JP2010135619A - Thermoelectric conversion module and generator using the same - Google Patents

Thermoelectric conversion module and generator using the same Download PDF

Info

Publication number
JP2010135619A
JP2010135619A JP2008311100A JP2008311100A JP2010135619A JP 2010135619 A JP2010135619 A JP 2010135619A JP 2008311100 A JP2008311100 A JP 2008311100A JP 2008311100 A JP2008311100 A JP 2008311100A JP 2010135619 A JP2010135619 A JP 2010135619A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
thermal conductivity
conversion module
temperature
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008311100A
Other languages
Japanese (ja)
Other versions
JP5067352B2 (en
Inventor
Masahiro Ito
雅宏 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008311100A priority Critical patent/JP5067352B2/en
Publication of JP2010135619A publication Critical patent/JP2010135619A/en
Application granted granted Critical
Publication of JP5067352B2 publication Critical patent/JP5067352B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module capable of achieving an increase in power generation quantity by achieving a large difference in temperature in an element, and to provide a generator using the thermoelectric conversion module. <P>SOLUTION: The thermoelectric conversion module 100 has a structure in which a substrate is provided on both outside surfaces of a thermoelectric conversion unit assembly 60 having a plurality of thermoelectric conversion units in which p-type thin film layers 11 and n-type thin film layers 12 are laminated via an electric insulating layer 13 and the thin film layers are electrically connected in a connection 14. In the module, the substrate 20 and 30 consist of low heat transmission parts 21, 31 for covering the surface of the assembly 60, and high heat transmission parts 22, 32 embedded in through-holes provided on the low heat transmission parts and having one end connected to the vicinity of the connections 14 of the p-type and n-type thin film layers and the other end exposed from the holes of the surfaces of the low heat transmission parts, respectively. The surfaces of the high heat transmission parts exposed from the low heat transmission parts are each connected to high heat transmission temperature contact parts 40, 50, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、温度差を利用して熱を電気に変換する熱電変換モジュールとこの熱電変換モジュールを太陽電池に接続した発電装置に関するものである。   The present invention relates to a thermoelectric conversion module that converts heat into electricity using a temperature difference and a power generation device in which the thermoelectric conversion module is connected to a solar cell.

地球温暖化が進行し、天候不順や海水上昇等々の問題が現実的に深刻化してきた現在、温暖化ガスである二酸化炭素を排出しないエネルギー源として太陽電池の重要性は、日本だけでなく、欧州、米国でも認識され、家庭や事業所への導入が盛んになってきている。導入されている太陽電池の7割は、Si系の太陽電池であり、そのほとんどは結晶系(単結晶あるいは多結晶系)である。   As global warming has progressed and problems such as bad weather and rising seawater have become seriously serious, solar cells are not only important in Japan as an energy source that does not emit carbon dioxide, a greenhouse gas, It is also recognized in Europe and the United States, and its introduction into homes and offices has become popular. Seventy percent of the solar cells introduced are Si-based solar cells, most of which are crystalline (single crystal or polycrystalline).

真夏の昼間、地球に降り注ぐ太陽エネルギーは1000W/m程度であり、これ等の太陽電池の最適条件下での平均的な発電量は150W/m程度である。つまり、変換効率は15%程度である。しかし、現実的には、住んでいる場所の緯度、家の向き、障害物の存在の有無、季節の差、天候の良し悪し等に強く依存し、15%という値は年間を通して実現されるものではない。 During midsummer daytime, the solar energy falling on the earth is about 1000 W / m 2 , and the average power generation amount under these optimum conditions of these solar cells is about 150 W / m 2 . That is, the conversion efficiency is about 15%. However, in reality, it depends strongly on the latitude of the place where you live, the orientation of the house, the presence of obstacles, the difference in season, the weather, and the like, and the value of 15% is realized throughout the year. is not.

平均的な家庭での必要発電量は4kW程度であろうが、平均的な家庭が太陽電池を導入しようとする場合、26m程度が必要となる。実効的な効率を考えると、40m程度が必要であろう。そのような屋根面積の確保はそう容易なものではない。従って、面積をできるだけ小さくするには、少しでも変換効率の高い太陽電池ユニットが必要とされる。 The average amount of power required in an average home will be about 4 kW, but if the average home wants to introduce solar cells, about 26 m 2 will be required. Considering effective efficiency, about 40 m 2 will be necessary. Securing such a roof area is not so easy. Therefore, in order to make the area as small as possible, a solar cell unit having a high conversion efficiency is required.

また、真夏の昼間、太陽電池にとって最も発電量の多い時間帯では、太陽電池の温度は80℃以上になる。結晶シリコン系太陽電池は80℃まで温度が上がると、室温における変換効率より20〜30%も落ちる(図1参照)。効率が落ちることを補償しようとすると、屋根に載せる太陽電池の面積を大きくしなければならなくなり、高価になるだけでなく、屋根の上でその面積の確保も容易でないというのが現実である。太陽電池の実効的な効率がアップできれば、必要とされる屋根上の太陽電池面積も小さくてすみ、コスト低減にもつながる。これ等の理由から、安価で発電効率の高い太陽電池が望まれる。   Further, during the daytime of midsummer, the solar cell temperature is 80 ° C. or higher in the time zone where the amount of power generation is the largest for the solar cell. When the temperature of a crystalline silicon solar cell rises to 80 ° C., the conversion efficiency at room temperature falls by 20 to 30% (see FIG. 1). In order to compensate for the decrease in efficiency, the area of the solar cell placed on the roof has to be increased, which is not only expensive, but it is also difficult to secure the area on the roof. If the effective efficiency of the solar cell can be increased, the required solar cell area on the roof can be reduced, leading to cost reduction. For these reasons, an inexpensive solar cell with high power generation efficiency is desired.

真夏の晴天の正午頃、太陽電池自体が80℃近くなることを逆に利用し、熱電変換素子を裏面に貼付して発電しようというアイデアは過去にもあった(特許文献1、2参照)が、ビジネスとしては実現されていない。その理由は、できるだけ多く発電させるために、従来の熱電変換素子は、高温側と低温側との間ができるだけ断熱的になるような構造をとっていたことによる。そのため、従来の熱電変換素子を仮に太陽電池に接着すると、太陽電池の温度が更に上昇し、これに起因して太陽電池自体からの発電量が減るため、熱電変換素子を接着して発電量を補助しても意味が無いと考えられていたことが大きく影響していた。   In the past, there was an idea to generate electricity by applying the thermoelectric conversion element on the back surface, taking advantage of the fact that the solar cell itself would be close to 80 ° C. around noon on a sunny day in midsummer (see Patent Documents 1 and 2). It has not been realized as a business. This is because, in order to generate as much power as possible, the conventional thermoelectric conversion element has a structure in which the space between the high temperature side and the low temperature side is as adiabatic as possible. Therefore, if the conventional thermoelectric conversion element is temporarily bonded to the solar cell, the temperature of the solar cell further increases, resulting in a decrease in the amount of power generated from the solar cell itself. The fact that it was thought that there was no point in assisting had a great influence.

更に、従来の熱電変換素子が作りにくいため、小さい面積での素子しか作られなかったこと、そのため、大きな太陽電池の裏に上記素子を接着する工程の複雑さも理由として挙げられる。   Furthermore, since it is difficult to produce a conventional thermoelectric conversion element, only an element with a small area can be produced. For this reason, the complexity of the process of adhering the element to the back of a large solar cell is also cited.

また、熱電変換素子があまりに高価であるという事情もある。これは、従来のゼーベック効果を利用した熱電変換素子の構造上、p型とn型の素子を“π”の字状に結合して下基板に垂直に立てる構造とし、n型−p型−n型−p型というように直列につなぐ必要があり、更に、一般的に使用される熱電材料がBi−Te系であり、この材料がもろい材質の上、半田での接合が難しいという事情のため、ほとんど手作りでしか作られないためということが理由に挙げられる。   There is also a situation that the thermoelectric conversion element is too expensive. This is a structure of a conventional thermoelectric conversion element using the Seebeck effect, and a structure in which a p-type and an n-type element are coupled in a “π” shape to stand vertically to a lower substrate. It is necessary to connect n-type-p-type in series, and the thermoelectric material generally used is Bi-Te, which is a brittle material and difficult to join with solder. For this reason, the reason is that it can only be made by hand.

そのため、低価格であることが必須である太陽電池基板の裏面に使用するのは現実的ではなく、実際に商品としては市場に現れていなかった。   For this reason, it is not practical to use it on the back surface of a solar cell substrate, which is indispensable for a low price, and has not actually appeared in the market as a product.

このような技術的背景の下、特許文献3と非特許文献1には、効率良く発電を行えるとする熱電変換素子が提案されている。すなわち、この熱電変換素子は、p型材料から成る薄膜のp型熱電変換素子とn型材料から成る薄膜のn型熱電変換素子とが直列接続となるように成膜され、かつ、その両側に電極を成膜して熱電変換ユニットを構成すると共に、この熱電変換ユニットの両面に、熱伝導率の異なる2種類の材料で構成された柔軟性を有するフィルム状基板を設けたもので、熱電変換ユニット側に、熱伝導率の低い絶縁体であるポリイミド樹脂等の材料にて皮膜を設け、熱電変換ユニットの接合面と反対側に、熱伝導率の高い、銅等の金属材料が上記フィルム状基板の外面の一部分に位置するように設けられたものである。   Under such a technical background, Patent Literature 3 and Non-Patent Literature 1 propose thermoelectric conversion elements that can generate power efficiently. That is, this thermoelectric conversion element is formed such that a thin film p-type thermoelectric conversion element made of a p-type material and a thin film n-type thermoelectric conversion element made of an n-type material are connected in series, and are formed on both sides thereof. A thermoelectric conversion unit is formed by forming electrodes, and a flexible film-like substrate composed of two types of materials having different thermal conductivities is provided on both sides of the thermoelectric conversion unit. On the unit side, a film is provided with a material such as polyimide resin, which is an insulator with low thermal conductivity, and on the side opposite to the joining surface of the thermoelectric conversion unit, a metal material such as copper with high thermal conductivity is in the form of the film. It is provided so that it may be located in a part of outer surface of a board | substrate.

このような構成を採用することにより、上記フィルム状基板の上下面に温度差を加えたときの各層の熱流束の違いからフィルム状基板内部に温度差を生じさせ、フィルム状基板の厚さ方向の温度勾配をフィルム状基板の面内方向の温度勾配に効率よく変換させ、この温度勾配を利用して、熱電変換ユニットで効率良く発電を行おうとするものであった。そして、特許文献3と非特許文献1に記載の発明は、機械的強度が高く、加工性に優れ、自動化が容易で大量生産が可能であり、更に、フレキシブルであることを生かし曲面等への設置も可能であるため設置場所が制限されない発電効率の高い熱電変換素子を提供することを目的としていた。   By adopting such a configuration, a temperature difference is generated inside the film substrate from the difference in heat flux of each layer when a temperature difference is applied to the upper and lower surfaces of the film substrate, and the thickness direction of the film substrate The temperature gradient is efficiently converted into a temperature gradient in the in-plane direction of the film-like substrate, and the temperature gradient is used to efficiently generate power with the thermoelectric conversion unit. The inventions described in Patent Document 3 and Non-Patent Document 1 have high mechanical strength, excellent workability, are easy to automate, can be mass-produced, and are flexible to curved surfaces. The object of the present invention is to provide a thermoelectric conversion element with high power generation efficiency that can be installed and is not limited in installation location.

具体的には、マスクを利用し、樹脂シート上に素子構造を制御しながらスパッタリング法によりp型、n型の熱電材料をそれぞれ成膜して熱電変換素子部を形成し、かつ、熱電変換素子部上に別の樹脂シートを貼り付けることで熱電変換素子をサンドイッチする。次に、この接着した樹脂シートの両外側面上でかつp型、n型の熱電変換素子の接合部に相当する部位に、銅等の熱伝導の良い金属により、上記接合部と同等サイズで同形のパターンを形成する。   Specifically, using a mask, a p-type and n-type thermoelectric material is formed on the resin sheet by sputtering while controlling the element structure to form a thermoelectric conversion element portion, and the thermoelectric conversion element The thermoelectric conversion element is sandwiched by attaching another resin sheet on the part. Next, on both outer side surfaces of the bonded resin sheet and in a portion corresponding to the joint portion of the p-type and n-type thermoelectric conversion elements, a metal having good thermal conductivity such as copper is used to have the same size as the joint portion. Form an isomorphic pattern.

実際には、銅(図2中、material-Bと示す)が片面に塗布あるいは貼付されたポリイミドシート(図2中、material-Aと示す)を利用してその裏面に熱電変換素子(図2中、TE materialと示す)を形成し、もう1枚のポリイミドシートの銅が付いていない裏面側を上記熱電変換素子上に接着し、かつ、貼り合わせシートの両表面にある銅薄膜をエッチングして所望のパターンを切る。この構造体の断面を図2に示す。この銅部が、高温部、低温部に接触することになる。そこからの熱伝導で、樹脂シート面に平行な熱電変換素子内に温度差がついて発電するというものであった。   Actually, a thermoelectric conversion element (FIG. 2) is formed on the back surface of a polyimide sheet (shown as material-A in FIG. 2) with copper (shown as material-B in FIG. 2) coated or pasted on one side. The other side of the polyimide sheet with no copper attached is bonded onto the thermoelectric conversion element, and the copper thin films on both surfaces of the bonded sheet are etched. To cut the desired pattern. A cross section of this structure is shown in FIG. This copper part comes into contact with the high temperature part and the low temperature part. Due to the heat conduction from there, there was a temperature difference in the thermoelectric conversion element parallel to the resin sheet surface, and power was generated.

しかし、この方法では、高温側、低温側の温度接触部(以下、温度接触部と称する)からの熱伝導が樹脂内での熱拡散による熱伝導のみのため、熱電変換素子への熱伝導性が低く、熱電変換素子内での温度勾配が付きにくいことから発電量が小さくなってしまうということが課題となっていた。   However, in this method, the heat conduction from the temperature contact portion on the high temperature side and the low temperature side (hereinafter referred to as the temperature contact portion) is only the heat conduction by thermal diffusion in the resin, and therefore the heat conductivity to the thermoelectric conversion element. However, since the temperature gradient is low and the temperature gradient in the thermoelectric conversion element is difficult to be attached, the problem is that the amount of power generation becomes small.

一方、非特許文献2、3においては、p型材料から成るp型薄膜層とn型材料から成るn型薄膜層が電気絶縁層を介して積層されかつ上記p型薄膜層とn型薄膜層が各薄膜層の端部側において電気的に接続された熱電変換ユニットを、上記薄膜層の厚さ方向に亘り電気絶縁層を介し複数積層させた構造の熱電変換モジュールも提案されている。   On the other hand, in Non-Patent Documents 2 and 3, a p-type thin film layer made of a p-type material and an n-type thin film layer made of an n-type material are laminated via an electrical insulating layer, and the p-type thin film layer and the n-type thin film layer are stacked. A thermoelectric conversion module having a structure in which a plurality of thermoelectric conversion units electrically connected on the end side of each thin film layer is laminated via an electric insulating layer in the thickness direction of the thin film layer has also been proposed.

しかし、非特許文献2、3で提案された熱電変換モジュールにおいては、各薄膜層の面方向すなわち水平面内に温度差を作ることを前提に考案されているため、上記電気絶縁層を介し積層されたp型薄膜層とn型薄膜層から成る熱電変換ユニットの各端面を、高温側、低温側の温度接触部にそれぞれ接触させて温度差を作る構造が想定されていることから、非特許文献2、3の熱電変換モジュールは、極めて限られた配置でしか利用することができない問題が存在した。
特開2001−53322号公報 特開2003−69070号公報 特開2006−186255号公報 NEDO平成18年度研究助成事業成果報告会 産業技術研究助成事業「エネルギー・環境技術」プロジェクトID:03B70010c=「低温廃熱利用のためのシート状フレキシブル熱電変換素子の研究開発」の発表資料 M.S.Dresselhaus 著“Low-dimensional thermoelectric materials” Phys. Solid State 41、(1999)679 R.Venkatasubramanian 他 著“Aspects of thin film superlattice materials, devices, and applications” www.mrs.org/bulletin 31, (2006)211
However, the thermoelectric conversion modules proposed in Non-Patent Documents 2 and 3 are devised on the assumption that a temperature difference is created in the plane direction of each thin film layer, that is, in the horizontal plane. It is assumed that a temperature difference is created by bringing each end face of the thermoelectric conversion unit composed of the p-type thin film layer and the n-type thin film layer into contact with the temperature contact portions on the high temperature side and the low temperature side, respectively. A few thermoelectric conversion modules have the problem that they can only be used in a very limited arrangement.
JP 2001-53322 A JP 2003-69070 A JP 2006-186255 A NEDO 2006 Research Grants Project Results Report Industrial Technology Research Grants Project “Energy / Environmental Technology” Project ID: 03B70010c = Presentation of “Research and development of sheet-like flexible thermoelectric conversion elements for low-temperature waste heat utilization” “Low-dimensional thermoelectric materials” by MSDresselhaus Phys. Solid State 41, (1999) 679 R. Venkatasubramanian et al. “Aspects of thin film superlattice materials, devices, and applications” www.mrs.org/bulletin 31, (2006) 211

特許文献3と非特許文献1で提案された熱電変換素子の上記問題については先の特許出願(特願2008−149062号明細書参照)で既に解消している。従って、本発明が課題とするところは、非特許文献2、3で提案されかつ極めて限られた配置でしか利用できない熱電変換モジュールの上記問題を解消することにある。   The above-mentioned problems of the thermoelectric conversion elements proposed in Patent Document 3 and Non-Patent Document 1 have already been solved in the previous patent application (see Japanese Patent Application No. 2008-149062). Accordingly, the problem to be solved by the present invention is to solve the above-mentioned problems of the thermoelectric conversion module proposed in Non-Patent Documents 2 and 3 and available only in a very limited arrangement.

そこで、p型材料から成るp型薄膜層とn型材料から成るn型薄膜層が電気絶縁層を介して積層されかつ上記p型薄膜層とn型薄膜層がこれ等薄膜層端部側の接続部において電気的に接続されている熱電変換ユニットを、上記薄膜層の厚さ方向に単数あるいは電気絶縁層を介し複数積層させた熱電変換ユニット単体あるいは熱電変換ユニット積層集合体に上述の温度差を作る構造に関して本発明者が鋭意検討を行った結果、非特許文献2、3で想定されている熱電変換ユニットの各端面を、高温側、低温側の温度接触部に接触させる構造に代えて、上記熱電変換ユニット単体あるいは熱電変換ユニット積層集合体の最外側両面に、特願2008−149062号において実証済みである低熱伝導部と高熱伝導部とで構成された基板を設ける構造を採った場合でも、高温部、低温部の温度が効率よく熱電変換ユニット(熱電素子部)に伝わるようになり、これにより熱電変換モジュール内に大きな温度差が実現されることを見出すに至った。本発明はこのような技術的発見により完成されている。   Therefore, a p-type thin film layer made of a p-type material and an n-type thin film layer made of an n-type material are laminated via an electrical insulating layer, and the p-type thin film layer and the n-type thin film layer are disposed on the end side of these thin film layers. The above-mentioned temperature difference is applied to a single thermoelectric conversion unit or a thermoelectric conversion unit stacked assembly in which one or more thermoelectric conversion units electrically connected in the connecting portion are stacked in the thickness direction of the thin film layer via an electric insulating layer. As a result of intensive studies by the inventor regarding the structure for forming the thermoelectric conversion unit, each end face of the thermoelectric conversion unit assumed in Non-Patent Documents 2 and 3 is replaced with a structure in which the temperature contact portions on the high temperature side and the low temperature side are brought into contact with each other. In addition, a substrate composed of a low thermal conductivity portion and a high thermal conductivity portion, which has been proven in Japanese Patent Application No. 2008-149062, is provided on both outermost surfaces of the thermoelectric conversion unit alone or the thermoelectric conversion unit laminated assembly. Even in the case of adopting, the temperature of the high temperature part and the low temperature part can be efficiently transmitted to the thermoelectric conversion unit (thermoelectric element part), and this has led to the finding that a large temperature difference is realized in the thermoelectric conversion module. . The present invention has been completed by such technical discovery.

すなわち、請求項1に係る発明は、
p型材料から成るp型薄膜層とn型材料から成るn型薄膜層が電気絶縁層を介して積層されかつ上記p型薄膜層とn型薄膜層がこれ等薄膜層端部側の接続部において電気的に接続されている熱電変換ユニットを、上記薄膜層の厚さ方向に単数あるいは電気絶縁層を介し複数積層させた熱電変換ユニット単体あるいは熱電変換ユニット積層集合体の最外側両面に、熱伝導率の異なる材料で構成された基板がそれぞれ設けられ、一方の基板側を高温側にかつ他方の基板側を低温側に配置して成る熱電変換モジュールを前提とし、
上記各基板が、熱伝導率の低い材料で構成されかつ熱電変換ユニット単体表面あるいはその積層集合体の最外側表面を被覆する低熱伝導部と、熱伝導率の高い材料で構成されかつ上記低熱伝導部の厚さ方向に沿って設けられた貫通孔若しくは凹部内に埋め込まれると共にその一端側が熱電変換ユニットにおける上記接続部の近傍部位に接続または近接され他端側が低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部とで構成され、かつ、低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部の表面が熱伝導率の高い材料で構成される温度接触部に接続されていることを特徴とする。
That is, the invention according to claim 1
A p-type thin film layer made of a p-type material and an n-type thin film layer made of an n-type material are laminated via an electrical insulating layer, and the p-type thin film layer and the n-type thin film layer are connected to the end portions of these thin film layers. The thermoelectric conversion units electrically connected to each other in the thickness direction of the thin film layer or a plurality of the thermoelectric conversion units laminated via the electric insulating layer are heated on both outermost surfaces of the thermoelectric conversion unit or the thermoelectric conversion unit laminated assembly. Assuming a thermoelectric conversion module in which substrates made of materials having different conductivities are provided, and one substrate side is disposed on the high temperature side and the other substrate side is disposed on the low temperature side,
Each of the substrates is made of a material having a low thermal conductivity and is composed of a low thermal conductivity portion covering the surface of the single unit of the thermoelectric conversion unit or the outermost surface of the laminated assembly, and a material having a high thermal conductivity and the low thermal conductivity. Embedded in a through-hole or recess provided along the thickness direction of the portion, and one end of the thermoelectric conversion unit is connected to or close to the vicinity of the connection portion, and the other end is a through-hole or recess in the surface of the low heat conducting portion. And the surface of the high thermal conductivity portion exposed from the through hole or recess of the surface of the low thermal conductivity portion is connected to a temperature contact portion composed of a material having high thermal conductivity. It is characterized by.

次に、請求項2に係る発明は、
請求項1に記載の発明に係る熱電変換モジュールを前提とし、
熱伝導率の高い材料が金属であることを特徴とし、
請求項3に係る発明は、
請求項1〜2のいずれかに記載の発明に係る熱電変換モジュールを前提とし、
一方の基板における高熱伝導部表面が接続される温度接触部が高温側若しくは低温側に配置され、他方の基板における温度接触部が大気側に熱的に接した状態で配置されることを特徴とし、
請求項4に係る発明は、
請求項3に記載の発明に係る熱電変換モジュールを前提とし、
上記基板における高熱伝導部の熱伝導度(κc)並びに断面積(Sc)と、上記基板における低熱伝導部の熱伝導度(κa)並びに断面積(Sa)とが、
1.2κa×Sa ≧ κc×Sc (式1)
の関係を有し、かつ
0.8κa×Sa ≦ κc×Sc (式2)
の関係を有していることを特徴とする。
Next, the invention according to claim 2
Based on the thermoelectric conversion module according to the invention of claim 1,
The material with high thermal conductivity is metal,
The invention according to claim 3
Based on the thermoelectric conversion module according to any one of claims 1 and 2,
The temperature contact portion to which the surface of the high thermal conductivity portion of one substrate is connected is disposed on the high temperature side or the low temperature side, and the temperature contact portion on the other substrate is disposed in a state of being in thermal contact with the atmosphere side. ,
The invention according to claim 4
Based on the thermoelectric conversion module according to the invention of claim 3,
The thermal conductivity (κc) and the cross-sectional area (Sc) of the high thermal conductivity portion in the substrate, and the thermal conductivity (κa) and the cross-sectional area (Sa) of the low thermal conductivity portion in the substrate are:
1.2κa × Sa ≧ κc × Sc (Formula 1)
And having a relationship
0.8κa × Sa ≦ κc × Sc (Formula 2)
It has the relationship of these.

また、請求項5に係る発明は、
請求項1〜4のいずれかに記載の発明に係る熱電変換モジュールを前提とし、
上記温度接触部の表面が、略黒色の酸化物膜あるいは熱伝導率の高い材料で被覆されていることを特徴とし、
請求項6に係る発明は、
請求項1〜4のいずれかに記載の発明に係る熱電変換モジュールを前提とし、
低温側に配置される基板の上記温度接触部の表面が、粗面化されていることを特徴とし、
請求項7に係る発明は、
請求項1〜4のいずれかに記載の発明に係る熱電変換モジュールを前提とし、
低温側に配置される基板の上記温度接触部の表面に、放熱板が付加されていることを特徴とし、
請求項8に係る発明は、
請求項1〜7のいずれかに記載の発明に係る熱電変換モジュールを前提とし、
上記基板における熱伝導率の低い材料が樹脂あるいはガラスであり、かつ、熱電変換ユニット単体面あるいは熱電変換ユニット積層集合体の最外側面から上記基板表面までの厚さが75μm以上であることを特徴とするものである。
The invention according to claim 5
Based on the thermoelectric conversion module according to any one of claims 1 to 4,
The surface of the temperature contact portion is covered with a substantially black oxide film or a material having high thermal conductivity,
The invention according to claim 6
Based on the thermoelectric conversion module according to any one of claims 1 to 4,
The surface of the temperature contact portion of the substrate disposed on the low temperature side is roughened,
The invention according to claim 7 provides:
Based on the thermoelectric conversion module according to any one of claims 1 to 4,
A heat sink is added to the surface of the temperature contact portion of the substrate disposed on the low temperature side,
The invention according to claim 8 provides:
Assuming the thermoelectric conversion module according to any one of claims 1 to 7,
The material having low thermal conductivity in the substrate is resin or glass, and the thickness from the outermost surface of the thermoelectric conversion unit single-sided surface or the thermoelectric conversion unit laminated assembly to the substrate surface is 75 μm or more. It is what.

次に、請求項9に係る発明は、
発電装置を前提とし、
太陽電池の裏面側に請求項1〜8のいずれかに記載の熱電変換モジュールを接着させ、太陽電池と外気との温度差で発電させることを特徴とし、
請求項10に係る発明は、
請求項9に記載の発明に係る発電装置を前提とし、
太陽電池と熱電変換モジュールの接着に用いる接着剤の熱伝導率を(W/mK)、接着剤の厚みを(d)としたとき、(W/mK)/(d)の比が1000以上であることを特徴とし、
請求項11に係る発明は、
請求項9に記載の発明に係る発電装置を前提とし、
上記熱電変換モジュールにおける太陽電池と接触していない面側の基板表面が、低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部に接続された各温度接触部により被覆されていることを特徴とし、
請求項12に係る発明は、
請求項9に記載の発明に係る発電装置を前提とし、
上記太陽電池が、アモルファス系Si太陽電池であることを特徴とし、
請求項13に係る発明は、
請求項9に記載の発明に係る発電装置を前提とし、
上記熱電変換モジュールにおける太陽電池と接触している面側の温度が、太陽電池と接触していない面側の温度より低くなったとき、電気の正負を切り替えるスイッチが熱電変換モジュールの回路中に設けられていることを特徴とするものである。
Next, the invention according to claim 9 is:
Assuming a power generator,
The thermoelectric conversion module according to any one of claims 1 to 8 is adhered to the back side of the solar cell, and the power is generated by a temperature difference between the solar cell and the outside air,
The invention according to claim 10 is:
On the premise of the power generation device according to the invention of claim 9,
When the thermal conductivity of the adhesive used for bonding the solar cell and the thermoelectric conversion module is (W / mK) and the thickness of the adhesive is (d), the ratio of (W / mK) / (d) is 1000 or more. It is characterized by
The invention according to claim 11 is:
On the premise of the power generation device according to the invention of claim 9,
The substrate surface on the surface side not contacting the solar cell in the thermoelectric conversion module is covered with each temperature contact portion connected to the high heat conduction portion exposed from the through hole or the concave portion of the surface of the low heat conduction portion. age,
The invention according to claim 12
On the premise of the power generation device according to the invention of claim 9,
The solar cell is an amorphous Si solar cell,
The invention according to claim 13 is:
On the premise of the power generation device according to the invention of claim 9,
When the temperature on the surface side in contact with the solar cell in the thermoelectric conversion module is lower than the temperature on the surface side not in contact with the solar cell, a switch that switches between positive and negative of electricity is provided in the circuit of the thermoelectric conversion module It is characterized by being.

本発明に係る熱電変換モジュールによれば、
p型材料から成るp型薄膜層とn型材料から成るn型薄膜層が電気絶縁層を介して積層されかつ上記p型薄膜層とn型薄膜層がこれ等薄膜層端部側の接続部において電気的に接続されている熱電変換ユニットを、上記薄膜層の厚さ方向に単数あるいは電気絶縁層を介し複数積層させた熱電変換ユニット単体あるいは熱電変換ユニット積層集合体の最外側両面に、熱伝導率の異なる材料で構成された基板がそれぞれ設けられ、一方の基板側を高温側にかつ他方の基板側を低温側に配置して成る熱電変換モジュールにおいて、
上記各基板が、熱伝導率の低い材料で構成されかつ熱電変換ユニット単体表面あるいはその積層集合体の最外側表面を被覆する低熱伝導部と、熱伝導率の高い材料で構成されかつ上記低熱伝導部の厚さ方向に沿って設けられた貫通孔若しくは凹部内に埋め込まれると共にその一端側が熱電変換ユニットにおける上記接続部の近傍部位に接続または近接され他端側が低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部とで構成され、かつ、低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部の表面が熱伝導率の高い材料で構成される温度接触部に接続される構造を有している。
According to the thermoelectric conversion module according to the present invention,
A p-type thin film layer made of a p-type material and an n-type thin film layer made of an n-type material are laminated via an electrical insulating layer, and the p-type thin film layer and the n-type thin film layer are connected to the end portions of these thin film layers. The thermoelectric conversion units electrically connected to each other in the thickness direction of the thin film layer or a plurality of the thermoelectric conversion units laminated via the electric insulating layer are heated on both outermost surfaces of the thermoelectric conversion unit or the thermoelectric conversion unit laminated assembly. In the thermoelectric conversion module comprising substrates each made of a material having different conductivity, and one substrate side being disposed on the high temperature side and the other substrate side being disposed on the low temperature side.
Each of the substrates is made of a material having a low thermal conductivity and is composed of a low thermal conductivity portion covering the surface of the single unit of the thermoelectric conversion unit or the outermost surface of the laminated assembly, and a material having a high thermal conductivity and the low thermal conductivity. Embedded in a through-hole or recess provided along the thickness direction of the portion, and one end of the thermoelectric conversion unit is connected to or close to the vicinity of the connection portion, and the other end is a through-hole or recess in the surface of the low heat conducting portion. And a structure in which the surface of the high thermal conductivity portion exposed from the through-hole or the concave portion of the surface of the low thermal conductivity portion is connected to a temperature contact portion composed of a material having a high thermal conductivity. Have.

このため、高温部、低温部の温度が、各温度接触部と各基板を介して効率よく熱電変換ユニット(熱電素子部)に伝わるようになり、これにより熱電変換モジュール内に大きな温度差が実現されることになることから発電量を増加、改善させることが可能となる。   For this reason, the temperature of the high temperature part and the low temperature part can be efficiently transmitted to the thermoelectric conversion unit (thermoelectric element part) through each temperature contact part and each substrate, thereby realizing a large temperature difference in the thermoelectric conversion module. As a result, the amount of power generation can be increased and improved.

また、非特許文献2、3で想定されている熱電変換ユニットの各端面を、高温側、低温側の温度接触部に接触させる構造でなく、熱電変換ユニット単体あるいは熱電変換ユニット積層集合体の最外側両面に低熱伝導部と高熱伝導部とで構成される上記基板が設けられる構造になっているため、熱電変換モジュールにおける配置の自由度を大きく改善することが可能となる。   In addition, each end surface of the thermoelectric conversion unit assumed in Non-Patent Documents 2 and 3 is not a structure in which the end surface of the thermoelectric conversion unit is in contact with the temperature contact portion on the high temperature side or the low temperature side. Since the above-described substrate composed of the low thermal conductivity portion and the high thermal conductivity portion is provided on both outer surfaces, the degree of freedom of arrangement in the thermoelectric conversion module can be greatly improved.

更に、本発明に係る熱電変換モジュールを太陽電池の裏面側に接着させることにより、太陽電池における発電効率の補助を行うことができ、太陽電池の実効的な発電効率を上げることが可能となる。   Furthermore, by adhering the thermoelectric conversion module according to the present invention to the back surface side of the solar cell, the power generation efficiency in the solar cell can be assisted, and the effective power generation efficiency of the solar cell can be increased.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、本発明に係る熱電変換モジュール100は、図3に示すようにp型材料から成るp型薄膜層11とn型材料から成るn型薄膜層12が電気絶縁層13を介して積層されかつ上記p型薄膜層11とn型薄膜層12がこれ等薄膜層端部側の接続部14において電気的に接続されている熱電変換ユニット10を、上記薄膜層の厚さ方向に電気絶縁層13を介し2個積層させた熱電変換ユニット積層集合体60の最外側両面に、熱伝導率の異なる材料で構成された基板20、30がそれぞれ設けられ、一方の基板側を高温側にかつ他方の基板側を低温側に配置して成る熱電変換モジュールであって、上記各基板20、30が、熱伝導率の低い材料で構成されかつ熱電変換ユニット積層集合体60の最外側表面を被覆する低熱伝導部21、31と、熱伝導率の高い材料で構成されかつ上記低熱伝導部の厚さ方向に沿って設けられた貫通孔若しくは凹部内に埋め込まれると共にその一端側が熱電変換ユニット10における上記接続部14の近傍に設けられた熱電極部23、33に接続され他端側が低熱伝導部21、31表面の貫通孔若しくは凹部から露出する高熱伝導部22、32とで構成され、かつ、低熱伝導部21、31表面の貫通孔若しくは凹部から露出する高熱伝導部22、32の表面が熱伝導率の高い材料で構成される温度接触部40、50に接続されていることを特徴とする。   First, in the thermoelectric conversion module 100 according to the present invention, as shown in FIG. 3, a p-type thin film layer 11 made of a p-type material and an n-type thin film layer 12 made of an n-type material are laminated via an electrical insulating layer 13 and The thermoelectric conversion unit 10 in which the p-type thin film layer 11 and the n-type thin film layer 12 are electrically connected at the connection portion 14 on the end side of the thin film layer is connected to the electric insulating layer 13 in the thickness direction of the thin film layer. The two substrates 20 and 30 made of materials having different thermal conductivities are provided on both outermost surfaces of the thermoelectric conversion unit laminate assembly 60 laminated through the two, respectively. A thermoelectric conversion module having a substrate side arranged on a low temperature side, wherein each of the substrates 20 and 30 is made of a material having low thermal conductivity and covers the outermost surface of the thermoelectric conversion unit laminate assembly 60. Conductive parts 21, 31 and It is made of a material having high thermal conductivity and is embedded in a through hole or a recess provided along the thickness direction of the low thermal conductivity portion, and one end thereof is provided in the vicinity of the connection portion 14 in the thermoelectric conversion unit 10. The other end side is connected to the thermal electrode parts 23 and 33 and the high heat conduction parts 22 and 32 exposed from the through holes or the recesses on the surface of the low heat conduction parts 21 and 31, and the surface of the low heat conduction parts 21 and 31 is penetrated. The surfaces of the high thermal conductivity portions 22 and 32 exposed from the holes or the recesses are connected to temperature contact portions 40 and 50 made of a material having high thermal conductivity.

そして、本発明に係る熱電変換モジュール100の符号20で示す基板側を高温側に、符号30で示す基板側を低温側にそれぞれ配置した場合、高温の温度接触部40における熱(温度)が基板20の高熱伝導部22と上記熱電極部23を介して図面上側に位置する熱電変換ユニット10(熱電素子部)に伝わり、また、図面下側に位置する熱電変換ユニット10(熱電素子部)からの熱(温度)も熱電極部33と基板30の高熱伝導部32を介し低温の温度接触部50に効率よく伝わるため、熱電変換モジュール100内に大きな温度差を実現させることが可能となる。

1.熱電変換モジュールの構成
(a)熱電変換材料
熱電変換材料としては、高性能を有するIrSb、BiTe、PbTe等のカルコゲン系化合物の他、熱電特性は低いが資源的に豊富なFeSi、SiGe等の珪化物が挙げられる。また、Si半導体中のキャリアー濃度を1024(1/m)程度になるようにP、B、Al等種々の添加元素の単独または複合添加とその添加量を調整することにより、ゼーベック係数が極めて大きく、熱電変換効率を著しく高めたSi基熱電変換材料も利用することができる。その他、公知のいずれの材質も採用可能である。Siに、Ge、C、Snのうち少なくとも1種を5〜10原子%、Siをp型半導体またはn型半導体となすための添加元素のうち少なくとも1種を0.001原子%〜20原子%含有し、多結晶Siの粒界部に上記Ge、C、Snの1種以上あるいは更にp型半導体またはn型半導体となすための添加元素の1種以上が析出した結晶組織を有するSi基熱電変換材料等のSi基熱電変換材料は熱電変換効率が著しく高いため好ましい。
(b)熱伝導率の高い材料
上記基板の高熱伝導部や温度接触部を構成する熱伝導率の高い材料は金属等であることが好ましく、具体的には、銅、アルミニウム、その他、熱伝導度の高い金属、合金、セラミックス等が挙げられる。また、低温側に配置される基板と高温側に配置される基板の高熱伝導部については、両方とも同一の材料で構成してもよいし異なる材料を用いて構成してもよく任意である。
(c)温度接触部
上記温度接触部の表面は、略黒色の酸化物膜あるいは熱伝導率の高い材料で被覆されていることが好ましい。上記材料としては、銅の酸化物、熱伝導度が高く対環境性の高い樹脂材料等が挙げられ、これにより、高温部、低温部の温度に追随しやすくなり、熱電変換モジュール内部での温度勾配が大きくなり、大発電が可能となり好ましい。
And when the board | substrate side shown with the code | symbol 20 of the thermoelectric conversion module 100 which concerns on this invention is each arrange | positioned to the high temperature side, and the board | substrate side shown with the code | symbol 30 is each set to the low temperature side, the heat | fever (temperature) in the high temperature temperature contact part 40 is a board | substrate. 20 is transmitted to the thermoelectric conversion unit 10 (thermoelectric element portion) located on the upper side of the drawing through the high heat conduction portion 22 and the thermal electrode portion 23, and from the thermoelectric conversion unit 10 (thermoelectric element portion) located on the lower side of the drawing. Since the heat (temperature) is efficiently transmitted to the low temperature contact portion 50 through the hot electrode portion 33 and the high heat conduction portion 32 of the substrate 30, a large temperature difference can be realized in the thermoelectric conversion module 100.

1. Configuration of Thermoelectric Conversion Module (a) Thermoelectric Conversion Material As a thermoelectric conversion material, FeSi 2 which has low thermoelectric properties but is abundant in resources other than chalcogen compounds such as IrSb 3 , Bi 2 Te 3 and PbTe having high performance. And silicides such as SiGe. In addition, by adjusting the amount of various additive elements such as P, B, and Al alone or combined so that the carrier concentration in the Si semiconductor is about 10 24 (1 / m 3 ) and the amount added, the Seebeck coefficient can be increased. Si-based thermoelectric conversion materials that are extremely large and have significantly improved thermoelectric conversion efficiency can also be used. In addition, any known material can be used. In Si, at least one of Ge, C, and Sn is 5 to 10 atomic%, and at least one of additive elements for making Si a p-type semiconductor or an n-type semiconductor is 0.001 atomic% to 20 atomic%. And a Si-based thermoelectric having a crystal structure in which one or more of the above-described Ge, C, and Sn, or one or more additional elements for forming a p-type semiconductor or an n-type semiconductor are deposited at the grain boundary portion of polycrystalline Si. Si-based thermoelectric conversion materials such as conversion materials are preferable because of their extremely high thermoelectric conversion efficiency.
(B) Material with high thermal conductivity It is preferable that the material with high thermal conductivity that constitutes the high thermal conductivity part and the temperature contact part of the substrate is a metal or the like, specifically, copper, aluminum, or other thermal conductivity. Examples include high-grade metals, alloys, and ceramics. Moreover, about the high heat conductive part of the board | substrate arrange | positioned at a low temperature side and the board | substrate arrange | positioned at a high temperature side, both may be comprised with the same material, and may be comprised using a different material, and are arbitrary.
(C) Temperature contact part It is preferable that the surface of the said temperature contact part is coat | covered with the substantially black oxide film or the material with high heat conductivity. Examples of the above materials include copper oxides and resin materials with high thermal conductivity and high environmental resistance. This makes it easy to follow the temperature of the high temperature part and the low temperature part, and the temperature inside the thermoelectric conversion module. This is preferable because the gradient becomes large and large power generation is possible.

また、本発明の熱電変換モジュールにおいては、低温側に配置される基板の上記温度接触部(低温側温度接触部)の表面を粗面化することが好ましい。低温側温度接触部の表面を粗面化するには、砂吹き付け若しくはやすり等で傷つけることを行なえばよく、表面の粗さについては、実効的な表面積が見かけ上の面積の2倍あるいはそれ以上となるように粗くなっていれば効果が大きく、これにより熱伝達係数が2倍以上となるため有効である。   Moreover, in the thermoelectric conversion module of this invention, it is preferable to roughen the surface of the said temperature contact part (low temperature side temperature contact part) of the board | substrate arrange | positioned at a low temperature side. In order to roughen the surface of the low temperature side temperature contact portion, it is only necessary to damage the surface with sandblasting or a file. For the surface roughness, the effective surface area is twice or more than the apparent area. The effect is great if it becomes rough so that the heat transfer coefficient becomes twice or more.

また、本発明の熱電変換モジュールにおいては、低温側温度接触部の表面に放熱板を付加した構成を採ることも可能である。このような構成を採ることにより、実効的な表面積を、見かけ上(単に寸法から見られる)表面積の2倍以上にすることが可能で、大きな熱伝達係数(20W/mK以上)を得ることが可能となり、高温部と低温部の大きな温度差が得られ、発電量が大きくなる。 Moreover, in the thermoelectric conversion module of this invention, it is also possible to take the structure which added the heat sink to the surface of the low temperature side temperature contact part. By adopting such a configuration, it is possible to make the effective surface area more than twice the apparent surface area (simply seen from the dimensions), and obtain a large heat transfer coefficient (20 W / m 2 K or more). Therefore, a large temperature difference between the high temperature part and the low temperature part is obtained, and the power generation amount is increased.

図4は、裏面側に熱電変換モジュールが接着された太陽電池における総発電量の樹脂厚依存性をシミュレーションした結果を示すグラフ図である。すなわち、低熱伝導部を構成する熱伝導率の低い材料として熱伝導度0.2W/mKのポリイミド樹脂が適用された熱電変換モジュールを太陽電池の裏面に接着した場合、太陽電池の裏面温度を80℃、大気温を30℃としたとき、低熱伝導部を構成する上記ポリイミド樹脂の樹脂厚(μm)と太陽電池における総発電量との関係を示したものである。尚、上記樹脂厚は熱電変換ユニット単体あるいはその集合体面から低熱伝導部(基板)表面までの距離である。
(d)熱伝導率の低い材料
上記基板の低熱伝導部を構成する熱伝導率の低い材料としては、ポリイミド、発砲スチロール等の樹脂あるいはガラスが挙げられる。そして、熱電変換ユニット単体面あるいは熱電変換ユニット積層集合体の最外側面から基板表面までの厚さが75μm以上であると、図4に示されるように発電量が現実的な30W/m以上となり好ましいことがわかる。熱電変換ユニット単体面あるいは熱電変換ユニット積層集合体の最外側面から基板表面までの厚さが75μm未満であると、太陽電池の発電量をサポートするためという現実的要望値からは小さくなってしまう場合がある。太陽電池の補助としては、30W/m以上の発電量が望まれるため(発電効率で示すと3%に対応する)、これを確保するため75μm以上が好ましい。尚、低温側に配置される基板と高温側に配置される基板の低熱伝導部についても、両方とも同一の材料で構成してもよいし異なる材料を用いて構成してもよく任意である。
FIG. 4 is a graph showing a result of simulating the resin thickness dependence of the total power generation amount in a solar cell having a thermoelectric conversion module bonded to the back surface side. That is, when a thermoelectric conversion module to which a polyimide resin having a thermal conductivity of 0.2 W / mK is applied as a low thermal conductivity material constituting the low thermal conductivity portion is bonded to the back surface of the solar cell, the back surface temperature of the solar cell is set to 80. The graph shows the relationship between the resin thickness (μm) of the polyimide resin constituting the low heat conduction part and the total power generation amount in the solar cell when the atmospheric temperature is 30 ° C. The resin thickness is a distance from the surface of the thermoelectric conversion unit alone or its aggregate to the surface of the low thermal conductivity portion (substrate).
(D) Low thermal conductivity material Examples of the low thermal conductivity material constituting the low thermal conductivity portion of the substrate include resins such as polyimide and foamed polystyrene, or glass. When the thickness from the single surface of the thermoelectric conversion unit or the outermost surface of the thermoelectric conversion unit stacked assembly to the substrate surface is 75 μm or more, the power generation amount is 30 W / m 2 or more realistic as shown in FIG. It turns out that it is preferable. If the thickness from the outermost surface of the single surface of the thermoelectric conversion unit or the thermoelectric conversion unit laminated assembly to the substrate surface is less than 75 μm, the actual desired value for supporting the power generation amount of the solar cell is reduced. There is a case. As an auxiliary to the solar cell, a power generation amount of 30 W / m 2 or more is desired (corresponding to 3% in terms of power generation efficiency), and 75 μm or more is preferable to ensure this. It should be noted that the low thermal conductivity portions of the substrate disposed on the low temperature side and the substrate disposed on the high temperature side may both be composed of the same material or may be composed of different materials.

また、上記低熱伝導部を構成する材料は電気的に絶縁材料であり、熱伝導率のできるだけ低い材料が望ましく、目的によってポリイミド、発砲スチロール等の樹脂材料あるいはガラス材料を使い分けることができる。この低熱伝導部は、熱伝導率が低い方が望ましく、また、低熱伝導部の膜厚は、厚い方が熱電変換素子間の温度差が大きくなるので望ましい。   Further, the material constituting the low thermal conductivity portion is an electrically insulating material, and is preferably a material having as low a thermal conductivity as possible. Depending on the purpose, a resin material such as polyimide and foamed polystyrene, or a glass material can be used properly. The low thermal conductivity part is desirably low in thermal conductivity, and the low thermal conductivity part is desirably thick because the temperature difference between thermoelectric conversion elements becomes large.

そして、断熱性が高い従来の立体型熱電変換素子を太陽電池の裏面側に接着した場合、上述したように太陽電池の温度が上昇する危険性があったが、100μm程度の樹脂による低熱伝導部の断熱性はさほど問題にならない。尚、低熱伝導部があまり厚くなると太陽電池自体の温度上昇が問題になる可能性がある。但し、低熱伝導部が数mmでは温度上昇の影響はさほどない。

2.熱電変換モジュールの製造
本発明に係る熱電変換モジュールは、上述したようにp型材料から成るp型薄膜層とn型材料から成るn型薄膜層が電気絶縁層を介して積層されかつ上記p型薄膜層とn型薄膜層がこれ等薄膜層端部側の接続部において電気的に接続されている熱電変換ユニットを、上記薄膜層の厚さ方向に単数あるいは電気絶縁層を介し複数積層させた熱電変換ユニット単体あるいは熱電変換ユニット積層集合体の最外側両面に、低熱伝導部と高熱伝導部とで構成される基板がそれぞれ設けられた構造を有している。そして、本発明に係る熱電変換モジュールは以下のようにして製造することができる。
And when the conventional three-dimensional thermoelectric conversion element with high heat insulation is bonded to the back side of the solar cell, there is a risk that the temperature of the solar cell rises as described above, but the low heat conduction part by the resin of about 100 μm The thermal insulation is not a problem. In addition, when the low heat conduction part becomes too thick, the temperature rise of the solar cell itself may become a problem. However, when the low heat conduction part is several mm, the influence of the temperature rise is not so great.

2. Manufacture of Thermoelectric Conversion Module As described above, the thermoelectric conversion module according to the present invention includes a p-type thin film layer made of a p-type material and an n-type thin film layer made of an n-type material laminated via an electric insulating layer, and the p-type A plurality of thermoelectric conversion units in which the thin film layer and the n-type thin film layer are electrically connected at the end of the thin film layer are laminated in the thickness direction of the thin film layer via a single or an electric insulating layer. The thermoelectric conversion unit alone or the thermoelectric conversion unit laminate assembly has a structure in which substrates each composed of a low thermal conductivity portion and a high thermal conductivity portion are provided on both outermost surfaces. And the thermoelectric conversion module which concerns on this invention can be manufactured as follows.

例えば、基板の一部を構成する厚さ500μmのポリイミド樹脂シートの一方の面に、図5(a)〜(c)に示すような3種類のマスクを適宜交換しながら、図6に示すような熱電変換ユニット積層集合体を製造する。すなわち、上記ポリイミド樹脂シートとマスクをスパッタリング装置内に配置し、まず、図5(a)(b)に示すマスクより開口幅の広い図5(c)に示すマスクを用いてポリイミド樹脂シート13上にp型材料から成る厚さ1nm程度のp型薄膜層11を成膜し、かつ、図5(c)に示すマスクと較べて図面左端の開口幅が狭い図5(b)に示すマスクに交換して上記p型薄膜層11上に厚さ10nm程度の電気絶縁層13を成膜し、更に、図5(c)に示すマスクに交換して上記電気絶縁層13上にn型材料から成る厚さ1nm程度のn型薄膜層12を成膜した後、図5(c)に示すマスクと較べて図面右端の開口幅が狭い図5(a)に示すマスクに交換して上記n型薄膜層12上に厚さ10nm程度の電気絶縁層13を成膜する。これ等一連の成膜処理により、図6に示すように図面左側端部の接続部14においてp型薄膜層11とn型薄膜層12とが接続され、かつ、図面下側に位置する熱電変換ユニット10が形成される。   For example, as shown in FIG. 6, three types of masks as shown in FIGS. 5A to 5C are appropriately replaced on one surface of a 500 μm thick polyimide resin sheet constituting a part of the substrate. A thermoelectric conversion unit laminate assembly is manufactured. That is, the polyimide resin sheet and the mask are arranged in a sputtering apparatus. First, on the polyimide resin sheet 13 using the mask shown in FIG. 5C having a wider opening width than the mask shown in FIGS. A p-type thin film layer 11 made of p-type material and having a thickness of about 1 nm is formed on the mask, and the opening width at the left end of the drawing is narrower than that of the mask shown in FIG. 5C. The electric insulating layer 13 having a thickness of about 10 nm is formed on the p-type thin film layer 11 by replacement, and the mask shown in FIG. 5C is replaced with an n-type material on the electric insulating layer 13. After the n-type thin film layer 12 having a thickness of about 1 nm is formed, the n-type thin film layer 12 is replaced with the mask shown in FIG. 5A having a narrow opening width at the right end of the drawing as compared with the mask shown in FIG. An electrical insulating layer 13 having a thickness of about 10 nm is formed on the thin film layer 12. Through these series of film forming processes, as shown in FIG. 6, the p-type thin film layer 11 and the n-type thin film layer 12 are connected to each other at the connection portion 14 at the left end of the drawing, and the thermoelectric conversion located at the lower side of the drawing. A unit 10 is formed.

次に、図5(c)に示すマスクに交換して上記電気絶縁層13上にp型材料から成る厚さ1nm程度のp型薄膜層11を成膜し、かつ、図5(b)に示すマスクに交換して上記p型薄膜層11上に厚さ10nm程度の電気絶縁層13を成膜し、更に、図5(c)に示すマスクに交換して上記電気絶縁層13上にn型材料から成る厚さ1nm程度のn型薄膜層12を成膜した後、図5(a)に示すマスクに交換して上記n型薄膜層12上に厚さ10nm程度の電気絶縁層13を成膜する。これ等一連の成膜処理により、図6に示すように図面右側端部の接続部14においてn型薄膜層12とp型薄膜層11とが接続され、図6に示すように図面左側端部の接続部14においてp型薄膜層11とn型薄膜層12とが接続されると共に、電気絶縁層13を介し図面下側に位置する熱電変換ユニット10上に図面上側に位置する熱電変換ユニット10が積層され、かつ、これ等一対の熱電変換ユニット10が上述の各接続部14を介し直列に接続された熱電変換ユニット積層集合体60が形成される。   Next, by replacing the mask shown in FIG. 5C, a p-type thin film layer 11 made of p-type material and having a thickness of about 1 nm is formed on the electrical insulating layer 13, and FIG. An electric insulating layer 13 having a thickness of about 10 nm is formed on the p-type thin film layer 11 by replacing the mask shown in FIG. 5, and n is formed on the electric insulating layer 13 by replacing the mask shown in FIG. After forming an n-type thin film layer 12 made of a mold material and having a thickness of about 1 nm, the electric insulating layer 13 having a thickness of about 10 nm is formed on the n-type thin film layer 12 by replacing the mask shown in FIG. Form a film. By these series of film forming processes, the n-type thin film layer 12 and the p-type thin film layer 11 are connected to each other at the connecting portion 14 at the right end portion of the drawing as shown in FIG. 6, and the left end portion of the drawing as shown in FIG. The p-type thin film layer 11 and the n-type thin film layer 12 are connected to each other at the connecting portion 14, and the thermoelectric conversion unit 10 located on the upper side of the drawing is placed on the thermoelectric conversion unit 10 located on the lower side of the drawing via the electrical insulating layer 13. Are stacked, and a thermoelectric conversion unit stacked assembly 60 in which the pair of thermoelectric conversion units 10 are connected in series via the connection portions 14 is formed.

次に、図面上側に位置する熱電変換ユニット10の電気絶縁層13上に厚さ50μm程度の図示外のポリイミド樹脂シートを接着して上記熱電変換ユニット積層集合体60をポリイミド樹脂シートで挟持させた後、p型薄膜層11とn型薄膜層12の接続部14近傍に、図7に示すように熱電変換ユニット10とは電気的には絶縁であるが熱的にはよく接続する銅等の金属で構成された熱電極部(図3の符号23参照)230をペースト等で約数百ミクロン厚に形成する。更に、熱電変換ユニット積層集合体60の上記熱電極部230が形成された部位とは反対面でかつ上記熱電極部の形成位置と反対側の端部に、対極する熱電極部(図3の符号33参照)330を同様の方法により形成し、更に、一対の上記ポリイミド樹脂シート上に発泡スチロール等の断熱素材で構成されたユニットを重合して一対の基板(図3の符号20、30参照)200、300とする。   Next, a polyimide resin sheet (not shown) having a thickness of about 50 μm was adhered on the electrical insulating layer 13 of the thermoelectric conversion unit 10 located on the upper side of the drawing, and the thermoelectric conversion unit laminate assembly 60 was sandwiched between the polyimide resin sheets. Thereafter, in the vicinity of the connecting portion 14 between the p-type thin film layer 11 and the n-type thin film layer 12, as shown in FIG. 7, the thermoelectric conversion unit 10 is electrically insulated but thermally connected well. A hot electrode portion (see reference numeral 23 in FIG. 3) 230 made of metal is formed with a paste or the like to a thickness of about several hundred microns. Further, on the opposite end of the thermoelectric conversion unit laminate assembly 60 from the portion where the hot electrode portion 230 is formed and on the end opposite to the position where the hot electrode portion is formed (see FIG. 3). 330) is formed by the same method, and a unit composed of a heat insulating material such as expanded polystyrene is polymerized on the pair of polyimide resin sheets, and a pair of substrates (see numerals 20 and 30 in FIG. 3). 200 and 300.

次に、熱電変換ユニット積層集合体60を挟持する一方の基板200の上記熱電極部230に対応する部分に向け、直径0.5mmの穴の開いたマスクを介しエキシマレーザを12.5秒照射して、直径約0.5mmでかつ上記熱電極部230が見えるところまで貫通孔を開けると共に、貫通孔内に熱伝導性の良い接着剤を付加した後、図7に示すように、例えば、直径0.5mm、長さが0.5mmの熱伝導性の高い銅材(高熱伝導部70を構成する)を埋め込む。また、他方の基板300の上記熱電極部330に対応する部分に向け、同様に、上記マスクを介しエキシマレーザを12.5秒照射して、直径約0.5mmでかつ上記熱電極部330が見えるところまで貫通孔を開ける。尚、12.5秒以上の長時間照射をすると、熱電変換ユニット10部も貫通される可能性があるが、12.5秒で止めた場合、熱電変換ユニット10部はほぼ残っていることが確認されている。その後、直径0.5mmの銅材表面に熱伝導性を有する接着剤を塗り、上記貫通孔内に埋め込んで高熱伝導部材70とする。尚、銅材を埋め込んで高熱伝導部70を構成した場合、高熱伝導部70と熱電変換ユニット10部との電気的な接合は必要なく、熱的な接続さえ取れていれば問題はない。従って、銅材が埋め込まれる貫通孔については、熱電変換ユニット10部側が閉止されその反対の表面側が開放された凹部で構成してもよい。また、上記高熱伝導部70の一端側が接続若しくは近接する位置(熱電極部230、330の形成部位)にp型薄膜層とn型薄膜層の端部側接続部が対応するように形成される。   Next, an excimer laser is irradiated for 12.5 seconds through a mask having a hole with a diameter of 0.5 mm toward a portion corresponding to the hot electrode portion 230 of one substrate 200 sandwiching the thermoelectric conversion unit stacked assembly 60. Then, after opening a through hole to a place where the diameter of the thermal electrode portion 230 can be seen about 0.5 mm in diameter, and adding an adhesive with good thermal conductivity in the through hole, as shown in FIG. A copper material having a high thermal conductivity having a diameter of 0.5 mm and a length of 0.5 mm is embedded (which constitutes the high thermal conductivity portion 70). Similarly, an excimer laser is irradiated for 12.5 seconds through the mask toward the portion corresponding to the hot electrode portion 330 of the other substrate 300, and the hot electrode portion 330 has a diameter of about 0.5 mm. Open the through hole until you can see it. Note that if irradiation is performed for a long time of 12.5 seconds or more, 10 parts of the thermoelectric conversion unit may be penetrated, but if stopped in 12.5 seconds, the 10 parts of the thermoelectric conversion unit may remain almost. It has been confirmed. Thereafter, an adhesive having thermal conductivity is applied to the surface of a copper material having a diameter of 0.5 mm, and is embedded in the through hole to obtain a high thermal conductive member 70. In addition, when the high heat conduction part 70 is comprised by embedding a copper material, the electrical connection between the high heat conduction part 70 and the thermoelectric conversion unit 10 part is not necessary, and there is no problem as long as the thermal connection can be obtained. Therefore, the through-hole in which the copper material is embedded may be constituted by a recess in which the thermoelectric conversion unit 10 part side is closed and the opposite surface side is opened. In addition, the p-type thin film layer and the n-type thin film layer are formed so that the end-side connection portion corresponds to a position where the one end side of the high heat conduction portion 70 is connected or close (formation portion of the thermal electrode portions 230 and 330). .

更に、上記基板200上の熱電変換ユニット10に対応する部位に膜が形成できるようなマスクを介し、図7に示すように高温側の温度接触部(例えば、Cuを用い、膜厚約10μm厚)400をスパッタリングにより形成し、かつ、反対側の基板300上にも低温側の温度接触部(放熱用構造をさらに接触させることもある)500を形成して本発明に係る熱電変換モジュールが得られる。   Further, through a mask on which a film can be formed on the substrate 200 corresponding to the thermoelectric conversion unit 10, as shown in FIG. 7, a temperature contact portion on the high temperature side (for example, Cu is used and the film thickness is about 10 μm thick). ) 400 is formed by sputtering, and a low-temperature temperature contact portion (which may further contact the heat dissipation structure) 500 is also formed on the opposite substrate 300 to obtain the thermoelectric conversion module according to the present invention. It is done.

尚、熱電変換ユニット内のp型薄膜層とn型薄膜層の接続部近傍にその一端側が熱的接触する高熱伝導部70の接触サイズと、高温側、低温側の上記温度接触部300、400の断面サイズは図7に示すように一致させる必要はない。特に、低温側の温度接触部については、図3および図7に示すようにその断面サイズ(例えば大気との温度接触部の面積)がほぼ熱電変換ユニット全面に広がる方が好ましい。これは、低温側の放熱が十分になされた方が、熱電変換ユニット(熱電素子部)内での発電が大きいからである。例えば、低温側の温度接触部が大気と接して自由放熱の場合もあり、このときは、できるだけ放熱面積が大きい方が効率的に放熱でき、結果的に高温部と低温部の温度差が大きくなり、大きな発電量につながる。その意味で、大気への自由放熱の場合、表面積を稼ぐために立体構造とし、放熱フィンを付けた方が温度差をより付け易くなり、発電量が大きくなって効果的である

3.基板における「高熱伝導部の断面積」と「低熱伝導部の断面積」の最適条件
図8に示すように一方の基板における高熱伝導部81表面が接続される温度接触部80が高温側若しくは低温側に配置され、他方の基板における温度接触部80が大気側に熱的に接した状態で配置される本発明に係る熱電変換モジュールにおいて、
その発電量が最大となる熱流の条件は、
上記基板における高熱伝導部81の熱伝導度(κc)並びに断面積(Sc)と、上記基板における低熱伝導部82の熱伝導度(κa)並びに断面積(Sa)とが、
1.2κa×Sa ≧ κc×Sc (式1)
の関係を有し、かつ
0.8κa×Sa ≦ κc×Sc (式2)
の関係を有する場合である。
It should be noted that the contact size of the high thermal conductivity portion 70 whose one end side is in thermal contact with the vicinity of the connection portion between the p-type thin film layer and the n-type thin film layer in the thermoelectric conversion unit, and the temperature contact portions 300 and 400 on the high temperature side and the low temperature side. As shown in FIG. In particular, as shown in FIG. 3 and FIG. 7, it is preferable that the cross-sectional size of the temperature contact portion on the low temperature side (for example, the area of the temperature contact portion with the atmosphere) extends almost over the entire thermoelectric conversion unit. This is because the heat generation in the thermoelectric conversion unit (thermoelectric element portion) is larger when the heat radiation on the low temperature side is sufficiently performed. For example, the temperature contact part on the low temperature side may come into contact with the atmosphere for free heat dissipation. In this case, the heat radiation area as large as possible can efficiently dissipate heat, resulting in a large temperature difference between the high temperature part and the low temperature part. This leads to a large amount of power generation. In that sense, in the case of free heat radiation to the atmosphere, it is more effective to have a three-dimensional structure to increase the surface area, and to attach heat radiation fins, making it easier to add a temperature difference and increasing the amount of power generation.

3. Optimum conditions for “cross-sectional area of high thermal conductivity portion” and “cross-sectional area of low thermal conductivity portion” on the substrate As shown in FIG. In the thermoelectric conversion module according to the present invention, which is disposed on the side and disposed in a state where the temperature contact portion 80 on the other substrate is in thermal contact with the atmosphere side,
The heat flow condition that maximizes the power generation is
The thermal conductivity (κc) and the cross-sectional area (Sc) of the high thermal conductivity portion 81 in the substrate, and the thermal conductivity (κa) and the cross-sectional area (Sa) of the low thermal conductivity portion 82 in the substrate are:
1.2κa × Sa ≧ κc × Sc (Formula 1)
And having a relationship
0.8κa × Sa ≦ κc × Sc (Formula 2)
It is a case where it has the relationship of.

以下、熱電変換モジュール(但し、簡略化のため熱電変換ユニット集合体でなしに熱電変換ユニット単体を想定)内における熱流が図8に示す熱流と仮定して説明する。   Hereinafter, description will be made assuming that the heat flow in the thermoelectric conversion module (however, for the sake of simplicity, the thermoelectric conversion unit alone is assumed instead of the thermoelectric conversion unit aggregate) is the heat flow shown in FIG.

ここで、各記号の意味は以下の通りである。   Here, the meaning of each symbol is as follows.

S0:熱電変換ユニット(熱電素子部83)一つあたりの断面積=Sa+Sc
Sc:熱電変換ユニット(熱電素子)一つあたりの基板における高熱伝導部の断面積
Sa:熱電変換ユニット(熱電素子)一つあたりの基板における低熱伝導部の断面積
St:熱電変換ユニット(熱電素子)一つあたりの断面積
d:「低熱伝導部」の厚さ
L:熱電変換ユニット(熱電素子)の長さ
κc:高熱伝導部の熱伝導度
κa:低熱伝導材料の熱伝導度
κt:熱電変換ユニット(熱電素子)の熱伝導度
α:T5(大気)からの放熱係数
Pf:熱電変換ユニット(熱電素子)のパワーファクター=S /(ρ+ρ
ρ+ρ:n型材料、p型材料の電気伝導度
:ゼーベック係数
Q0:熱電変換ユニット(熱電素子)一つあたりに太陽光から照射されるエネルギー
(1m2では1000W)、
また、これは、
Q0=α・S0・(T5−T4):低温側の面から放出されるエネルギーにも等しい。
S0: sectional area per thermoelectric conversion unit (thermoelectric element portion 83) = Sa + Sc
Sc: Cross-sectional area of high heat conduction part in substrate per thermoelectric conversion unit (thermoelectric element) Sa: Cross-sectional area of low heat conduction part in substrate per thermoelectric conversion unit (thermoelectric element) St: Thermoelectric conversion unit (thermoelectric element) ) Cross section per unit d: Thickness of “low thermal conduction part” L: Length of thermoelectric conversion unit (thermoelectric element) κc: Thermal conductivity of high thermal conduction part κa: Thermal conductivity of low thermal conduction material κt: Thermoelectric Thermal conductivity of conversion unit (thermoelectric element) α: Heat dissipation coefficient from T5 (atmosphere) Pf: Power factor of thermoelectric conversion unit (thermoelectric element) = S B 2 / (ρ n + ρ p )
ρ n + ρ p : Electric conductivity of n-type material and p-type material S B : Seebeck coefficient Q 0: Energy irradiated from sunlight per thermoelectric conversion unit (thermoelectric element) (1000 W at 1 m 2 ),
This is also
Q0 = α · S0 · (T5−T4): Equal to the energy released from the low temperature side surface.

ここで、図8に示す熱流(Q)と上記定義との間に以下の関係式が成立する。   Here, the following relational expression is established between the heat flow (Q) shown in FIG. 8 and the above definition.

Q1=κc×Sc×(T1−T2)×2/d
Q2=κa×Sa×(T1−T4)/d
Q3=κa×Sc×(T1−T3)×2/d
Q4=κa×Sc×(T2−T4)×2/d
Q5=κc×Sc×(T3−T4)×2/d
Q6=κt×St×(T2−T3)/L
また、上記熱流の間に、熱流連続の関係より以下の関係式が成立する。
Q1 = κc × Sc × (T1-T2) × 2 / d
Q2 = κa × Sa × (T1−T4) / d
Q3 = κa × Sc × (T1−T3) × 2 / d
Q4 = κa × Sc × (T2−T4) × 2 / d
Q5 = κc × Sc × (T3−T4) × 2 / d
Q6 = κt × St × (T2−T3) / L
Further, the following relational expression is established between the heat flows from the relationship of continuous heat flow.

Q0=Q1+Q2+Q3
Q1=Q4+Q6
Q5=Q3+Q6
熱流連続の関係より求められたこれ等3式と、上記Q0=α・S0・(T5−T4)の合計4式を連立させると、4変数である各温度T1、T2、T3、T4を自動的に求めることができる。但し、T5は大気温度で、例えば30℃というように固定した値である。
Q0 = Q1 + Q2 + Q3
Q1 = Q4 + Q6
Q5 = Q3 + Q6
When these three formulas obtained from the relationship of continuity of heat flow and the above four formulas of Q0 = α · S0 · (T5−T4) are combined, each temperature T1, T2, T3, T4, which are four variables, is automatically set. Can be obtained. However, T5 is an atmospheric temperature, for example, a fixed value such as 30 ° C.

これらの関係式から求められた温度差(T2−T3)を用いれば、熱電変換ユニット(熱電素子)の発電量が求められる。   If the temperature difference (T2−T3) obtained from these relational expressions is used, the power generation amount of the thermoelectric conversion unit (thermoelectric element) can be obtained.

すなわち、熱電変換ユニット(熱電素子)一つあたりの発電量Pwは、
Pw=Pf×(T2−T3)×St/L
の最大となる条件を求めればよい。
That is, the power generation amount Pw per thermoelectric conversion unit (thermoelectric element) is
Pw = Pf × (T2−T3) 2 × St / L
What is necessary is just to obtain | require the conditions which become the maximum of.

定性的には、発電量を決定する温度差ΔT=|T2−T3|を大きくするには温度T1、温度T4の温度差を大きくする必要がある。   Qualitatively, in order to increase the temperature difference ΔT = | T2−T3 | that determines the amount of power generation, it is necessary to increase the temperature difference between the temperatures T1 and T4.

そのためには、低熱伝導材部の熱伝導度を出来るだけ小さくし、低熱伝導材部を厚くし、高温部、低温部に熱的に接続する高熱伝導部の熱伝導度を上げることが重要である。   For this purpose, it is important to reduce the thermal conductivity of the low thermal conductivity material part as much as possible, thicken the low thermal conductivity material part, and increase the thermal conductivity of the high thermal conductivity part thermally connected to the high temperature part and the low temperature part. is there.

高熱伝導部を太くすると、T1とT4の温度差が小さくなり、結局、T2とT3の温度差が小さくなる。また、高熱伝導部の断面積を小さくすると、T1、T4の温度差は大きくなるが、T2とT3の温度差は小さくなる。   If the high heat conduction part is made thick, the temperature difference between T1 and T4 becomes small, and eventually the temperature difference between T2 and T3 becomes small. Further, when the cross-sectional area of the high heat conducting portion is reduced, the temperature difference between T1 and T4 increases, but the temperature difference between T2 and T3 decreases.

このため、熱電変換モジュールの発電量を最大とする適正値が存在することがわかる。   For this reason, it turns out that the appropriate value which maximizes the electric power generation amount of a thermoelectric conversion module exists.

上記結果、発電量Pwが最大値となるのは、「κa×Sa」の値と「κc×Sc」の値が略等しい条件が満たされる付近であることがわかる。   As a result, it can be seen that the power generation amount Pw has the maximum value in the vicinity where the value of “κa × Sa” is substantially equal to the value of “κc × Sc”.

最大の発電量の8割以上が確保される範囲を発電量の好ましい範囲として条件を求めると、
1.2κa×Sa ≧ κc×Sc (式1)
と、
0.8κa×Sa ≦ κc×Sc (式2)
の間が好ましい範囲であることが求められる。

4.発電装置
本発明に係る発電装置は、上記熱電変換モジュールが太陽電池の裏面側に接着され、太陽電池と外気温等との温度差で発電することを特徴とするものである。
When the condition is obtained by setting a range where 80% or more of the maximum power generation amount is secured as a preferable range of power generation amount,
1.2κa × Sa ≧ κc × Sc (Formula 1)
When,
0.8κa × Sa ≦ κc × Sc (Formula 2)
Is required to be within a preferred range.

4). Power Generation Device The power generation device according to the present invention is characterized in that the thermoelectric conversion module is bonded to the back side of the solar cell and generates power with a temperature difference between the solar cell and the outside air temperature.

このような構成にすることにより、太陽電池裏面と外気温の温度差を利用して発電させることができ、これによって太陽電池の温度上昇に起因した発電効率の低下を改善することができる。   With such a configuration, it is possible to generate power using the temperature difference between the back surface of the solar cell and the outside air temperature, thereby improving the decrease in power generation efficiency due to the temperature increase of the solar cell.

ところで、本発明に係る発電装置においては、太陽電池と熱電変換モジュールとの接着に用いる接着剤の熱伝導率と接着剤の厚みが発電効率に関係し、接着剤の熱伝導率を(W/mK)、接着剤の厚みを(d)としたとき、(W/mK)/(d)の比が1000以上であることが好ましい。0.1(W/mK)程度の低熱電度材料である樹脂内を流れる熱は、その厚みが1mm程度のとき、0.1/10−3=100程度となる。太陽電池との接着部で熱抵抗となってはいけないので、上記樹脂の熱流と較べて接着部内の熱流は10倍以上、すなわち、(W/mK)/(d)の比が1000以上あることが望ましい。 By the way, in the power generation device according to the present invention, the thermal conductivity of the adhesive used for bonding the solar cell and the thermoelectric conversion module and the thickness of the adhesive are related to the power generation efficiency, and the thermal conductivity of the adhesive is (W / mK), where the thickness of the adhesive is (d), the ratio of (W / mK) / (d) is preferably 1000 or more. The heat flowing through the resin, which is a low thermoelectric material of about 0.1 (W / mK), is about 0.1 / 10 −3 = 100 when the thickness is about 1 mm. Since it should not become a thermal resistance at the bonding portion with the solar cell, the heat flow in the bonding portion is 10 times or more compared to the heat flow of the resin, that is, the ratio of (W / mK) / (d) is 1000 or more. Is desirable.

また、熱電変換モジュールにおける太陽電池と接触していない面側の各熱電変換ユニットの基板表面については、低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部に接続された各温度接触部により被覆されていることが好ましい。   Moreover, about the board | substrate surface of each thermoelectric conversion unit of the surface side which is not in contact with the solar cell in a thermoelectric conversion module, by each temperature contact part connected to the high heat conduction part exposed from the through-hole or recessed part of the surface of a low heat conduction part It is preferably coated.

ここで、本発明に係る熱電変換モジュールが接着される太陽電池の種類は特に限定されず、例えば、アモルファス系Si太陽電池が挙げられる。アモルファス系Si太陽電池は、結晶系Si太陽電池と較べると太陽光の吸収係数が大きいためSiの膜厚は1μm以下で済む。また、アモルファス系Siを樹脂の上に成膜できることもありフレキシブルな太陽電池も作れる。但し、発電効率は低く、平均8%程度であるため、屋根の上に載せるタイプでは、4kWを実現するには大面積が必要となり、安価でも使用範囲は限られている。しかし、アモルファス系Si太陽電池は、結晶系Si太陽電池と異なり、温度が上昇しても発電効率が落ちないという特色がある。従って、厚めの樹脂等で構成される基板により挟んだ本発明に係る熱電変換モジュールを、太陽電池の裏面に接着したタイプではより高効率の発電が実現できる。そして、どんなタイプの太陽電池に対しても、太陽電池自身の発電とは独立に本発明に係る熱電変換モジュールにより発電を付加できるので、どんなタイプの太陽電池にも本発明に係る熱電変換モジュールを利用することができる。   Here, the kind of solar cell to which the thermoelectric conversion module according to the present invention is bonded is not particularly limited, and examples thereof include amorphous Si solar cells. Amorphous Si solar cells have a larger solar absorption coefficient than crystalline Si solar cells, so the film thickness of Si is 1 μm or less. In addition, since amorphous Si can be formed on a resin, a flexible solar cell can be made. However, since the power generation efficiency is low, about 8% on average, the type mounted on the roof requires a large area to achieve 4 kW, and the range of use is limited even at a low price. However, unlike crystalline Si solar cells, amorphous Si solar cells have a feature that power generation efficiency does not decrease even when the temperature rises. Therefore, the type in which the thermoelectric conversion module according to the present invention sandwiched between substrates made of thick resin or the like is bonded to the back surface of the solar cell can realize more efficient power generation. Since any type of solar cell can be powered by the thermoelectric conversion module according to the present invention independently of the solar cell itself, the thermoelectric conversion module according to the present invention can be applied to any type of solar cell. Can be used.

次に、本発明に係る発電装置においては、熱電変換モジュールにおける太陽電池と接触している面側の温度が、太陽電池と接触していない面側の温度より低くなったとき、電気の正負を切り替えるスイッチが熱電変換モジュールの回路中に設けられていることが好ましい。上記スイッチを設ける理由は、太陽電池と接触している面側の温度が必ずしも高温部になるとは限らず、外気温あるいは太陽電池の設置の仕方によっては低温部となり、逆電圧を発生することがあるからである。この場合、スイッチで正負を切り替える構造にしておけば、太陽のない夜でも発電が可能となる。従って、電気の正負を自動的に切り替えることのできるスイッチを回路中に設けておくことが好ましい。尚、本明細書においては、特に必要の無い限り、太陽電池の裏面との接着部側が高温部として説明している。   Next, in the power generation device according to the present invention, when the temperature of the surface side in contact with the solar cell in the thermoelectric conversion module is lower than the temperature of the surface side not in contact with the solar cell, the positive / negative of electricity is determined. It is preferable that the switch to switch is provided in the circuit of the thermoelectric conversion module. The reason for providing the switch is that the temperature on the surface side in contact with the solar cell is not necessarily a high temperature part, and depending on the outside air temperature or the way of installing the solar cell, it becomes a low temperature part and may generate a reverse voltage. Because there is. In this case, if the structure is switched between positive and negative with a switch, power generation is possible even at night without the sun. Therefore, it is preferable to provide a switch in the circuit that can automatically switch between positive and negative. In the present specification, unless otherwise specified, the bonding portion side with the back surface of the solar cell is described as a high temperature portion.

以下、本発明の実施例を具体的に説明するが、本発明は以下の実施例によって限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to the following examples.

図9に示すように基板の一部を構成する厚さ500μmのポリイミド樹脂シート130の一方の面に、導電性ペースト(三菱マテリアル社製:銀ナノペースト)を用いて厚さ50μmの熱電極部133を形成した後、ポリイミド樹脂シート130の他方の面に、図5(a)〜(c)に示した3種類のマスクを適宜交換しながら、スパッタリング成膜法により、n型材料(BiTe)から成る厚さ1nmのn型薄膜層12と、電気絶縁材料(SrTiO)から成る厚さ10nmの電気絶縁層13、p型材料[(BiSb)2Te]から成る厚さ1nmのp型薄膜層11と、同じ材料から成る厚さ10nmの電気絶縁層13を成膜して熱電変換ユニット10を形成し、以下、同様の方法により熱電変換ユニット10上に総数100組(但し、図9では3組が例示されている)の熱電変換ユニットを積層し、かつ、電気絶縁層13を形成した後、上記熱電極部133とは反対側の位置に他方の熱電極部123を形成して、互いに直列に接続された熱電変換ユニット積層集合体60を製造した。ここで、熱電変換ユニット積層集合体60は、面内に10個(但し、図9では2個が例示されている)並べて配置されている。また、熱電変換ユニットだけの全体のサイズは30mm×65mm程度であり、10個の熱電変換ユニット積層集合体60は図9に示すように電気的に並列に接続されており、かつ、各熱電極部123、133は、隣接する熱電変換ユニット積層集合体60にまたがるように配置されている。尚、図9中、単位「mm」が付された数値は、熱電変換ユニット積層集合体60の設計寸法を示している。 As shown in FIG. 9, a hot electrode part having a thickness of 50 μm is formed on one surface of a polyimide resin sheet 130 having a thickness of 500 μm constituting a part of the substrate using a conductive paste (manufactured by Mitsubishi Materials Corporation: silver nanopaste). After forming 133, an n-type material (Bi 2) is formed by sputtering film formation while appropriately replacing the three types of masks shown in FIGS. 5A to 5C on the other surface of the polyimide resin sheet 130. A 1 nm thick n-type thin film layer 12 made of Te 3 ), a 10 nm thick electrically insulating layer 13 made of an electrically insulating material (SrTiO 3 ), and a 1 nm thick made of a p-type material [(BiSb) 2 Te 3 ]. The p-type thin film layer 11 and an electrically insulating layer 13 made of the same material and having a thickness of 10 nm are formed to form the thermoelectric conversion unit 10. Thereafter, a total of 100 sets are formed on the thermoelectric conversion unit 10 by the same method. However, after the three thermoelectric conversion units are stacked and the electrical insulating layer 13 is formed, the other thermal electrode portion 123 is disposed at a position opposite to the thermal electrode portion 133. And the thermoelectric conversion unit laminated assembly 60 connected in series with each other was manufactured. Here, ten thermoelectric conversion unit stacked assemblies 60 are arranged in a plane (however, two are illustrated in FIG. 9). Further, the entire size of the thermoelectric conversion unit alone is about 30 mm × 65 mm, and the ten thermoelectric conversion unit stacked assemblies 60 are electrically connected in parallel as shown in FIG. The parts 123 and 133 are arranged so as to straddle the adjacent thermoelectric conversion unit stacked assemblies 60. In FIG. 9, the numerical value with the unit “mm” indicates the design dimension of the thermoelectric conversion unit stacked assembly 60.

次に、熱電極部123、133が形成された10個の熱電変換ユニット積層集合体60についてはその最外側表面に厚さ2mmの発泡スチロール(図3の符号20、30参照)が配置され、上記発泡スチロールの各熱電極部123、133に対応する部位に、上部と下部から、直径が0.2mm、0.4mm、0.6mm、0.8mmのサイズでかつ銅製の高熱伝導部(長さ2mm)を挿入するための貫通孔をエキシマレーザによりそれぞれ開設し、高熱伝導部となる銅線の表面に接着剤を塗布して上記貫通孔に挿入した。   Next, with respect to the ten thermoelectric conversion unit laminated assemblies 60 on which the hot electrode portions 123 and 133 are formed, a 2 mm thick polystyrene foam (see reference numerals 20 and 30 in FIG. 3) is arranged on the outermost surface, and the above High heat conduction parts made of copper having a diameter of 0.2 mm, 0.4 mm, 0.6 mm, and 0.8 mm from the upper and lower portions of the parts corresponding to the respective thermal electrode parts 123 and 133 of the polystyrene foam (length 2 mm) ) Was inserted by an excimer laser, and an adhesive was applied to the surface of the copper wire to be a high heat conduction portion and inserted into the through hole.

尚、上記エキシマレーザの照射条件は以下の通りである。   The excimer laser irradiation conditions are as follows.

エキシマレーザ:Exitech社製 エキシマレーザ加工機 PS2000
使用波長:248(nm)
使用した光学系:10倍レンズ
発信周波数=100 Hz
次に、高熱伝導部を構成する銅線が貫通孔に挿入された熱電変換モジュール前駆体に対し、高温部と低温部の温度接触部(図3の符号40、50参照)を構成する厚さ0.2mmの銅板を熱電変換モジュール前駆体の両側からそれぞれ接着して、実施例に係る4種類の熱電変換モジュール(すなわち、直径が0.2mm、0.4mm、0.6mm、0.8mmである銅線で高熱伝導部がそれぞれ構成されたモジュール)を製造した。
Excimer laser: Exitech excimer laser processing machine PS2000
Wavelength used: 248 (nm)
Optical system used: 10x lens Transmission frequency = 100 Hz
Next, with respect to the thermoelectric conversion module precursor in which the copper wire constituting the high heat conduction part is inserted into the through hole, the thickness constituting the temperature contact part (see reference numerals 40 and 50 in FIG. 3) of the high temperature part and the low temperature part. A 0.2 mm copper plate was bonded from both sides of the thermoelectric conversion module precursor, and the four types of thermoelectric conversion modules according to the examples (that is, the diameters were 0.2 mm, 0.4 mm, 0.6 mm, and 0.8 mm). A module in which a high thermal conductivity portion is formed of a certain copper wire is manufactured.

そして、熱電変換モジュールの高温部側を80℃の銅ブロックに接着し、熱電変換モジュールの他方側を大気(25℃)に自由放熱させた状態で発電量を測定した。尚、熱電変換モジュール内での温度差を測ろうとすると発電量が変化したので、上下(すなわち、高温部と低温部)の温度接触部での温度差を計測した。この結果を表1に示す。   Then, the power generation amount was measured in a state where the high temperature part side of the thermoelectric conversion module was bonded to a copper block at 80 ° C. and the other side of the thermoelectric conversion module was freely radiated to the atmosphere (25 ° C.). In addition, since the amount of power generation was changed when trying to measure the temperature difference in the thermoelectric conversion module, the temperature difference at the temperature contact portion between the upper and lower sides (that is, the high temperature portion and the low temperature portion) was measured. The results are shown in Table 1.

表1に示されている通り、直径0.4mmの銅線で高熱伝導部が構成されている熱電変換モジュールの場合が最大の発電量(2mW/cm2)となった。 As shown in Table 1, the maximum power generation amount ( 2 mW / cm 2 ) was obtained in the case of a thermoelectric conversion module in which a high thermal conductivity portion was configured with a copper wire having a diameter of 0.4 mm.

この場合、ほぼ「κa×Sa =κc×Sc」が成立するときに対応していることが確認できる。ここで、κa=0.1W/mK、Sa=10×30mm、κc=200W/mKである。 In this case, it can be confirmed that the condition is substantially satisfied when “κa × Sa = κc × Sc” is satisfied. Here, κa = 0.1 W / mK, Sa = 10 × 30 mm 2 , and κc = 200 W / mK.

Figure 2010135619
Figure 2010135619

本発明に係る熱電変換モジュールによれば、熱電変換モジュール内に大きな温度差が実現されることから発電量を増加、改善させることが可能となり、また、非特許文献2、3で提案されている熱電変換モジュールと比較して配置の自由度を大きく改善することが可能となり、更に、太陽電池の裏面側に接着させることにより太陽電池の実効的な発電効率を上げることが可能となる。従って、本発明に係る熱電変換モジュールは太陽電池に組み込まれて利用される産業上の利用可能性を有している。   According to the thermoelectric conversion module according to the present invention, since a large temperature difference is realized in the thermoelectric conversion module, it is possible to increase and improve the amount of power generation, and is proposed in Non-Patent Documents 2 and 3. Compared to the thermoelectric conversion module, it is possible to greatly improve the degree of freedom of arrangement, and it is possible to increase the effective power generation efficiency of the solar cell by bonding it to the back side of the solar cell. Therefore, the thermoelectric conversion module according to the present invention has industrial applicability to be used by being incorporated in a solar cell.

従来の結晶Si系太陽電池の温度特性を示すグラフ図。The graph which shows the temperature characteristic of the conventional crystalline Si type solar cell. 従来技術に係る熱電変換素子の主要部構成を示す断面図。Sectional drawing which shows the principal part structure of the thermoelectric conversion element which concerns on a prior art. 本発明に係る熱電変換モジュールの概略斜視図。The schematic perspective view of the thermoelectric conversion module which concerns on this invention. 裏面側に熱電変換モジュールが接着された太陽電池の総発電量の樹脂厚依存性をシミュレーションした結果を示すグラフ図。The graph which shows the result of having simulated the resin thickness dependence of the total electric power generation amount of the solar cell by which the thermoelectric conversion module was adhere | attached on the back side. 図5(a)〜(c)は本発明に係る熱電変換モジュールを製造する際に用いられるマスクの一例を示す平面図。5A to 5C are plan views showing an example of a mask used when manufacturing the thermoelectric conversion module according to the present invention. 本発明に係る熱電変換モジュールの製造途中における熱電変換ユニット積層集合体の概略斜視図。The schematic perspective view of the thermoelectric conversion unit laminated assembly in the middle of manufacture of the thermoelectric conversion module which concerns on this invention. 上記熱電変換ユニット積層集合体の構造を略した本発明に係る熱電変換モジュールの概略斜視図。The schematic perspective view of the thermoelectric conversion module which concerns on this invention which abbreviate | omitted the structure of the said thermoelectric conversion unit laminated assembly. 本発明に係る熱電変換モジュール内における熱流の概略図。The schematic of the heat flow in the thermoelectric conversion module which concerns on this invention. 本発明の実施例に係る熱電変換モジュールの製造途中における熱電変換ユニット積層集合体と熱電極部の概略斜視図。The schematic perspective view of the thermoelectric conversion unit lamination | stacking assembly | assembly in the middle of manufacture of the thermoelectric conversion module which concerns on the Example of this invention, and a thermal electrode part.

符号の説明Explanation of symbols

10 熱電変換ユニット
11 p型薄膜層
12 n型薄膜層
13 電気絶縁層(ポリイミド樹脂シート)
14 接続部
20 基板
21 低熱伝導部
22 高熱伝導部
23 熱電極部
31 低熱伝導部
32 高熱伝導部
33 熱電極部
40 温度接触部
50 温度接触部
60 熱電変換ユニット積層集合体
70 高熱伝導部
80 温度接触部
81 高熱伝導部
82 低熱伝導部
83 熱電変換ユニット(熱電素子部)
100 熱電変換モジュール
123 熱電極部
130 ポリイミド樹脂シート
133 熱電極部
200 基板
230 熱電極部
300 基板
330 熱電極部
400 温度接触部
500 温度接触部
10 thermoelectric conversion unit 11 p-type thin film layer 12 n-type thin film layer 13 electrical insulating layer (polyimide resin sheet)
DESCRIPTION OF SYMBOLS 14 Connection part 20 Board | substrate 21 Low thermal conduction part 22 High thermal conduction part 23 Thermal electrode part 31 Low thermal conduction part 32 High thermal conduction part 33 Thermal electrode part 40 Temperature contact part 50 Temperature contact part 60 Thermoelectric conversion unit laminated assembly 70 High thermal conduction part 80 Temperature Contact part 81 High heat conduction part 82 Low heat conduction part 83 Thermoelectric conversion unit (thermoelectric element part)
DESCRIPTION OF SYMBOLS 100 Thermoelectric conversion module 123 Thermal electrode part 130 Polyimide resin sheet 133 Thermal electrode part 200 Substrate 230 Thermal electrode part 300 Substrate 330 Thermal electrode part 400 Temperature contact part 500 Temperature contact part

Claims (13)

p型材料から成るp型薄膜層とn型材料から成るn型薄膜層が電気絶縁層を介して積層されかつp型薄膜層とn型薄膜層がこれ等薄膜層端部側の接続部において電気的に接続されている熱電変換ユニットを、上記薄膜層の厚さ方向に単数あるいは電気絶縁層を介し複数積層させた熱電変換ユニット単体あるいは熱電変換ユニット積層集合体の最外側両面に、熱伝導率の異なる材料で構成された基板がそれぞれ設けられ、一方の基板側を高温側にかつ他方の基板側を低温側に配置して成る熱電変換モジュールにおいて、
上記各基板が、熱伝導率の低い材料で構成されかつ熱電変換ユニット単体表面あるいはその積層集合体の最外側表面を被覆する低熱伝導部と、熱伝導率の高い材料で構成されかつ上記低熱伝導部の厚さ方向に沿って設けられた貫通孔若しくは凹部内に埋め込まれると共にその一端側が熱電変換ユニットにおける上記接続部の近傍部位に接続または近接され他端側が低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部とで構成され、かつ、低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部の表面が熱伝導率の高い材料で構成される温度接触部に接続されていることを特徴とする熱電変換モジュール。
A p-type thin film layer made of a p-type material and an n-type thin film layer made of an n-type material are laminated via an electrical insulating layer, and the p-type thin film layer and the n-type thin film layer are connected at the end of the thin film layer. Conductive heat transfer is performed on the outermost surfaces of a single thermoelectric conversion unit or a thermoelectric conversion unit stacked assembly in which one or more thermoelectric conversion units that are electrically connected are stacked in the thickness direction of the thin film layer via an electric insulating layer. In a thermoelectric conversion module comprising substrates each made of a material having a different rate, wherein one substrate side is disposed on the high temperature side and the other substrate side is disposed on the low temperature side.
Each of the substrates is made of a material having a low thermal conductivity and is composed of a low thermal conductivity portion covering the surface of the single unit of the thermoelectric conversion unit or the outermost surface of the laminated assembly, and a material having a high thermal conductivity and the low thermal conductivity. Embedded in a through-hole or recess provided along the thickness direction of the portion, and one end of the thermoelectric conversion unit is connected to or close to the vicinity of the connection portion, and the other end is a through-hole or recess in the surface of the low heat conducting portion. And the surface of the high thermal conductivity portion exposed from the through hole or recess of the surface of the low thermal conductivity portion is connected to a temperature contact portion composed of a material having high thermal conductivity. A thermoelectric conversion module.
熱伝導率の高い材料が金属であることを特徴とする請求項1に記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein the material having a high thermal conductivity is a metal. 一方の基板における高熱伝導部表面が接続される温度接触部が高温側若しくは低温側に配置され、他方の基板における温度接触部が大気側に熱的に接した状態で配置されることを特徴とする請求項1〜2のいずれかに記載の熱電変換モジュール。   The temperature contact portion to which the surface of the high thermal conductivity portion of one substrate is connected is disposed on the high temperature side or the low temperature side, and the temperature contact portion on the other substrate is disposed in a state of being in thermal contact with the atmosphere side. The thermoelectric conversion module according to claim 1. 上記基板における高熱伝導部の熱伝導度(κc)並びに断面積(Sc)と、上記基板における低熱伝導部の熱伝導度(κa)並びに断面積(Sa)とが、
1.2κa×Sa ≧ κc×Sc (式1)
の関係を有し、かつ
0.8κa×Sa ≦ κc×Sc (式2)
の関係を有していることを特徴とする請求項3に記載の熱電変換モジュール。
The thermal conductivity (κc) and the cross-sectional area (Sc) of the high thermal conductivity portion in the substrate, and the thermal conductivity (κa) and the cross-sectional area (Sa) of the low thermal conductivity portion in the substrate are:
1.2κa × Sa ≧ κc × Sc (Formula 1)
And having a relationship
0.8κa × Sa ≦ κc × Sc (Formula 2)
The thermoelectric conversion module according to claim 3, wherein:
上記温度接触部の表面が、略黒色の酸化物膜あるいは熱伝導率の高い材料で被覆されていることを特徴とする請求項1〜4のいずれかに記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein the surface of the temperature contact portion is covered with a substantially black oxide film or a material having high thermal conductivity. 低温側に配置される基板の上記温度接触部の表面が、粗面化されていることを特徴とする請求項1〜4のいずれかに記載の熱電変換モジュール。   The surface of the said temperature contact part of the board | substrate arrange | positioned at a low temperature side is roughened, The thermoelectric conversion module in any one of Claims 1-4 characterized by the above-mentioned. 低温側に配置される基板の上記温度接触部の表面に、放熱板が付加されていることを特徴とする請求項1〜4のいずれかに記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein a heat radiating plate is added to the surface of the temperature contact portion of the substrate disposed on the low temperature side. 上記基板における熱伝導率の低い材料が樹脂あるいはガラスであり、かつ、熱電変換ユニット単体面あるいは熱電変換ユニット積層集合体の最外側面から上記基板表面までの厚さが75μm以上であることを特徴とする請求項1〜7のいずれかに記載の熱電変換モジュール。   The material having low thermal conductivity in the substrate is resin or glass, and the thickness from the outermost surface of the thermoelectric conversion unit single-sided surface or the thermoelectric conversion unit laminated assembly to the substrate surface is 75 μm or more. The thermoelectric conversion module according to claim 1. 太陽電池の裏面側に請求項1〜8のいずれかに記載の熱電変換モジュールを接着させ、太陽電池と外気との温度差で発電させることを特徴とする発電装置。   A thermoelectric conversion module according to any one of claims 1 to 8 is adhered to a back surface side of a solar cell, and a power generation device is configured to generate power with a temperature difference between the solar cell and outside air. 太陽電池と熱電変換モジュールの接着に用いる接着剤の熱伝導率を(W/mK)、接着剤の厚みを(d)としたとき、(W/mK)/(d)の比が1000以上であることを特徴とする請求項9に記載の発電装置。   When the thermal conductivity of the adhesive used for bonding the solar cell and the thermoelectric conversion module is (W / mK) and the thickness of the adhesive is (d), the ratio of (W / mK) / (d) is 1000 or more. The power generator according to claim 9, wherein the power generator is provided. 上記熱電変換モジュールにおける太陽電池と接触していない面側の基板表面が、低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部に接続された各温度接触部により被覆されていることを特徴とする請求項9に記載の発電装置。   The substrate surface on the surface side not contacting the solar cell in the thermoelectric conversion module is covered with each temperature contact portion connected to the high heat conduction portion exposed from the through hole or the concave portion of the surface of the low heat conduction portion. The power generator according to claim 9. 上記太陽電池が、アモルファス系Si太陽電池であることを特徴とする請求項9に記載の発電装置。   The said solar cell is an amorphous Si solar cell, The electric power generating apparatus of Claim 9 characterized by the above-mentioned. 上記熱電変換モジュールにおける太陽電池と接触している面側の温度が、太陽電池と接触していない面側の温度より低くなったとき、電気の正負を切り替えるスイッチが熱電変換モジュールの回路中に設けられていることを特徴とする請求項9に記載の発電装置。   When the temperature on the surface side in contact with the solar cell in the thermoelectric conversion module is lower than the temperature on the surface side not in contact with the solar cell, a switch that switches between positive and negative of electricity is provided in the circuit of the thermoelectric conversion module The power generator according to claim 9, wherein the power generator is provided.
JP2008311100A 2008-12-05 2008-12-05 Thermoelectric conversion module and power generator using the same Expired - Fee Related JP5067352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008311100A JP5067352B2 (en) 2008-12-05 2008-12-05 Thermoelectric conversion module and power generator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311100A JP5067352B2 (en) 2008-12-05 2008-12-05 Thermoelectric conversion module and power generator using the same

Publications (2)

Publication Number Publication Date
JP2010135619A true JP2010135619A (en) 2010-06-17
JP5067352B2 JP5067352B2 (en) 2012-11-07

Family

ID=42346601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311100A Expired - Fee Related JP5067352B2 (en) 2008-12-05 2008-12-05 Thermoelectric conversion module and power generator using the same

Country Status (1)

Country Link
JP (1) JP5067352B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016812A (en) * 2007-06-08 2009-01-22 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module and power generation device using the same
JP2013181647A (en) * 2012-03-05 2013-09-12 Kyb Co Ltd Shock absorber
JP2017063141A (en) * 2015-09-25 2017-03-30 Tdk株式会社 Thin film thermoelectric element
JP2017168802A (en) * 2016-03-10 2017-09-21 タツタ電線株式会社 Thermoelectric conversion element
JP2018018916A (en) * 2016-07-27 2018-02-01 小島プレス工業株式会社 Thermoelectric conversion module and manufacturing method
JP2018056161A (en) * 2016-09-26 2018-04-05 株式会社東芝 Thermoelectric conversion device
WO2018159291A1 (en) * 2017-02-28 2018-09-07 リンテック株式会社 Thermoelectric conversion module and method for producing same
WO2020262164A1 (en) * 2019-06-26 2020-12-30 三桜工業株式会社 Heat-utilizing power generation module and thermal power generation device equipped with same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182160A (en) * 2007-01-26 2008-08-07 Nippon Steel Chem Co Ltd Flexible thermoelectric conversion element and its manufacturing method
JP2008205181A (en) * 2007-02-20 2008-09-04 Ngk Spark Plug Co Ltd Thermoelectric module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182160A (en) * 2007-01-26 2008-08-07 Nippon Steel Chem Co Ltd Flexible thermoelectric conversion element and its manufacturing method
JP2008205181A (en) * 2007-02-20 2008-09-04 Ngk Spark Plug Co Ltd Thermoelectric module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016812A (en) * 2007-06-08 2009-01-22 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module and power generation device using the same
JP2013181647A (en) * 2012-03-05 2013-09-12 Kyb Co Ltd Shock absorber
JP2017063141A (en) * 2015-09-25 2017-03-30 Tdk株式会社 Thin film thermoelectric element
JP2017168802A (en) * 2016-03-10 2017-09-21 タツタ電線株式会社 Thermoelectric conversion element
JP2018018916A (en) * 2016-07-27 2018-02-01 小島プレス工業株式会社 Thermoelectric conversion module and manufacturing method
JP2018056161A (en) * 2016-09-26 2018-04-05 株式会社東芝 Thermoelectric conversion device
WO2018159291A1 (en) * 2017-02-28 2018-09-07 リンテック株式会社 Thermoelectric conversion module and method for producing same
JPWO2018159291A1 (en) * 2017-02-28 2020-02-13 リンテック株式会社 Thermoelectric conversion module and method of manufacturing the same
JP7113458B2 (en) 2017-02-28 2022-08-05 リンテック株式会社 Thermoelectric conversion module and manufacturing method thereof
JP7406756B2 (en) 2017-02-28 2023-12-28 リンテック株式会社 Thermoelectric conversion module and its manufacturing method
WO2020262164A1 (en) * 2019-06-26 2020-12-30 三桜工業株式会社 Heat-utilizing power generation module and thermal power generation device equipped with same
JP2021005649A (en) * 2019-06-26 2021-01-14 三桜工業株式会社 Power generation module utilizing heat and thermoelectric power generation device including the same
EP3968392A4 (en) * 2019-06-26 2023-07-12 Sanoh Industrial Co., Ltd. Heat-utilizing power generation module and thermal power generation device equipped with same

Also Published As

Publication number Publication date
JP5067352B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5087757B2 (en) Thermoelectric conversion module and power generator using the same
JP5067352B2 (en) Thermoelectric conversion module and power generator using the same
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP3981738B2 (en) Thermoelectric conversion element
WO2005117154A1 (en) High-density integrated type thin-layer thermoelectric module and hybrid power generating system
JP2008060488A (en) One-side electrode thermoelectric conversion module
JP2006294935A (en) High efficiency and low loss thermoelectric module
KR101237235B1 (en) Manufacturing Method of Thermoelectric Film
JP5146290B2 (en) Thermoelectric conversion module and power generator using the same
JP5776700B2 (en) Thermoelectric conversion module
TWI620354B (en) Thermoelectric conversion device having insulating diamond-like film, method for making the same and thermoelectric conversion module
JP5478518B2 (en) Power generator
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
JP2006049736A (en) Thermoelectric module
JP3602721B2 (en) Solar cell module
WO2018143178A1 (en) Thermoelectric conversion module
JP2012069626A (en) Thermal power generation device
JP3147096U (en) Solid temperature difference power generation plate and solid temperature difference power generation device
TWM413976U (en) Light concentrating solar cell package with heat-dissipating structure
JP2000183375A (en) Solar battery module having good heat radiation
CN207885048U (en) Cover sheet
JP2013042108A (en) Thermoelectric conversion element, thermoelectric conversion device, and power generating method
CN102148268A (en) Photovoltaic and photo-thermal integration device
JPH0951115A (en) Heat generation preventing device of solar cell
CN202750327U (en) Ceramic circuit board of solar concentrating photovoltaic photoelectric conversion receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5067352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees