JP2010132546A - Transparent glass ceramic having low density - Google Patents

Transparent glass ceramic having low density Download PDF

Info

Publication number
JP2010132546A
JP2010132546A JP2009278536A JP2009278536A JP2010132546A JP 2010132546 A JP2010132546 A JP 2010132546A JP 2009278536 A JP2009278536 A JP 2009278536A JP 2009278536 A JP2009278536 A JP 2009278536A JP 2010132546 A JP2010132546 A JP 2010132546A
Authority
JP
Japan
Prior art keywords
glass
glass ceramic
sio
zro
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009278536A
Other languages
Japanese (ja)
Other versions
JP5701500B2 (en
Inventor
Friedrich Siebers
フリードリッヒ・ジーベルス
Kurt Schaupert
クルト・シャウペルト
Thilo Zachau
ティロ・ツァッハウ
Ulf Dahlmann
ウルフ・ダールマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Publication of JP2010132546A publication Critical patent/JP2010132546A/en
Application granted granted Critical
Publication of JP5701500B2 publication Critical patent/JP5701500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass ceramic of new composition having a high temperature quartz mixed crystal as a main crystal phase and having a density lower than 2.5 (g cm<SP>-3</SP>). <P>SOLUTION: A Li<SB>2</SB>O-Al<SB>2</SB>O<SB>3</SB>-SiO<SB>2</SB>-based low density transparent glass ceramic having a heigh temperature quartz mixed crystal as the main crystal phase, having a density ρ of <2.5 (g cm<SP>-3</SP>) and containing 3-4.5 wt.% Li<SB>2</SB>O, 18-24 wt.% Al<SB>2</SB>O<SB>3</SB>, 55-70 wt.% SiO<SB>2</SB>, 0.1-<2.3 wt.% TiO<SB>2</SB>, 0.1-<1.8 wt.% ZrO<SB>2</SB>, 0.2-4 wt.% ΣTiO<SB>2</SB>+ZrO<SB>2</SB>, 0-1.5 wt.% BaO, 1-6 wt.% ΣMgO+ZnO, >4-10 wt.% B<SB>2</SB>O<SB>3</SB>, 0-<1 wt.% ΣNa<SB>2</SB>O+K<SB>2</SB>O, 0-1.5 wt.% usual clarifier (SnO<SB>2</SB>, As<SB>2</SB>O<SB>3</SB>, Sb<SB>2</SB>O<SB>3</SB>and CeO<SB>2</SB>) in terms of oxide amount is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、低い密度を有する透明なガラスセラミックに関する。   The present invention relates to a transparent glass ceramic having a low density.

主結晶相として高温石英混晶(β−石英固溶体)を有するLi2O−Al23−SiO2系のガラスセラミックの密度が、同一の組成および同一の結晶相割合の場合でも、僅かな範囲で変化される理由は、セラミック化の最中に出発ガラスが晒される収縮がセラミック化プログラムによって僅かな程度影響を受けるからであることが知られている。しかしながら、主結晶相として高温石英混晶を有しかつLi2O−Al23−SiO2系からなる従来のガラスセラミックの密度は、あらゆる処置にもかかわらず、常に2.5g・cm-3を上回っている。例えば、ショット社によって特に光学用途のためのゼロデュア(登録商標)の名前で販売されているガラスセラミックは、2.53g・cm-3の密度を有する。 Even when the density of the Li 2 O—Al 2 O 3 —SiO 2 -based glass ceramic having a high-temperature quartz mixed crystal (β-quartz solid solution) as the main crystal phase is the same composition and the same crystal phase ratio, it is slight. It is known that the range varies because the shrinkage to which the starting glass is exposed during ceramization is affected to some extent by the ceramization program. However, the density of a conventional glass ceramic having a high-temperature quartz mixed crystal as a main crystal phase and made of the Li 2 O—Al 2 O 3 —SiO 2 system is always 2.5 g · cm regardless of any treatment. Exceeds 3 . For example, a glass ceramic sold by Schott under the name Zerodur® for optical applications in particular has a density of 2.53 g · cm −3 .

主結晶相として高温石英混晶を有し、2.5g・cm-3より低い密度を有するLi2O−Al23−SiO2系のガラスセラミックを製造しようとする場合、このガラスセラミックのために、新たな組成を見出さねばならない。EP1840093A1から、β−リチア輝石の主結晶相を有するガラスセラミックが既知であるが、これでは、2.5g・cm-3より低い密度を達成することができない。 When an Li 2 O—Al 2 O 3 —SiO 2 -based glass ceramic having a high-temperature quartz mixed crystal as a main crystal phase and a density lower than 2.5 g · cm −3 is to be produced, Therefore, a new composition must be found. From EP1840093A1, glass ceramics having a main crystal phase of β-lithia pyroxene are known, but this cannot achieve a density lower than 2.5 g · cm −3 .

本発明の課題は、主結晶相として高温石英混晶(β−石英固溶体)を有し、2.5g・cm-3より低い密度を有するLi2O−Al23−SiO2系のガラスセラミックを見出すことである。更に、ガラスセラミックが、高い透過率および少ない固有着色(Eigenfaerbung)を有することが意図される。 An object of the present invention is to provide a Li 2 O—Al 2 O 3 —SiO 2 glass having a high-temperature quartz mixed crystal (β-quartz solid solution) as a main crystal phase and a density lower than 2.5 g · cm −3. It is to find a ceramic. Furthermore, it is intended that the glass ceramic has a high transmittance and a low Eigenfaerbung.

上記課題は、酸化物ベースの重量%で、
Li2O 3〜4.5
Al23 18〜24
SiO2 55〜70
TiO2 0.1〜<2.3
ZrO2 0.2〜<1.8
ΣTiO2+ZrO2 0.2〜4
BaO 0〜1.5
ΣMgO+ZnO >1〜6
23 >5〜10
ΣNa2O+K2O 0〜<1
通常の清澄剤(SnO2、As23、Sb23、CeO2) 0〜1.5
を含むガラスセラミックによって解決される。
The problem is weight percent oxide based,
Li 2 O 3-4.5
Al 2 O 3 18-24
SiO 2 55~70
TiO 2 0.1 <2.3
ZrO 2 0.2 to <1.8
ΣTiO 2 + ZrO 2 0.2-4
BaO 0-1.5
ΣMgO + ZnO> 1-6
B 2 O 3 > 5-10
ΣNa 2 O + K 2 O 0 <1
Conventional fining agents (SnO 2, As 2 O 3 , Sb 2 O 3, CeO 2) 0~1.5
Solved by a glass-ceramic containing.

酸化物Li2O、Al23およびSiO2は、高温石英混晶(β−石英固溶体)および/またはキータイト混晶(キータイト固溶体)を有するガラスセラミックの必要な成分である。Li2Oの含量が3重量%未満である場合、結晶相割合が、意図された使用にとって余りにも低い(高温石英混晶の所望の割合は、<60体積%である)。4.5重量%を超えるLi2Oの含量は、結晶成長速度を高め、失透安定性を危うくする。Li2Oの含量は、3〜4重量%であることが好ましい。何故ならば、この範囲では、達成可能な結晶相含量と、十分な失透安定性との間の特に好都合な妥協があるからである。Al23の含量は18〜24重量%である。この範囲では、溶融物は、良好な加工性を保証すべく十分に低い粘性を有する。Al23の含量が18重量%未満である場合、達成可能なセラミック化速度が下がり、透明度は余りに低いであろう。 The oxides Li 2 O, Al 2 O 3 and SiO 2 are necessary components of a glass ceramic having a high-temperature quartz mixed crystal (β-quartz solid solution) and / or a keatite mixed crystal (keatite solid solution). When the content of Li 2 O is less than 3% by weight, the crystal phase proportion is too low for the intended use (the desired proportion of high temperature quartz mixed crystals is <60% by volume). A Li 2 O content exceeding 4.5% by weight increases the crystal growth rate and jeopardizes devitrification stability. The content of Li 2 O is preferably 3 to 4% by weight. This is because in this range there is a particularly favorable compromise between the achievable crystalline phase content and sufficient devitrification stability. The content of Al 2 O 3 is 18 to 24% by weight. In this range, the melt has a sufficiently low viscosity to ensure good processability. If the Al 2 O 3 content is less than 18% by weight, the achievable ceramization rate will be reduced and the transparency will be too low.

Al23の含量は19.5〜21.5重量%の範囲にあることが好ましい。 The content of Al 2 O 3 is preferably in the range of 19.5 to 21.5% by weight.

SiO2の含量は55〜70重量%である。SiO2の含量が高ければ、密度は一層低くなる。しかしながら、SiO2の含量が、70重量%の、好ましくは66重量%の上限を上回らないほうがよい。何故ならば、上回れば、未処理ガラス(Gruenglas)を処理するための温度範囲が、>1550℃の値を有し、このような温度では、ガラスを処理するためには技術的に一層難しくなるからである。 The content of SiO 2 is 55 to 70% by weight. The higher the SiO 2 content, the lower the density. However, the SiO 2 content should not exceed the upper limit of 70% by weight, preferably 66% by weight. This is because, above that, the temperature range for processing untreated glass (Gruenglas) has a value of> 1550 ° C., and at such temperatures it becomes technically more difficult to process the glass. Because.

SiO2の含量が55重量%の下限を下回ると、セラミック化速度が下がる。SiO2の含有量は、少なくとも56重量%であることが好ましい。 When the SiO 2 content is below the lower limit of 55% by weight, the ceramization rate decreases. The content of SiO 2 is preferably at least 56% by weight.

アルカリ酸化物Na2OおよびK2Oの存在によって、ガラスの溶融性および失透挙動が、製造の際に、改善されることが知られている。しかしながら、Na2OおよびK2Oの含量が合計で1重量%より低いことが意図される。何故ならば、これらの酸化物の1重量%より高い割合が、ガラスセラミックの熱膨張係数を高めるからである。Na2OおよびK2Oの含量は、合計で、0〜0.9重量%、特に0.3〜0.5重量%であることが好ましい。 It is known that the presence of the alkali oxides Na 2 O and K 2 O improves the meltability and devitrification behavior of the glass during production. However, it is contemplated that the content of Na 2 O and K 2 O is less than 1% by weight in total. This is because a proportion higher than 1% by weight of these oxides increases the thermal expansion coefficient of the glass ceramic. The total content of Na 2 O and K 2 O is preferably 0 to 0.9% by weight, particularly 0.3 to 0.5% by weight.

アルカリ土類酸化物CaOおよびBaOも、一般的に、溶融挙動への同様に好ましい効果を示す。しかしながら、本発明の組成物では、CaOはないほうが好ましいが、最大限0.5重量%が許容され得る。本発明の組成物では、CaOはセラミック化の最中に異物相の形成をもたらすので、回避されることが意図される。BaOも、溶融挙動への類似の効果を示す。しかしながら、BaOの高い割合は、密度の増大をもたらす。それ故に、BaOの割合は、最大1.5重量%である。溶融性および透明性を改善するためには、BaOを0.1〜0.8重量%の量で添加することが好ましい。本発明の組成物はBaOを全く含まないことが特に好ましい。しかしながら、このことは、溶融性(Einschmeltzbarkeit)の理由から、必ずしも実現されるわけではない。   Alkaline earth oxides CaO and BaO also generally have a similarly favorable effect on the melting behavior. However, in the compositions of the present invention, it is preferred not to have CaO, but a maximum of 0.5 wt% can be tolerated. In the compositions of the present invention, CaO is intended to be avoided as it results in the formation of a foreign phase during ceramization. BaO also shows a similar effect on the melting behavior. However, a high proportion of BaO results in an increase in density. Therefore, the proportion of BaO is a maximum of 1.5% by weight. In order to improve the meltability and transparency, BaO is preferably added in an amount of 0.1 to 0.8% by weight. It is particularly preferred that the composition according to the invention does not contain any BaO. However, this is not always realized for reasons of meltability (Einschmeltzbarkeit).

TiO2およびZrO2は、知られるように、成核剤として作用する。この場合、TiO2の含量は2.3重量%未満であり、ZrO2の含量は1.8重量%未満であり、TiO2+ZrO2の合計は、0.2〜4重量%である。TiO2およびZrO2が、これらの限界を上回りおよび下回るとき、成核剤の析出速度と、結果として生じる高温石英混晶の含量と、透明性とは、不満足なほどに低い。TiO2およびZrO2の好ましい最低限量は、それぞれ、1重量%のTiO2および1重量%のZrO2である。TiO2およびZrO2の合計は2〜4重量%であることが好ましい。 TiO 2 and ZrO 2 act as nucleating agents, as is known. In this case, the content of TiO 2 is less than 2.3% by weight, the content of ZrO 2 is less than 1.8% by weight, and the total of TiO 2 + ZrO 2 is 0.2-4% by weight. When TiO 2 and ZrO 2 are above and below these limits, the nucleating agent precipitation rate, the resulting high-temperature quartz mixed crystal content, and transparency are unsatisfactoryly low. Preferred minimum amounts of TiO 2 and ZrO 2 are each 1 wt% of TiO 2 and 1% by weight of ZrO 2. The total of TiO 2 and ZrO 2 is preferably 2 to 4% by weight.

Fe23の微量濃度に関連したガラスセラミックの増大する着色の故に、MgOおよびZnOの割合は、合計1ないし6重量%に限定されねばならない。この合計内では、MgOの量は0.5重量%を、ZnOの量は2.5重量%を上回らないことが好ましい。MgOおよびZnOの含量は、合計で、1重量%ないし2.5重量%であることが特に好ましい。 Due to the increased coloration of the glass ceramic associated with the trace concentration of Fe 2 O 3 , the proportion of MgO and ZnO must be limited to a total of 1 to 6% by weight. Within this total, the MgO amount is preferably 0.5% by weight and the ZnO amount preferably does not exceed 2.5% by weight. The total content of MgO and ZnO is particularly preferably 1% to 2.5% by weight.

低い密度を得るために重要な成分は、B23である。何故ならば、この成分は、微細構造を緩ませ、セラミック化の最中にガラスセラミックの圧縮を減じるからである。B23は、5重量%を超え、10重量%までの量で、存在する。しかしながら、B23がより高い場合には、ガラスセラミックの透過率が低下し、あるいは、失透傾向が、成形(成形温度(Va))の際に、増大するという危険性が存する。B23の含量は5重量%を超え、9重量%までであることが好ましい。 An important component for obtaining low density is B 2 O 3 . This is because this component relaxes the microstructure and reduces the compression of the glass ceramic during ceramization. B 2 O 3 is present in an amount greater than 5% by weight and up to 10% by weight. However, when B 2 O 3 is higher, there is a risk that the transmittance of the glass ceramic decreases or the tendency of devitrification increases during molding (molding temperature (Va)). The content of B 2 O 3 is preferably more than 5% by weight and up to 9% by weight.

SnO2は、ガラス系の中で、0〜1重量%の量で存在し得る。SnO2が、清澄剤および成核剤として作用することが可能である。しかしながら、SnO2が存在しないことが好ましい。 SnO 2 can be present in the glass system in an amount of 0 to 1% by weight. SnO 2 can act as a fining and nucleating agent. However, it is preferred that SnO 2 is not present.

成分ZnOおよびMgOにおいて記述した色の問題の故に、Fe23の含量は200重量ppm未満、好ましくは130重量ppm未満であるべきである。対応して、鉄の含有量の少ない原料が用いられることに注意しなければならない。更に、ガラスは、CaO、F、Pb酸化物および着色性酸化物を有しないことが好ましい。 Because of the color problems described in the components ZnO and MgO, the content of Fe 2 O 3 should be less than 200 ppm by weight, preferably less than 130 ppm by weight. Correspondingly, it should be noted that raw materials with a low iron content are used. Furthermore, it is preferable that glass does not have CaO, F, Pb oxide, and a coloring oxide.

ガラスセラミックの製造は、原料のそれ自体知られた溶融、続いてのガラスの清澄および成形によってなされる。清澄は、化学的または物理的方法によってなされ得る。As23、Sb23、CeO2、SnO2、硫酸塩化合物または塩化物化合物のようなそれ自体既知の清澄剤が用いられる場合、これらの清澄剤は、0.1ないし1.5重量%の通常の量で用いられる。物理的方法は、例えば、減圧清澄または高温清澄である。 The production of glass-ceramics takes place by known melting of the raw materials, followed by glass refining and shaping. Clarification can be done by chemical or physical methods. When fining agents known per se, such as As 2 O 3 , Sb 2 O 3 , CeO 2 , SnO 2 , sulfate compounds or chloride compounds are used, these fining agents are 0.1 to 1.5 Used in the usual amount of wt%. The physical method is, for example, vacuum clarification or high temperature clarification.

ガラスを成形して、例えば板ガラスに形成した後に、ガラスのそれ自体知られたセラミック化がなされて、ガラスセラミックが形成される。そのためには、ガラスセラミックは、好ましい成核剤相TiZrO4の高い核密度を析出させるために、それ自体既知の手法で、例えば、630℃〜770℃の温度で、15分を超える時間処理され、続いて、高温石英混晶ガラスセラミックを形成するための結晶化が、700℃〜950℃の温度範囲で、少なくとも5分の滞留時間で実行される。かくして、ガラスセラミックにおける高温石英混晶の微結晶(Kristallit)の大きさは、100nm未満、特に、80nm未満である。このことは、優れた透明性をもたらす。20℃〜300℃の範囲でのガラスセラミックの熱膨張係数は、+0.3〜0.6・10-6-1未満、好ましくは0.5・10-6-1未満である。 After the glass has been formed and formed into, for example, a sheet glass, the glass is known to be ceramized to form a glass ceramic. For this purpose, the glass ceramic is treated in a manner known per se, for example at a temperature between 630 ° C. and 770 ° C., for more than 15 minutes, in order to precipitate the high nucleating density of the preferred nucleating agent phase TiZrO 4. Subsequently, crystallization to form a high temperature quartz mixed crystal glass ceramic is carried out in the temperature range of 700 ° C. to 950 ° C. with a residence time of at least 5 minutes. Thus, the size of the high-temperature quartz mixed crystal Kristallit in the glass ceramic is less than 100 nm, in particular less than 80 nm. This provides excellent transparency. The thermal expansion coefficient of the glass ceramic in the range of 20 ° C. to 300 ° C. is +0.3 to less than 0.6 · 10 −6 K −1 , preferably less than 0.5 · 10 −6 K −1 .

DIN5031に従って測定されたガラスセラミックの輝度値Y(A/2°)は、4mmの厚さの板ガラスについて、80を超え、好ましくは87を超える。CIE−xyY表色系の輝度値Yは、常に、2°の視角での透過標準光Aについて特定され、個々の波長において分解された透過スペクトルから、CIEで定められた視覚感度曲線(三刺激曲線)によって、算出される。輝度値は、しばしば、分光透過率とも呼ばれる。未処理ガラスからガラスセラミックを製造するための1つの好ましいセラミック化方法は、未処理ガラスを、10〜15K・min-1の加熱速度で、650±10℃の温度に加熱し、続いて、1〜5K・min-1の加熱速度で、710±50℃の温度に更に加熱し、核を形成すべく、この温度で60±30分放置し、続いて、0.5〜5K・min-1の加熱速度で、850±50℃の結晶化温度に加熱し、未処理ガラスを、この温度に20±15分保って、結晶化することである。この後、任意の冷却速度で、しかし、一般的には、1〜20K・min-1の冷却速度で冷却を行なう。 The luminance value Y (A / 2 °) of the glass ceramic measured according to DIN 5031 is greater than 80, preferably greater than 87, for a sheet glass with a thickness of 4 mm. The luminance value Y of the CIE-xyY color system is always specified for the transmission standard light A at a viewing angle of 2 °, and the visual sensitivity curve (tristimulus) defined by the CIE is determined from the transmission spectrum resolved at each wavelength. Curve). The luminance value is often referred to as spectral transmittance. One preferred method of ceramizing to produce glass ceramic from untreated glass is to heat the untreated glass at a heating rate of 10-15 K · min −1 to a temperature of 650 ± 10 ° C., followed by 1 Further heating to a temperature of 710 ± 50 ° C. at a heating rate of ˜5 K · min −1 , leaving at this temperature for 60 ± 30 minutes to form nuclei, followed by 0.5 to 5 K · min −1 Is heated to a crystallization temperature of 850 ± 50 ° C. at a heating rate of 5 ° C., and the untreated glass is kept at this temperature for 20 ± 15 minutes for crystallization. Thereafter, cooling is performed at an arbitrary cooling rate, but generally at a cooling rate of 1 to 20 K · min −1 .

本発明を、実施例を参照してさらに詳述する。   The invention is further described in detail with reference to examples.

出発ガラスを、ガラス産業で通常の原料を用いて、1620℃の温度で溶融しかつ清澄した。焼結されたシリカガラス(クォーザル(登録商標)、ショット社)で作られた坩堝において溶融した後に、溶融物を、白金坩堝に移し変え、1600℃の温度で、30分間、撹拌によって均質化した。1640℃で2時間の放置後に、140×100×30mmの寸法の鋳込み成形品を鋳込み成形し、熱応力を緩和するために、冷却炉で、650℃から始めて室温まで冷却した。これらの鋳込み成形品から、試験サンプル、例えば、熱膨張係数を測定するための棒、透過率を測定するための小板を作製した。ついで、ガラスセラミックの検査のために必要な大きさのガラス状のサンプルを、以下に挙げる核形成条件および結晶化条件を用いて、ガラスセラミックに変換した。この目的のために、サンプルを、10K・min-1の加熱速度で、650℃の温度に加熱し、この温度に達した後に、約5K・min-1の加熱速度でTg+20Kの温度に加熱し、核形成のために、この温度で30分放置した。続いて、サンプルを、10K・min-1の加熱速度で、高温石英混晶に関する示差熱分析器(DTA)によって測定された生成の最大速度(Ausscheidungsmaximum)の範囲における温度に加熱し、この温度で10分間放置し、続いて、5K・min-1の平均冷却速度で、室温まで冷却した(空気中で)。 The starting glass was melted and clarified at a temperature of 1620 ° C. using raw materials common in the glass industry. After melting in a crucible made of sintered silica glass (Quazar®, Schott), the melt was transferred to a platinum crucible and homogenized by stirring at a temperature of 1600 ° C. for 30 minutes. . After standing at 1640 ° C. for 2 hours, a cast molded product having a size of 140 × 100 × 30 mm was cast and then cooled to room temperature in a cooling furnace starting from 650 ° C. From these cast products, test samples, for example, rods for measuring the thermal expansion coefficient and platelets for measuring the transmittance were prepared. Subsequently, a glassy sample having a size required for the inspection of the glass ceramic was converted into the glass ceramic by using the nucleation conditions and the crystallization conditions described below. For this purpose, the sample is heated to a temperature of 650 ° C. at a heating rate of 10 K · min −1 and, after reaching this temperature, to a temperature of T g +20 K at a heating rate of about 5 K · min −1. Heated and left at this temperature for 30 minutes for nucleation. Subsequently, the sample is heated at a heating rate of 10 K · min −1 to a temperature in the range of the maximum rate of production (Ausscheidungsmaximum) measured by a differential thermal analyzer (DTA) for high temperature quartz mixed crystals, at this temperature. It was allowed to stand for 10 minutes, and then cooled to room temperature (in air) at an average cooling rate of 5 K · min −1 .

出発ガラスおよび製造されたガラスセラミックについて、密度ρ[g・cm-3]と、結晶相割合KPhAと、輝度値Y(A/2°)とを測定した。 The density ρ [g · cm −3 ], the crystal phase ratio KPhA, and the luminance value Y (A / 2 °) were measured for the starting glass and the produced glass ceramic.

例が、表1に纏められている。

Figure 2010132546
Examples are summarized in Table 1.
Figure 2010132546

僅かな固有色および高い輝度値(高いスペクトル光透過率)Y(A/2°)の故に、ガラスセラミックは、多様なシステム、例えば、レンジ上面、煙突用視界窓、半導体基板、またはガラスコンポーネント、例えば耐火性ガラス、高温用途のための視界窓等に使用するために、特によく適している。特に、ガラスセラミックは、破壊、銃撃作用または圧力波作用に対して保護するための耐衝撃性の硬いガラス系におけるコンポーネントとして適している。当然ながら、ガラスセラミックまたは未処理ガラスは、必要な場合には、特に美的な効果を上げるために、通常の着色酸化物によって着色することもできる。   Due to the slight intrinsic color and high luminance value (high spectral light transmission) Y (A / 2 °), glass ceramics can be used in a variety of systems such as range tops, chimney viewing windows, semiconductor substrates, or glass components, For example, it is particularly well suited for use in fire resistant glass, viewing windows for high temperature applications, and the like. In particular, glass ceramics are suitable as components in impact-resistant hard glass systems to protect against destruction, shooting action or pressure wave action. Of course, the glass ceramic or untreated glass can also be colored with conventional colored oxides, if necessary, in order to increase the aesthetic effect in particular.

Claims (4)

主結晶相として高温石英混晶を有し、2.5g・cm-3未満の密度ρを有し、酸化物ベースの重量%で、
3〜4.5 Li2
18〜24 Al23
55〜70 SiO2
0.1〜2.3未満 TiO2
0.2〜1.8未満 ZrO2
0.2〜4 ΣTiO2+ZrO2
0〜1.5 BaO
0〜0.5 CaO
1〜6 ΣMgO+ZnO
>5〜10 B23
0〜<1 ΣNa2O+K2
0〜1.5 通常の清澄剤(SnO2、As23、Sb23、CeO2
を含む、Li2O-Al23-SiO2系のガラスセラミック。
It has a high-temperature quartz mixed crystal as the main crystal phase, has a density ρ of less than 2.5 g · cm −3 ,
3 to 4.5 Li 2 O
18-24 Al 2 O 3
55-70 SiO 2
0.1 to less than 2.3 TiO 2
0.2 to less than 1.8 ZrO 2
0.2-4 ΣTiO 2 + ZrO 2
0 to 1.5 BaO
0-0.5 CaO
1-6 ΣMgO + ZnO
> 5-10 B 2 O 3
0 to <1 ΣNa 2 O + K 2 O
0-1.5 conventional fining agents (SnO 2, As 2 O 3 , Sb 2 O 3, CeO 2)
Li 2 O—Al 2 O 3 —SiO 2 -based glass ceramic containing
酸化物ベースの重量%で、
3〜4 Li2
19.5〜21.5 Al23
56〜66 SiO2
2〜4 ΣTiO2+ZrO2
0.1〜0.8 BaO
0〜2.5 ZnO
0〜0.5 MgO
1〜2.5 ΣZnO+MgO
>5〜9 B23
0〜0.9 ΣNa2O+K2
0〜1.5 通常の清澄剤(SnO2、As23、Sb23、CeO2
を含む請求項1に記載のガラスセラミック。
% By weight based on oxide,
3-4 Li 2 O
19.5 to 21.5 Al 2 O 3
56-66 SiO 2
2-4 ΣTiO 2 + ZrO 2
0.1-0.8 BaO
0 to 2.5 ZnO
0-0.5 MgO
1 to 2.5 ΣZnO + MgO
> 5-9 B 2 O 3
0-0.9 ΣNa 2 O + K 2 O
0-1.5 conventional fining agents (SnO 2, As 2 O 3 , Sb 2 O 3, CeO 2)
The glass ceramic according to claim 1, comprising:
80を超え、特に87を超える、DIN5031に従う輝度値Y(A/2°)を有する請求項1または2に記載のガラスセラミック。   Glass ceramic according to claim 1 or 2, having a luminance value Y (A / 2 °) according to DIN 5031 greater than 80, in particular greater than 87. レンジ上面、煙突用視界窓またはオーブンの視界窓、半導体基板、ガラスコンポーネント、耐火性ガラス、高温用途のための視界窓、あるいは、破壊、射撃作用または圧力波作用に対し保護するための耐衝撃性の硬いガラス系のための、請求項1ないし3のいずれか1項に記載のセラミックの使用。   Range top, chimney viewing window or oven viewing window, semiconductor substrate, glass components, refractory glass, viewing window for high temperature applications, or impact resistance to protect against destruction, shooting or pressure wave effects Use of a ceramic according to any one of claims 1 to 3 for a hard glass system.
JP2009278536A 2008-12-08 2009-12-08 Transparent glass ceramic with low density Active JP5701500B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008054386.1 2008-12-08
DE200810054386 DE102008054386B3 (en) 2008-12-08 2008-12-08 Transparent low-density glass-ceramic and its use

Publications (2)

Publication Number Publication Date
JP2010132546A true JP2010132546A (en) 2010-06-17
JP5701500B2 JP5701500B2 (en) 2015-04-15

Family

ID=42168996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009278536A Active JP5701500B2 (en) 2008-12-08 2009-12-08 Transparent glass ceramic with low density

Country Status (3)

Country Link
JP (1) JP5701500B2 (en)
DE (1) DE102008054386B3 (en)
FR (1) FR2939427B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130201678A1 (en) * 2010-07-23 2013-08-08 Schott Ag Glass ceramic as a cooktop for induction heating having improved colored display capability and heat shielding, method for producing such a cooktop, and use of such a cooktop
KR20190078626A (en) * 2016-11-07 2019-07-04 코닝 인코포레이티드 Lithium-containing glass
CN110423009A (en) * 2012-05-15 2019-11-08 欧罗克拉公司 Transparent, essentially colorless and non-diffuse β-ceramics quartz glass;Product in the glass ceramics;Glass precursor
US11111173B2 (en) 2016-11-07 2021-09-07 Corning Incorporated Lithium containing glasses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143289A (en) * 1998-10-27 2000-05-23 Corning Inc Low expansion glass ceramics
JP2004075441A (en) * 2002-08-14 2004-03-11 Huzhou Daikyo Hari Seihin Yugenkoshi Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass
JP2005343702A (en) * 2004-05-31 2005-12-15 National Institute Of Advanced Industrial & Technology Optical material, optical device, and etalon
JP2006523600A (en) * 2003-04-01 2006-10-19 コーニング インコーポレイテッド Lamp reflector substrate, glass, glass-ceramic material and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2629328T3 (en) * 2006-03-31 2017-08-08 Eurokera Vitroceramic materials of beta-espodumena and process for the manufacture of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143289A (en) * 1998-10-27 2000-05-23 Corning Inc Low expansion glass ceramics
JP2004075441A (en) * 2002-08-14 2004-03-11 Huzhou Daikyo Hari Seihin Yugenkoshi Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass
JP2006523600A (en) * 2003-04-01 2006-10-19 コーニング インコーポレイテッド Lamp reflector substrate, glass, glass-ceramic material and method for manufacturing the same
JP2005343702A (en) * 2004-05-31 2005-12-15 National Institute Of Advanced Industrial & Technology Optical material, optical device, and etalon

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130201678A1 (en) * 2010-07-23 2013-08-08 Schott Ag Glass ceramic as a cooktop for induction heating having improved colored display capability and heat shielding, method for producing such a cooktop, and use of such a cooktop
US9018113B2 (en) * 2010-07-23 2015-04-28 Schott Ag Glass ceramic as a cooktop for induction heating having improved colored display capability and heat shielding, method for producing such a cooktop, and use of such a cooktop
CN110423009A (en) * 2012-05-15 2019-11-08 欧罗克拉公司 Transparent, essentially colorless and non-diffuse β-ceramics quartz glass;Product in the glass ceramics;Glass precursor
KR20190078626A (en) * 2016-11-07 2019-07-04 코닝 인코포레이티드 Lithium-containing glass
JP2019534234A (en) * 2016-11-07 2019-11-28 コーニング インコーポレイテッド Lithium-containing glass
US11111173B2 (en) 2016-11-07 2021-09-07 Corning Incorporated Lithium containing glasses
JP7201589B2 (en) 2016-11-07 2023-01-10 コーニング インコーポレイテッド Lithium-containing glass
KR102515600B1 (en) 2016-11-07 2023-03-29 코닝 인코포레이티드 lithium-containing glass
US11932574B2 (en) 2016-11-07 2024-03-19 Corning Incorporated Lithium containing glasses
US11945747B2 (en) 2016-11-07 2024-04-02 Corning Incorporated Low viscosity glasses and methods and systems for manufacture

Also Published As

Publication number Publication date
FR2939427B1 (en) 2011-08-19
FR2939427A1 (en) 2010-06-11
JP5701500B2 (en) 2015-04-15
DE102008054386B3 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP7458388B2 (en) Transparent β-quartz glass ceramic with low lithium content
JP6735704B2 (en) Transparent, colorless, low titania beta/quartz/glass/ceramic materials
EP0437228B2 (en) Thermally crystallizable glass, glass-ceramic made therefrom, and method of making same
JP4000500B2 (en) Li2O-Al2O3-SiO2 based crystallized glass and crystalline glass
CN110423009B (en) Transparent, substantially colorless and non-diffusing beta-quartz glass-ceramics; an article in the glass-ceramic; precursor glass
JP5367952B2 (en) Lithium aluminosilicate glass with short glazing
JP6463757B2 (en) Glass and glass ceramic
JP6230775B2 (en) Method for tempering ceramics of float crystallized glass
JP2006199538A (en) Li2O-Al2O3-SiO2 CRYSTALLINE GLASS AND CRYSTALLIZED GLASS AND MANUFACTURING METHOD OF Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS
WO2011152337A1 (en) Li2o-al2o3-sio2 based crystallised glass and production method for same
KR20010070009A (en) Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS AND CRYSTALLIZABLE GLASS THEREFOR
JP2018523624A (en) Transparent, essentially colorless, tin clarified LAS glass ceramic with improved microstructure and thermal expansion
WO2012090894A1 (en) Crystallized glass
JP2004075441A (en) Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass
JP4471075B2 (en) Mineral glass that can be ceramicized, preparation of glass-ceramic products, and products
JPH11100231A (en) Infrared transmissive glass ceramics
WO2012066948A1 (en) Li2o-al2o3-sio2 crystalline glass and li2o-al2o3-sio2 crystallized glass obtained by crystallizing same
JP5701500B2 (en) Transparent glass ceramic with low density
JP6331322B2 (en) Li2O-Al2O3-SiO2 based crystallized glass
JP2005053711A (en) Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same
JP4287119B2 (en) Glass ceramic and method for producing the same
JPH09188538A (en) Crystallized glass of lithium oxide-aluminum oxide-silicon oxide
JP5733621B2 (en) Method for producing Li2O-Al2O3-SiO2 crystallized glass
JP5645101B2 (en) Cooker top plate
KR20060003832A (en) Low expansion glass-ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20131203

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150218

R150 Certificate of patent or registration of utility model

Ref document number: 5701500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250