JP2010135729A - Substrate for mounting light-emitting element and light-emitting device - Google Patents

Substrate for mounting light-emitting element and light-emitting device Download PDF

Info

Publication number
JP2010135729A
JP2010135729A JP2009123133A JP2009123133A JP2010135729A JP 2010135729 A JP2010135729 A JP 2010135729A JP 2009123133 A JP2009123133 A JP 2009123133A JP 2009123133 A JP2009123133 A JP 2009123133A JP 2010135729 A JP2010135729 A JP 2010135729A
Authority
JP
Japan
Prior art keywords
emitting element
light emitting
light
mounting
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009123133A
Other languages
Japanese (ja)
Other versions
JP5355219B2 (en
Inventor
Koichi Motomura
晃一 本村
Akira Wakasaki
昭 若崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009123133A priority Critical patent/JP5355219B2/en
Publication of JP2010135729A publication Critical patent/JP2010135729A/en
Application granted granted Critical
Publication of JP5355219B2 publication Critical patent/JP5355219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for mounting a light-emitting element in which its reflection layer has a reflection property equivalent to that of silver and the reflection property does not deteriorate due to sulfurization, and a light-emitting device. <P>SOLUTION: The substrate for mounting a light-emitting element is provided with: a base member 1; a mounting part 2 configured to mount a light-emitting element 4 in a predetermined area of the upper surface of the base member 1; and a refection film 3 on surrounding areas of the mounting part 2, wherein the reflection film 3 is an alloy of silver and gold mutually soluble in solid phase at any ratio. The surface of the reflection film 3 is hard to be sulfurized even in a sulfurizing atmosphere, and the reflection property can be preserved. In the case the content percentage of gold in the reflection film 3 is 7 to 45 mass%, the reflection film 3 has a satisfactory reflection property equivalent to that of silver, and is satisfactory since the reflection property can be preserved even in a sulfurizing atmosphere. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発光ダイオード等の発光素子を搭載するための発光素子搭載用基板および発光装置に関する。   The present invention relates to a light emitting element mounting substrate and a light emitting device for mounting a light emitting element such as a light emitting diode.

従来、発光ダイオード等の発光素子を搭載するための発光素子搭載用基板(以下、基板ともいう。)として、セラミック製の基板が用いられている。従来のセラミック製の基板は、例えば、上面の中央部に発光素子を収納するための凹部を有する略直方体状のセラミック製の基体と、凹部の底面上に配置された、発光素子を搭載するための導体層から成る搭載部と、搭載部およびその周辺から下面に導出された一対の配線導体とから構成されている。また、凹部内に収納する発光素子が発する光を反射して外部へ放射するために、凹部の側面にはメタライズ金属層およびめっき層が順次形成された反射層が形成されており、反射層の最表層を発光素子の発する光の反射率が高い銀(Ag)金属から成るめっき層としたものが知られている(例えば、特許文献1を参照。)。   Conventionally, a ceramic substrate has been used as a light emitting element mounting substrate (hereinafter also referred to as a substrate) for mounting a light emitting element such as a light emitting diode. A conventional ceramic substrate is, for example, for mounting a substantially rectangular parallelepiped ceramic base having a recess for housing the light emitting element in the center of the upper surface, and a light emitting element disposed on the bottom surface of the recess. And a pair of wiring conductors led out from the mounting portion and its periphery to the lower surface. Further, in order to reflect and emit the light emitted from the light emitting element housed in the recess, a reflective layer in which a metallized metal layer and a plating layer are sequentially formed is formed on the side surface of the recess. The outermost layer is known as a plating layer made of a silver (Ag) metal having a high reflectance of light emitted from a light emitting element (see, for example, Patent Document 1).

このような発光素子搭載用基板の、一方の配線導体に接続された搭載部に、発光素子を導電性接合材料により固着するとともに、発光素子の電極と他方の配線導体とをボンディングワイヤを介して電気的に接続し、凹部内に透明な封止樹脂を充填して発光素子を封止することによって発光装置となる。   The light emitting element is fixed to the mounting portion of the light emitting element mounting substrate connected to one wiring conductor with a conductive bonding material, and the electrode of the light emitting element and the other wiring conductor are connected via a bonding wire. A light emitting device is obtained by electrical connection and filling the recess with a transparent sealing resin to seal the light emitting element.

特開2004−207672号公報JP 2004-207672 A

しかしながら、反射層の最表層が銀めっき層である発光素子搭載用基板を用いた発光装置においては、発光素子を発光させて使用していると、時間が経つにつれて反射層の表面が変色して、発光装置の輝度が低下してしまう場合があった。特に、硫化雰囲気中に放置すると、銀めっき層が硫化して反射特性が低下するという問題点があった。   However, in a light-emitting device using a light-emitting element mounting substrate in which the outermost layer of the reflective layer is a silver plating layer, when the light-emitting element is used by emitting light, the surface of the reflective layer changes color over time. In some cases, the luminance of the light emitting device is lowered. In particular, when left in a sulfur atmosphere, there is a problem that the silver plating layer is sulfided and the reflection characteristics are lowered.

反射層の表面の硫化を防止するため、銀めっきの替わりにロジウム(Rh),パラジウム(Pd)または白金(Pt)等の耐蝕性に優れた白金族のめっきを用いたものがあるが、これら白金族では、銀ほどの反射特性を有していないので、高輝度の発光装置を得ることができなかった。   In order to prevent sulfidation of the surface of the reflective layer, instead of silver plating, there are those using platinum group plating with excellent corrosion resistance such as rhodium (Rh), palladium (Pd) or platinum (Pt). Since the platinum group does not have the reflective properties as silver, a high-luminance light emitting device could not be obtained.

本発明は、上記の問題点を解決するために完成されたものであり、その目的は、反射層が銀と同等の反射特性を持ち、硫化により反射特性が低下しない発光素子搭載用基板、およびこの発光素子搭載用基板を用いた発光装置を提供することである。   The present invention has been completed in order to solve the above-described problems, and the object thereof is to provide a light-emitting element mounting substrate in which the reflective layer has a reflective property equivalent to that of silver, and the reflective property does not deteriorate due to sulfuration, and A light emitting device using the light emitting element mounting substrate is provided.

本発明の発光素子搭載用基板は、基体と、該基体の上面の発光素子を搭載するための搭載部と、該搭載部の周囲の反射膜とを備え、該反射膜が、銀と金との全率固溶の合金であることを特徴とするものである。   The light emitting element mounting substrate of the present invention includes a base, a mounting portion for mounting the light emitting element on the upper surface of the base, and a reflective film around the mounting portion, and the reflective film includes silver and gold. It is characterized by being a solid solution alloy of the above.

また、本発明の発光素子搭載用基板は、上記構成において、前記基体の上面に、底面に前記搭載部を有する凹部を備え、該凹部の側面上に前記反射膜が形成されていることを特徴とするものである。   The light emitting element mounting substrate of the present invention is characterized in that, in the above configuration, the upper surface of the substrate includes a concave portion having the mounting portion on the bottom surface, and the reflective film is formed on a side surface of the concave portion. It is what.

また、本発明の発光素子搭載用基板は、上記各構成において、前記反射膜は、金の含有率が7質量%乃至45質量%であることを特徴とするものである。   The light emitting element mounting substrate of the present invention is characterized in that, in each of the above structures, the reflective film has a gold content of 7 mass% to 45 mass%.

また、本発明の発光装置は、上記各構成の発光素子搭載用基板と、前記搭載部に搭載された発光素子と、該発光素子を覆う透明な封止材とを具備していることを特徴とするものである。   The light-emitting device of the present invention includes the light-emitting element mounting substrate having the above-described configuration, the light-emitting element mounted on the mounting portion, and a transparent sealing material that covers the light-emitting element. It is what.

本発明の発光素子搭載用基板によれば、反射膜が、銀と金との全率固溶の合金であることから、反射膜の表面に銀単体の粒子が存在していないので、硫化雰囲気中でも反射膜の表面が硫化し難くなり、反射特性を維持することが可能である。   According to the light emitting element mounting substrate of the present invention, since the reflective film is a solid-solid alloy of silver and gold, there is no silver single particle on the surface of the reflective film. In particular, the surface of the reflective film is not easily sulfided, and the reflection characteristics can be maintained.

また、本発明の発光素子搭載用基板によれば、上記構成において、基体の上面に、底面に搭載部を有する凹部を備え、凹部の側面上に反射膜が形成されているときには、搭載される発光素子が放出する光を、凹部の側面上の反射膜により効率よく上方に反射することができるので、より輝度の高い発光装置が得られる発光素子搭載用基板となる。   Further, according to the light emitting element mounting substrate of the present invention, in the above configuration, when the concave portion having the mounting portion on the bottom surface is provided on the upper surface of the base, and the reflective film is formed on the side surface of the concave portion, the substrate is mounted. The light emitted from the light emitting element can be efficiently reflected upward by the reflective film on the side surface of the recess, so that the light emitting element mounting substrate from which a light emitting device with higher luminance can be obtained.

また、本発明の発光素子搭載用基板によれば、上記各構成において、反射膜が、金の含有率が7質量%乃至45質量%であるときには、銀と同等の良好な反射特性を有するとともに、硫化雰囲気中でもその反射特性を維持することができる。   In addition, according to the light emitting element mounting substrate of the present invention, in each of the above-described configurations, when the reflective film has a gold content of 7% by mass to 45% by mass, it has good reflection characteristics equivalent to silver. The reflection characteristics can be maintained even in a sulfurized atmosphere.

また、本発明の発光装置によれば、発光素子搭載用基板の反射膜が硫化雰囲気中でも硫化しにくく、反射特性を維持することが可能であることから、発光素子が発する光を長期間にわたって良好に放射することができる、輝度の低下の少ない発光装置となる。   In addition, according to the light emitting device of the present invention, since the reflective film of the light emitting element mounting substrate is not easily sulfided even in a sulfurizing atmosphere and the reflection characteristics can be maintained, the light emitted from the light emitting element is excellent over a long period of time. Thus, the light emitting device can be radiated to a light source with little reduction in luminance.

(a)は本発明の発光素子搭載用基板の実施の形態の一例を示す平面図であり、(b)は(a)のA−A線における断面図である。(A) is a top view which shows an example of embodiment of the light emitting element mounting substrate of this invention, (b) is sectional drawing in the AA of (a). (a)は本発明の発光素子搭載用基板の実施の形態の他の例を示す平面図であり、(b)は(a)のA−A線における断面図である。(A) is a top view which shows the other example of embodiment of the light emitting element mounting substrate of this invention, (b) is sectional drawing in the AA of (a). (a)は本発明の発光素子搭載用基板の実施の形態の他の例を示す平面図であり、(b)は(a)のA−A線における断面図である。(A) is a top view which shows the other example of embodiment of the light emitting element mounting substrate of this invention, (b) is sectional drawing in the AA of (a). 本発明の発光素子搭載用基板の反射膜の構成の一例を示す要部を拡大した断面図である。It is sectional drawing to which the principal part which shows an example of a structure of the reflecting film of the light emitting element mounting substrate of this invention was expanded. (a)は本発明の発光素子搭載用基板の実施の形態の他の例を示す平面図であり、(b)は(a)のA−A線における断面図である。(A) is a top view which shows the other example of embodiment of the light emitting element mounting substrate of this invention, (b) is sectional drawing in the AA of (a). 本発明の発光素子搭載用基板の反射膜の構成の一例を示す要部を拡大した断面図である。It is sectional drawing to which the principal part which shows an example of a structure of the reflecting film of the light emitting element mounting substrate of this invention was expanded. (a)は本発明の発光素子搭載用基板の実施の形態の他の例を示す平面図であり、(b)は(a)のA−A線における断面図である。(A) is a top view which shows the other example of embodiment of the light emitting element mounting substrate of this invention, (b) is sectional drawing in the AA of (a). (a)は本発明の発光素子搭載用基板の実施の形態の他の例を示す平面図であり、(b)は(a)のA−A線における断面図である。(A) is a top view which shows the other example of embodiment of the light emitting element mounting substrate of this invention, (b) is sectional drawing in the AA of (a). 反射膜の金の含有率と反射率との関係を示すグラフである。It is a graph which shows the relationship between the gold content rate of a reflecting film, and a reflectance.

本発明の発光素子搭載用基板について、添付の図面を参照しつつ説明する。図1〜図3および図5、図7、図8は、それぞれ(a)は、本発明の発光素子搭載用基板の実施の形態の一例を示す平面図であり、(b)は(a)のA−A線における断面図である。図4は図1のA部を拡大して示す断面図であり、図6は図5のA部を拡大して示す断面図である。図1〜図8において、1は基体、1aは凹部、1bは基部、1cは放熱部、2は搭載部、2aは搭載電極、2bは接続電極、3は反射膜、3aはメタライズ金属層、3bは密着層、4は発光素子、5は接続部材、6は内部配線、7は端子電極である。図1、図2、図5は、発光素子搭載用基板の搭載部2の搭載電極2aに発光素子4を搭載し、発光素子4と接続電極2bとをボンディングワイヤを接続部材5として接続した状態を示している。図3は、発光素子搭載用基板の搭載部2の接続電極2b・2bと発光素子4の電極(図示せず)とをはんだバンプ等のバンプを接続部材5として接続することにより搭載した状態を示している。図7および図8は、基体1が基部1bと放熱部1cとから成る例を示しており、放熱部1cに設けた搭載部2に発光素子4を搭載し、この発光素子4の電極と基部1bに設けた接続電極2b・2bとをボンディングワイヤを接続部材5として接続した状態を示している。   The light emitting element mounting substrate of the present invention will be described with reference to the accompanying drawings. 1 to 3 and FIGS. 5, 7, and 8, (a) is a plan view showing an example of an embodiment of a light-emitting element mounting substrate of the present invention, and (b) is (a). It is sectional drawing in the AA of. 4 is an enlarged cross-sectional view of a portion A in FIG. 1, and FIG. 6 is an enlarged cross-sectional view of the portion A in FIG. 1 to 8, 1 is a base, 1a is a recess, 1b is a base, 1c is a heat dissipation part, 2 is a mounting part, 2a is a mounting electrode, 2b is a connection electrode, 3 is a reflective film, 3a is a metallized metal layer, 3b is an adhesion layer, 4 is a light emitting element, 5 is a connection member, 6 is an internal wiring, and 7 is a terminal electrode. 1, 2, and 5 show a state in which the light emitting element 4 is mounted on the mounting electrode 2 a of the mounting portion 2 of the light emitting element mounting substrate, and the light emitting element 4 and the connection electrode 2 b are connected using the bonding wires as the connection members 5. Is shown. FIG. 3 shows a state in which the connection electrodes 2b and 2b of the mounting portion 2 of the light emitting element mounting substrate and the electrodes (not shown) of the light emitting element 4 are mounted by connecting bumps such as solder bumps as connection members 5. Show. 7 and 8 show an example in which the base 1 is composed of a base portion 1b and a heat radiating portion 1c. The light emitting element 4 is mounted on the mounting portion 2 provided on the heat radiating portion 1c, and the electrode and base portion of the light emitting element 4 are mounted. A state is shown in which the connection electrodes 2b and 2b provided on 1b are connected with bonding wires as connection members 5.

本発明の発光素子搭載用基板は、基体1と、基体1の上面の底面上の発光素子4を搭載するための搭載部2と、搭載部2の周囲の反射膜3とを備え、反射膜3が、銀と金との全率固溶の合金であることを特徴とするものである。このような構成としたことから、反射膜3の表面に銀単体の粒子が存在していないので、硫化雰囲気中でも反射膜3の表面が硫化し難くなり、反射特性を維持することが可能である。   The light emitting element mounting substrate of the present invention includes a base 1, a mounting portion 2 for mounting the light emitting element 4 on the bottom surface of the upper surface of the base 1, and a reflective film 3 around the mounting portion 2. 3 is an alloy that is a solid solution of silver and gold. Due to such a configuration, there is no silver single particle on the surface of the reflective film 3, so that the surface of the reflective film 3 is less likely to be sulfided even in a sulfurized atmosphere, and the reflection characteristics can be maintained. .

また、本発明の発光素子搭載用基板は、上記構成において、基体1の上面に、底面に搭載部2を有する凹部1aを備え、凹部1aの側面上に反射膜3が形成されていることを特徴とするものである。このような構成としたときには、搭載される発光素子4が放出する光を、凹部1aの側面上の反射膜3により効率よく上方に反射することができるので、より輝度の高い発光装置が得られる発光素子搭載用基板となる。   Moreover, the light emitting element mounting substrate of the present invention has the above-described configuration, wherein the top surface of the substrate 1 is provided with the concave portion 1a having the mounting portion 2 on the bottom surface, and the reflective film 3 is formed on the side surface of the concave portion 1a. It is a feature. With such a configuration, light emitted from the mounted light emitting element 4 can be efficiently reflected upward by the reflective film 3 on the side surface of the recess 1a, so that a light emitting device with higher luminance can be obtained. It becomes a light emitting element mounting substrate.

また、本発明の発光素子搭載用基板は、上記構成において、反射膜3は、金の含有率が7質量%乃至45質量%であることが好ましい。この場合には、銀と同等の良好な反射特性を有するとともに、硫化雰囲気中でもその反射特性を維持することができる。   In the above structure of the light emitting element mounting substrate of the present invention, the reflective film 3 preferably has a gold content of 7 mass% to 45 mass%. In this case, it has good reflection characteristics equivalent to silver and can maintain the reflection characteristics even in a sulfurized atmosphere.

基体1は、図1〜図6に示す例のような場合であれば、酸化アルミニウム質焼結体(アルミナセラミックス)、窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス質焼結体等のセラミックスから成るものである。   If the substrate 1 is the case shown in FIGS. 1 to 6, the aluminum oxide sintered body (alumina ceramic), the aluminum nitride sintered body, the mullite sintered body, and the glass ceramic sintered body. It consists of ceramics such as.

基体1は、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム,酸化珪素,酸化マグネシウム,酸化カルシウム等の原料粉末に適当な有機バインダーおよび溶剤等を添加混合して泥漿状となし、これを従来周知のドクターブレード法やカレンダーロール法等によりシート状に成形してグリーンシートを得て、しかる後、グリーンシートに適当な打ち抜き加工を施すとともにこれを複数枚積層し、高温(約1600℃)で焼成することによって製作される。   If the substrate 1 is made of, for example, an aluminum oxide sintered body, an appropriate organic binder and solvent are added to and mixed with raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide to form a slurry. Then, this is formed into a sheet shape by a conventionally known doctor blade method, calendar roll method or the like to obtain a green sheet. After that, the green sheet is subjected to appropriate punching processing and a plurality of sheets are laminated to obtain a high temperature (about It is manufactured by firing at 1600 ° C.

基体1の凹部1aは、レーザー加工や金型による打ち抜き加工等により、その内面が凹部1aの側面となる貫通孔をグリーンシートに形成して、他のグリーンシートと積層しておくことで形成される。あるいは、この貫通孔を形成したグリーンシートを焼成して枠体を作製し、別に作製した基板と接合することによっても凹部1aを有する基体を作製することができる。この場合は、基体1の枠体と基板とは、同一の材料から成るものであっても異なる材質から成るものであってもよい。枠体と基板とを接合するには、それぞれの接合面にメタライズ層を形成しておき、Agろう材等の接合材により接合すればよい。   The concave portion 1a of the substrate 1 is formed by forming a through-hole whose inner surface is the side surface of the concave portion 1a in a green sheet by laser processing or punching with a mold and laminating it with another green sheet. The Alternatively, the substrate having the recesses 1a can also be produced by firing the green sheet in which the through-holes are formed to produce a frame, and joining the separately produced substrate. In this case, the frame body of the base 1 and the substrate may be made of the same material or different materials. In order to join the frame body and the substrate, a metallized layer may be formed on each joining surface, and joined by a joining material such as an Ag brazing material.

凹部1aの側面が凹部1aの底面となす角度(図5に示す角度θ)は、35度〜70度が好ましい。角度θをこのような範囲とすると、角度θが小さすぎないので、貫通孔2aの内側面を打ち抜き加工で安定かつ効率よく形成することが容易となるとともに、パッケージを小型にしやすくなる。また、発光素子4から発光された光を外部に良好に反射することができる。このような角度の側面を有する凹部1aは、パンチの径とダイスの穴の径とのクリアランスを大きく設定した打ち抜き金型を用いてグリーンシートを打ち抜くことによって形成される。すなわち、打ち抜き金型のパンチの径に対してダイスの穴の径を大きく設定しておくことで、グリーンシートを一方の主面側から他方の主面側に向けて打ち抜く際に、グリーンシートはパンチとの接触面の縁からダイスの穴との接触面の縁に向けて剪断されて、貫通孔が一方の主面側から他方の主面側に広がるように形成される。グリーンシートの厚み等に応じてパンチの径とダイスの穴の径とのクリアランスを設定することで、グリーンシートに形成される貫通孔の側面の角度は調節される。通常のパンチの径とダイスの穴の径とのクリアランスの小さい打ち抜き金型による加工により角度が約90度の貫通孔を形成した後に、貫通孔の内側面に型を押し当てることでも、上述のような一方の主面側から他方の主面側に広がる角度を有する貫通孔を形成することはできるが、上述の方法は打ち抜き加工のみで形成できることから生産性が高く、型を押し当てた際のグリーンシートへの変形等の影響が少ないので好ましい。   The angle between the side surface of the recess 1a and the bottom surface of the recess 1a (angle θ shown in FIG. 5) is preferably 35 to 70 degrees. When the angle θ is in such a range, the angle θ is not too small, so that it is easy to stably and efficiently form the inner surface of the through hole 2a by punching, and the package can be easily downsized. Moreover, the light emitted from the light emitting element 4 can be favorably reflected to the outside. The concave portion 1a having such a side surface is formed by punching a green sheet using a punching die having a large clearance between the punch diameter and the die hole diameter. That is, by setting the diameter of the die hole larger than the diameter of the punch of the punching die, when the green sheet is punched from one main surface side to the other main surface side, the green sheet Shearing is performed from the edge of the contact surface with the punch toward the edge of the contact surface with the die hole, and the through hole is formed to spread from one main surface side to the other main surface side. By setting the clearance between the diameter of the punch and the diameter of the die hole in accordance with the thickness of the green sheet, the angle of the side surface of the through hole formed in the green sheet is adjusted. After forming a through hole with an angle of about 90 degrees by processing with a punching die having a small clearance between the diameter of the normal punch and the diameter of the die, the mold can be pressed against the inner surface of the through hole as described above. Although it is possible to form a through hole having an angle that spreads from one main surface side to the other main surface side, the above method can be formed only by punching, so the productivity is high and the mold is pressed This is preferable because there is little influence of deformation on the green sheet.

基体1の発光素子4を搭載するための搭載部2には、発光素子4を搭載する搭載電極2aと、発光素子4の電極と接続される接続電極2bとが形成されている。図3に示す例のようなフリップチップ型の発光素子4を搭載する場合は、接続電極2b・2bは搭載電極としても機能する。搭載電極2aおよび接続電極2bは、それぞれ、内部配線6により、基体1の下面に形成された、発光装置を外部回路基板に接続するための端子電極7・7に接続されている。図1〜図3および図5に示す例では、端子電極7・7は基体1の下面に形成されているが、基体1の側面に形成してもよいし、基体1の側面から下面にかけて形成してもよい。   A mounting electrode 2 a for mounting the light emitting element 4 and a connection electrode 2 b connected to the electrode of the light emitting element 4 are formed on the mounting portion 2 for mounting the light emitting element 4 of the substrate 1. When the flip chip type light emitting element 4 as shown in FIG. 3 is mounted, the connection electrodes 2b and 2b also function as mounting electrodes. The mounting electrode 2 a and the connection electrode 2 b are connected to terminal electrodes 7 and 7 for connecting the light emitting device to the external circuit board, which are formed on the lower surface of the base 1 by internal wiring 6. In the example shown in FIGS. 1 to 3 and 5, the terminal electrodes 7 and 7 are formed on the lower surface of the substrate 1, but may be formed on the side surface of the substrate 1 or formed from the side surface to the lower surface of the substrate 1. May be.

このような搭載電極2a,接続電極2b,内部配線6,端子電極7は、タングステン(W),モリブデン(Mo),マンガン(Mn),Ag,銅(Cu)等の金属粉末のメタライズから成る。例えば基体1が酸化アルミニウム質焼結体から成る場合であれば、W,Mo,Mn等の高融点金属粉末に適当な有機バインダーおよび溶媒を添加混合して得た導体ペーストを、基体1となるグリーンシートに予め従来周知のスクリーン印刷法により所定パターンに印刷塗布しておき、基体1となるグリーンシートと同時に焼成することによって、基体1の所定位置に被着形成される。内部配線6が、図1〜図3および図5に示す例のような、貫通導体である場合は、搭載電極2a,接続電極2b,端子電極7となる導体ペーストパターンを形成する前に、金型やパンチングによる打ち抜き加工やレーザー加工によりグリーンシートに貫通孔を形成して、この貫通孔に印刷法により導体ペーストを充填しておくことにより形成される。   The mounting electrode 2a, the connection electrode 2b, the internal wiring 6, and the terminal electrode 7 are made of metal powder such as tungsten (W), molybdenum (Mo), manganese (Mn), Ag, copper (Cu). For example, when the substrate 1 is made of an aluminum oxide sintered body, a conductor paste obtained by adding and mixing an appropriate organic binder and solvent to a refractory metal powder such as W, Mo, or Mn is used as the substrate 1. The green sheet is preliminarily printed and applied in a predetermined pattern by a known screen printing method, and is fired at the same time as the green sheet to be the base 1 to be deposited on a predetermined position of the base 1. When the internal wiring 6 is a through conductor as in the examples shown in FIGS. 1 to 3 and 5, before forming the conductor paste pattern to be the mounting electrode 2 a, the connection electrode 2 b, and the terminal electrode 7, A through hole is formed in the green sheet by punching by a die or punching or laser processing, and the through hole is filled with a conductive paste by a printing method.

反射膜3は、図1〜図3に示す例のように基体1が平板状である場合は、搭載部2の周囲に形成されたメタライズ金属層3aの上に形成され、図5に示す例のように基体1が凹部1aを有する場合は、凹部1aの側面上に形成されたメタライズ金属層3aの上に形成されており、いずれの場合も銀と金との全率固溶の合金から成る合金層である。この合金が全率固溶の合金ではなく単なる銀と金との合金であると、反射膜3の表面に銀から成る粒子が存在して、その部分が硫化しやすく、反射特性が低下しやすいものとなってしまう。反射膜3として銀と金との全率固溶の合金が形成されているかどうかについては、オージェ分析による銀および金のマッピングから反射膜3の表面の銀および金の分布を調べることで判別が可能である。全率固溶の合金が形成されていると、銀および金の分布は均一で、それぞれの単独の粒子は存在しないものであるが、全率固溶でない合金が形成されていると、銀または金が100%としてマッピングされる部分が観察される。なお、オージェ分析を行なう際には、アルゴンイオンをスパッタリングし、表面の汚れを除去して観察することが好ましい。   The reflective film 3 is formed on the metallized metal layer 3a formed around the mounting portion 2 when the substrate 1 has a flat plate shape as in the examples shown in FIGS. 1 to 3, and the example shown in FIG. When the substrate 1 has the concave portion 1a as described above, it is formed on the metallized metal layer 3a formed on the side surface of the concave portion 1a, and in any case, it is made of a completely solid solution alloy of silver and gold. An alloy layer. If this alloy is not a solid solution alloy but a simple alloy of silver and gold, particles made of silver are present on the surface of the reflective film 3, and the portion is easily sulfided, and the reflection characteristics are likely to deteriorate. It becomes a thing. Whether or not an all-solid alloy of silver and gold is formed as the reflective film 3 can be determined by examining the distribution of silver and gold on the surface of the reflective film 3 from the silver and gold mapping by Auger analysis. Is possible. When a completely solid solution alloy is formed, the distribution of silver and gold is uniform, and there is no single particle of each, but when an alloy that is not completely solid solution is formed, silver or gold The part where gold is mapped as 100% is observed. Note that, when performing Auger analysis, it is preferable to observe by removing argon from the surface by sputtering argon ions.

メタライズ金属層3aは、W,Mo,Mn,Ag,Cu等の金属粉末を焼結させたものであり、金属粉末に適当な有機バインダーおよび溶媒を添加混合して得た金属ペーストを、従来周知のスクリーン印刷法により、凹部1aとなるグリーンシートの貫通孔の内面に印刷塗布しておき、グリーンシートと同時に焼成することによって、凹部1aの側面に被着形成される。これにより凹部1aの側面がより平滑な面となり、良好な反射膜3を形成することができる。金属ペーストは上述した導体ペーストと同じものでもよいし、印刷性を考慮して有機バインダーや溶媒の種類や量を変更したものでもよい。   The metallized metal layer 3a is obtained by sintering metal powder such as W, Mo, Mn, Ag, and Cu, and a metal paste obtained by adding and mixing an appropriate organic binder and solvent to the metal powder is conventionally known. By this screen printing method, printing is applied to the inner surface of the through-hole of the green sheet to be the recess 1a, and it is fired at the same time as the green sheet, thereby being deposited on the side surface of the recess 1a. Thereby, the side surface of the recessed part 1a becomes a smoother surface, and the favorable reflective film 3 can be formed. The metal paste may be the same as the above-described conductor paste, or may be one in which the type and amount of the organic binder or solvent are changed in consideration of printability.

銀と金との全率固溶の合金層から成る反射膜3の形成は、電解めっき法,無電解めっき法,スパッタリング法,蒸着法により、銀と金との合金層を形成し、または金層と銀層とを重ねて形成した後、熱処理することで銀と金とを相互拡散させることによって可能である。めっき法を用いる場合は、メタライズ金属層3aと銀めっき層または金めっき層との密着性を上げるために、図4および図6に示す例のように、メタライズ金属層3aの上にニッケルめっき層から成る密着層3bを設けることが望ましい。   The reflective film 3 made of a solid solution alloy layer of silver and gold is formed by forming an alloy layer of silver and gold by electrolytic plating, electroless plating, sputtering, or vapor deposition, or gold It is possible to interdiffuse silver and gold by forming a layer and a silver layer on top of each other and then performing a heat treatment. When the plating method is used, in order to improve the adhesion between the metallized metal layer 3a and the silver plated layer or the gold plated layer, a nickel plated layer is formed on the metallized metal layer 3a as in the example shown in FIGS. It is desirable to provide an adhesion layer 3b made of

このときの熱処理は、銀と金との合金の液相線の温度(例えば、金が10質量%の場合は、970℃)を超える温度で行なうと、銀と金との合金が溶解してしまい、メタライズ金属層3a上に良好な反射特性を有する合金層から成る反射膜3を形成できなくなるので、合金の液層線温度を超えない温度で行なう。   If the heat treatment at this time exceeds the temperature of the liquidus of the alloy of silver and gold (for example, 970 ° C. when gold is 10% by mass), the alloy of silver and gold is dissolved. Therefore, the reflective film 3 made of an alloy layer having good reflection characteristics cannot be formed on the metallized metal layer 3a, so that the temperature does not exceed the liquidus line temperature of the alloy.

また、熱処理を行なう温度が液相線温度より100℃以上低いと、銀と金とが充分に拡散せず、全率固溶の合金が形成されにくく、形成に時間がかかってしまうので、熱処理の温度は、金と銀との合金の液相線温度マイナス100℃以内であるのが好ましい。   Also, if the temperature at which the heat treatment is performed is lower than the liquidus temperature by 100 ° C. or more, silver and gold will not diffuse sufficiently, and it will be difficult to form a solid solution alloy, and it will take time to form. The temperature is preferably the liquidus temperature of the alloy of gold and silver minus 100 ° C. or less.

熱処理する際の雰囲気は、不活性雰囲気中で行なえばよいが、より酸化しにくい還元雰囲気中で行なうのがより好ましい。   The atmosphere for the heat treatment may be in an inert atmosphere, but more preferably in a reducing atmosphere that is less susceptible to oxidation.

また、反射膜3の金の含有率は7質量%乃至45質量%であることが好ましい。金の含有率が7質量%未満であると、銀の比率が大きいので、初期の反射特性は良好であるが、硫化による反射率の低下が見られる傾向がある。また、金の含有率が45質量%を超えると、金の比率が大きいので、硫化していない初期の反射率が低下してしまう傾向がある。反射膜3の金の含有がこの範囲であれば、高価な白金族であるパラジウムや白金より反射率が高く、ロジウムと同程度の反射率とすることができる。さらに、反射膜3の金の含有率が15質量%乃至35質量%であれば、ロジウムよりも高い反射率とすることができるのでより好ましい。   The gold content of the reflective film 3 is preferably 7% by mass to 45% by mass. When the gold content is less than 7% by mass, the ratio of silver is large, so that the initial reflection characteristics are good, but there is a tendency that the reflectance is reduced by sulfuration. On the other hand, when the gold content exceeds 45% by mass, since the gold ratio is large, the initial reflectance that is not sulfided tends to decrease. If the content of gold in the reflective film 3 is within this range, the reflectance is higher than that of expensive platinum group palladium or platinum, and the reflectance can be set to the same level as rhodium. Furthermore, it is more preferable that the gold content of the reflective film 3 is 15% by mass to 35% by mass because the reflectance can be higher than that of rhodium.

反射膜3の厚みは、1μm以上であるのがよい。1μmより薄いとメタライズ金属層3aあるいは密着層3bを充分に被覆することができずに反射率を低下させてしまう場合がある。また、反射膜3の厚みが厚い分には特性上の問題は特に無いが、製膜時間やコストの観点から15μm未満が好ましい。   The thickness of the reflective film 3 is preferably 1 μm or more. If it is thinner than 1 μm, the metallized metal layer 3a or the adhesion layer 3b cannot be sufficiently covered, and the reflectance may be lowered. In addition, there is no particular problem with the characteristics of the thick reflective film 3, but it is preferably less than 15 μm from the viewpoint of film formation time and cost.

また、メタライズ金属層3aは、図2にはメタライズ金属層3aを直接記載していないが、図2に示す例のように搭載電極2aと接続されて一体となっていてもよいし、あるいは接続電極2bと接続されていてもよい。   Further, although the metallized metal layer 3a is not directly shown in FIG. 2, the metallized metal layer 3a may be connected to the mounting electrode 2a as in the example shown in FIG. It may be connected to the electrode 2b.

搭載電極2a,接続電極2b,端子電極7の露出する表面にもニッケルや金,銀等の耐蝕性に優れ、ろう材の濡れ性に優れる金属を1〜20μm程度の厚みに被着させておくと、これらが酸化腐蝕するのを有効に防止できるとともに、搭載電極2aと発光素子4との接合、接続電極2bとボンディングワイヤ等の接続部材5との接続、および端子電極7と外部回路基板とのろう材による接合を強固にすることができる。   The exposed surfaces of the mounting electrode 2a, connection electrode 2b, and terminal electrode 7 are coated with a metal having excellent corrosion resistance, such as nickel, gold, and silver, and excellent brazing material wettability to a thickness of about 1 to 20 μm. These can be effectively prevented from being oxidized and corroded, the connection between the mounting electrode 2a and the light emitting element 4, the connection between the connection electrode 2b and the connection member 5 such as a bonding wire, and the terminal electrode 7 and the external circuit board Bonding with brazing filler metal can be strengthened.

なお、搭載電極2aや接続電極2bの表面に、反射膜3と同様の銀と金との全率固溶の合金層の皮膜を形成すると、発光素子4から下方(搭載部2側)に放射された光をも反射して発光装置の輝度をさらに高めることができるので好ましい。この合金層の皮膜の形成は、反射膜3の形成と同時に行なうことができる。また、搭載電極2aや接続電極2bの表面に形成する合金層と反射膜3の合金層とで銀と金との比率を異ならせてもよいし、搭載電極2aおよび接続電極2bのうちいずれか一方のみの表面に反射膜3と同じ合金層を形成してもよい。例えば、接続部材5として金を主成分とするボンディングワイヤを用いて発光素子4と接続電極2bとを接続する場合は、ボンディングワイヤと接続電極2bとの接続をより強固なものとするために、接続電極2bの表面には金の皮膜を形成し、搭載電極2aの表面には反射膜3と同じく、銀と金との全率固溶の合金から成る合金層を形成するのが好ましい。この場合は、図2に示す例のような、搭載電極2aとメタライズ金属層3aとが接続されて一体にされたものにするなどして、反射膜3の面積をより広くすることで反射効率を向上させるとよい。   In addition, if a film of a solid solution alloy of silver and gold, which is the same as the reflective film 3, is formed on the surface of the mounting electrode 2a and the connection electrode 2b, radiation is emitted downward (from the mounting portion 2 side) from the light emitting element 4. It is preferable because the luminance of the light emitting device can be further increased by reflecting the emitted light. The formation of the alloy layer film can be performed simultaneously with the formation of the reflective film 3. Further, the ratio of silver and gold may be different between the alloy layer formed on the surface of the mounting electrode 2a or the connection electrode 2b and the alloy layer of the reflective film 3, or either the mounting electrode 2a or the connection electrode 2b. The same alloy layer as the reflective film 3 may be formed on only one surface. For example, when the light emitting element 4 and the connection electrode 2b are connected using a bonding wire mainly composed of gold as the connection member 5, in order to make the connection between the bonding wire and the connection electrode 2b stronger, It is preferable to form a gold film on the surface of the connection electrode 2b, and to form an alloy layer made of a solid solution alloy of silver and gold, similar to the reflective film 3, on the surface of the mounting electrode 2a. In this case, as in the example shown in FIG. 2, the mounting electrode 2a and the metallized metal layer 3a are connected and integrated, for example, so that the reflective film 3 has a larger area so that the reflection efficiency is increased. It is good to improve.

また、基体1は、基部1bと放熱部1cとから成るもののように複数の部材で構成してもよい。例えば、図7および図8に示す例のように、反射膜3を備えた基部1bと、この基部1bの中央の貫通穴1d内に配置した、発光素子4の搭載部2を備えた放熱部1cとから成るものであっても構わない。これらの例の場合は、基部1bは、上述した図1〜図6に示す例の基体1と同様の、酸化アルミニウム質焼結体(アルミナセラミックス)、窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス質焼結体等のセラミックスから成るものとし、放熱部1cは、基部1bよりも熱伝導率の高い材料、例えば、銅,銅−タングステン等の金属、または基部1bよりも熱伝導率の高いセラミックスから成るものとすればよい。このような構成とすることにより、発光素子4の発する熱を放熱部1cから良好に外部へ放出することができるので、発熱量の多い発光素子4を搭載して発光装置とした場合に、熱による発光効率の低下を抑えることができる。   The base body 1 may be composed of a plurality of members such as a base portion 1b and a heat radiating portion 1c. For example, as in the example shown in FIGS. 7 and 8, a base 1b having a reflective film 3 and a heat radiating part having a mounting portion 2 for the light emitting element 4 disposed in a central through hole 1d of the base 1b. It may be composed of 1c. In the case of these examples, the base 1b is similar to the base 1 of the example shown in FIGS. 1 to 6 described above, and is an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, and a mullite sintered body. The heat radiating portion 1c is made of a material having a higher thermal conductivity than the base portion 1b, for example, a metal such as copper or copper-tungsten, or the base portion 1b. What is necessary is just to consist of ceramics with a high rate. By adopting such a configuration, the heat generated by the light emitting element 4 can be released to the outside from the heat radiating portion 1c satisfactorily. Therefore, when the light emitting element 4 having a large calorific value is mounted to form a light emitting device, It is possible to suppress a decrease in luminous efficiency due to.

このように基体1が基部1bと放熱部1cとから成る場合は、基部1bは、その中央部に貫通穴1dを有するものであり、この貫通穴1dに、基部1bの上面側に搭載部2が露出するように放熱部1bをはめて接合することにより構成される。基部1bの貫通穴1dは、上述した基体1に凹部を形成する方法と同様の方法によって、基部1bとなるグリーンシートに貫通穴1dとなる貫通孔を形成しておくことにより形成される。   When the base 1 is thus composed of the base 1b and the heat radiating portion 1c, the base 1b has a through hole 1d at the center thereof, and the mounting portion 2 on the upper surface side of the base 1b is formed in the through hole 1d. It is comprised by attaching and dissipating the thermal radiation part 1b so that may be exposed. The through hole 1d of the base portion 1b is formed by forming a through hole to be the through hole 1d in the green sheet to be the base portion 1b by a method similar to the method of forming the recess in the base 1 described above.

なお、基部1bと放熱部1cとの接合は、例えば、放熱部1cが金属から成る場合であれば、基部1bの放熱部1cと接する部位に接合用のメタライズ層(図示せず)を設けておくことにより、Ag−Cuろう材等の接合材を用いて行なうことができる。あるいは、ろう材中にTi等の活性金属を添加した活性金属ろう材を用いる場合であれば、基部1bにメタライズ層を設けることなく基部1bと放熱部1cとを接合することができる。いずれの場合であっても、放熱部1cの表面には、ニッケルや金,銀等の、耐蝕性に優れ、ろう材の濡れ性に優れる金属を1〜20μm程度の厚みに被着させておくと、これらが酸化腐蝕することを有効に防止できるとともに、放熱部1cと基部1bとの接合、放熱部1cと発光素子4との接合および放熱部1cと外部回路基板とのろう材による接合を強固にすることができる。放熱部1cが金属から成る場合は、接続電極2b,内部配線6および端子電極7は基部1bに形成される。   The base 1b and the heat radiating part 1c are bonded to each other by, for example, providing a metallizing layer (not shown) for bonding at a part in contact with the heat radiating part 1c of the base 1b if the heat radiating part 1c is made of metal. It can be performed using a bonding material such as an Ag-Cu brazing material. Alternatively, if an active metal brazing material in which an active metal such as Ti is added to the brazing material is used, the base portion 1b and the heat radiating portion 1c can be joined without providing a metallized layer on the base portion 1b. In any case, a metal having excellent corrosion resistance and excellent wettability of the brazing material, such as nickel, gold, and silver, is deposited on the surface of the heat radiating portion 1c to a thickness of about 1 to 20 μm. In addition, it is possible to effectively prevent these from being oxidized and corroded, and to join the heat radiating portion 1c and the base portion 1b, to join the heat radiating portion 1c to the light emitting element 4, and to join the heat radiating portion 1c and the external circuit board with a brazing material. Can be strong. When the heat radiating portion 1c is made of metal, the connection electrode 2b, the internal wiring 6 and the terminal electrode 7 are formed on the base portion 1b.

また、放熱部1cが基部1bよりも熱伝導率の高いセラミックスから成る場合は、例えば、基部1bに酸化アルミニウム質焼結体を用い、放熱部1cに窒化アルミニウム質焼結体を用いて基体1を構成することができる。この場合は、例えば、放熱部1cに搭載用電極2aおよび接続用電極2bを形成することもでき、このようにすると、基部1bおよび放熱部1cのそれぞれの表面の金属部分にめっき層の被着を行なうことができるので、搭載用電極2aおよび接続用電極2bの表面のめっき層と反射膜3とで銀と金との比率を異ならせることが容易にできる。また、この場合の基部1bと放熱部1cとの接合は、基部1bおよび放熱部1cのそれぞれに接合用のメタライズ層を設けて、これらをろう材によって接合してもよいし、接合用のメタライズ層を設けずに活性金属ろう材により接合してもよい。   Further, when the heat radiating portion 1c is made of ceramics having a higher thermal conductivity than the base portion 1b, for example, an aluminum oxide sintered body is used for the base portion 1b and an aluminum nitride based sintered body is used for the heat radiating portion 1c. Can be configured. In this case, for example, the mounting electrode 2a and the connection electrode 2b can be formed on the heat dissipating part 1c, and in this way, the plating layer is deposited on the metal parts of the respective surfaces of the base part 1b and the heat dissipating part 1c. Therefore, it is possible to easily make the ratio of silver and gold different between the plating layer on the surface of the mounting electrode 2a and the connection electrode 2b and the reflective film 3. Further, in this case, the base 1b and the heat radiating part 1c may be joined by providing a metallization layer for joining to each of the base 1b and the heat radiating part 1c and joining them with a brazing material. You may join by an active metal brazing material, without providing a layer.

放熱部1cおよび貫通穴1dはそれぞれ上下で同じ形状であってもよく、貫通穴1dの内壁に放熱部1cの外周面を接合しても構わないが、図7に示す例においては、基部1bの下面の貫通穴1dの開口の周囲で基部1bの下面と放熱部1cの鍔部の上面とが接合されている。また、図8に示す例においては、基部1bの貫通穴1d内に設けた段差の下面と放熱部1cの鍔部の上面とで基部1bと放熱部1cとが接合されている。いずれの例でも、放熱部1cは下部に鍔部を設けて発光素子4が搭載される上部より下部の方が大きい段差を有する形状としている。この段差面(鍔部の上面)を基部1bとの接合面としているので、放熱部1cの位置決めが容易となり、発光素子4と反射膜3との位置関係を一定にするのが容易となる。   The heat dissipating part 1c and the through hole 1d may have the same shape in the upper and lower sides, and the outer peripheral surface of the heat dissipating part 1c may be joined to the inner wall of the through hole 1d. However, in the example shown in FIG. The lower surface of the base portion 1b and the upper surface of the flange portion of the heat radiating portion 1c are joined around the opening of the through hole 1d on the lower surface. Moreover, in the example shown in FIG. 8, the base 1b and the heat radiating part 1c are joined by the lower surface of the level | step difference provided in the through-hole 1d of the base 1b, and the upper surface of the collar part of the heat radiating part 1c. In any example, the heat radiating part 1c is provided with a flange part in the lower part, and has a shape having a larger step at the lower part than the upper part where the light emitting element 4 is mounted. Since this step surface (upper surface of the flange portion) is a joint surface with the base portion 1b, the positioning of the heat radiating portion 1c is facilitated, and the positional relationship between the light emitting element 4 and the reflective film 3 is easily made constant.

また、基部1bを貫通穴1dに替えて基部1bの下面に開口を有する凹部を有するものとして、凹部の底面(上面)に放熱部1cを接合してもよい。この場合の搭載部2bは、凹部の上方に位置する基部1bの上面となる。このときは、搭載部2bから凹部の底面(上面)に接合されている放熱部1cまでの熱伝導が基部1bの材料によっては十分とはいえない場合があるので、その熱伝導の不足を補うために、この上面と凹部の底面(上面)との間に伝熱用の貫通導体を設けてもよい。あるいは、基部1bの下面に凹部も設けず、図1〜6に示す例のような平板状の基体1を基部1bとして、この基部1bの平坦な下面に放熱部1cを接合してもよい。この場合も同様に、搭載部2bから放熱部1cまでの熱伝導の不足を補うために伝熱用の貫通導体を設けてもよい。   Further, the heat radiating portion 1c may be joined to the bottom surface (upper surface) of the recess, assuming that the base 1b is replaced with the through hole 1d and has a recess having an opening on the lower surface of the base 1b. The mounting portion 2b in this case is the upper surface of the base portion 1b located above the recess. At this time, since the heat conduction from the mounting portion 2b to the heat radiating portion 1c joined to the bottom surface (upper surface) of the recess may not be sufficient depending on the material of the base portion 1b, the lack of the heat conduction is compensated. Therefore, a through conductor for heat transfer may be provided between the upper surface and the bottom surface (upper surface) of the recess. Alternatively, a recess may not be provided on the lower surface of the base portion 1b, and the heat sink 1c may be joined to the flat lower surface of the base portion 1b using the flat base 1 as in the example shown in FIGS. In this case as well, a through conductor for heat transfer may be provided in order to compensate for the lack of heat conduction from the mounting portion 2b to the heat radiating portion 1c.

また、本発明の発光装置は、上記各構成の発光素子搭載用基板と、搭載部2に搭載された発光素子4と、発光素子4および反射膜3を覆う透明な封止樹脂とを具備していることを特徴とするものである。上述したように本発明の発光素子搭載用基板の反射膜3が硫化雰囲気中でも硫化しにくく、反射特性を維持することが可能であることから、発光素子4が発する光を長期間にわたって良好に放射することができる、輝度の低下の少ない発光装置となる。   The light emitting device of the present invention includes the light emitting element mounting substrate having the above-described configuration, the light emitting element 4 mounted on the mounting portion 2, and a transparent sealing resin that covers the light emitting element 4 and the reflective film 3. It is characterized by that. As described above, since the reflective film 3 of the substrate for mounting a light emitting element of the present invention is not easily sulfided even in a sulfurizing atmosphere and can maintain reflection characteristics, the light emitted from the light emitting element 4 can be emitted well over a long period of time. Thus, a light-emitting device with little reduction in luminance is obtained.

発光素子4は発光ダイオード(LED)や半導体レーザ(LD)であり、例えばAu−シリコン(Si)合金から成るろう材や銀(Ag)を含むエポキシ樹脂等の導電性接合材により搭載部2の搭載電極2a上に固着されるとともに、発光素子4の電極と接続電極2bとが例えばAuを主成分とするボンディングワイヤ等の接続部材5を介して電気的に接続される。図3に示す例のようなフリップチップ型の発光素子4である場合は、発光素子4の電極に接続されたはんだや金等の金属から成るバンプを加熱して溶融させたり、超音波振動を加えたりすることにより接続するか、あるいははんだや導電性接着剤を介して接続電極2bに接続する。   The light-emitting element 4 is a light-emitting diode (LED) or a semiconductor laser (LD). For example, the light-emitting element 4 is formed of a conductive bonding material such as a brazing material made of an Au-silicon (Si) alloy or an epoxy resin containing silver (Ag). While being fixed on the mounting electrode 2a, the electrode of the light emitting element 4 and the connection electrode 2b are electrically connected via a connection member 5 such as a bonding wire mainly composed of Au. In the case of the flip chip type light emitting device 4 as shown in FIG. 3, the bumps made of metal such as solder or gold connected to the electrodes of the light emitting device 4 are heated and melted, or ultrasonic vibration is applied. It connects by adding, or it connects to the connection electrode 2b via solder or a conductive adhesive.

封止材は、図示していないが、発光素子4を封止する、シリコン樹脂,エポキシ樹脂等から成る透明な(透光性を有する)ものである。例えば、発光素子4を覆うように液状の封止樹脂を塗布した後、封止樹脂を硬化することで発光装置となる。図5に示す例のように基体1が凹部1aを備える場合は、封止樹脂を凹部1a内に充填してもよい。あるいは、箱状に成形された封止材を、発光素子4を覆うように基体1の上に載置して接着剤で固定してもよい。基体1が凹部1aを備える場合は、板状に成形された封止材で凹部1aの開口部を塞ぐようにしてもよい。箱状あるいは板状に成形された封止材を用いる場合は、その一部をレンズ状に成形したものを用いると、発光素子4が放出する光をそのレンズ状の部分により集光することができるので、より輝度の高い発光装置が得られる発光素子搭載用基板となる。   Although not illustrated, the sealing material is transparent (having translucency) made of silicon resin, epoxy resin, or the like that seals the light emitting element 4. For example, after applying a liquid sealing resin so as to cover the light emitting element 4, the sealing resin is cured to obtain a light emitting device. When the substrate 1 includes the recess 1a as in the example shown in FIG. 5, the sealing resin may be filled in the recess 1a. Alternatively, a box-shaped sealing material may be placed on the substrate 1 so as to cover the light emitting element 4 and fixed with an adhesive. When the base body 1 includes the recess 1a, the opening of the recess 1a may be closed with a sealing material formed in a plate shape. When a sealing material molded in a box shape or a plate shape is used, the light emitted from the light emitting element 4 can be condensed by the lens-shaped portion if a part of the sealing material is molded into a lens shape. Therefore, the light-emitting element mounting substrate from which a light-emitting device with higher luminance can be obtained.

また、封止材中に蛍光体を含有していてもよい。蛍光体は、発光素子4から発せられる所定の波長の光を受けて他の波長の光を発光可能なものや、外部からの特定の波長の光を受けて受光素子の受光感度に合わせることができるものであり、発光素子4から発せられる光と発光可能な蛍光体との組み合わせにより任意の発光色を得ることができる。例えば、発光素子4から発せられる光が青色光であり、蛍光体から発せられる光が黄色光であれば、両方の光の混色により白色光を発光装置から発光することができる。   Moreover, the phosphor may be contained in the sealing material. The phosphor can receive light having a predetermined wavelength emitted from the light emitting element 4 and can emit light of other wavelengths, or can receive light of a specific wavelength from the outside to match the light receiving sensitivity of the light receiving element. Thus, an arbitrary emission color can be obtained by a combination of light emitted from the light emitting element 4 and a phosphor capable of emitting light. For example, if the light emitted from the light-emitting element 4 is blue light and the light emitted from the phosphor is yellow light, white light can be emitted from the light-emitting device by a mixture of both lights.

なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。例えば、搭載部2に搭載電極2aを形成せずに発光素子4を基体1の上に直接搭載し、その周囲に内部配線6に接続された接続電極2bを形成してもよい。また、発光素子4が複数個搭載され、それに応じた搭載電極2aおよび接続電極2bが形成されたものでも構わない。   It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, the light emitting element 4 may be directly mounted on the base 1 without forming the mounting electrode 2a on the mounting portion 2, and the connection electrode 2b connected to the internal wiring 6 may be formed around the light emitting element 4. Alternatively, a plurality of light emitting elements 4 may be mounted, and mounting electrodes 2a and connection electrodes 2b corresponding to the light emitting elements 4 may be formed.

本発明の発光素子搭載用基板の実施例について以下に説明する。
まず、酸化アルミニウムを96質量%とし、焼結助剤として酸化珪素,酸化マグネシウムおよび酸化カルシウムを合わせて4質量%とした割合で調合したセラミック粉末100質量%に対して、有機バインダーとしてアクリル樹脂を固形分で9質量%、可塑剤としてジブチルフタレートを0.1質量%加え、トルエンを溶媒としてボールミルにより40時間混合し、セラミックスラリーを調製した。このセラミックスラリーをドクターブレード法によりシート状に成形して、基体1となる、厚みが0.2mmおよび0.4mmのグリーンシートを作製した。
Examples of the light emitting element mounting substrate of the present invention will be described below.
First, an acrylic resin is used as an organic binder with respect to 100% by weight of ceramic powder prepared by mixing 96% by weight of aluminum oxide and 4% by weight of silicon oxide, magnesium oxide and calcium oxide as a sintering aid. A solid content of 9% by mass, 0.1% by mass of dibutyl phthalate as a plasticizer was added, and toluene was used as a solvent to mix for 40 hours to prepare a ceramic slurry. This ceramic slurry was formed into a sheet shape by a doctor blade method, and green sheets having thicknesses of 0.2 mm and 0.4 mm, which were to be the base 1, were produced.

次に、厚みが0.2mmのグリーンシートの所定の位置に、内部配線6が配置される直径100μmの貫通孔をパンチングにより形成した。平均粒径が1.90μmのW粉末100質量%に対して有機バインダーとしてセルロースナイトレートを0.8質量%加えたものに、粘度調整用の溶剤としてジエチレングリコールモノブチルエーテルアセテートおよびジブチルフタレートを添加混合して得た導体ペーストを、スクリーン印刷法により貫通孔に充填した。さらに、粘度を調整した導体ペーストを印刷塗布して、搭載電極2a,接続電極2b,端子電極7となる導体ペースト層を形成した。また、厚みが0.4mmのグリーンシートを打ち抜き金型にて打ち抜くことで、凹部1aとなる、一方の主面側から他方の主面側に45°の角度θで広がるような貫通孔を形成した。また、この貫通孔の側面に、平均粒径1.25μmのW粉末100質量%に対して有機バインダーとしてセルロースナイトレートを3質量%加えたものに、粘度調製用の溶剤としてジエチレングリコールモノブチルエーテルアセテートおよびジオクチルフタレートを添加混合して得た金属ペーストを、スクリーン印刷法により印刷塗布することで、メタライズ金属層3aとなる金属ペースト層を形成した。   Next, a through hole having a diameter of 100 μm in which the internal wiring 6 is arranged was formed by punching at a predetermined position of a green sheet having a thickness of 0.2 mm. Obtained by adding 0.8% by mass of cellulose nitrate as an organic binder to 100% by mass of W powder having an average particle size of 1.90 μm, and adding and mixing diethylene glycol monobutyl ether acetate and dibutyl phthalate as solvents for viscosity adjustment The conductive paste was filled in the through holes by a screen printing method. Furthermore, a conductor paste having adjusted viscosity was printed and applied to form a conductor paste layer to be the mounting electrode 2a, the connection electrode 2b, and the terminal electrode 7. Further, by punching a green sheet having a thickness of 0.4 mm with a punching die, a through-hole that becomes a recess 1a and spreads from one main surface side to the other main surface side at an angle θ of 45 ° was formed. . In addition, diethylene glycol monobutyl ether acetate and dioctyl as solvents for viscosity adjustment were added to the side surface of the through-holes in which 3% by mass of cellulose nitrate was added as an organic binder to 100% by mass of W powder having an average particle size of 1.25 μm. The metal paste obtained by adding and mixing the phthalate was printed and applied by a screen printing method to form a metal paste layer to be the metallized metal layer 3a.

そして、2つのグリーンシートを積層して圧着し、水蒸気を含んだ窒素雰囲気中にて約1000℃の温度で約3時間加熱することにより有機成分を除去した後、水蒸気を含んだ窒素雰囲気中にて約1500℃の温度で約6時間焼成を行なった。さらに、搭載電極2a,接続電極2b,端子電極7,メタライズ金属層3aの上に、密着層3bとして、電解めっき法にて厚さが3μmのニッケルめっき層を被着し、ニッケルめっき層の上に電解めっき法にて厚さが3.19μmの銀めっき層および厚さが0.63μmの金めっき層を順次被着した。   Then, two green sheets are laminated and pressure-bonded, and the organic components are removed by heating at a temperature of about 1000 ° C. for about 3 hours in a nitrogen atmosphere containing water vapor, and then in a nitrogen atmosphere containing water vapor. And calcining at a temperature of about 1500 ° C. for about 6 hours. Further, a nickel plating layer having a thickness of 3 μm is deposited as an adhesion layer 3b on the mounting electrode 2a, the connection electrode 2b, the terminal electrode 7 and the metallized metal layer 3a by an electrolytic plating method. Then, a silver plating layer having a thickness of 3.19 μm and a gold plating layer having a thickness of 0.63 μm were sequentially deposited by electrolytic plating.

そして、還元雰囲気中(水素75体積%+窒素25体積%)にて約900℃の温度で約10分加熱することで銀めっき層と金めっき層とを相互拡散させて、厚さが約3.8μmで、金の含有率が26.5質量%である、銀と金との全率固溶の合金層を形成し、図5に示す例のような、凹部1aの側面上に銀と金との全率固溶の合金から成る反射膜3を備える発光素子搭載用基板を作製した。このとき、搭載電極2a上にも、反射膜3と同様の銀と金との全率固溶の合金層膜が形成された。   Then, the silver plating layer and the gold plating layer are mutually diffused by heating for about 10 minutes at a temperature of about 900 ° C. in a reducing atmosphere (75% by volume of hydrogen + 25% by volume of nitrogen). An alloy layer having a solid content of silver and gold having a gold content of 26.5% by mass is formed, and silver and gold are formed on the side surface of the recess 1a as shown in FIG. A substrate for mounting a light-emitting element including the reflective film 3 made of a completely solid alloy was produced. At this time, the same alloy layer film of silver and gold as in the reflective film 3 was also formed on the mounting electrode 2a.

また、銀めっき層および金めっき層を形成する際の、めっき液中への浸漬時間および電流の印加時間を変更することにより、銀めっき層および金めっき層の厚みを変化させ、反射膜3の金の含有率が異なる11種類の発光素子搭載用基板(試料)を作製した。   Moreover, the thickness of the silver plating layer and the gold plating layer is changed by changing the immersion time in the plating solution and the application time of the current when forming the silver plating layer and the gold plating layer. Eleven types of light emitting element mounting substrates (samples) with different gold contents were prepared.

反射膜3中の金の含有率は、銀と金との全率固溶の合金層を形成するための熱処理をしていない試料の銀めっき層および金めっき層の厚みを、蛍光X線膜厚計(エスアイアイ・ナノテクノロジー株式会社製 SFT3300、X線管球:W)を用いて、X線出力:45kV−1mA、測定時間:10秒の測定条件で測定し、測定された銀めっき厚みおよび金めっき厚みと、銀および金の比重とから質量割合を算出して求めた。この際、平坦で測定のしやすい搭載電極2a上の銀めっき層および金めっき層の厚みを測定した。   The gold content in the reflective film 3 is the thickness of the silver plating layer and the gold plating layer of the sample not subjected to the heat treatment for forming an all-solid alloy layer of silver and gold, and the fluorescent X-ray film. Using a thickness gauge (SFT3300, manufactured by SII Nano Technology Co., Ltd., X-ray tube: W), X-ray output: 45 kV-1 mA, measurement time: measured for 10 seconds, measured silver plating thickness The mass ratio was calculated from the thickness of the gold plating and the specific gravity of silver and gold. At this time, the thickness of the silver plating layer and the gold plating layer on the mounting electrode 2a which is flat and easy to measure was measured.

なお、反射膜3中の金の含有率は、熱処理により銀と金との全率固溶の合金層を形成してから、蛍光X線膜厚計を用いて測定し、定量換算することにより測定することもできる。このようにして測定した結果は、上記のように算出した結果と同じであることを確認した。   In addition, the gold content in the reflective film 3 is measured by using a fluorescent X-ray film thickness meter and quantitatively converted after forming a solid solution alloy layer of silver and gold by heat treatment. It can also be measured. The results measured in this way were confirmed to be the same as the results calculated as described above.

次に、分光測色計(ミノルタ株式会社製のCM−3700d)を用いて、基準光源:D65,測定波長範囲:360〜740nm,視野:10°,測定反射率:全反射率,マスク:SAVの条件で反射率を測定した。そして、0.5%の硫化アンモニウム水溶液をシャーレに入れてデシケータ内に置いて、デシケータ内を硫化雰囲気として、この硫化雰囲気中に反射率を測定した試料を常温で8時間放置する硫化試験を行なった後、上記と同じ条件で反射率を再度測定した。   Next, using a spectrocolorimeter (CM-3700d manufactured by Minolta Co., Ltd.), reference light source: D65, measurement wavelength range: 360-740 nm, field of view: 10 °, measurement reflectance: total reflectance, mask: SAV The reflectance was measured under the following conditions. After conducting a sulfurization test in which a 0.5% ammonium sulfide aqueous solution is placed in a petri dish and placed in a desiccator, the inside of the desiccator is a sulfurizing atmosphere, and the sample whose reflectance is measured in the sulfurizing atmosphere is left at room temperature for 8 hours. The reflectance was measured again under the same conditions as above.

反射膜3の金の含有率が異なる各試料の反射率を測定した結果をまとめると、図9に示す線図のようになった。図9において、縦軸は硫化による銀の波長変化の起こりやすい青色の波長である440nmの光の反射率を示し、横軸は反射膜3中の金の含有率を示す。そして、黒のひし形は硫化試験前(初期)の各試料の反射率を示し、白の正方形は硫化試験後(硫化後)の各試料の反射率を示す。   The results of measuring the reflectance of each sample having a different gold content in the reflective film 3 are summarized as shown in the diagram of FIG. In FIG. 9, the vertical axis represents the reflectance of light of 440 nm, which is the blue wavelength where silver wavelength is likely to change due to sulfuration, and the horizontal axis represents the gold content in the reflective film 3. The black rhombus indicates the reflectance of each sample before the sulfidation test (initial), and the white square indicates the reflectance of each sample after the sulfidation test (after sulfidation).

図9に示す結果から、反射膜3の金の含有率が0質量%(銀が100質量%)の場合は、硫化試験前(初期)の反射率は90.7%であるのが硫化試験後(硫化後)には反射率が31.8%まで低下しているのに対して、反射膜3が金を含有する合金から成る場合は、硫化が抑えられ、反射率の低下が抑えられることが分かる。また、金の含有率が増えると、反射膜3の表面の色調が、反射率が32%程度と低い金の色調に近付くことから、初期の反射率は金の含有率が25質量%を超えた辺りから徐々に低下する傾向が見られる。そして、金の含有率が7質量%乃至45質量%であると、硫化試験後であっても70%以上の反射率を示すことが分かる。反射膜3をパラジウム(Pd),ロジウム(Rh),白金(Pt)のめっき皮膜とした試料の反射率(初期)を同様に測定すると、それぞれPdが約57%の、Rhが71%の、Ptが57%の反射率を示す。これらと比較すると、金の含有率が7質量%乃至45質量%である場合は、硫化試験前はもとより硫化試験後においても、耐食性に優れる白金族のめっき皮膜と同程度以上の反射率を示すことが分かる。従って、高価な白金族のめっきを用いなくても硫化による反射特性の低下の小さい発光素子搭載用基板が得られているといえる。また、金の含有率が15質量%乃至35質量%であれば、硫化試験の前後でともに80%以上の反射率を示しており、白金族のめっきによる反射膜より高い反射率を有するとともに、硫化雰囲気に触れても高い反射率を維持することが可能であることが分かる。   From the results shown in FIG. 9, when the gold content of the reflective film 3 is 0% by mass (silver is 100% by mass), the reflectance before the sulfidation test (initial) is 90.7% after the sulfidation test ( It can be seen that after the sulfidation, the reflectivity is reduced to 31.8%, whereas when the reflective film 3 is made of an alloy containing gold, the sulfidation is suppressed and the decrease in reflectivity is suppressed. In addition, when the gold content increases, the color tone of the surface of the reflective film 3 approaches a low gold color tone with a reflectance of about 32%, so the initial reflectivity exceeds 25% by mass. There is a tendency to gradually decrease from around. It can be seen that when the gold content is 7 mass% to 45 mass%, a reflectance of 70% or more is exhibited even after the sulfurization test. When the reflectance (initial) of a sample in which the reflective film 3 is a plating film of palladium (Pd), rhodium (Rh), and platinum (Pt) is measured in the same manner, Pd is about 57%, Rh is 71%, Pt shows a reflectance of 57%. Compared with these, when the gold content is 7% by mass to 45% by mass, the reflectance is equal to or higher than that of the platinum group plating film having excellent corrosion resistance both before and after the sulfidation test. I understand that. Therefore, it can be said that a light-emitting element mounting substrate with a small reduction in reflection characteristics due to sulfuration is obtained without using expensive platinum group plating. Also, if the gold content is 15 mass% to 35 mass%, it shows a reflectance of 80% or more both before and after the sulfidation test, and has a reflectance higher than that of a reflection film made of platinum group plating, It can be seen that high reflectance can be maintained even when exposed to a sulfurized atmosphere.

1:基体
1a:凹部
1b:基部
1c:放熱体
1d:貫通穴
2:搭載部
2a:搭載電極
2b:接続電極
3:反射膜
3a:メタライズ金属層
3b:密着層
4:発光素子
5:接続部材
6:内部配線
7:端子電極
1: Base 1a: Recess 1b: Base 1c: Radiator 1d: Through hole 2: Mounting portion 2a: Mounting electrode 2b: Connection electrode 3: Reflective film 3a: Metallized metal layer 3b: Adhesion layer 4: Light emitting element 5: Connection member 6: Internal wiring 7: Terminal electrode

Claims (4)

基体と、該基体の上面の発光素子を搭載するための搭載部と、該搭載部の周囲の反射膜とを備え、該反射膜が、銀と金との全率固溶の合金であることを特徴とする発光素子搭載用基板。 A substrate, a mounting portion for mounting the light emitting element on the upper surface of the substrate, and a reflective film around the mounting portion, and the reflective film is a completely solid alloy of silver and gold A substrate for mounting a light emitting element. 前記基体の上面に、底面に前記搭載部を有する凹部を備え、該凹部の側面上に前記反射膜が形成されていることを特徴とする請求項1に記載の発光素子搭載用基板。 2. The light emitting element mounting substrate according to claim 1, wherein a concave portion having the mounting portion on a bottom surface is provided on an upper surface of the base, and the reflective film is formed on a side surface of the concave portion. 前記反射膜は、金の含有率が7質量%乃至45質量%であることを特徴とする請求項1または請求項2に記載の発光素子搭載用基板。 The light-emitting element mounting substrate according to claim 1, wherein the reflective film has a gold content of 7 mass% to 45 mass%. 請求項1乃至請求項3のいずれかに記載の発光素子搭載用基板と、前記搭載部に搭載された発光素子と、該発光素子を覆う透明な封止材とを具備していることを特徴とする発光装置。 A light emitting element mounting substrate according to any one of claims 1 to 3, a light emitting element mounted on the mounting portion, and a transparent sealing material covering the light emitting element. A light emitting device.
JP2009123133A 2008-05-21 2009-05-21 Light emitting element mounting substrate and light emitting device Active JP5355219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123133A JP5355219B2 (en) 2008-05-21 2009-05-21 Light emitting element mounting substrate and light emitting device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008132754 2008-05-21
JP2008132754 2008-05-21
JP2008276385 2008-10-28
JP2008276385 2008-10-28
JP2009123133A JP5355219B2 (en) 2008-05-21 2009-05-21 Light emitting element mounting substrate and light emitting device

Publications (2)

Publication Number Publication Date
JP2010135729A true JP2010135729A (en) 2010-06-17
JP5355219B2 JP5355219B2 (en) 2013-11-27

Family

ID=42346682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123133A Active JP5355219B2 (en) 2008-05-21 2009-05-21 Light emitting element mounting substrate and light emitting device

Country Status (1)

Country Link
JP (1) JP5355219B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122665A1 (en) * 2010-03-30 2011-10-06 大日本印刷株式会社 Leadframe or substrate for led, semiconductor device, and method for manufacturing leadframe or substrate for led
US20120273819A1 (en) * 2011-04-29 2012-11-01 Advanced Optoelectronic Technology, Inc. Led package structure
JP2013051449A (en) * 2010-11-25 2013-03-14 Kyocera Corp Substrate for mounting light emitting element and light emitting device
US9660147B2 (en) 2011-03-18 2017-05-23 Koninklijke Philips N.V. Method for providing a reflective coating to a substrate for a light emitting device
US9773960B2 (en) 2010-11-02 2017-09-26 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
CN112585744A (en) * 2018-08-29 2021-03-30 京瓷株式会社 Wiring substrate, electronic device, and electronic module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212018A (en) * 2001-01-19 2002-07-31 Furatto:Kk Dental material
JP2003162922A (en) * 2001-11-28 2003-06-06 Fujitsu Ltd Conductive paste, wiring substrate using the same and manufacturing method therefor
JP2003279715A (en) * 2002-03-25 2003-10-02 Hitachi Metals Ltd PLANAR DISPLAY UNIT, Ag ALLOY-BASED REFLECTIVE FILM THEREFOR AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY- BASED REFLECTIVE FILM FORMATION
JP2005136375A (en) * 2003-10-09 2005-05-26 Hitachi Ltd Electronic component packaging method, semiconductor module, and semiconductor device
JP2007093817A (en) * 2005-09-28 2007-04-12 Fujitsu Ltd Optical communication device provided with reflector and method of forming reflector onto optical communication device
JP2008091818A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Lead frame for optical semiconductor device, optical semiconductor device using it, and these manufacturing methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212018A (en) * 2001-01-19 2002-07-31 Furatto:Kk Dental material
JP2003162922A (en) * 2001-11-28 2003-06-06 Fujitsu Ltd Conductive paste, wiring substrate using the same and manufacturing method therefor
JP2003279715A (en) * 2002-03-25 2003-10-02 Hitachi Metals Ltd PLANAR DISPLAY UNIT, Ag ALLOY-BASED REFLECTIVE FILM THEREFOR AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY- BASED REFLECTIVE FILM FORMATION
JP2005136375A (en) * 2003-10-09 2005-05-26 Hitachi Ltd Electronic component packaging method, semiconductor module, and semiconductor device
JP2007093817A (en) * 2005-09-28 2007-04-12 Fujitsu Ltd Optical communication device provided with reflector and method of forming reflector onto optical communication device
JP2008091818A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Lead frame for optical semiconductor device, optical semiconductor device using it, and these manufacturing methods

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122665A1 (en) * 2010-03-30 2011-10-06 大日本印刷株式会社 Leadframe or substrate for led, semiconductor device, and method for manufacturing leadframe or substrate for led
US9966517B2 (en) 2010-03-30 2018-05-08 Dai Nippon Printing Co., Ltd. LED leadframe or LED substrate, semiconductor device, and method for manufacturing LED leadframe or LED substrate
US9263315B2 (en) 2010-03-30 2016-02-16 Dai Nippon Printing Co., Ltd. LED leadframe or LED substrate, semiconductor device, and method for manufacturing LED leadframe or LED substrate
US9887331B2 (en) 2010-03-30 2018-02-06 Dai Nippon Printing Co., Ltd. LED leadframe or LED substrate, semiconductor device, and method for manufacturing LED leadframe or LED substrate
US9773960B2 (en) 2010-11-02 2017-09-26 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
JP2013051449A (en) * 2010-11-25 2013-03-14 Kyocera Corp Substrate for mounting light emitting element and light emitting device
US10043959B2 (en) 2011-03-18 2018-08-07 Koninklijke Philips N.V. Substrate with reflective coating including silicate or alkylsilicate network
US9660147B2 (en) 2011-03-18 2017-05-23 Koninklijke Philips N.V. Method for providing a reflective coating to a substrate for a light emitting device
US9123870B2 (en) * 2011-04-29 2015-09-01 Advanced Optoelectronic Technology, Inc. LED package structure
US20120273819A1 (en) * 2011-04-29 2012-11-01 Advanced Optoelectronic Technology, Inc. Led package structure
CN112585744A (en) * 2018-08-29 2021-03-30 京瓷株式会社 Wiring substrate, electronic device, and electronic module
JPWO2020045480A1 (en) * 2018-08-29 2021-09-02 京セラ株式会社 Wiring boards, electronics and electronic modules
US11582858B2 (en) 2018-08-29 2023-02-14 Kyocera Corporation Wiring substrate, electronic device and electronic module
JP7300454B2 (en) 2018-08-29 2023-06-29 京セラ株式会社 Wiring boards, electronic devices and electronic modules
US11930586B2 (en) 2018-08-29 2024-03-12 Kyocera Corporation Wiring substrate, electronic device and electronic module

Also Published As

Publication number Publication date
JP5355219B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP4737842B2 (en) Manufacturing method of light emitting element storage package
JP5355219B2 (en) Light emitting element mounting substrate and light emitting device
US9596747B2 (en) Wiring substrate and electronic device
CN104409616A (en) Flip chip LED integrated light source structure and preparation method thereof
JP5583051B2 (en) Light emitting element mounting substrate and light emitting device
JP2007273602A (en) Wiring board for light emitting element, and light emitting device
JP4072084B2 (en) Light emitting element storage package and light emitting device
JP2004289106A (en) Package for accommodating light emitting element and light emitting device
JP4132038B2 (en) Light emitting device
JP2004228549A (en) Package for housing light emitting element and light emitting device
JP4688674B2 (en) Light emitting element storage package and light emitting device
JP4163932B2 (en) Light emitting element storage package and light emitting device
JP2004207672A (en) Package for light emitting element and light emitting device
JP2005191203A (en) Package for housing light-emitting element, and light-emitting device
JP2005174998A (en) Package for storing light emitting element and light emitting device
JP2005210056A (en) Led ceramic package
JP6046421B2 (en) Wiring board and electronic device
JP2015159245A (en) Package for mounting light-emitting element and light-emitting device
JP4183175B2 (en) Light emitting element storage package and light emitting device
JP2004200410A (en) Package for housing light emitting element, and light emitting device
JP2004327504A (en) Package for light emitting element and light emitting device
JP4132039B2 (en) Light emitting element storage package and light emitting device
JP4070195B2 (en) Light emitting element storage package
JP4160916B2 (en) Manufacturing method of light emitting element storage package
JP4336137B2 (en) Light emitting element storage package and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5355219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150