JP2005343702A - Optical material, optical device, and etalon - Google Patents

Optical material, optical device, and etalon Download PDF

Info

Publication number
JP2005343702A
JP2005343702A JP2004161442A JP2004161442A JP2005343702A JP 2005343702 A JP2005343702 A JP 2005343702A JP 2004161442 A JP2004161442 A JP 2004161442A JP 2004161442 A JP2004161442 A JP 2004161442A JP 2005343702 A JP2005343702 A JP 2005343702A
Authority
JP
Japan
Prior art keywords
optical
optical material
temperature
glass
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004161442A
Other languages
Japanese (ja)
Inventor
Naoyuki Kitamura
直之 北村
Tomohiro Nagakane
知浩 永金
Hirosuke Himei
裕助 姫井
Akihiko Sakamoto
明彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nippon Electric Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nippon Electric Glass Co Ltd
Priority to JP2004161442A priority Critical patent/JP2005343702A/en
Publication of JP2005343702A publication Critical patent/JP2005343702A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical material which has a low manufacturing cost, undergoes little change in the direction of a ray even when it has a temperature unevenness, has excellent transmittance to infrared rays, and has controlled temperature dependency of an optical path length, to provide an optical device, and to provide an etalon. <P>SOLUTION: The optical material comprises a crystallized glass in which the main crystal is a deposition of a β-quartz solid solution or a β-eucryptite solid solution, has an infrared transmittance of at least 50% in a thickness of 3 mm at any one of wavelengths in the range of 1,200 to 1,700 nm, has a coefficient of thermal expansion α of -2.0×10<SP>-6</SP>to 2.0×10<SP>-6</SP>/°C at -40 to 100°C, and satisfies the relationship: ϕ-0.5α<19.5×10<SP>-6</SP>(wherein α is the coefficient of thermal expansion, and ϕ is the temperature coefficient of polarizability). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主結晶として、β−石英固溶体又はβ−ユークリプタイト固溶体を析出した結晶化ガラスからなる光学材料に関し、また、その光学材料を構成部材の一部に含む光通信用光学デバイス及びエタロンに関するものである。   The present invention relates to an optical material made of crystallized glass in which a β-quartz solid solution or a β-eucryptite solid solution is precipitated as a main crystal, and an optical device for optical communication containing the optical material as a part of constituent members, and It is about etalon.

近年、光通信技術の発達に伴い、光ファイバを用いたネットワークが急速に整備されつつある。このネットワークの中では、複数の波長の光を一括して伝送する波長多重技術が用いられるようになり、波長フィルタやカプラ、導波路等が重要なデバイスになりつつある。   In recent years, with the development of optical communication technology, networks using optical fibers are being rapidly developed. In this network, wavelength multiplexing technology that transmits light of a plurality of wavelengths at once is used, and wavelength filters, couplers, waveguides, and the like are becoming important devices.

また、この種の光通信デバイスの他にも、レンズやプリズムを利用した微小光学型の光通信デバイスが広く利用されている。これらの光通信デバイスには光学材料として、透明性に優れ、寸法安定性に優れている石英ガラス(SiO2)が広く使用されている。 In addition to this type of optical communication device, micro-optical type optical communication devices using lenses and prisms are widely used. In these optical communication devices, quartz glass (SiO 2 ) having excellent transparency and excellent dimensional stability is widely used as an optical material.

また、この種の光通信デバイスの中には、温度によって特性が変化し、屋外での使用に支障を来すものがあるため、そのような光通信デバイスの特性を温度変化によらずに一定に保つ技術、いわゆる温度補償技術が必要とされている。   In addition, some optical communication devices of this type change their characteristics depending on the temperature and interfere with outdoor use. Therefore, the characteristics of such optical communication devices are constant regardless of temperature changes. Therefore, a so-called temperature compensation technique is required.

温度補償を必要とする光通信デバイスの代表的なものとして、アレイドウエーブガイド(以下、AWGという)や平面光回路(以下、PLCという)等の導波路デバイスやファイバブラッググレーティング(以下、FBGという)やファブリペローエタロン(以下、エタロンという)がある。   Typical optical communication devices that require temperature compensation include waveguide devices such as arrayed wave guides (hereinafter referred to as AWG) and planar optical circuits (hereinafter referred to as PLC), and fiber Bragg gratings (hereinafter referred to as FBGs). And Fabry-Perot etalon (hereinafter referred to as etalon).

数式1に示すように、これらの光通信デバイスでは、その周囲温度が変化すると、屈折率と熱膨張係数が変化することによって光路長が変化するという問題を有している。   As shown in Formula 1, these optical communication devices have a problem that when the ambient temperature changes, the optical path length changes due to the change in refractive index and thermal expansion coefficient.

1/L・dS/dT=(dn/dT)+nα・・・数式1   1 / L · dS / dT = (dn / dT) + nα Equation 1

ここで、Lは基材の肉厚(mm)、Sは光路長(mm)、nは屈折率、αは熱膨張係数を表す。   Here, L represents the thickness (mm) of the substrate, S represents the optical path length (mm), n represents the refractive index, and α represents the thermal expansion coefficient.

AWGやPLC等の導波路デバイスやFBGでは、負の熱膨張係数を持つ材料や大きな負の屈折率温度依存性を持つ材料を基材として使用することによって、これらのデバイスの光路長の温度依存性低減を図っている(例えば、特許文献1参照。)。   In waveguide devices such as AWG and PLC, and FBG, by using a material having a negative thermal expansion coefficient or a material having a large negative refractive index temperature dependence as a substrate, the temperature dependence of the optical path length of these devices (For example, refer to Patent Document 1).

ところが、特許文献2に記載されたような手法を用いてエタロンの光路長の温度依存性を低減することは、エタロンの構造上、技術的に困難である。   However, it is technically difficult to reduce the temperature dependence of the optical path length of the etalon using the technique described in Patent Document 2 because of the structure of the etalon.

従って、従来、エタロンでは、光路長の温度依存性が低い石英ガラス(例えば、特許文献2参照。)、光路長の温度依存性が低いCs2O−B23−SiO2系ガラス(例えば、特許文献3参照。)、又はB23−BaO−Al23−SiO2系ガラス(例えば、特許文献4参照。)を基板材料として使用することが提案されている。
特開2001−342038号公報 特開2000−47029号公報 特開2002−20136号公報 特開2002−321937号公報
Therefore, conventionally, in etalon, quartz glass having a low temperature dependence of the optical path length (see, for example, Patent Document 2), Cs 2 O—B 2 O 3 —SiO 2 glass having a low temperature dependence of the optical path length (for example, , Patent Document 3), or B 2 O 3 —BaO—Al 2 O 3 —SiO 2 glass (for example, see Patent Document 4) has been proposed as a substrate material.
JP 2001-342038 A JP 2000-47029 A JP 2002-20136 A JP 2002-321937 A

しかしながら、特許文献2に記載の石英ガラスは、溶融法では、溶融温度を1700℃以上にしなければならず、溶融が困難であるとともに、このような高温に耐えることが出来る特殊な溶融炉を必要とする。また、特殊な方法で、より低い温度で石英ガラスを製造することも提案されているが、いずれにしても、製造コストが高いという問題がある。また、特許文献3又は特許文献4に記載のガラスは、熱膨張係数が大きいため、このガラスをエタロンに用いた際に、温度ムラがあると変形して光線の方向が変化しやすくなる虞があった。   However, the quartz glass described in Patent Document 2 requires a melting temperature of 1700 ° C. or higher in the melting method, which makes melting difficult and requires a special melting furnace that can withstand such high temperatures. And Also, it has been proposed to produce quartz glass at a lower temperature by a special method, but in any case, there is a problem that the production cost is high. Moreover, since the glass of patent document 3 or patent document 4 has a large thermal expansion coefficient, when this glass is used for an etalon, there is a possibility that the direction of the light beam is likely to change if there is temperature unevenness. there were.

本発明は、上記事情に鑑みなされたものであり、製造コストが低く、温度ムラがあっても光線の方向が変化しにくく、赤外線の透過性に優れ、光路長温度依存性を抑制できる光学材料、光デバイス及びエタロンを提供することを目的とする。   The present invention has been made in view of the above circumstances, and is an optical material that is low in manufacturing cost, hardly changes in the direction of light even if there is temperature unevenness, has excellent infrared transparency, and can suppress the optical path length temperature dependency. An object is to provide an optical device and an etalon.

本発明者等は、光学材料として、熱膨張係数αが低く、赤外線の透過率が高く、熱膨張係数αと、分極率の温度係数φとをコントロールした結晶化ガラスを用いれば、光学材料の製造コストが低く、温度ムラがあっても光線の方向が変化しにくく、赤外線の透過性に優れ、光路長温度依存性を抑制できるという知見を得、本発明として提案するものである。   The inventors of the present invention can use an optical material having a low thermal expansion coefficient α, a high infrared transmittance, and a crystallized glass in which the thermal expansion coefficient α and the temperature coefficient φ of the polarizability are controlled. The present inventors have obtained the knowledge that the manufacturing cost is low, the direction of the light beam hardly changes even when there is temperature unevenness, the infrared ray transmission is excellent, and the optical path length temperature dependency can be suppressed, and is proposed as the present invention.

すなわち、本発明の光学材料は、β−石英固溶体又はβ−ユークリプタイト固溶体を主結晶として析出し、肉厚3mmで、波長1200〜1700nmのうちいずれかの波長における赤外線透過率が50%以上であり、−40℃〜100℃における熱膨張係数αが−2.0〜2.0×10-6/℃であり、前記熱膨張係数αと分極率の温度係数φがφ−0.5α<19.5×10-6の関係を有する結晶化ガラスからなることを特徴とする。 That is, the optical material of the present invention precipitates β-quartz solid solution or β-eucryptite solid solution as a main crystal, has a thickness of 3 mm, and has an infrared transmittance of 50% or more at any wavelength of wavelengths 1200 to 1700 nm. The thermal expansion coefficient α at −40 ° C. to 100 ° C. is −2.0 to 2.0 × 10 −6 / ° C., and the temperature coefficient φ of the polarizability is φ−0.5α. It is characterized by comprising crystallized glass having a relationship of <19.5 × 10 −6 .

また、本発明の光学デバイスは、β−石英固溶体又はβ−ユークリプタイト固溶体を主結晶として析出し、肉厚3mmで、波長1200〜1700nmのうちいずれかの波長における赤外線透過率が50%以上であり、−40℃〜100℃における熱膨張係数αが−2.0〜2.0×10-6/℃であり、前記熱膨張係数αと分極率の温度係数φがφ−0.5α<19.5×10-6の関係を有する結晶化ガラスからなる光学材料を構成部材の一部に含むことを特徴とする。 Further, the optical device of the present invention precipitates β-quartz solid solution or β-eucryptite solid solution as a main crystal, has a thickness of 3 mm, and has an infrared transmittance of 50% or more at any wavelength of wavelengths 1200 to 1700 nm. The thermal expansion coefficient α at −40 ° C. to 100 ° C. is −2.0 to 2.0 × 10 −6 / ° C., and the temperature coefficient φ of the polarizability is φ−0.5α. An optical material made of crystallized glass having a relationship of <19.5 × 10 −6 is included in a part of the constituent members.

また、本発明のエタロンは、β−石英固溶体又はβ−ユークリプタイト固溶体を主結晶として析出し、肉厚3mmで、波長1200〜1700nmのうちいずれかの波長における赤外線透過率が50%以上であり、−40℃〜100℃における熱膨張係数αが−2.0〜2.0×10-6/℃であり、前記熱膨張係数αと分極率の温度係数φがφ−0.5α<19.5×10-6の関係を有する結晶化ガラスからなる光学材料を構成部材の一部に含むことを特徴とする。 Moreover, the etalon of the present invention precipitates β-quartz solid solution or β-eucryptite solid solution as a main crystal, has a thickness of 3 mm, and has an infrared transmittance of 50% or more at a wavelength of 1200 to 1700 nm. Yes, the thermal expansion coefficient α at −40 ° C. to 100 ° C. is −2.0 to 2.0 × 10 −6 / ° C., and the thermal expansion coefficient α and the temperature coefficient φ of the polarizability are φ−0.5α < An optical material made of crystallized glass having a relationship of 19.5 × 10 −6 is included in a part of the constituent members.

本発明の光学材料は、β−石英固溶体又はβ−ユークリプタイト固溶体を主結晶として析出し、肉厚3mmで、波長1200〜1700nmのうちいずれかの波長における赤外線透過率が50%以上であり、−40℃〜100℃における熱膨張係数αが−2.0〜2.0×10-6/℃である結晶化ガラスなるため、この光学材料をエタロン等の光学デバイスを構成する材料(基材又は基板材料)として、又は微小光学型の光通信デバイスに使用されるプリズム、レンズ等として使用した際、温度ムラがあっても光線の方向が変化しにくい。また、結晶化ガラスの原ガラス(母ガラス)は石英ガラスよりも低温で(1700℃以下で)、しかも一般的に使用される溶融炉で容易に溶融できるため、製造コストが安価になる。 The optical material of the present invention precipitates β-quartz solid solution or β-eucryptite solid solution as a main crystal, has a thickness of 3 mm, and has an infrared transmittance of 50% or more at any wavelength of wavelengths 1200 to 1700 nm. In order to obtain a crystallized glass having a thermal expansion coefficient α at −40 ° C. to 100 ° C. of −2.0 to 2.0 × 10 −6 / ° C., this optical material is made of a material (base When used as a prism or a lens used for a micro-optical type optical communication device, the direction of the light beam hardly changes even if there is temperature unevenness. In addition, the crystallized glass original glass (mother glass) is lower in temperature than quartz glass (at 1700 ° C. or lower) and can be easily melted in a generally used melting furnace, so that the manufacturing cost is reduced.

また、本発明の光学材料は、肉厚3mmで、波長1200〜1700nmのうちいずれかの波長における赤外線透過率が50%以上であるため、エタロン用基板材料、プリズム、レンズ等の光学材料を用いた光学デバイスの光損失を抑制できる。赤外線透過率が70%以上であると好ましく、80%以上であるとより好ましい。さらに、肉厚3mmで、1200〜1700nmの全波長範囲にわたって赤外線透過率が50%以上であると特に好ましい。   Moreover, since the optical material of the present invention has a thickness of 3 mm and an infrared transmittance at any wavelength of 1200 to 1700 nm is 50% or more, an optical material such as an etalon substrate material, a prism, or a lens is used. The optical loss of the optical device can be suppressed. The infrared transmittance is preferably 70% or more, and more preferably 80% or more. Further, it is particularly preferable that the infrared transmittance is 50% or more over the entire wavelength range of 1200 to 1700 nm with a thickness of 3 mm.

一般に光学材料の光路長温度係数は上記した数式1で表され、屈折率温度係数dn/dTは下記の数式2で表される。   In general, the optical path length temperature coefficient of the optical material is expressed by the above-described formula 1, and the refractive index temperature coefficient dn / dT is expressed by the following formula 2.

dn/dT=(n2−1)(n2+2)/6n×(φ−3α)・・・数式2 dn / dT = (n 2 −1) (n 2 +2) / 6n × (φ−3α) Equation 2

ここで、φは分極率温度係数を表す。   Here, φ represents the polarizability temperature coefficient.

上記した結晶化ガラスの屈折率は、1.5程度であることから、光路長温度係数1/L・dS/dTは、数式1及び数式2から下記の数式3のように近似できる。   Since the above-mentioned crystallized glass has a refractive index of about 1.5, the optical path length temperature coefficient 1 / L · dS / dT can be approximated from Equation 1 and Equation 2 as Equation 3 below.

1/L・dS/dT=0.62×(φ−0.5α)・・・数式3   1 / L · dS / dT = 0.62 × (φ−0.5α) Equation 3

数式3から(φ−0.5α)が小さい程、光路長温度係数が小さくなることがわかる。   From Equation 3, it can be seen that the smaller the (φ−0.5α), the smaller the optical path length temperature coefficient.

本発明の光学材料は、(φ−0.5α)が19.5×10-6よりも小さい結晶化ガラスからなるため、光路長温度係数が小さく、具体的には1/L・dS/dTが12.0×10-6/℃よりも小さくなり、エタロン等の光デバイスの選択波長がシフトしにくくなる。また(φ−0.5α)は、19.0×10-6より小さいと好ましい。 Since the optical material of the present invention is made of crystallized glass having (φ−0.5α) smaller than 19.5 × 10 −6 , the optical path length temperature coefficient is small, specifically, 1 / L · dS / dT. Becomes smaller than 12.0 × 10 −6 / ° C., and the selection wavelength of an optical device such as an etalon is difficult to shift. Further, (φ−0.5α) is preferably smaller than 19.0 × 10 −6 .

本発明の光学材料は、波長1550nmの波長における屈折率が1.54以下であると、エタロン用基板材料、プリズム、レンズ等の光学材料を用いた光学デバイスと光ファイバなどを接合させた時に、接合面での光反射を抑制できる。屈折率が1.53以下であると好ましく、1.52以下であるとより好ましい。   When the optical material of the present invention has a refractive index of 1.54 or less at a wavelength of 1550 nm, when an optical device using an optical material such as an etalon substrate material, a prism, or a lens is bonded to an optical fiber, Light reflection at the joint surface can be suppressed. The refractive index is preferably 1.53 or less, and more preferably 1.52 or less.

また、結晶化ガラスの結晶粒径が0.5μm以下であると、肉厚3mmで、波長1200〜1700nmのうちいずれかの波長における赤外線透過率が50%以上になりやすいため好ましい。   Moreover, it is preferable that the crystal grain size of the crystallized glass is 0.5 μm or less because the infrared transmittance at any wavelength among the wavelengths of 1200 to 1700 nm tends to be 50% or more with a thickness of 3 mm.

本発明の光学材料は、モル%で、Li2O、Na2O、K2Oの合量が9%以下であるLi2O−Al23−SiO2系結晶化ガラス、あるいはモル%でB23の含有量が0.5〜10%であるLi2O−Al23−SiO2系結晶化ガラスからなることが望ましい。その理由は次のとおりである。 The optical material of the present invention is a Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass having a mol% of Li 2 O, Na 2 O, K 2 O of 9% or less, or mol%. It is desirable that it is made of Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass having a B 2 O 3 content of 0.5 to 10%. The reason is as follows.

Li2O、Na2O又はK2Oのアルカリ金属酸化物は、分極率温度係数を大きくさせる成分である。Li2O、Na2O、K2Oの合量が9%より多いと、結晶化ガラスの分極率温度係数が大きくなり、光路長温度係数が大きくなるため好ましくない。Li2O、Na2O、K2Oの合量の好ましい範囲は8.5%以下、より好ましい範囲は8%以下である。 An alkali metal oxide of Li 2 O, Na 2 O, or K 2 O is a component that increases the polarizability temperature coefficient. If the total amount of Li 2 O, Na 2 O, and K 2 O is more than 9%, the crystallinity glass has a large polarizability temperature coefficient and an optical path length temperature coefficient, which is not preferable. A preferable range of the total amount of Li 2 O, Na 2 O, and K 2 O is 8.5% or less, and a more preferable range is 8% or less.

23は分極率温度係数を低下させる成分であり、B23が0.5%より少ないと、結晶化ガラスの分極率温度係数が大きくなり、光路長温度係数が大きくなるため好ましくない。B23が10%よりも多いと、β−石英固溶体又はβ−ユークリプタイト固溶体を主結晶として析出させることが困難となり、2.0×10-6/℃以下の熱膨張係数が得られ難くなる。また、結晶粒径が大きくなり、赤外線透過率が50%より低くなるため好ましくない。B23の好ましい範囲は0.8〜8%、より好ましい範囲は1〜6%である。 B 2 O 3 is a component that lowers the polarizability temperature coefficient. If B 2 O 3 is less than 0.5%, the crystallinity glass has a large polarizability temperature coefficient and an optical path length temperature coefficient, which is preferable. Absent. When B 2 O 3 is more than 10%, it becomes difficult to precipitate β-quartz solid solution or β-eucryptite solid solution as a main crystal, and a thermal expansion coefficient of 2.0 × 10 −6 / ° C. or less is obtained. It becomes difficult to be. In addition, the crystal grain size becomes large, and the infrared transmittance becomes lower than 50%, which is not preferable. A preferable range of B 2 O 3 is 0.8 to 8%, and a more preferable range is 1 to 6%.

モル%で、Li2O、Na2O、K2Oの合量が9%以下であるLi2O−Al23−SiO2系結晶化ガラスは、具体的に、モル%で、SiO2 67〜79%、Al23 8〜18%、Li2O 2〜8%、ZrO2+TiO2 0.5〜4.5%、P25 0〜10%、MgO+ZnO 2〜8%を含有することが望ましく、このように限定した理由は次のとおりである。 The Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass in which the total amount of Li 2 O, Na 2 O, and K 2 O is 9% or less in terms of mol%, 2 67-79%, Al 2 O 3 8-18%, Li 2 O 2-8%, ZrO 2 + TiO 2 0.5-4.5%, P 2 O 5 0-10%, MgO + ZnO 2-8% It is desirable to contain this, and the reason for this limitation is as follows.

SiO2は、ガラスの網目を構成する主成分であると共に析出結晶の構成成分であり、分極率温度係数を小さくする。SiO2が67%より少ないと、分極率温度係数が大きくなり、ガラスが不安定になると共に所望の結晶粒径を有するβ−石英固溶体又はβ−ユークリプタイト固溶体を主結晶として析出させることが困難となる。一方、79%より多くなると、ガラスの溶融が困難となる。SiO2の好ましい範囲は、68〜77%、より好ましい範囲は、69〜75%である。 SiO 2 is a main component constituting the glass network and a constituent component of the precipitated crystal, and reduces the polarizability temperature coefficient. When SiO 2 is less than 67%, the polarizability temperature coefficient becomes large, the glass becomes unstable, and β-quartz solid solution or β-eucryptite solid solution having a desired crystal grain size is precipitated as a main crystal. It becomes difficult. On the other hand, if it exceeds 79%, it becomes difficult to melt the glass. A preferable range of SiO 2 is 68 to 77%, and a more preferable range is 69 to 75%.

Al23も、ガラスの網目構成成分であると共に結晶構成成分である。Al23が8%より少ないと、所望の結晶を析出させることが困難となり、2.0×10-6/℃以下の熱膨張係数が得られ難くなる。一方、18%より多くなると、ガラスが失透しやすくなる。Al23の好ましい範囲は、9〜16%、より好ましい範囲は、10〜15%である。 Al 2 O 3 is also a network component of glass and a crystal component. When Al 2 O 3 is less than 8%, it becomes difficult to precipitate a desired crystal, and it becomes difficult to obtain a thermal expansion coefficient of 2.0 × 10 −6 / ° C. or less. On the other hand, if it exceeds 18%, the glass tends to be devitrified. A preferable range of Al 2 O 3 is 9 to 16%, and a more preferable range is 10 to 15%.

Li2Oは、β−石英固溶体結晶又はβ−ユークリプタイト固溶体結晶の構成成分である。Li2Oが2%より少ないと、所望の結晶を析出させることが困難となり、2.0×10-6/℃以下の熱膨張係数が得られ難くなる。一方、8%より多くなると、分極率の温度係数が大きくなりすぎる。Li2Oの好ましい範囲は、3〜7%、より好ましい範囲は、4〜6%である。 Li 2 O is a constituent component of β-quartz solid solution crystal or β-eucryptite solid solution crystal. When Li 2 O is less than 2%, it becomes difficult to precipitate a desired crystal, and it becomes difficult to obtain a thermal expansion coefficient of 2.0 × 10 −6 / ° C. or less. On the other hand, if it exceeds 8%, the temperature coefficient of polarizability becomes too large. A preferable range of Li 2 O is 3 to 7%, and a more preferable range is 4 to 6%.

ZrO2とTiO2は、結晶核を形成する作用を有する成分である。ZrO2とTiO2の合量が0.5%より少ないと、核形成作用が不十分となり、所望の粒径を有する結晶を均一に析出させることができなくなる。一方、4.5%より多くなると、ガラスの溶融が困難となり、失透が発生しやすくなるため好ましくない。ZrO2とTiO2の合量の好ましい範囲は、0.7〜4.2%、より好ましい範囲は、1〜4%である。 ZrO 2 and TiO 2 are components having an action of forming crystal nuclei. If the total amount of ZrO 2 and TiO 2 is less than 0.5%, the nucleation action becomes insufficient, and crystals having a desired particle size cannot be uniformly deposited. On the other hand, if it exceeds 4.5%, melting of the glass becomes difficult and devitrification tends to occur, which is not preferable. A preferable range of the total amount of ZrO 2 and TiO 2 is 0.7 to 4.2%, and a more preferable range is 1 to 4%.

25は、核形成作用を促進する効果がある。10%より多くなると、ガラスの粘度が高くなり、溶融が困難となる。P25の好ましい範囲は、0〜7%、より好ましい範囲は、0〜5%である。 P 2 O 5 has the effect of promoting the nucleation action. If it exceeds 10%, the viscosity of the glass becomes high and melting becomes difficult. A preferable range of P 2 O 5 is 0 to 7%, and a more preferable range is 0 to 5%.

MgOとZnOは、β−石英固溶体結晶又はβ−ユークリプタイト固溶体結晶の構成成分である。MgOとZnOの合量が2%より少ないと、所望の結晶を析出させることが困難となり、2.0×10-6/℃以下の熱膨張係数が得られ難くなる。一方、8%より多くなると、分極率温度係数が大きくなりすぎる。MgOとZnOの合量の好ましい範囲は、2.5〜6%、より好ましい範囲は、3〜5%である。 MgO and ZnO are constituent components of β-quartz solid solution crystal or β-eucryptite solid solution crystal. When the total amount of MgO and ZnO is less than 2%, it becomes difficult to precipitate a desired crystal, and it becomes difficult to obtain a thermal expansion coefficient of 2.0 × 10 −6 / ° C. or less. On the other hand, if it exceeds 8%, the polarizability temperature coefficient becomes too large. A preferable range of the total amount of MgO and ZnO is 2.5 to 6%, and a more preferable range is 3 to 5%.

モル%でB23の含有量が0.5%以上であるLi2O−Al23−SiO2系結晶化ガラスは、モル%で、SiO2 60〜79%、Al23 8〜18%、Li2O 2〜15%、ZrO2+TiO2 0.5〜4.5%を含有することが望ましく、このように限定した理由は次のとおりである。 Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass having a B 2 O 3 content of 0.5% or more by mol% is SiO 2 60-79%, Al 2 O 3 in mol%. It is desirable to contain 8 to 18%, Li 2 O 2 to 15%, ZrO 2 + TiO 2 0.5 to 4.5%, and the reason for such limitation is as follows.

SiO2は、ガラスの網目を構成する主成分であると共に析出結晶の構成成分であり、分極率温度係数を小さくする。SiO2が60%より少ないと、分極率温度係数が大きくなり、ガラスが不安定になると共に所望の結晶粒径を有するβ−石英固溶体又はβ−ユークリプタイト固溶体を主結晶として析出させることが困難となる。一方、79%より多くなると、ガラスの溶融が困難となる。SiO2の好ましい範囲は、62〜77%、より好ましい範囲は、65〜75%である。 SiO 2 is a main component constituting the glass network and a constituent component of the precipitated crystal, and reduces the polarizability temperature coefficient. When SiO 2 is less than 60%, the polarizability temperature coefficient becomes large, the glass becomes unstable, and β-quartz solid solution or β-eucryptite solid solution having a desired crystal grain size is precipitated as a main crystal. It becomes difficult. On the other hand, if it exceeds 79%, it becomes difficult to melt the glass. A preferable range of SiO 2 is 62 to 77%, and a more preferable range is 65 to 75%.

Al23も、ガラスの網目構成成分であると共に結晶構成成分である。Al23が8%より少ないと、所望の結晶を析出させることが困難となり、2.0×10-6/℃以下の熱膨張係数が得られ難くなる。一方、18%より多くなると、ガラスが失透しやすくなる。Al23の好ましい範囲は、9〜17%、より好ましい範囲は、10〜16%である。 Al 2 O 3 is also a network component of glass and a crystal component. When Al 2 O 3 is less than 8%, it becomes difficult to precipitate a desired crystal, and it becomes difficult to obtain a thermal expansion coefficient of 2.0 × 10 −6 / ° C. or less. On the other hand, if it exceeds 18%, the glass tends to be devitrified. A preferable range of Al 2 O 3 is 9 to 17%, and a more preferable range is 10 to 16%.

Li2Oは、β−石英固溶体結晶又はβ−ユークリプタイト固溶体結晶の構成成分である。Li2Oが2%より少ないと、所望の結晶を析出させることが困難となり、2.0×10-6/℃以下の熱膨張係数が得られ難くなる。一方、15%より多くなると、分極率温度係数が大きくなりすぎる。Li2Oの好ましい範囲は、3〜13%、より好ましい範囲は、4〜12%である。 Li 2 O is a constituent component of β-quartz solid solution crystal or β-eucryptite solid solution crystal. When Li 2 O is less than 2%, it is difficult to precipitate a desired crystal, and it becomes difficult to obtain a thermal expansion coefficient of 2.0 × 10 −6 / ° C. or less. On the other hand, if it exceeds 15%, the polarizability temperature coefficient becomes too large. A preferable range of Li 2 O is 3 to 13%, and a more preferable range is 4 to 12%.

ZrO2とTiO2は、ガラス中に結晶核を形成する作用を有する成分である。ZrO2とTiO2の合量が0.5%より少ないと、核形成作用が不十分となり、所望の粒径を有する結晶を均一に析出させることができなくなる。一方、4.5%より多くなると、ガラスの溶融が困難となり、失透が発生しやすくなるため好ましくない。ZrO2とTiO2の合量の好ましい範囲は、0.7〜4.2%、より好ましい範囲は、1〜4%である。 ZrO 2 and TiO 2 are components having an action of forming crystal nuclei in the glass. If the total amount of ZrO 2 and TiO 2 is less than 0.5%, the nucleation action becomes insufficient, and crystals having a desired particle size cannot be uniformly deposited. On the other hand, if it exceeds 4.5%, melting of the glass becomes difficult and devitrification tends to occur, which is not preferable. A preferable range of the total amount of ZrO 2 and TiO 2 is 0.7 to 4.2%, and a more preferable range is 1 to 4%.

尚、本発明では、必要に応じて他の成分、例えばAs23、SnO2、BaO、Sb23、CaO、SrO等の成分を添加することが可能である。 In the present invention, other components such as As 2 O 3 , SnO 2 , BaO, Sb 2 O 3 , CaO, and SrO can be added as necessary.

As23は、一般にガラスの清澄剤として用いられているが、結晶の転移を促進する作用を有する。そのためAs23が1%より多くなると、β−スポジュメン固溶体が析出しやすくなり、2.0×10-6/℃以下の熱膨張係数が得られ難くなる。As23の好ましい範囲は0.8%以下、より好ましい範囲は0.6%以下である。 As 2 O 3 is generally used as a glass refining agent, but has an action of promoting crystal transition. Therefore, if As 2 O 3 exceeds 1%, β-spodumene solid solution is likely to precipitate, and it becomes difficult to obtain a thermal expansion coefficient of 2.0 × 10 −6 / ° C. or less. A preferred range for As 2 O 3 is 0.8% or less, and a more preferred range is 0.6% or less.

また、SnO2は5%まで添加することができる。すなわちSnO2は、5%まで添加しても、As23と異なり、結晶の転移を促進する作用は殆ど見られないからである。さらに、SnO2は核形成能も有しているため、核形成剤の使用量を少なくできる。 SnO 2 can be added up to 5%. That is, even if SnO 2 is added up to 5%, unlike As 2 O 3 , there is almost no effect of promoting crystal transition. Furthermore, since SnO 2 also has a nucleation ability, the amount of nucleating agent used can be reduced.

以下、本発明を実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

表1は、本発明の実施例1〜5と、比較例6〜8を示す。




Table 1 shows Examples 1 to 5 of the present invention and Comparative Examples 6 to 8.




表1の実施例及び比較例は、以下のようにして作製した。   Examples and Comparative Examples in Table 1 were produced as follows.

まず表中の組成となるように調合したバッチ原料を、白金坩堝に入れ、1580℃で20時間溶融した。次いで、この溶融ガラスをカーボン板上に流し出してロール成形することによって、厚さ5mmのガラス板を成形し、室温まで徐冷した。   First, batch materials prepared so as to have the composition shown in the table were placed in a platinum crucible and melted at 1580 ° C. for 20 hours. Next, this molten glass was poured onto a carbon plate and roll-formed to form a glass plate having a thickness of 5 mm and gradually cooled to room temperature.

次に各ガラス板に、780℃、3時間の核形成処理を施した後、表中の結晶化温度で1時間の結晶化処理を施し、室温まで冷却させ、実施例1〜5及び比較例6〜8の結晶化ガラスを作製した。   Next, each glass plate was subjected to nucleation treatment at 780 ° C. for 3 hours, then subjected to crystallization treatment at the crystallization temperature in the table for 1 hour, and cooled to room temperature. Examples 1 to 5 and Comparative Examples 6-8 crystallized glass was produced.

こうして得られた結晶化ガラスについて、主結晶種、熱膨張係数(α)、屈折率(n)、屈折率温度係数(dn/dT)、光路長温度係数(1/L・dS/dT)、分極率温度係数(φ)、1550nmにおける赤外線透過率、及び結晶粒径を測定した。   For the crystallized glass thus obtained, the main crystal seed, the thermal expansion coefficient (α), the refractive index (n), the refractive index temperature coefficient (dn / dT), the optical path length temperature coefficient (1 / L · dS / dT), The polarizability temperature coefficient (φ), infrared transmittance at 1550 nm, and crystal grain size were measured.

表から明らかなように、実施例1〜5は、いずれも主結晶としてβ−石英固溶体を析出し、熱膨張係数が小さかった。また、1550nmでの赤外線透過率も85%以上であった。さらに(φ−0.5×α)の値が低く、19.2×10-6/℃以下であり、光路長の温度依存性(dS/dT)は、12.0×10-6/℃以下であった。1550nmでの屈折率も1.506〜1.518となった。 As is clear from the table, in Examples 1 to 5, β-quartz solid solution was precipitated as the main crystal, and the thermal expansion coefficient was small. Further, the infrared transmittance at 1550 nm was 85% or more. Furthermore, the value of (φ−0.5 × α) is low, 19.2 × 10 −6 / ° C. or less, and the temperature dependence of the optical path length (dS / dT) is 12.0 × 10 −6 / ° C. It was the following. The refractive index at 1550 nm was also 1.506 to 1.518.

一方、比較例6および7は、(φ−0.5×α)の値が19.6×10-6/℃以上と高いため、光路長の温度依存性(dS/dT)も、12.6×10-6/℃と高かった。比較例8は、主結晶がβ−スポジュメン固溶体であり、結晶粒径が0.5μmよりも大きいため、1550nmでの赤外線透過率が10%であり、屈折率及び光路長の温度依存性を測定することができなかった。そのため、エタロンなどの光学デバイスの構成材料(基材)、レンズ、プリズム等の光学材料として使用することができない。 On the other hand, in Comparative Examples 6 and 7, since the value of (φ−0.5 × α) is as high as 19.6 × 10 −6 / ° C. or more, the temperature dependence (dS / dT) of the optical path length is also 12. It was as high as 6 × 10 −6 / ° C. In Comparative Example 8, the main crystal is a β-spodumene solid solution and the crystal grain size is larger than 0.5 μm, so the infrared transmittance at 1550 nm is 10%, and the temperature dependence of the refractive index and the optical path length is measured. I couldn't. Therefore, it cannot be used as a constituent material (base material) of an optical device such as an etalon, an optical material such as a lens or a prism.

尚、表中の主結晶種は、周知のX線回折法によって同定した。また熱膨張係数は、ディラトメーターを使用して測定した。さらに赤外線透過率は、各試料の厚さを3mmとし、1550nmにおける赤外線透過率を、分光光度計(島津製作所製UV3100)を使用して測定した。屈折率の温度依存性は試料の温度を変えて屈折率を測定することで評価し、分極率温度係数は数式2より求めた。また、光路長の温度依存性は、波長1100〜1700nmの範囲の光を用いた干渉光学系中の一方の光路中に試料を配置し、試料温度を変化させた時に観察された干渉縞の変化から求められた光路長の温度依存性の内、最も大きかった値によって評価した。   The main crystal species in the table were identified by a well-known X-ray diffraction method. The thermal expansion coefficient was measured using a dilatometer. Furthermore, the infrared transmittance was measured using a spectrophotometer (Shimadzu Corporation UV3100), with the thickness of each sample being 3 mm and the infrared transmittance at 1550 nm. The temperature dependence of the refractive index was evaluated by changing the temperature of the sample and measuring the refractive index, and the polarizability temperature coefficient was obtained from Equation 2. Further, the temperature dependence of the optical path length is the change in interference fringes observed when a sample is placed in one optical path in an interference optical system using light in the wavelength range of 1100 to 1700 nm and the sample temperature is changed. Evaluation was made based on the largest value of the temperature dependence of the optical path length obtained from the above.

以上説明したように、本発明の光学材料は、製造コストが低く、温度ムラがあっても光線の方向が変化しにくく、赤外線の透過性に優れ、光路長温度依存性を抑制できるため、寸法安定性、赤外線の透明性及び光路長のアサーマル性を必要とするエタロン等の光学デバイスの構成材料として好適であるばかりでなく、寸法安定性と赤外線の透明性を必要とする微小光学型の光学デバイスの構成材料(例えば、レンズ、プリズム等の光学材料)としても適している。   As described above, the optical material of the present invention is low in manufacturing cost, is less likely to change the direction of light even if there is temperature unevenness, is excellent in infrared transparency, and can suppress optical path length temperature dependence. Not only is it suitable as a constituent material for optical devices such as etalon that require stability, infrared transparency, and optical path length athermal properties, but also is a micro-optical type that requires dimensional stability and infrared transparency. It is also suitable as a component material for devices (for example, optical materials such as lenses and prisms).

Claims (9)

β−石英固溶体又はβ−ユークリプタイト固溶体を主結晶として析出し、肉厚3mmで、波長1200〜1700nmのうちいずれかの波長における赤外線透過率が50%以上であり、−40℃〜100℃における熱膨張係数αが−2.0〜2.0×10-6/℃であり、前記熱膨張係数αと分極率の温度係数φがφ−0.5α<19.5×10-6の関係を有する結晶化ガラスからなることを特徴とする光学材料。 A β-quartz solid solution or β-eucryptite solid solution is precipitated as a main crystal, has a thickness of 3 mm, and has an infrared transmittance of 50% or more at a wavelength of 1200 to 1700 nm, and is −40 ° C. to 100 ° C. The thermal expansion coefficient α in the range of −2.0 to 2.0 × 10 −6 / ° C., and the thermal expansion coefficient α and the temperature coefficient φ of the polarizability are φ−0.5α <19.5 × 10 −6 . An optical material comprising a crystallized glass having a relationship. 結晶化ガラスは、モル%で、Li2O、Na2O、K2Oの合量が9%以下であることを特徴とする請求項1に記載の光学材料。 2. The optical material according to claim 1, wherein the crystallized glass is mol%, and a total amount of Li 2 O, Na 2 O, and K 2 O is 9% or less. 結晶化ガラスが、モル%で、SiO2 67〜79%、Al23 8〜18%、Li2O 2〜8%、ZrO2+TiO2 0.5〜4.5%、P25 0〜10%、MgO+ZnO 2〜8%を含有することを特徴とする請求項1又は2に記載の光学材料。 Crystallized glass is mol%, SiO 2 67-79%, Al 2 O 3 8-18%, Li 2 O 2-8%, ZrO 2 + TiO 2 0.5-4.5%, P 2 O 5 The optical material according to claim 1, comprising 0 to 10% and MgO + ZnO 2 to 8%. 結晶化ガラスが、モル%で、SiO2 69〜75%、Al23 10〜15%、
Li2O 4〜6%、ZrO2+TiO2 1〜4%、P25 0〜5%、MgO+ZnO 3〜5%を含有することを特徴とする請求項1〜3のいずれかに記載の光学材料。
Crystallized glass, in mol%, SiO 2 69~75%, Al 2 O 3 10~15%,
It contains Li 2 O 4-6%, ZrO 2 + TiO 2 1-4%, P 2 O 5 0-5%, MgO + ZnO 3-5%. Optical material.
結晶化ガラスは、モル%で、B23の含有量が0.5〜10%であることを特徴とする請求項1に記載の光学材料。 2. The optical material according to claim 1, wherein the crystallized glass is mol% and the content of B 2 O 3 is 0.5 to 10%. 結晶化ガラスが、モル%で、SiO2 60〜79%、Al23 8〜18%、Li2O 2〜15%、ZrO2+TiO2 0.5〜4.5%を含有することを特徴とする請求項1又は5に記載の光学材料。 The crystallized glass contains, in mol%, SiO 2 60 to 79%, Al 2 O 3 8 to 18%, Li 2 O 2 to 15%, ZrO 2 + TiO 2 0.5 to 4.5%. The optical material according to claim 1 or 5, characterized in that 結晶化ガラスが、モル%で、SiO2 65〜75%、Al23 10〜16%、
23 0.8〜8%、Li2O 4〜12%、ZrO2+TiO2 1〜4%を含有することを特徴とする請求項1、5又は6に記載の光学材料。
Crystallized glass, in mol%, SiO 2 65~75%, Al 2 O 3 10~16%,
The optical material according to claim 1, 5 or 6, comprising B 2 O 3 0.8 to 8%, Li 2 O 4 to 12%, ZrO 2 + TiO 2 1 to 4%.
請求項1〜7のいずれかに記載の光学材料を構成部材の一部に含むことを特徴とする光学デバイス。   An optical device comprising the optical material according to claim 1 as a part of a constituent member. 請求項1〜7のいずれかに記載の光学材料を構成部材の一部に含むことを特徴とするエタロン。   An etalon comprising the optical material according to claim 1 as a part of a constituent member.
JP2004161442A 2004-05-31 2004-05-31 Optical material, optical device, and etalon Pending JP2005343702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004161442A JP2005343702A (en) 2004-05-31 2004-05-31 Optical material, optical device, and etalon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004161442A JP2005343702A (en) 2004-05-31 2004-05-31 Optical material, optical device, and etalon

Publications (1)

Publication Number Publication Date
JP2005343702A true JP2005343702A (en) 2005-12-15

Family

ID=35496425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004161442A Pending JP2005343702A (en) 2004-05-31 2004-05-31 Optical material, optical device, and etalon

Country Status (1)

Country Link
JP (1) JP2005343702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132546A (en) * 2008-12-08 2010-06-17 Schott Ag Transparent glass ceramic having low density
WO2016017435A1 (en) * 2014-07-30 2016-02-04 日本電気硝子株式会社 Crystallized glass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173338A (en) * 2000-12-01 2002-06-21 Asahi Techno Glass Corp Front glass for illumination
JP2003020254A (en) * 2001-07-04 2003-01-24 National Institute Of Advanced Industrial & Technology Crystallized glass
JP2004029723A (en) * 2002-05-09 2004-01-29 Nippon Electric Glass Co Ltd Spacer for resonator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173338A (en) * 2000-12-01 2002-06-21 Asahi Techno Glass Corp Front glass for illumination
JP2003020254A (en) * 2001-07-04 2003-01-24 National Institute Of Advanced Industrial & Technology Crystallized glass
JP2004029723A (en) * 2002-05-09 2004-01-29 Nippon Electric Glass Co Ltd Spacer for resonator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132546A (en) * 2008-12-08 2010-06-17 Schott Ag Transparent glass ceramic having low density
WO2016017435A1 (en) * 2014-07-30 2016-02-04 日本電気硝子株式会社 Crystallized glass
CN106573826A (en) * 2014-07-30 2017-04-19 日本电气硝子株式会社 Crystallized glass
JPWO2016017435A1 (en) * 2014-07-30 2017-04-27 日本電気硝子株式会社 Crystallized glass

Similar Documents

Publication Publication Date Title
US6750167B2 (en) Crystallized glass
JP4773608B2 (en) Glass ceramics and temperature compensation members
CN1721890B (en) Light filter
JP4589297B2 (en) Optical glass
JP4704585B2 (en) Low expansion transparent crystallized glass, crystallized glass substrate and optical waveguide device
KR20000029330A (en) Low expansion glass-ceramics
JP3421284B2 (en) Negatively heat-expandable glass ceramics and method for producing the same
JP2001342036A (en) Glass material, crystallized glass product and method of manufacturing crystallized glass material
TW200815302A (en) Lead-free optical glass of the hard flint and lanthanum hard flint position
TW200806599A (en) Lead free optical glasses of the hard flint position
GB2158431A (en) Low expansion, alkali-free borosilicate glass suitable for photomask applications
JP4520094B2 (en) Optical isolator with polarizing glass products
JP6627760B2 (en) Crystallized glass
JP2006193398A (en) Crystallized glass, optical device and etalon
JP2006206421A (en) Crystallized glass and device for optical communications using the same
JP4476529B2 (en) Glass ceramics and temperature compensation members
JP4702690B2 (en) Crystallized glass
JP5144871B2 (en) Borosilicate glass and method of use thereof
KR20060017756A (en) Lead-free optical glass and optical fiber
JP2005343702A (en) Optical material, optical device, and etalon
TW530166B (en) Interference filter having a glass substrate
JP2004231471A (en) Crystallized glass
JP2005289790A (en) Crystallized glass and device for optical communications using the same
JP2004029723A (en) Spacer for resonator
JP2018177561A (en) Optical glass and optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090601

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601