回路装置10の製造方法を説明する。これらの各図に於いて、(A)は断面図であり、(B)は平面図である。
<Second Embodiment>
In the present embodiment, a method for manufacturing the circuit device 10 having the above configuration will be described with reference to FIGS. In each of these drawings, (A) is a sectional view and (B) is a plan view.

図6を参照して、先ず、基材12の主面に配線等が形成された基板20を用意する。図6(A)は本工程に於ける基板20を示す断面図であり、図6(B)は基板20を上方から見た平面図である。   With reference to FIG. 6, first, a substrate 20 having a wiring or the like formed on the main surface of the base 12 is prepared. 6A is a cross-sectional view showing the substrate 20 in this process, and FIG. 6B is a plan view of the substrate 20 as viewed from above.

図6(A)を参照して、基材12の上面には所定形状の配線14が形成され、基材12の裏面には裏面電極32が形成され、両者を接続する貫通電極30が基材12を貫通して形成されている。   With reference to FIG. 6 (A), the wiring 14 of a predetermined shape is formed on the upper surface of the base material 12, the back electrode 32 is formed on the back surface of the base material 12, and the through electrode 30 connecting the two is the base material. 12 is formed.

基材12の材料等は上述した第1の実施の形態と同様であり、樹脂材料、無機材料または金属材料から成る。基材12は、上面に配線14が形成されて下面に裏面電極32が形成されると共に、製造工程に於いて半導体素子16を機械的に支持する機能も有する。   The material of the base material 12 is the same as that of the first embodiment described above, and is made of a resin material, an inorganic material, or a metal material. The substrate 12 has the wiring 14 formed on the upper surface and the back electrode 32 formed on the lower surface, and also has a function of mechanically supporting the semiconductor element 16 in the manufacturing process.

配線14は、銅やアルミニウム等の金属から成り、基材12の上面に貼着された厚みが20μm〜50μm程度の導電箔を選択的にエッチングすることにより形成される。ここでは、配線14は、第1接続部14Aと、第2接続部14Bと、両接続部の間に細長く設けられた配線部14Cとを含む。図6(B)を参照して、配線14は、基材12の上面に複数個が設けられており、基板20の中心部付近から周辺部に向かって放射状に延在している。平面的には、第1接続部14Aは、基板20の側辺に沿って平行に複数個が配置されている。また、第2接続部14Bは、第1接続部14Aよりも基板20の内側の位置に形成されており、下方には貫通電極30が接続している。   The wiring 14 is made of a metal such as copper or aluminum, and is formed by selectively etching a conductive foil having a thickness of about 20 μm to 50 μm attached to the upper surface of the substrate 12. Here, the wiring 14 includes a first connection portion 14A, a second connection portion 14B, and a wiring portion 14C that is elongated between the two connection portions. With reference to FIG. 6B, a plurality of wirings 14 are provided on the upper surface of the base material 12 and extend radially from the vicinity of the center of the substrate 20 toward the periphery. In plan view, a plurality of first connection portions 14 </ b> A are arranged in parallel along the side of the substrate 20. The second connection portion 14B is formed at a position inside the substrate 20 relative to the first connection portion 14A, and the through electrode 30 is connected to the lower side.

裏面電極32は、配線14と同様に、基材12の裏面に貼着された導電箔をエッチングすることで所定形状に形成されている。図6(B)を参照すると、裏面電極32は、基板20の裏面にグリッド状に略等間隔に離間して配置されている。 Similar to the wiring 14, the back electrode 32 is formed in a predetermined shape by etching the conductive foil adhered to the back surface of the substrate 12. Referring to FIG. 6B, the back surface electrodes 32 are arranged on the back surface of the substrate 20 at a regular interval in a grid pattern.

貫通電極30は、所定箇所の基材12を厚み方向に貫通して設けた貫通孔に、銅などの金属をメッキ法等により埋め込むことで形成される。   The through electrode 30 is formed by embedding a metal such as copper by a plating method or the like in a through hole provided through the base material 12 at a predetermined location in the thickness direction.

図7を参照して、次に、基材12の上面および配線14の表面に、無電解メッキ膜42を被着させる。   Next, referring to FIG. 7, an electroless plating film 42 is deposited on the upper surface of the substrate 12 and the surface of the wiring 14.

図7(A)および図7(B)を参照して、本工程では、基材12の上面、配線14の表面(上面および両側面)に、例えば厚みが1μm程度のメッキ膜42を無電解メッキ法により付着させる。導電材料である配線14の表面にも無電解メッキ膜42が付着され、絶縁材料である基材12の上面にも無電解メッキ膜42が付着される。無電解メッキ膜42の材料としては、配線14と同じ材料(例えば銅)でも良いし、他の金属材料でも良い。   7A and 7B, in this step, a plating film 42 having a thickness of, for example, about 1 μm is electrolessly formed on the upper surface of the base material 12 and the surface of the wiring 14 (upper surface and both side surfaces). Adhere by plating. The electroless plating film 42 is also attached to the surface of the wiring 14 that is a conductive material, and the electroless plating film 42 is also attached to the upper surface of the base material 12 that is an insulating material. The material of the electroless plating film 42 may be the same material (for example, copper) as the wiring 14 or other metal material.

本工程にて形成された無電解メッキ膜42により、基板20の上面に形成された全ての配線14が短絡された状態となる。無電解メッキ膜42は、後の工程にて電解メッキ膜を形成する際の給電用のメッキ線の如き作用を有する。   Due to the electroless plating film 42 formed in this step, all the wirings 14 formed on the upper surface of the substrate 20 are short-circuited. The electroless plating film 42 has an effect like a plated wire for power supply when an electrolytic plating film is formed in a later process.

図8は、本工程により形成される電解メッキ膜42を撮影した画像である。この図を参照すると、メッキ膜42の表面は、第1粗化領域36の表面(図3(A)参照)や第2粗化領域38の表面(図3(B)参照)よりも凹凸が細かいことが読み取られる。第2粗化領域38では、図8に示す無電解メッキ膜42の表面をエッチングし表面が平滑となった後に再度粗化処理を行なうことにより得られるので、第2粗化領域38の表面は無電解メッキ膜42よりも凹凸の幅が大きくなる。   FIG. 8 is an image obtained by photographing the electrolytic plating film 42 formed by this process. Referring to this figure, the surface of the plating film 42 is more uneven than the surface of the first roughened region 36 (see FIG. 3A) and the surface of the second roughened region 38 (see FIG. 3B). The details are read. In the second roughened region 38, the surface of the second roughened region 38 is obtained by etching the surface of the electroless plating film 42 shown in FIG. The width of the unevenness becomes larger than that of the electroless plating film 42.

図9を参照して、次に、無電解メッキ膜42が形成された基板20の上面を、エッチングレジスト46により被覆する。 本工程では、先ず、樹脂材料から成るエッチングレジスト46を基材12の上面に薄く形成する。この様にすることで、基材12および配線14を被覆する無電解メッキ膜42の表面がエッチングレジスト46により全面的に被覆される。   Next, referring to FIG. 9, the upper surface of the substrate 20 on which the electroless plating film 42 is formed is covered with an etching resist 46. In this step, first, an etching resist 46 made of a resin material is thinly formed on the upper surface of the substrate 12. By doing so, the surface of the electroless plating film 42 covering the base material 12 and the wiring 14 is entirely covered with the etching resist 46.

更に、感光性のエッチングレジスト46に選択的に光線を上方から照射させた後に、強アルカリの溶液をエッチングレジスト46に接触させる。このことにより、感光されなかったエッチングレジスト46が部分的に除去されて開口部44が形成される。   Further, after selectively irradiating the photosensitive etching resist 46 with light from above, a strong alkali solution is brought into contact with the etching resist 46. As a result, the etching resist 46 that has not been exposed is partially removed to form the opening 44.

図9(B)を参照して、上記方法により形成された開口部44から、配線14の第1接続部14Aとその周辺の基材12の上面が露出されている。ここでは、開口部44から露出される部位は無電解メッキ膜42により全面的に被覆されている。   Referring to FIG. 9B, the first connecting portion 14A of the wiring 14 and the upper surface of the surrounding base material 12 are exposed from the opening 44 formed by the above method. Here, the portion exposed from the opening 44 is entirely covered with the electroless plating film 42.

図10を参照して、次に、エッチングレジスト46の開口部44からエッチングを行い、開口部44から露出する無電解メッキ膜42を除去する。   Referring to FIG. 10, next, etching is performed from the opening 44 of the etching resist 46 to remove the electroless plating film 42 exposed from the opening 44.

本工程では、エッチングレジスト46を除去して設けた開口部44からウェットエッチングを行う。このことにより、開口部44から露出する無電解メッキ膜42がエッチングされる。本工程では、開口部44の内部に於いて、基材12の上面を被覆する無電解メッキ膜42が除去されるまでエッチングを行う。   In this step, wet etching is performed from the opening 44 provided by removing the etching resist 46. As a result, the electroless plating film 42 exposed from the opening 44 is etched. In this step, etching is performed until the electroless plating film 42 covering the upper surface of the substrate 12 is removed inside the opening 44.

図10(B)を参照して、エッチングレジスト46の開口部44の内部では、基材12の上面を被覆する無電解メッキ膜42が除去されている。一方、開口部44に露出する配線14の第1接続部14Aも、本工程により表面がエッチングされる。   Referring to FIG. 10B, the electroless plating film 42 covering the upper surface of the substrate 12 is removed inside the opening 44 of the etching resist 46. On the other hand, the surface of the first connection portion 14A of the wiring 14 exposed in the opening 44 is also etched by this process.

本工程のエッチングの目的は、電解メッキ処理を行う次工程にて、第1接続部14Aの表面のみにメッキ膜を付着させて、基材12の上面にはメッキ膜を付着させないためである。基材12の上面に次工程にて例えば金メッキ膜を付着させてしまうと、金メッキ膜が付着した部分の無電解メッキ膜42が除去されずに残存してしまう虞がある。製品としては不必要な無電解メッキ膜42が残存してしまうと、無電解メッキ膜42を介して配線14同士がショートしてしまう危険性がある。本実施の形態では、この様な危険性を排除するために、開口部44を介したエッチングを行うことで、第1接続部14A付近の基材12の上面を被覆する無電解メッキ膜42を除去している。   The purpose of the etching in this step is to deposit a plating film only on the surface of the first connecting portion 14A and not to deposit a plating film on the upper surface of the base material 12 in the next step of performing the electrolytic plating process. If, for example, a gold plating film is deposited on the upper surface of the substrate 12 in the next step, the electroless plating film 42 where the gold plating film is adhered may remain without being removed. If the electroless plating film 42 which is unnecessary as a product remains, there is a risk that the wires 14 are short-circuited via the electroless plating film 42. In the present embodiment, in order to eliminate such danger, the electroless plating film 42 that covers the upper surface of the base material 12 in the vicinity of the first connection portion 14A is formed by performing etching through the opening 44. It has been removed.

また、本工程では、配線14の材料が銅の場合は、配線銅(配線14の材料:例えば圧延銅箔や電解銅)と無解銅(無電解メッキ膜42)とのエッチングレートが大きいエッチャントが使用されてエッチングが行われる。即ち、配線14よりも無電解メッキ膜42の方をエッチングしやすいエッチャントが選択されて本工程は行われる。   In this step, when the material of the wiring 14 is copper, an etchant having a high etching rate between the wiring copper (the material of the wiring 14: for example, rolled copper foil or electrolytic copper) and electroless copper (electroless plating film 42). Is used to perform the etching. That is, an etchant that can etch the electroless plating film 42 more easily than the wiring 14 is selected and this process is performed.

更に本工程では、上記したように、開口部44から露出する配線14の第1接続部14Aの表面(第1接続部14Aの表面を被覆する無電解メッキ膜42)がエッチングされる。換言すると、基板20(一領域)の周辺部に位置する配線14の表面をウェットエッチングしている。従って、本工程により、周辺部に位置する配線14の表面はエッチングされて、その表面が平坦化される。そして、本工程にてエッチングの影響を受ける配線14が、図2に示す第2粗化領域38となる。   Further, in this step, as described above, the surface of the first connection portion 14A of the wiring 14 exposed from the opening 44 (the electroless plating film 42 covering the surface of the first connection portion 14A) is etched. In other words, the surface of the wiring 14 located in the periphery of the substrate 20 (one region) is wet etched. Therefore, by this step, the surface of the wiring 14 located in the peripheral portion is etched and the surface is flattened. Then, the wiring 14 affected by the etching in this step becomes the second roughened region 38 shown in FIG.

更に本工程では、平坦化に適したエッチャントが使用されてエッチングが行われる。具体的には、配線14の表面には、配線14を構成する結晶の表面と、この結晶同士の境界(粒界)が露出する。本工程では、結晶の表面と粒界とを一様(均一)に除去するエッチャントが使用される。このことにより、本工程でエッチング処理される配線14の第1接続部14Aの表面はより平滑となる。   Further, in this step, etching is performed using an etchant suitable for planarization. Specifically, on the surface of the wiring 14, the surface of the crystal constituting the wiring 14 and the boundary (grain boundary) between the crystals are exposed. In this step, an etchant that uniformly (uniformly) removes the crystal surface and grain boundaries is used. As a result, the surface of the first connection portion 14A of the wiring 14 to be etched in this step becomes smoother.

本工程が終了した後は、エッチングレジスト46は基板20から剥離されて除去される。   After this step is completed, the etching resist 46 is peeled off from the substrate 20 and removed.

図11を参照して、次に、次工程で電解メッキ処理を行うためのメッキレジスト48を形成する。   Referring to FIG. 11, next, a plating resist 48 for performing an electrolytic plating process in the next process is formed.

図11(A)を参照して、基板20の上面に全面的にメッキレジスト48を形成した後に、露光現像処理を行って、メッキレジスト48を部分的に除去する。このことにより、メッキ膜が形成される予定の第1接続部14Aの上面および側面が、開口部50から外部に露出する。   Referring to FIG. 11A, after a plating resist 48 is formed on the entire top surface of the substrate 20, an exposure development process is performed to remove the plating resist 48 partially. As a result, the upper surface and the side surface of the first connection portion 14A where the plating film is to be formed are exposed to the outside from the opening 50.

図11(B)を参照して、各々の配線14の第1接続部14Aが露出されるようにメッキレジスト48に開口部50が設けられている。ここで、メッキレジスト48に形成される開口部50は、先回の工程にてエッチングレジスト46に設けた開口部44よりも小さい。即ち、先回の工程にてエッチングにより平坦化された部分の配線14が、部分的にメッキレジスト48の開口部50から露出している。開口部50から露出する部分の配線14にメッキ膜が付着される。一方、先工程のエッチングにより平坦化されて且つ開口部50から露出しない部分の配線14が存在する。この部分は、図2(A)を参照して、メッキ膜28により覆われない第2粗化領域38となる。図12(A)を参照すると、上面が無電解メッキ膜42により覆われず、更に、開口部50に露出しない部分の配線14が、この部分(第2粗化領域38)に該当する。   Referring to FIG. 11B, an opening 50 is provided in the plating resist 48 so that the first connection portion 14A of each wiring 14 is exposed. Here, the opening 50 formed in the plating resist 48 is smaller than the opening 44 provided in the etching resist 46 in the previous step. That is, the portion of the wiring 14 that has been flattened by etching in the previous step is partially exposed from the opening 50 of the plating resist 48. A plating film is attached to the portion of the wiring 14 exposed from the opening 50. On the other hand, there is a portion of the wiring 14 that is flattened by the etching in the previous step and is not exposed from the opening 50. With reference to FIG. 2A, this portion becomes a second roughened region 38 that is not covered with the plating film 28. Referring to FIG. 12A, the portion of the wiring 14 that is not covered with the electroless plating film 42 and is not exposed to the opening 50 corresponds to this portion (second roughened region 38).

図12を参照して、次に、メッキレジスト48の開口部50から露出する配線14の表面に、電解メッキ法によりメッキ膜28を付着させる。   Referring to FIG. 12, next, a plating film 28 is attached to the surface of the wiring 14 exposed from the opening 50 of the plating resist 48 by an electrolytic plating method.

図12(A)を参照して、本工程では、メッキレジスト48に設けた開口部50から露出する配線14(第1接続部)にメッキ液を接触させて、無電解メッキ膜42に電圧を印加することで、配線14の表面に電解メッキ膜を形成している。ここでは、露出する配線14の表面にニッケルから成る電解メッキ膜を被着させた後に、このニッケルから成る電解メッキ膜の上面に、金から成る電解メッキ膜を被着させている。   Referring to FIG. 12A, in this step, the plating solution is brought into contact with the wiring 14 (first connecting portion) exposed from the opening 50 provided in the plating resist 48 to apply a voltage to the electroless plating film 42. By applying this, an electrolytic plating film is formed on the surface of the wiring 14. Here, after the electrolytic plating film made of nickel is deposited on the surface of the exposed wiring 14, the electrolytic plating film made of gold is deposited on the upper surface of the electrolytic plating film made of nickel.

本工程では、開口部50内部の基材12の上面を除外して、基材12の上面および配線14を全面的に被覆する無電解メッキ膜42を電極として用いて、電解メッキ処理が行われている。従って、従来では配線14同士の間に電解メッキの為のメッキ線が形成されていたが、このメッキ線を不要にすることができるので、配線14同士を接近させることができる。   In this step, the electroplating process is performed using the electroless plating film 42 that covers the entire top surface of the base material 12 and the wiring 14 as an electrode, excluding the top surface of the base material 12 inside the opening 50. ing. Therefore, conventionally, a plated wire for electrolytic plating has been formed between the wires 14, but since this plated wire can be made unnecessary, the wires 14 can be brought close to each other.

図12(B)を参照して、各開口部50の内部では、配線14の表面を覆うメッキ膜28が形成されている。なお、開口部50の内部に露出する基材12に関しては、先工程にて基材12の上面を被覆する無電解メッキ膜42が除去されているので、この部分にはメッキ膜28は被着されない。   Referring to FIG. 12B, a plating film 28 that covers the surface of the wiring 14 is formed inside each opening 50. In addition, regarding the base material 12 exposed inside the opening 50, the electroless plating film 42 covering the upper surface of the base material 12 is removed in the previous step, so that the plating film 28 is deposited on this portion. Not.

本工程が終了した後に、メッキレジスト48は、基板20の上面から剥離されて除去される。図13を参照して、メッキレジストを除去した後の基板20の状態を示す。特に図13(B)を参照して、開口部50の内部を除いた基板20の上面は、メッキ線として機能した無電解メッキ膜42により被覆されている。   After this step is completed, the plating resist 48 is peeled off from the upper surface of the substrate 20 and removed. Referring to FIG. 13, the state of substrate 20 after the plating resist is removed is shown. Referring particularly to FIG. 13B, the upper surface of the substrate 20 excluding the inside of the opening 50 is covered with an electroless plating film 42 functioning as a plating wire.

図14を参照して、次に、電解メッキ処理の為に使用された無電解メッキ膜を全面的に除去する。   Referring to FIG. 14, next, the electroless plating film used for the electrolytic plating process is completely removed.

本工程では、エッチングレジストは基本的には使用せずに、基板20の上面全域にエッチャントを接触させて、エッチングを行っている。そして、基材12の上面を被覆する無電解メッキ膜が除去されるまでエッチングを連続して行っている。本工程により、基材12の上面を被覆する無電解メッキ膜がエッチングされると共に、配線14の全領域の表面がエッチングされる。   In this step, the etching resist is basically not used, and etching is performed by bringing the etchant into contact with the entire upper surface of the substrate 20. Etching is continuously performed until the electroless plating film covering the upper surface of the substrate 12 is removed. By this step, the electroless plating film covering the upper surface of the substrate 12 is etched and the surface of the entire region of the wiring 14 is etched.

上記工程により、メッキ線として機能した無電解メッキ膜を除去することで、各配線14は電気的に独立する。   By removing the electroless plating film functioning as a plating wire by the above process, each wiring 14 is electrically independent.

本工程で使用するエッチャントは、先工程のエッチングにて使用されたエッチャントよりも選択性の強いものである。具体的には、本工程で使用されるエッチャントは、結晶の表面よりも粒界の方を優先的に除去するものである。ここで、配線14及び、配線14上の無電解メッキ膜42の表面には、配線14及び無電解メッキを構成する結晶の表面と、この結晶同士の境界(粒界)が露出する。そのため、配線14を構成する結晶粒と比較して、無電解メッキ膜42の結晶粒は細かい。   The etchant used in this process is more selective than the etchant used in the previous process etching. Specifically, the etchant used in this step removes the grain boundary preferentially over the crystal surface. Here, on the surface of the wiring 14 and the electroless plating film 42 on the wiring 14, the surface of the crystal constituting the wiring 14 and the electroless plating and the boundary (grain boundary) between the crystals are exposed. Therefore, the crystal grains of the electroless plating film 42 are finer than the crystal grains constituting the wiring 14.

そのため、先回のエッチングの工程で平滑に無電解メッキ膜42の除去が行われた第1接続部14A付近(周辺部)の配線14の表面では、無電解メッキ膜42と比較して大きな結晶粒が露出しており、本工程を経ても比較的凹凸の幅が大きな形状となっている。即ち、この部分は、複数回のエッチングが行われており、図2(A)に示す第2粗化領域38と成っている。   Therefore, the surface of the wiring 14 in the vicinity (peripheral portion) of the first connection portion 14A where the electroless plating film 42 has been removed smoothly in the previous etching process has a larger crystal than the electroless plating film 42. The grains are exposed, and the width of the unevenness is relatively large even after this step. That is, this portion has been etched a plurality of times, forming a second roughened region 38 shown in FIG.

一方、図2(A)を参照して、本工程のエッチングのみが行われる配線14は、本工程のエッチング処理時に、表面に比較的結晶粒径の小さな無電解メッキ膜42が存在しているため、表面の凹凸の幅が小さい第1粗化領域36となっている。   On the other hand, referring to FIG. 2A, the wiring 14 that is only etched in this step has an electroless plating film 42 with a relatively small crystal grain size on the surface during the etching process in this step. For this reason, the first roughened region 36 has a small surface irregularity width.

図15を参照して、次に、基板20の上面を被覆層18により被覆する。図15(A)は本工程における基板20の断面図であり、図15(B)は基板20を上方から見た平面図である。   Referring to FIG. 15, next, the upper surface of the substrate 20 is covered with a covering layer 18. FIG. 15A is a cross-sectional view of the substrate 20 in this step, and FIG. 15B is a plan view of the substrate 20 as viewed from above.

図15(A)および図15(B)を参照して、先ず、基材12の上面および配線14が全面的に覆われるように樹脂から成る被覆層18を形成する。次に、各配線14の第1接続部14Aが露出するように、被覆層18を除去して開口部24を形成する。開口部24から第1接続部14Aおよびメッキ膜28が露出する。   Referring to FIGS. 15A and 15B, first, a coating layer 18 made of a resin is formed so that the upper surface of the base material 12 and the wiring 14 are entirely covered. Next, the covering layer 18 is removed to form the opening 24 so that the first connection portion 14A of each wiring 14 is exposed. The first connecting portion 14A and the plating film 28 are exposed from the opening 24.

ここでは、メッキ膜28だけではなく配線14を構成する金属材料が、開口部24から外部に露出している。しかしながら、図5(A)および、図5(B)に示されているように開口部24の幅を狭めて、開口部24からメッキ膜28のみが外部に露出するようにしても良い。この場合は、配線14を構成する金属材料は全面的に被覆層18により覆われることになる。   Here, not only the plating film 28 but also the metal material constituting the wiring 14 is exposed to the outside from the opening 24. However, as shown in FIGS. 5A and 5B, the width of the opening 24 may be narrowed so that only the plating film 28 is exposed to the outside from the opening 24. In this case, the metal material constituting the wiring 14 is entirely covered with the coating layer 18.

以上の工程により、基板20が製造される。また、図1に示されている回路装置10を製造するには次の工程が必要になる。即ち、絶縁性の接着剤を介して半導体素子16を基板20に固着する工程、金属細線26を介して半導体素子16の電極と配線14とを電気的に接続する工程、半導体素子16および金属細線26が封止されるように基板20の上面に封止樹脂22を形成する工程、裏面電極32に半田から成る接続電極34を溶着させる工程、等が必要とされる。   The board | substrate 20 is manufactured according to the above process. Further, the following steps are required to manufacture the circuit device 10 shown in FIG. That is, the step of fixing the semiconductor element 16 to the substrate 20 via an insulating adhesive, the step of electrically connecting the electrode of the semiconductor element 16 and the wiring 14 via the fine metal wire 26, the semiconductor element 16 and the fine metal wire For example, a process of forming the sealing resin 22 on the upper surface of the substrate 20 so as to seal 26 and a process of welding the connection electrode 34 made of solder to the back electrode 32 are required.

10 回路装置
12 基材
14 配線
14A 第1接続部
14B 第2接続部
14C 配線部
16 半導体素子
18 被覆層
20 基板
22 封止樹脂
24 開口部
26 金属細線
28 メッキ膜
30 貫通電極
32 裏面電極
34 接続電極
36 第1粗化領域
38 第2粗化領域
40 凹部
42 無電解メッキ膜
44 開口部
46 エッチングレジスト
48 メッキレジスト
50 開口部
DESCRIPTION OF SYMBOLS 10 Circuit apparatus 12 Base material 14 Wiring 14A 1st connection part 14B 2nd connection part 14C Wiring part 16 Semiconductor element 18 Covering layer 20 Substrate 22 Sealing resin 24 Opening part 26 Metal fine wire 28 Plating film 30 Through electrode 32 Back surface electrode 34 Connection Electrode 36 1st roughening area | region 38 2nd roughening area | region 40 Concave part 42 Electroless plating film | membrane 44 Opening part 46 Etching resist 48 Plating resist 50 Opening part

Claims (10)

基材の一主面に被覆層により被覆された配線を形成する基板の製造方法であり、
前記基材の前記一主面に、一領域を囲むように接続部を有する配線を形成する第1工程と、
前記基材の前記一主面および前記配線の表面に無電解メッキ膜を付着させる第2工程と、
前記配線の接続部およびその周辺部の前記基材の前記一主面を第1開口部として開口させて、前記基材の前記一主面および前記配線をエッチングレジストにより被覆する第3工程と、
前記第1開口部から露出する領域の前記無電解メッキ膜をエッチングにより除去する第4工程と、
前記接続部が設けられた領域を第2開口部として開口させて、前記配線を被覆するメッキレジストを前記基材の一主面に形成する第5工程と、
前記無電解メッキ膜を電極として使用する電解メッキ法により前記第2開口部から露出する前記配線の前記接続部に電解メッキ膜を被着させる第6工程と、
前記基材の前記第1主面を被覆する前記無電解メッキ膜を除去して、前記配線同士を電気的に独立させる第7工程と、
前記電解メッキ膜が被着された前記接続部を第3開口部として露出させて、前記配線が被覆されるように前記基材の前記第1主面に被覆層を形成する第8工程と、を具備することを特徴とする基板の製造方法。
It is a manufacturing method of a substrate for forming a wiring covered with a coating layer on one main surface of a substrate,
A first step of forming a wiring having a connection portion so as to surround one region on the one main surface of the base material;
A second step of attaching an electroless plating film to the one main surface of the substrate and the surface of the wiring;
A third step of opening the one main surface of the base material at the connection portion of the wiring and the peripheral portion thereof as a first opening, and covering the one main surface of the base material and the wiring with an etching resist;
A fourth step of removing the electroless plating film in the region exposed from the first opening by etching;
A fifth step of forming a plating resist covering the wiring on one main surface of the base material by opening the region provided with the connection portion as a second opening portion;
A sixth step of depositing an electrolytic plating film on the connection portion of the wiring exposed from the second opening by an electrolytic plating method using the electroless plating film as an electrode;
A seventh step of removing the electroless plating film covering the first main surface of the base material and electrically separating the wirings;
An eighth step of exposing the connection portion to which the electrolytic plating film is deposited as a third opening and forming a coating layer on the first main surface of the base material so as to cover the wiring; A method for manufacturing a substrate, comprising:
前記第4工程では第1エッチャントが使用され、前記第7工程では前記第1エッチャントとは性質が異なる第2エッチャントが使用され、
前記第1エッチャントは、第2エッチャントよりも、前記配線の表面を均一にエッチングさせる性質を有していることを特徴とする請求項1記載の基板の製造方法。
In the fourth step, a first etchant is used, and in the seventh step, a second etchant having a different property from the first etchant is used,
The substrate manufacturing method according to claim 1, wherein the first etchant has a property of etching the surface of the wiring more uniformly than the second etchant.
前記第7工程では、前記基材の前記一主面を被覆する前記無電解メッキ膜および前記配線の表面のエッチングを行い、
前記基材の前記一主面を被覆する前記無電解メッキ膜が除去されるまで前記エッチングを継続させることを特徴とする請求項1記載の基板の製造方法。
In the seventh step, the electroless plating film covering the one main surface of the base material and the surface of the wiring are etched,
2. The method for manufacturing a substrate according to claim 1, wherein the etching is continued until the electroless plating film covering the one main surface of the base material is removed.
基材の一主面に被覆層により被覆された配線を有する基板を形成する工程と、前記配線と電気的に接続される回路素子を前記基板に実装する工程と、を具備する回路装置の製造方法であり、
前記基板を形成する工程は、
前記基材の一領域の周辺部に位置する前記配線の凹凸の幅を、前記基材の一領域の中心部に位置する前記配線の凹凸の幅よりも大きくする第1工程と、
前記配線の表面および前記基材の一主面が被覆されるように被覆層を形成する第2工程と、を具備することを特徴とする回路装置の製造方法。
A circuit device comprising: a step of forming a substrate having a wiring covered with a coating layer on one main surface of a base material; and a step of mounting a circuit element electrically connected to the wiring on the substrate. Is the way
The step of forming the substrate includes:
A first step of making the width of the unevenness of the wiring located in the peripheral part of the region of the base material larger than the width of the unevenness of the wiring located in the center part of the region of the base material;
And a second step of forming a coating layer so that the surface of the wiring and one main surface of the substrate are coated.
基材の一主面に被覆層により被覆された配線を有する基板を形成する工程と、前記配線と電気的に接続される回路素子を前記基板に実装する工程と、を具備する回路装置の製造方法であり、
前記基板を形成する工程は、
前記基材の前記一主面に、一領域を囲むように接続部を有する配線を形成する第1工程と、
前記基材の前記一主面および前記配線の表面に無電解メッキ膜を付着させる第2工程と、
前記配線の接続部およびその周辺部の前記基材の前記一主面を第1開口部として開口させて、前記基材の前記一主面および前記配線をエッチングレジストにより被覆する第3工程と、
前記第1開口部から露出する領域の前記無電解メッキ膜をエッチングにより除去する第4工程と、
前記接続部が設けられた領域を第2開口部として開口させて、前記配線を被覆するメッキレジストを前記基材の一主面に形成する第5工程と、
前記無電解メッキ膜を電極として使用する電解メッキ法により前記第2開口部から露出する前記配線の前記接続部に電解メッキ膜を被着させる第6工程と、
前記基材の前記第1主面を被覆する前記無電解メッキ膜を除去して、前記配線同士を電気的に独立させる第7工程と、
前記電解メッキ膜が被着された前記接続部を第3開口部として露出させて、前記配線が被覆されるように前記基材の前記第1主面に被覆層を形成する第8工程と、を具備することを特徴とする回路装置の製造方法。
Manufacturing a circuit device comprising: a step of forming a substrate having a wiring covered with a coating layer on one main surface of a substrate; and a step of mounting a circuit element electrically connected to the wiring on the substrate. Is the way
The step of forming the substrate includes:
A first step of forming a wiring having a connection portion so as to surround one region on the one main surface of the base material;
A second step of attaching an electroless plating film to the one main surface of the substrate and the surface of the wiring;
A third step of opening the one main surface of the base material at the connection portion of the wiring and the peripheral portion thereof as a first opening, and covering the one main surface of the base material and the wiring with an etching resist;
A fourth step of removing the electroless plating film in the region exposed from the first opening by etching;
A fifth step of forming a plating resist covering the wiring on one main surface of the base material by opening the region provided with the connection portion as a second opening portion;
A sixth step of depositing an electrolytic plating film on the connection portion of the wiring exposed from the second opening by an electrolytic plating method using the electroless plating film as an electrode;
A seventh step of removing the electroless plating film covering the first main surface of the base material and electrically separating the wirings;
An eighth step of exposing the connection portion to which the electrolytic plating film is deposited as a third opening and forming a coating layer on the first main surface of the base material so as to cover the wiring; A method of manufacturing a circuit device, comprising:
絶縁層から成る支持基材と、
前記支持基材の少なくとも一方の面に設けられ、前記支持基材の他方の面の外部接続用の電極と電気的に接続される第1の端子と、
前記支持基材の一方の面に設けられ、前記第1の端子と一体で延在される配線と、
前記支持基材の一方の面に設けられ、前記配線と一体で設けられる第2の端子とを有する基板であり、
前記第2の端子表面および前記第2の端子の近傍に位置する近接配線の表面は、前記近接配線表面よりもその粗度よりも小さく形成され、
前記第2の端子および前記第2の端子側の近接配線の一部が露出するように、前記基板の上に樹脂から成る被覆層が設けられ、
前記粗度の小さい近接配線の上の被覆層を他の領域よりもアンカー効果が小さくなるようにしたことを特徴とする基板。
A support substrate made of an insulating layer;
A first terminal provided on at least one surface of the support substrate and electrically connected to an external connection electrode on the other surface of the support substrate;
A wiring provided on one surface of the support substrate and extending integrally with the first terminal;
A substrate having a second terminal provided on one surface of the support base and provided integrally with the wiring;
The surface of the adjacent wiring located in the vicinity of the second terminal surface and the second terminal is formed smaller than the roughness of the adjacent wiring surface,
A coating layer made of resin is provided on the substrate so that a part of the adjacent wiring on the second terminal and the second terminal side is exposed,
A substrate characterized in that the anchoring effect of the covering layer on the adjacent wiring having a small roughness is made smaller than that of other regions.
絶縁層から成る支持基材と、
前記支持基材の少なくとも一方の面に設けられ、前記支持基材の他方の面の外部接続用の電極と電気的に接続される第1の端子と、
前記支持基材の一方の面に設けられ、前記第1の端子と一体で延在される配線と、
前記支持基材の一方の面に設けられ、前記配線と一体で設けられる第2の端子とを有する基板と、
前記支持基材に設けられ、前記第2の端子と電気的に接続された少なくとも一つの半導体素子とを有する回路装置であり、
前記第2の端子表面および前記第2の端子の近傍に位置する近接配線の表面は、前記近接配線表面よりもその粗度よりも小さく形成され、
前記第2の端子および前記第2の端子側の近接配線の一部が露出するように、前記基板の上に樹脂から成る被覆層が設けられ、
前記粗度の小さい近接配線の上の被覆層を他の領域よりもアンカー効果が小さくなるようにしたことを特徴とする回路装置。
A support substrate made of an insulating layer;
A first terminal provided on at least one surface of the support substrate and electrically connected to an external connection electrode on the other surface of the support substrate;
A wiring provided on one surface of the support substrate and extending integrally with the first terminal;
A substrate having a second terminal provided on one surface of the support base and provided integrally with the wiring;
A circuit device having at least one semiconductor element provided on the support substrate and electrically connected to the second terminal;
The surface of the adjacent wiring located in the vicinity of the second terminal surface and the second terminal is formed smaller than the roughness of the adjacent wiring surface,
A coating layer made of resin is provided on the substrate so that a part of the adjacent wiring on the second terminal and the second terminal side is exposed,
2. A circuit device according to claim 1, wherein an anchor effect is made smaller in the covering layer on the adjacent wiring having a low roughness than in other regions.
前記第2の端子は、Cuからなり、その上にはNiまたはAuが被覆されている請求項6に記載の基板。   The substrate according to claim 6, wherein the second terminal is made of Cu, and Ni or Au is coated thereon. 前記第2の端子は、Cuからなり、その上にはNiまたはAuが被覆されている請求項7に記載の回路装置。 The circuit device according to claim 7, wherein the second terminal is made of Cu, and Ni or Au is coated thereon. 基材と、
前記基材の一主面に形成されると共に外部端子部を有する配線と、
前記外部端子部を除外して前記配線を被覆する被覆層と、を具備し、
前記被覆層には、前記配線の前記外部端子部が露出される開口部を有し、
前記開口部の周辺部近傍に位置する前記被覆層に被覆された前記配線の表面の凹凸の幅を、前記開口部周辺部以外の前記被覆層に被覆された前記配線の粗度よりも大きくすることを特徴とする基板。
A substrate;
A wiring formed on one main surface of the substrate and having an external terminal portion,
A coating layer that covers the wiring except for the external terminal portion, and
The coating layer has an opening through which the external terminal portion of the wiring is exposed,
The width of the unevenness on the surface of the wiring covered with the coating layer located near the periphery of the opening is made larger than the roughness of the wiring covered with the coating layer other than the periphery of the opening. A substrate characterized by that.
JP2010025584A 2010-02-08 2010-02-08 Substrate and manufacturing method thereof, circuit device and manufacturing method thereof Expired - Fee Related JP5121857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010025584A JP5121857B2 (en) 2010-02-08 2010-02-08 Substrate and manufacturing method thereof, circuit device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010025584A JP5121857B2 (en) 2010-02-08 2010-02-08 Substrate and manufacturing method thereof, circuit device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007094574A Division JP4498378B2 (en) 2007-03-30 2007-03-30 Substrate and manufacturing method thereof, circuit device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010135828A true JP2010135828A (en) 2010-06-17
JP5121857B2 JP5121857B2 (en) 2013-01-16

Family

ID=42346719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010025584A Expired - Fee Related JP5121857B2 (en) 2010-02-08 2010-02-08 Substrate and manufacturing method thereof, circuit device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5121857B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222828A (en) * 1994-12-12 1996-08-30 Ibiden Co Ltd Printed wiring board and manufacture thereof
JPH10340925A (en) * 1997-06-09 1998-12-22 Matsushita Electron Corp Semiconductor device and manufacture thereof
JP2000236037A (en) * 1999-02-15 2000-08-29 Sumitomo Metal Mining Co Ltd Solder resist forming method
JP2003224230A (en) * 2002-01-30 2003-08-08 Sumitomo Metal Electronics Devices Inc Plastic package and its producing method
JP2004193549A (en) * 2002-12-12 2004-07-08 Samsung Electro Mech Co Ltd Package substrate plated without plated lead-in wire and its manufacturing method
JP2006287034A (en) * 2005-04-01 2006-10-19 Shinko Electric Ind Co Ltd Manufacturing method of wiring substrate utilizing electrolytic plating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222828A (en) * 1994-12-12 1996-08-30 Ibiden Co Ltd Printed wiring board and manufacture thereof
JPH10340925A (en) * 1997-06-09 1998-12-22 Matsushita Electron Corp Semiconductor device and manufacture thereof
JP2000236037A (en) * 1999-02-15 2000-08-29 Sumitomo Metal Mining Co Ltd Solder resist forming method
JP2003224230A (en) * 2002-01-30 2003-08-08 Sumitomo Metal Electronics Devices Inc Plastic package and its producing method
JP2004193549A (en) * 2002-12-12 2004-07-08 Samsung Electro Mech Co Ltd Package substrate plated without plated lead-in wire and its manufacturing method
JP2006287034A (en) * 2005-04-01 2006-10-19 Shinko Electric Ind Co Ltd Manufacturing method of wiring substrate utilizing electrolytic plating

Also Published As

Publication number Publication date
JP5121857B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP4498378B2 (en) Substrate and manufacturing method thereof, circuit device and manufacturing method thereof
KR101193416B1 (en) Three-dimensionally integrated semiconductor device and method for manufacturing the same
TWI452661B (en) Package structure with circuit directly connected to chip
JP5795415B1 (en) Wiring board and manufacturing method thereof
JP2006049819A (en) Wiring substrate for mounting semiconductor, its manufacturing method, and semiconductor package
JP2016192475A (en) Component built-in substrate and semiconductor module
US8067698B2 (en) Wiring substrate for use in semiconductor apparatus, method for fabricating the same, and semiconductor apparatus using the same
US7923835B2 (en) Package, electronic device, substrate having a separation region and a wiring layers, and method for manufacturing
JP2016039290A (en) Printed wiring board and semiconductor package
TW200936000A (en) Wire bonding substrate and fabrication thereof
JP6423313B2 (en) Electronic component built-in substrate, method for manufacturing the same, and electronic apparatus
JP2005286057A (en) Circuit device and its manufacturing method
US8187922B2 (en) Low cost flexible substrate
JP5942074B2 (en) Wiring board
TW200933831A (en) Integrated circuit package and the method for fabricating thereof
JP4759041B2 (en) Electronic component built-in multilayer board
JP4638657B2 (en) Electronic component built-in multilayer board
JP2009004813A (en) Wiring substrate for mounting semiconductor
JP5121857B2 (en) Substrate and manufacturing method thereof, circuit device and manufacturing method thereof
JP2008198916A (en) Semiconductor device and manufacturing method thereof
JP7382170B2 (en) semiconductor equipment
JP2016046509A (en) Printed wiring board and semiconductor package
JP2016100352A (en) Printed wiring board and manufacturing method of the same
JP4168494B2 (en) Manufacturing method of semiconductor device
JP5491722B2 (en) Semiconductor device package structure and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees