JP2010129449A - Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010129449A
JP2010129449A JP2008304515A JP2008304515A JP2010129449A JP 2010129449 A JP2010129449 A JP 2010129449A JP 2008304515 A JP2008304515 A JP 2008304515A JP 2008304515 A JP2008304515 A JP 2008304515A JP 2010129449 A JP2010129449 A JP 2010129449A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium
aqueous electrolyte
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008304515A
Other languages
Japanese (ja)
Other versions
JP5339869B2 (en
Inventor
Hiroyuki Matsumoto
浩友紀 松本
Takanobu Chiga
貴信 千賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008304515A priority Critical patent/JP5339869B2/en
Publication of JP2010129449A publication Critical patent/JP2010129449A/en
Application granted granted Critical
Publication of JP5339869B2 publication Critical patent/JP5339869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To obtain excellent charge preservation characteristics under a high-temperature environment. <P>SOLUTION: The non-aqueous electrolyte solution contains a fluorinated cyclic carbonic acid ester as a solvent and lithium salt as an electrolyte. As the lithium salt, it contains lithium bis-fluorosulfonyl imide as expressed by a structural formula: (F-O<SB>2</SB>S-N-SO<SB>2</SB>-F)Li. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二次電池用非水電解液及びそれを用いた非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte for a secondary battery and a non-aqueous electrolyte secondary battery using the same.

近年、携帯電話、ノートパソコン、PDA等の移動情報端末の小型化・軽量化が急速に進展しており、駆動用電源として用いられる二次電池には、さらなる高容量化が望まれている。この要求に応える二次電池としては、電池電圧が高く、高エネルギー密度を有する非水電解液二次電池が注目されている。特に、正極活物質にリチウム含有遷移金属酸化物を用い、負極活物質に黒鉛系の炭素材料を用いたリチウムイオン二次電池が一般的に使用されている。しかしながら、現在のリチウムイオン二次電池は、昨今の移動情報端末の長時間駆動の要求を完全に満たしているとは言い難く、さらなる高容量化が求められている。   In recent years, mobile information terminals such as mobile phones, notebook personal computers, and PDAs have been rapidly reduced in size and weight, and a secondary battery used as a driving power source is desired to have a higher capacity. As a secondary battery that meets this requirement, a non-aqueous electrolyte secondary battery having a high battery voltage and a high energy density has been attracting attention. In particular, a lithium ion secondary battery using a lithium-containing transition metal oxide as a positive electrode active material and a graphite-based carbon material as a negative electrode active material is generally used. However, it is difficult to say that current lithium ion secondary batteries completely satisfy the long-term driving demands of mobile information terminals, and there is a demand for higher capacity.

この要望に応える1つの手段として、コバルト酸リチウムやニッケルマンガンコバルト複合酸化物等を正極活物質として用いたリチウムイオン二次電池において、充電の際の正極電位を高め、充電電圧を上昇させる方法がある。しかしながら、この方法は、正極表面での電解液の酸化反応を増加させ、サイクル特性や充電保存における電池特性の低下を引き起こす。   As one means to meet this demand, there is a method of increasing the charging voltage and increasing the charging potential in a lithium ion secondary battery using lithium cobalt oxide or nickel manganese cobalt composite oxide as a positive electrode active material. is there. However, this method increases the oxidation reaction of the electrolyte solution on the surface of the positive electrode, and causes deterioration of cycle characteristics and battery characteristics in charge storage.

現在、リチウムイオン二次電池に用いられている電解液は、エチレンカーボネート(EC)等の環状炭酸エステルと、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等の鎖状炭酸エステルを混合した溶媒に、LiPF、LiBF等のリチウム塩を溶解した電解液が一般的である。これらの電解液は、電池電圧4.2V(負極に黒鉛を用いた場合、金属リチウム基準で正極電位4.3V程度)の場合には、良好な充放電特性を引き出すことに成功している。 Currently, electrolytes used in lithium ion secondary batteries include cyclic carbonates such as ethylene carbonate (EC) and chain chains such as diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC). An electrolytic solution in which a lithium salt such as LiPF 6 or LiBF 4 is dissolved in a solvent in which a carbonate ester is mixed is common. These electrolytes have succeeded in extracting good charge / discharge characteristics when the battery voltage is 4.2 V (when graphite is used for the negative electrode, the positive electrode potential is about 4.3 V with respect to metal lithium).

しかしながら、これらの非水電解液は、充電電圧が高くなると、電極と電解液の副反応により、電解液の分解が促進され、電池容量の低下等の問題が起こる。この問題は、二次電池の耐久性を加速評価するために、充電状態で電池を高温放置する充電保存試験を行った場合、顕著に現れる。   However, when the charging voltage of these non-aqueous electrolytes is increased, decomposition of the electrolyte solution is promoted due to a side reaction between the electrode and the electrolyte solution, causing problems such as a decrease in battery capacity. This problem appears remarkably when a charge storage test is performed in which the battery is left at high temperature in a charged state in order to accelerate evaluation of the durability of the secondary battery.

このような現状から、高電圧充電時において優れた高温耐久性を有する非水電解液二次電池の開発が望まれている。   Under such circumstances, it is desired to develop a non-aqueous electrolyte secondary battery having excellent high-temperature durability during high-voltage charging.

上述のように、従来の電解液では、充電状態で高温環境下に保存した場合、電極と電解液との副反応により電池が劣化するという問題があった。特に、正極電位が金属リチウム基準で4.40V以上に充電された場合に、顕著に劣化する。   As described above, the conventional electrolytic solution has a problem that the battery deteriorates due to a side reaction between the electrode and the electrolytic solution when stored in a high temperature environment in a charged state. In particular, when the positive electrode potential is charged to 4.40 V or more on the basis of metallic lithium, it is significantly deteriorated.

特許文献1においては、4−フルオロエチレンカーボネート(FEC)を電解液として用いることにより、電池の熱安定性を向上させている。このように、4−フルオロエチレンカーボネート(FEC)は、電池の安全性向上のために必要な物質である。しかしながら、負極活物質に黒鉛系活物質を用いると、4−フルオロエチレンカーボネート(FEC)が負極上で還元分解され、充電保存時の残存・復帰容量が低下するという問題が生じる。   In Patent Document 1, the thermal stability of the battery is improved by using 4-fluoroethylene carbonate (FEC) as an electrolytic solution. Thus, 4-fluoroethylene carbonate (FEC) is a substance necessary for improving battery safety. However, when a graphite-based active material is used as the negative electrode active material, 4-fluoroethylene carbonate (FEC) is reduced and decomposed on the negative electrode, resulting in a problem that the remaining / recovery capacity during charge storage is reduced.

特許文献2においては、フッ素化環状エステルとリチウムビストリフルオロメチルスルフォニルイミド(LiTFSI)を二次電池用非水電解液に使用し、高温サイクル特性を改善することが提案されている。後述するように、本発明は、溶媒としてフッ素化環状炭酸エステルを含み、電解質としてリチウムビスフルオロスルフォニルイミド(LiFSI)を用いることにより、高温環境下における充電保存特性を改善させるものであるが、特許文献2においては、充電保存特性や、リチウムビスフルオロスルフォニルイミド(LiFSI)の使用に関し、何ら開示されていない。   In Patent Document 2, it is proposed to use a fluorinated cyclic ester and lithium bistrifluoromethylsulfonylimide (LiTFSI) as a non-aqueous electrolyte for a secondary battery to improve high-temperature cycle characteristics. As will be described later, the present invention includes a fluorinated cyclic carbonate as a solvent and uses lithium bisfluorosulfonylimide (LiFSI) as an electrolyte to improve charge storage characteristics in a high temperature environment. Document 2 does not disclose any charge storage characteristics or use of lithium bisfluorosulfonylimide (LiFSI).

特許文献3においては、γ−ブチロラクトン系電解液にリチウムビスフルオロスルフォニルイミド(LiFSI)を溶解した電解液を使用することにより、充電保存後の残存・復帰容量が向上することが記載されている。しかしながら、フッ素化環状エステルを溶媒として使用することについては何ら記載されていない。また、特許文献3においては、電池電圧4.2V(金属リチウム基準で正極電位4.3V程度)における保存特性が評価されており、電池電圧4.4V(金属リチウム基準で正極電位4.5V程度)の保存特性については何ら開示されていない。   Patent Document 3 describes that by using an electrolytic solution in which lithium bisfluorosulfonylimide (LiFSI) is dissolved in a γ-butyrolactone-based electrolytic solution, the remaining / recovery capacity after charge storage is improved. However, there is no description about using a fluorinated cyclic ester as a solvent. In Patent Document 3, storage characteristics at a battery voltage of 4.2 V (a positive electrode potential of about 4.3 V based on metallic lithium) are evaluated, and a battery voltage of 4.4 V (a positive electrode potential of about 4.5 V based on metallic lithium is evaluated). ) Is not disclosed at all.

特許文献4においては、フッ素化環状エステルを二次電池用非水電解液に使用し、高電圧充電特性を改善することについて記載されている。しかしながら、充放電サイクルの維持率の向上についての記載のみであり、高温保存時の残存・復帰容量の向上については何ら記載されていない。また、リチウムビスフルオロスルフォニルイミド(LiFSI)についても何ら開示されていない。
特表2007−504628号公報 特開2006−294375号公報 特開2004−165151号公報 特開2008−108689号公報
Patent Document 4 describes that a fluorinated cyclic ester is used for a non-aqueous electrolyte for a secondary battery to improve high voltage charging characteristics. However, it only describes the improvement of the maintenance rate of the charge / discharge cycle, and does not describe any improvement of the remaining / recovery capacity during high-temperature storage. Further, there is no disclosure about lithium bisfluorosulfonylimide (LiFSI).
Special table 2007-504628 JP 2006-294375 A JP 2004-165151 A JP 2008-108689 A

本発明の目的は、高温環境下における良好な充放電保存特性を得ることができるリチウム二次電池用非水電解液及びそれを用いた非水電解液二次電池を提供することにある。   The objective of this invention is providing the nonaqueous electrolyte for lithium secondary batteries which can acquire the favorable charging / discharging storage characteristic in a high temperature environment, and a nonaqueous electrolyte secondary battery using the same.

本発明の二次電池用非水電解液は、溶媒としてフッ素化環状炭酸エステルを含み、電解質としてリチウム塩を含む二次電池用非水電解液であって、リチウム塩として構造式(F−OS−N−SO−F)Liで表わされるリチウムビスフルオロスルフォニルイミドを含有することを特徴としている。 The non-aqueous electrolyte for a secondary battery according to the present invention is a non-aqueous electrolyte for a secondary battery that contains a fluorinated cyclic carbonate as a solvent and a lithium salt as an electrolyte, and has a structural formula (FO) as the lithium salt. is characterized by containing a lithium bis fluoro sulfonyl Louis bromide represented by 2 S-N-SO 2 -F ) Li.

本発明に従い、リチウム塩として、構造式(F−OS−N−SO−F)Liで表わされるリチウムビスフルオロスルフォニルイミド(LiFSI)を用い、かつ溶媒としてフッ素化環状炭酸エステルを用いることにより、高温環境下における優れた充電保存特性を得ることができる。 According to the present invention, lithium bisfluorosulfonylimide (LiFSI) represented by the structural formula (F—O 2 S—N—SO 2 —F) Li is used as the lithium salt, and fluorinated cyclic carbonate is used as the solvent. Thus, excellent charge storage characteristics in a high temperature environment can be obtained.

特に、満充電時の正極の電位を、金属リチウム基準で4.25V以上、さらに好ましくは4.40V以上とした場合において、良好な充電保存特性を得ることができる。満充電時の正極電位の上限値は特に限定されるものではないが、一般には、4.80V以下である。   In particular, when the potential of the positive electrode at full charge is 4.25 V or higher, more preferably 4.40 V or higher, based on metallic lithium, good charge storage characteristics can be obtained. The upper limit of the positive electrode potential at full charge is not particularly limited, but is generally 4.80 V or less.

フッ素化環状炭酸エステルとしては、例えば、4−フルオロエチレンカーボネート(FEC)及びその誘導体が挙げられる。   Examples of the fluorinated cyclic carbonate include 4-fluoroethylene carbonate (FEC) and derivatives thereof.

4−フルオロエチレンカーボネート(FEC)などのフッ素化環状炭酸エステルを溶媒として含む電解液中に、リチウムビスフルオロスルフォニルイミド(LiFSI)を添加することにより、高温環境下での充電保存特性が改善する理由の詳細は不明であるが、リチウムビスフルオロスルフォニルイミド(LiFSI)が、4−フルオロエチレンカーボネート(FEC)などのフッ素化環状炭酸エステルと負極との反応を抑制するためであると考えられる。このため、4−フルオロエチレンカーボネート(FEC)などのフッ素化環状炭酸エステルと、リチウムビスフルオロスルフォニルイミド(LiFSI)を共存させた電解液を用いることにより、特異的に、残存容量及び復帰容量の低下を抑制することができる。このような現象は、エチレンカーボネート(EC)と、リチウムビスフルオロスルフォニルイミド(LiFSI)を共存させた場合には確認できない。   Reasons for improving the charge storage characteristics in a high-temperature environment by adding lithium bisfluorosulfonylimide (LiFSI) to an electrolytic solution containing a fluorinated cyclic carbonate such as 4-fluoroethylene carbonate (FEC) as a solvent The details of are unknown, but it is considered that lithium bisfluorosulfonylimide (LiFSI) suppresses the reaction between a fluorinated cyclic carbonate such as 4-fluoroethylene carbonate (FEC) and the negative electrode. For this reason, by using an electrolytic solution in which a fluorinated cyclic carbonate such as 4-fluoroethylene carbonate (FEC) and lithium bisfluorosulfonylimide (LiFSI) coexist, the residual capacity and the return capacity are specifically reduced. Can be suppressed. Such a phenomenon cannot be confirmed when ethylene carbonate (EC) and lithium bisfluorosulfonylimide (LiFSI) coexist.

本発明において、4−フルオロエチレンカーボネート(FEC)などのフッ素化環状炭酸エステルの、溶媒全体に対する含有量は、5〜30体積%の範囲内であることが好ましい。5体積%未満であると、良好な充電保存特性が得られるという本発明の効果が十分に得られない場合がある。また、30体積%を越えると、電解液中においてガスが多量に発生するおそれがあり、またコスト面でも不利となる。   In this invention, it is preferable that content with respect to the whole solvent of fluorinated cyclic carbonates, such as 4-fluoroethylene carbonate (FEC), exists in the range of 5-30 volume%. If it is less than 5% by volume, the effect of the present invention that good charge storage characteristics can be obtained may not be sufficiently obtained. On the other hand, if it exceeds 30% by volume, a large amount of gas may be generated in the electrolytic solution, which is disadvantageous in terms of cost.

本発明において、リチウムビスフルオロスルフォニルイミド(LiFSI)は、非水電解液中に0.01〜0.5モル/リットルの範囲で含有されていることが好ましい。0.01モル/リットル未満であると、充電保存特性の向上の効果が十分に得られない場合がある。また、0.5モル/リットルを越えると、コストの面において不利となる。   In the present invention, lithium bisfluorosulfonylimide (LiFSI) is preferably contained in the nonaqueous electrolytic solution in a range of 0.01 to 0.5 mol / liter. If it is less than 0.01 mol / liter, the effect of improving the charge storage characteristics may not be sufficiently obtained. On the other hand, if it exceeds 0.5 mol / liter, it is disadvantageous in terms of cost.

本発明の非水電解液に含まれるその他のリチウム塩としては、LiPF、LiBF、LiAsF、LiClO、CHSOLi、LiCFSO、LiCl、LiBr、LiB(C、LiC(CFSO、LiB(C及びそれらの混合物などが挙げられる。この中でも特にLiPFを使用することが望ましい。 Other lithium salts contained in the non-aqueous electrolyte of the present invention include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , CH 3 SO 3 Li, LiCF 3 SO 3 , LiCl, LiBr, LiB (C 6 H 5 ) 4 , LiC (CF 3 SO 2 ) 3 , LiB (C 2 O 4 ) 2 and mixtures thereof. Among these, it is particularly desirable to use LiPF 6 .

また、本発明において非水電解液に用いる他の溶媒としてはエチレンカーボネート(EC)などの環状炭酸エステル、2−メチル−1−ピロリドンなどのラクタム、3−メチル−2−オキサゾリジノンなどの環状カルバミン酸エステル、テトラメチレンスルホンなどの環状スルホン、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、あるいはメチルプロピルカーボネートなどの鎖状炭酸エステル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、イソ酪酸メチル、あるいはトリメチル酢酸メチルなどの鎖状カルボン酸エステル、ピナコリンなどのケトン、1,2−ジメトキシエタン、テトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン、1,3−ジオキサン、あるいは1,4−ジオキサンなどのエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどの鎖状アミド、または、N,N−ジメチルカルバミン酸メチル、N,N−ジメチルカルバミン酸メチルなどの鎖状カルバミン酸エステルなどが挙げられる。この中でも特に鎖状炭酸エステルを用いることが望ましい。   In the present invention, other solvents used for the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate (EC), lactams such as 2-methyl-1-pyrrolidone, and cyclic carbamic acids such as 3-methyl-2-oxazolidinone. Esters, cyclic sulfones such as tetramethylene sulfone, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, or methyl propyl carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl isobutyrate, or Chain carboxylic acid esters such as methyl trimethylacetate, ketones such as pinacholine, 1,2-dimethoxyethane, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,3-dioxane, or 1,4 Ethers such as dioxane, chain amides such as N, N-dimethylformamide, N, N-dimethylacetamide, or chain carbamic acid esters such as methyl N, N-dimethylcarbamate and methyl N, N-dimethylcarbamate Etc. Among these, it is particularly desirable to use a chain carbonate ester.

また、本発明において、正極及び負極に皮膜を形成するようなビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、プロパンサルトン(PS)などの添加剤を含んでもよい。   In the present invention, additives such as vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and propane sultone (PS) that form a film on the positive electrode and the negative electrode may be included.

本発明の非水電解液二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解液とを備える非水電解液二次電池であって、非水電解液が、上記本発明の非水電解液であることを特徴としている。   A non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte, and the non-aqueous electrolyte solution Is the non-aqueous electrolyte of the present invention.

本発明の非水電解液二次電池においては、上記本発明の非水電解液を用いているので、高温環境下における充電保存特性を向上させることができる。また、本発明の非水電解液二次電池においては、満充電時の正極の電位が、金属リチウム基準で4.25V以上であることが好ましく、さらに好ましくは4.40V以上である。満充電時の正極の電位を、金属リチウム基準で4.25V以上、より好ましくは4.40V以上とすることにより、二次電池の充放電容量を高めることができ、充放電容量が高く、かつ高温環境下における充電保存特性に優れた二次電池とすることができる。   In the non-aqueous electrolyte secondary battery of the present invention, since the non-aqueous electrolyte of the present invention is used, the charge storage characteristics in a high temperature environment can be improved. In the nonaqueous electrolyte secondary battery of the present invention, the potential of the positive electrode when fully charged is preferably 4.25 V or more, more preferably 4.40 V or more, based on metallic lithium. By setting the potential of the positive electrode at full charge to 4.25 V or more, more preferably 4.40 V or more on the basis of metallic lithium, the charge / discharge capacity of the secondary battery can be increased, the charge / discharge capacity is high, and It can be set as the secondary battery excellent in the charge storage characteristic in a high temperature environment.

本発明に用いることができる正極活物質としては、コバルト酸リチウム、ニッケル酸リチウム、及びニッケルマンガンコバルト酸リチウムなどのリチウム含有遷移金属複合酸化物を挙げることができる。さらに、これらのリチウム含有遷移金属複合酸化物に、Al、Zr、Ti、Mg、Mo、Fe、Cr、V、Nb等の異種元素を添加した材料を用いることができる。異種元素の添加量としては、リチウム含有遷移金属複合酸化物中の遷移金属に対し、0.01〜5モル%程度であることが好ましい。特に、Al及び/またはMgが固溶されており、かつ表面にZrを含む化合物が付着したコバルト酸リチウムが好ましく用いられる。本発明においては、2種類以上の正極活物質を混合して用いてもよい。   Examples of the positive electrode active material that can be used in the present invention include lithium-containing transition metal composite oxides such as lithium cobaltate, lithium nickelate, and nickel manganese lithium cobaltate. Furthermore, materials obtained by adding different elements such as Al, Zr, Ti, Mg, Mo, Fe, Cr, V, and Nb to these lithium-containing transition metal composite oxides can be used. The addition amount of the different element is preferably about 0.01 to 5 mol% with respect to the transition metal in the lithium-containing transition metal composite oxide. In particular, lithium cobalt oxide in which Al and / or Mg is solid-solved and a compound containing Zr is attached to the surface is preferably used. In the present invention, two or more kinds of positive electrode active materials may be mixed and used.

また、本発明において用いることができる負極活物質は、特に限定されるものではないが、黒鉛などの炭素材料からなる活物質を好ましく用いることができる。   The negative electrode active material that can be used in the present invention is not particularly limited, but an active material made of a carbon material such as graphite can be preferably used.

本発明によれば、4−フルオロエチレンカーボネート(FEC)などのフッ素化環状炭酸エステルと、リチウムビスフルオロスルフォニルイミド(LiFSI)を組み合わせて用いることにより、非水電解液二次電池の充電保存後の残存容量及び復帰容量を向上させることができる。従って、本発明によれば、高温環境下における良好な充電保存特性を得ることができる。   According to the present invention, by using a combination of a fluorinated cyclic carbonate such as 4-fluoroethylene carbonate (FEC) and lithium bisfluorosulfonylimide (LiFSI), a non-aqueous electrolyte secondary battery after being charged and stored. The remaining capacity and the return capacity can be improved. Therefore, according to the present invention, good charge storage characteristics in a high temperature environment can be obtained.

以下、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて適宜設計の変更及び改良等が加えられることが理解されるべきである。   Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments, and changes in design as appropriate based on ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. It should be understood that improvements and the like can be made.

(実施例1)
〔正極の作製〕
正極活物質として、Al及びMgがそれぞれ1.0モル%固溶されており、かつZrが0.05モル%となるようにZrを含む化合物が表面に付着しているコバルト酸リチウムを作製した。具体的には所定のモル比になるように、LiCO、Co、ZrO、MgO、Al(OH)を混合後、空気雰囲気中で熱処理し、粉砕することにより作製した。
Example 1
[Production of positive electrode]
As a positive electrode active material, lithium cobalt oxide in which Al and Mg were each solid-dissolved in 1.0 mol% and a compound containing Zr was adhered to the surface so that Zr was 0.05 mol% was prepared. . Specifically, Li 2 CO 3 , Co 3 O 4 , ZrO 2 , MgO, Al (OH) 3 were mixed so as to have a predetermined molar ratio, then heat-treated in an air atmosphere and pulverized. .

上記のコバルト酸リチウムと、導電材としての炭素と、結着剤としてのポリフッ化ビニリデン(PVdF)を95:2.5:2.5の重量比となるように混合した後、N−メチル−2−ピロリドン(NMP)溶液中に添加して混練し、正極スラリーを作製した。作製したスラリーを所定の塗布量となるように、集電体としてのアルミニウム箔の両面に塗布し、乾燥後、所定の充填密度となるように圧延して正極を作製した。   After the lithium cobaltate, carbon as a conductive material, and polyvinylidene fluoride (PVdF) as a binder were mixed at a weight ratio of 95: 2.5: 2.5, N-methyl- It added and kneaded in 2-pyrrolidone (NMP) solution, and the positive electrode slurry was produced. The prepared slurry was applied to both surfaces of an aluminum foil as a current collector so as to have a predetermined coating amount, dried, and then rolled to a predetermined packing density to prepare a positive electrode.

〔負極の作製〕
負極活物質としての黒鉛と、結着剤としてのスチレンブタジエン(SBR)ゴムと、増粘剤としてのカルボキシメチルセルロース(CMC)を、98:1:1の重量比となるように混合した後、水溶液中で混練して負極スラリーを作製した。作製した負極スラリーを、所定の塗布量となるように集電体としての銅箔の両面上に塗布し、乾燥後、所定の充填密度となるように圧延して負極を作製した。
(Production of negative electrode)
Graphite as a negative electrode active material, styrene butadiene (SBR) rubber as a binder, and carboxymethyl cellulose (CMC) as a thickener are mixed so as to have a weight ratio of 98: 1: 1, and then an aqueous solution. The mixture was kneaded in to prepare a negative electrode slurry. The prepared negative electrode slurry was applied on both sides of a copper foil as a current collector so as to have a predetermined coating amount, dried and then rolled to a predetermined packing density to prepare a negative electrode.

〔非水電解液の作製〕
溶媒として、4−フルオロエチレンカーボネート(FEC)とエチルメチルカーボネート(EMC)を、体積比で20:80となるように混合し、この混合溶媒にリチウム塩としてLiPFを1モル/リットル、リチウムビスフルオロスルフォニルイミド(LiFSI)を0.1モル/リットルとなるように溶解させて、非水電解液を作製した。
[Preparation of non-aqueous electrolyte]
As a solvent, 4-fluoroethylene carbonate (FEC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 20:80, and LiPF 6 was added to this mixed solvent as a lithium salt at 1 mol / liter, lithium bis. Fluorosulfonylimide (LiFSI) was dissolved at 0.1 mol / liter to prepare a non-aqueous electrolyte.

〔電池の作製〕
作製した正極及び負極を、ポリエチレン製のセパレータを介して対向するように巻き取って巻き取り体を作製した。この巻き取り体を、ポリエチレンテレフタレート、アルミニウムなどを積層することにより作製したラミネート材からなる外装体内に挿入し、端部からそれぞれの電極タブが突き出るような状態とした。
[Production of battery]
The produced positive electrode and negative electrode were wound up so as to face each other through a polyethylene separator, and a wound body was produced. The wound body was inserted into an outer package made of a laminate material produced by laminating polyethylene terephthalate, aluminum, etc., and each electrode tab protruded from the end.

次に、不活性ガス雰囲気下のグローブボックス中にて、上記非水電解液を外装体内の巻き取り体に含浸させるように注入し、注入後、開口部を封入して非水電解液二次電池を作製した。   Next, in a glove box under an inert gas atmosphere, the nonaqueous electrolyte solution is injected so as to be impregnated into the wound body in the outer package, and after the injection, the opening is sealed and the nonaqueous electrolyte secondary solution is filled. A battery was produced.

なお、充電終止電圧が4.2V(金属リチウム基準で正極電位4.3V程度)となるように正極容量及び負極容量の比率を調整して、非水電解液二次電池T1を作製した。   In addition, the ratio of the positive electrode capacity and the negative electrode capacity was adjusted so that the end-of-charge voltage was 4.2 V (the positive electrode potential was about 4.3 V with respect to metallic lithium), and the nonaqueous electrolyte secondary battery T1 was manufactured.

(実施例2)
充電終止電圧が4.4V(金属リチウム基準で正極電位4.5V程度)となるように正極容量及び負極容量の比率を調整して電池を作製する以外は、実施例1と同様にして、本発明電池T2を作製した。
(Example 2)
Except for preparing the battery by adjusting the ratio of the positive electrode capacity and the negative electrode capacity so that the end-of-charge voltage is 4.4 V (positive electrode potential is about 4.5 V with respect to metallic lithium), the same procedure as in Example 1 is performed. Invention battery T2 was prepared.

(比較例1)
溶媒として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を、体積比で20:80となるように混合し、この混合溶媒にリチウム塩としてLiPFを1モル/リットルとなるように添加し、非水電解液を作製した。この非水電解液を用いる以外は、実施例1と同様にして、比較電池R1を作製した。
(Comparative Example 1)
As a solvent, ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 20:80, and LiPF 6 is added as a lithium salt to this mixed solvent so as to be 1 mol / liter. A non-aqueous electrolyte was prepared. A comparative battery R1 was produced in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used.

(比較例2)
比較例1と同様にして、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の混合溶媒を調製し、この混合溶媒に、LiPFを1モル/リットル、リチウムビストリフルオロメチルスルフォニルイミド(LiTFSI)を0.1モル/リットルとなるように添加して、非水電解液を作製した。この非水電解液を用いる以外は、比較例1と同様にして、比較電池R2を作製した。
(Comparative Example 2)
In the same manner as in Comparative Example 1, a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was prepared, to this mixed solvent, the LiPF 6 1 mol / liter, lithium bis trifluoromethylsulfonyl Louis bromide (LiTFSI) A nonaqueous electrolytic solution was prepared by adding 0.1 mol / liter. A comparative battery R2 was produced in the same manner as in Comparative Example 1 except that this nonaqueous electrolytic solution was used.

(比較例3)
比較例1と同様にして、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の混合溶媒を調製し、この混合溶媒に、LiPFを1モル/リットル、リチウムビスフルオロスルフォニルイミド(LiFSI)を0.1モル/リットルとなるように添加して、非水電解液を作製した。この非水電解液を用いる以外は、比較例1と同様にして、比較電池R3を作製した。
(Comparative Example 3)
In the same manner as in Comparative Example 1, a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was prepared. To this mixed solvent, 1 mol / liter of LiPF 6 and 0 of lithium bisfluorosulfonylimide (LiFSI) were added. A non-aqueous electrolyte was prepared by adding 1 mol / liter. A comparative battery R3 was produced in the same manner as in Comparative Example 1 except that this nonaqueous electrolytic solution was used.

(比較例4)
混合溶媒として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の混合溶媒に代えて、4−フルオロエチレンカーボネート(FEC)とエチルメチルカーボネート(EMC)を体積比で20:80となるように混合した混合溶媒を用いる以外は、比較例1と同様にして比較電池R4を作製した。
(Comparative Example 4)
As a mixed solvent, instead of a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC), 4-fluoroethylene carbonate (FEC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 20:80. A comparative battery R4 was produced in the same manner as in Comparative Example 1 except that the mixed solvent was used.

(比較例5)
比較例4で用いた混合溶媒を用い、この混合溶媒にLiPFを1モル/リットル、リチウムビストリフルオロメチルスルフォニルイミド(LiTFSI)を0.1モル/リットルとなるように添加して調製した非水電解液を用いる以外は、比較例4と同様にして、比較電池R5を作製した。
(Comparative Example 5)
Non-aqueous solution prepared by using the mixed solvent used in Comparative Example 4 and adding LiPF 6 to 1 mol / liter and lithium bistrifluoromethylsulfonylimide (LiTFSI) to this mixed solvent to 0.1 mol / liter. A comparative battery R5 was produced in the same manner as in Comparative Example 4 except that the electrolytic solution was used.

(比較例6)
充電終止電圧が4.4V(金属リチウム基準で正極電位4.5V程度)となるように正極容量及び負極容量の比率を調整した以外は、比較例3と同様にして、比較電池R6を作製した。
(Comparative Example 6)
A comparative battery R6 was produced in the same manner as in Comparative Example 3, except that the ratio of the positive electrode capacity and the negative electrode capacity was adjusted so that the end-of-charge voltage was 4.4V (positive electrode potential of about 4.5V with respect to metallic lithium). .

(比較例7)
充電終止電圧が4.4V(金属リチウム基準で正極電位4.5V程度)となるように正極容量及び負極容量の比率を調整した以外は、比較例4と同様にして、比較電池R7を作製した。
(Comparative Example 7)
A comparative battery R7 was produced in the same manner as in Comparative Example 4 except that the ratio of the positive electrode capacity and the negative electrode capacity was adjusted so that the end-of-charge voltage was 4.4V (positive electrode potential of about 4.5V based on metallic lithium). .

〔電池電圧4.2V(金属リチウム基準4.3V)での充電保存特性の評価〕
本発明電池T1及び比較電池R1〜R5について、充電保存特性を評価した。まず25℃にて、定電流(1C)−定電圧(0.02C cut)で、電池電圧4.2Vまで充電し、定電流(1C)で電池電圧2.75Vまで放電することにより、保存前の放電容量Dを測定した。
[Evaluation of Charging and Storage Characteristics at Battery Voltage 4.2V (Metal Lithium Reference 4.3V)]
The charge storage characteristics of the present invention battery T1 and the comparative batteries R1 to R5 were evaluated. First, the battery is charged at a constant current (1 C) -constant voltage (0.02 C cut) at 25 ° C. to a battery voltage of 4.2 V and discharged to a battery voltage of 2.75 V at a constant current (1 C). the discharge capacity D 1 was measured.

次に、定電流(1C)−定電圧(0.02C cut)で電池電圧4.2Vまで充電した後、各電池を60℃で10日間恒温槽内で保存した。保存試験後の電池を、定電流(1C)で電池電圧2.75Vまで放電することにより、保存後の残存容量Dを求めた。 Next, after charging to a battery voltage of 4.2 V with a constant current (1C) -constant voltage (0.02 C cut), each battery was stored in a thermostatic bath at 60 ° C. for 10 days. The battery after the storage test, by discharging until the battery voltage 2.75V with a constant current (1C), to determine the remaining capacity D 2 after storage.

保存前の放電容量D及び保存後の残存容量Dから、以下の式により、保存後の容量残存率(%)を求めた。 From before storage discharge capacity D 1 and after the storage remaining capacity D 2, the following formula was calculated residual capacity ratio after storage (%).

保存後の容量残存率(%)=(保存後の残存容量D/保存前の放電容量D)×100
測定結果を表1に示す。
Capacity remaining rate after storage (%) = (Remaining capacity D 2 after storage / Discharge capacity D 1 before storage) × 100
The measurement results are shown in Table 1.

Figure 2010129449
Figure 2010129449

表1に示すように、溶媒としてエチレンカーボネート(EC)を用いた電解液の場合、リチウム塩としてLiPFのみを含む比較電池R1、リチウムビストリフルオロメチルスルフォニルイミド(LiTFSI)とLiPFを含む比較電池R2、リチウムビスフルオロスルフォニルイミド(LiFSI)とLiPFを含む比較電池R3は、いずれも保存後の容量残存率において大きな差はなかった。 As shown in Table 1, in the case of an electrolytic solution using ethylene carbonate (EC) as a solvent, a comparative battery R1 containing only LiPF 6 as a lithium salt, a comparative battery containing lithium bistrifluoromethylsulfonylimide (LiTFSI) and LiPF 6 Comparative battery R3 containing R2, lithium bisfluorosulfonylimide (LiFSI) and LiPF 6 did not have a large difference in capacity remaining rate after storage.

これに対し、4−フルオロエチレンカーボネート(FEC)を含む電解液の場合、リチウムビストリフルオロメチルスルフォニルイミド(LiTFSI)とLiPFを含む比較電池R5は、LiPFのみを含む比較電池R4よりも保存後の容量残存率が悪くなっていた。これに対し、本発明に従い、リチウム塩として、リチウムビスフルオロスルフォニルイミド(LiFSI)を、LiPFとともに含む本発明電池T1は、比較電池R4に比べて、約1%程度保存後の容量残存率が向上している。 On the other hand, in the case of the electrolyte solution containing 4-fluoroethylene carbonate (FEC), the comparative battery R5 containing lithium bistrifluoromethylsulfonylimide (LiTFSI) and LiPF 6 is stored after the comparison battery R4 containing only LiPF 6 only. The capacity remaining rate of was poor. On the other hand, according to the present invention, the battery T1 of the present invention containing lithium bisfluorosulfonylimide (LiFSI) together with LiPF 6 as the lithium salt has a capacity remaining rate after storage of about 1% as compared with the comparative battery R4. It has improved.

以上の結果から、4−フルオロエチレンカーボネート(FEC)を溶媒として含む電解液を使用する場合、リチウムビスフルオロスルフォニルイミド(LiFSI)をリチウム塩として用いることにより、金属リチウム基準で正極電位が4.25V以上に充電される充電保存特性試験において、優れた充電保存特性を示すことが確認された。   From the above results, when using an electrolytic solution containing 4-fluoroethylene carbonate (FEC) as a solvent, by using lithium bisfluorosulfonylimide (LiFSI) as a lithium salt, the positive electrode potential is 4.25 V based on metallic lithium. In the charge storage characteristic test charged as described above, it was confirmed that excellent charge storage characteristics were exhibited.

〔電池電圧4.4V(金属リチウム基準4.5V)での充電保存特性の評価〕
本発明電池T2及び比較電池R6〜R7について充電保存特性を評価した。まず25℃にて、定電流(1C)−定電圧(0.02C cut)で、電池電圧4.4Vまで充電し、定電流(1C)で電池電圧2.75Vまで放電することにより、保存前の放電容量Dを測定した。
[Evaluation of Charging and Storage Characteristics at Battery Voltage 4.4V (Metal Lithium Reference 4.5V)]
The charge storage characteristics of the present invention battery T2 and the comparative batteries R6 to R7 were evaluated. First, the battery is charged at a constant current (1C) -constant voltage (0.02C cut) at a temperature of 4.4V and discharged at a constant current (1C) to a battery voltage of 2.75V. the discharge capacity D 1 was measured.

次に、定電流(1C)−定電圧(0.02C cut)で電池電圧4.4Vまで充電した後、各電池を60℃で10日間恒温槽内で保存した。保存試験後の電池を、定電流(1C)で電池電圧2.75Vまで放電することにより、保存後の残存容量Dを求めた。 Next, after charging to a battery voltage of 4.4 V with a constant current (1C) -constant voltage (0.02 C cut), each battery was stored in a thermostatic bath at 60 ° C. for 10 days. The battery after the storage test, by discharging until the battery voltage 2.75V with a constant current (1C), to determine the remaining capacity D 2 after storage.

保存前の放電容量D及び保存後の残存容量Dから、以下の式により、保存後の容量残存率(%)を求めた。 From before storage discharge capacity D 1 and after the storage remaining capacity D 2, the following formula was calculated residual capacity ratio after storage (%).

保存後の容量残存率(%)=(保存後の残存容量D/保存前の放電容量D)×100
測定結果を表2に示す。
Capacity remaining rate after storage (%) = (Remaining capacity D 2 after storage / Discharge capacity D 1 before storage) × 100
The measurement results are shown in Table 2.

Figure 2010129449
Figure 2010129449

表2に示すように、エチレンカーボネート(EC)を含む電解液を用いた場合には、リチウムビスフルオロスルフォニルイミド(LiFSI)を含有させた比較電池R7の容量残存率は高い値が得られていない。また、4−フルオロエチレンカーボネート(FEC)を含む電解液であっても、リチウムビスフルオロスルフォニルイミド(LiFSI)を含有していない比較電池R7においても高い容量残存率が得られていない。   As shown in Table 2, when an electrolytic solution containing ethylene carbonate (EC) was used, the capacity remaining rate of the comparative battery R7 containing lithium bisfluorosulfonylimide (LiFSI) was not high. . Moreover, even if it is the electrolyte solution containing 4-fluoroethylene carbonate (FEC), the high capacity | capacitance residual rate is not obtained even in the comparison battery R7 which does not contain lithium bisfluoro sulfonylimide (LiFSI).

しかしながら、本発明に従い、4−フルオロエチレンカーボネート(FEC)と、リチウムビスフルオロスルフォニルイミド(LiFSI)とを組み合わせて用いた本発明電池T2においては、比較電池R7に比べ、約10%程度高い保存後の容量残存率が得られている。   However, in accordance with the present invention, the battery T2 of the present invention using a combination of 4-fluoroethylene carbonate (FEC) and lithium bisfluorosulfonylimide (LiFSI) after storage is about 10% higher than the comparative battery R7. The capacity remaining rate is obtained.

以上の結果から、本発明に従い、4−フルオロエチレンカーボネート(FEC)を含む電解液を使用する場合、リチウムビスフルオロスルフォニルイミド(LiFSI)を添加することにより、保存後の容量残存率を向上させることができる。また、表1に示す結果との比較から明らかなように、金属リチウム基準で正極電位4.40V以上に充電することにより、さらに優れた充電保存特性が得られることがわかる。   From the above results, according to the present invention, when using an electrolytic solution containing 4-fluoroethylene carbonate (FEC), the capacity remaining rate after storage is improved by adding lithium bisfluorosulfonylimide (LiFSI). Can do. Further, as is clear from the comparison with the results shown in Table 1, it can be seen that further excellent charge storage characteristics can be obtained by charging the positive electrode potential to 4.40 V or more on the basis of metallic lithium.

Claims (9)

溶媒としてフッ素化環状炭酸エステルを含み、電解質としてリチウム塩を含む二次電池用非水電解液であって、
前記リチウム塩として構造式(F−OS−N−SO−F)Liで表わされるリチウムビスフルオロスルフォニルイミドを含有することを特徴とする二次電池用非水電解液。
A non-aqueous electrolyte for a secondary battery containing a fluorinated cyclic carbonate as a solvent and a lithium salt as an electrolyte,
A nonaqueous electrolytic solution for a secondary battery, comprising lithium bisfluorosulfonylimide represented by the structural formula (F—O 2 S—N—SO 2 —F) Li as the lithium salt.
前記フッ素化環状炭酸エステルが、4−フルオロエチレンカーボネート及び/またはその誘導体であることを特徴とする請求項1に記載の二次電池用非水電解液。   The non-aqueous electrolyte for a secondary battery according to claim 1, wherein the fluorinated cyclic carbonate is 4-fluoroethylene carbonate and / or a derivative thereof. 前記4−フルオロエチレンカーボネート及びその誘導体を、溶媒全体に対して5〜30体積%含むことを特徴とする請求項2に記載の二次電池用非水電解液。   The nonaqueous electrolytic solution for a secondary battery according to claim 2, wherein the 4-fluoroethylene carbonate and a derivative thereof are contained in an amount of 5 to 30% by volume based on the entire solvent. 前記リチウムビスフルオロスルフォニルイミドが、非水電解液中に0.01〜0.5モル/リットル含有されていることを特徴とする請求項1〜3のいずれか1項に記載の二次電池用非水電解液。   4. The secondary battery according to claim 1, wherein the lithium bisfluorosulfonylimide is contained in a non-aqueous electrolyte solution in an amount of 0.01 to 0.5 mol / liter. Non-aqueous electrolyte. 正極活物質を含む正極と、負極活物質を含む負極と、非水電解液とを備える非水電解液二次電池であって、
前記非水電解液が請求項1〜4のいずれか1項に記載の非水電解液であることを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte,
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte is the non-aqueous electrolyte according to claim 1.
満充電時の前記正極の電位が、金属リチウム基準で4.25V以上であることを特徴とする請求項5に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 5, wherein the potential of the positive electrode when fully charged is 4.25 V or more based on metallic lithium. 満充電時の前記正極の電位が、金属リチウム基準で4.40V以上であることを特徴とする請求項5に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 5, wherein the potential of the positive electrode when fully charged is 4.40 V or more based on metallic lithium. Al及び/またはMgが固溶されており、かつ表面にZrを含む化合物が付着したコバルト酸リチウムを、前記正極活物質として用いることを特徴とする請求項5〜7のいずれか1項に記載の非水電解液二次電池。   8. The lithium cobalt oxide in which Al and / or Mg is solid-dissolved and a compound containing Zr is attached to the surface is used as the positive electrode active material. Non-aqueous electrolyte secondary battery. 前記負極活物質が、黒鉛であることを特徴とする請求項5〜8のいずれか1項に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 5, wherein the negative electrode active material is graphite.
JP2008304515A 2008-11-28 2008-11-28 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery Active JP5339869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304515A JP5339869B2 (en) 2008-11-28 2008-11-28 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304515A JP5339869B2 (en) 2008-11-28 2008-11-28 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2010129449A true JP2010129449A (en) 2010-06-10
JP5339869B2 JP5339869B2 (en) 2013-11-13

Family

ID=42329694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304515A Active JP5339869B2 (en) 2008-11-28 2008-11-28 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5339869B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000944A (en) * 2012-12-03 2013-03-27 湖州创亚动力电池材料有限公司 Lithium ion battery electrolyte with high-temperature and low-temperature properties
JP2013084590A (en) * 2011-09-26 2013-05-09 Nippon Shokubai Co Ltd Laminated alkali metal battery
JP2013084591A (en) * 2011-09-26 2013-05-09 Nippon Shokubai Co Ltd Alkali metal battery
JP2013105643A (en) * 2011-11-15 2013-05-30 Nippon Shokubai Co Ltd Lithium secondary battery
JP2013145732A (en) * 2011-12-16 2013-07-25 Nippon Shokubai Co Ltd Lithium secondary battery
WO2014112420A1 (en) 2013-01-17 2014-07-24 ソニー株式会社 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
JP2014203748A (en) * 2013-04-08 2014-10-27 株式会社日本触媒 Nonaqueous electrolytic solution for lithium ion secondary batteries, and lithium ion secondary battery having the same
US8986893B2 (en) 2012-01-26 2015-03-24 Sony Corporation Battery, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system
US8986880B2 (en) 2011-06-07 2015-03-24 Sony Corporation Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
WO2015147110A1 (en) * 2014-03-25 2015-10-01 株式会社日本触媒 Non-aqueous electrolyte and lithium ion secondary battery comprising same
JP2015191737A (en) * 2014-03-27 2015-11-02 ダイキン工業株式会社 Electrolyte and electrochemical device
US20160087311A1 (en) * 2013-06-07 2016-03-24 Volkswagen Aktiengesellschaft Electrolyte composition for high-energy anodes
JP2016058326A (en) * 2014-09-11 2016-04-21 株式会社日本触媒 Nonaqueous electrolyte and lithium ion secondary battery including the same
JP2017022116A (en) * 2011-12-06 2017-01-26 アルケマ フランス USE OF LITHIUM SALT MIXTURES AS Li-ION BATTERY ELECTROLYTES
JP2017037744A (en) * 2015-08-07 2017-02-16 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP2017041425A (en) * 2015-08-21 2017-02-23 株式会社日本触媒 Lithium ion secondary battery
JP2017041426A (en) * 2015-08-21 2017-02-23 株式会社日本触媒 Lithium ion secondary battery
JP2017084739A (en) * 2015-10-30 2017-05-18 株式会社日本触媒 Lithium ion secondary battery
US9905887B2 (en) 2012-06-05 2018-02-27 Nec Corporation Lithium secondary battery
JP2018088386A (en) * 2011-04-13 2018-06-07 三菱ケミカル株式会社 Lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolyte secondary battery
JP2018147740A (en) * 2017-03-06 2018-09-20 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery
US10177413B2 (en) 2012-11-20 2019-01-08 Nec Corporation Lithium ion secondary battery
CN109686924A (en) * 2018-12-17 2019-04-26 深圳先进技术研究院 Pre- embedding potassium cathode, preparation method and application, potassium base Dual-ion cell and preparation method thereof and electrical equipment
WO2019146731A1 (en) 2018-01-25 2019-08-01 三井化学株式会社 Nonaqueous electrolyte solution for batteries, and lithium secondary battery
WO2021017759A1 (en) * 2019-07-30 2021-02-04 宁德时代新能源科技股份有限公司 Lithium-ion battery and related battery module, battery pack, and device
US10971755B2 (en) 2014-04-23 2021-04-06 Murata Manufacturing Co., Ltd. Secondary battery-use electrolytic solution, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517051A (en) * 2003-01-30 2006-07-13 イドロ−ケベック Rechargeable electrochemical storage battery
JP2007250415A (en) * 2006-03-17 2007-09-27 Mitsui Chemicals Inc Nonaqueous electrolyte solution and lithium secondary battery using the same
JP2009043617A (en) * 2007-08-09 2009-02-26 Sony Corp Electrolytic solution and battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517051A (en) * 2003-01-30 2006-07-13 イドロ−ケベック Rechargeable electrochemical storage battery
JP2007250415A (en) * 2006-03-17 2007-09-27 Mitsui Chemicals Inc Nonaqueous electrolyte solution and lithium secondary battery using the same
JP2009043617A (en) * 2007-08-09 2009-02-26 Sony Corp Electrolytic solution and battery

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018088386A (en) * 2011-04-13 2018-06-07 三菱ケミカル株式会社 Lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolyte secondary battery
US8986880B2 (en) 2011-06-07 2015-03-24 Sony Corporation Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2013084590A (en) * 2011-09-26 2013-05-09 Nippon Shokubai Co Ltd Laminated alkali metal battery
JP2013084591A (en) * 2011-09-26 2013-05-09 Nippon Shokubai Co Ltd Alkali metal battery
JP2013105643A (en) * 2011-11-15 2013-05-30 Nippon Shokubai Co Ltd Lithium secondary battery
JP2017022116A (en) * 2011-12-06 2017-01-26 アルケマ フランス USE OF LITHIUM SALT MIXTURES AS Li-ION BATTERY ELECTROLYTES
JP2018073833A (en) * 2011-12-06 2018-05-10 アルケマ フランス Use of lithium salt mixtures as lithium-ion battery electrolytes
JP2013145732A (en) * 2011-12-16 2013-07-25 Nippon Shokubai Co Ltd Lithium secondary battery
US9786951B2 (en) 2012-01-26 2017-10-10 Sony Corporation Battery and battery pack
US8986893B2 (en) 2012-01-26 2015-03-24 Sony Corporation Battery, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system
US9246190B2 (en) 2012-01-26 2016-01-26 Sony Corporation Battery and battery pack
US9905887B2 (en) 2012-06-05 2018-02-27 Nec Corporation Lithium secondary battery
US10177413B2 (en) 2012-11-20 2019-01-08 Nec Corporation Lithium ion secondary battery
CN103000944A (en) * 2012-12-03 2013-03-27 湖州创亚动力电池材料有限公司 Lithium ion battery electrolyte with high-temperature and low-temperature properties
WO2014112420A1 (en) 2013-01-17 2014-07-24 ソニー株式会社 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
KR20150106883A (en) 2013-01-17 2015-09-22 소니 주식회사 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
US9899670B2 (en) 2013-01-17 2018-02-20 Murata Manufacturing Co., Ltd. Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2014203748A (en) * 2013-04-08 2014-10-27 株式会社日本触媒 Nonaqueous electrolytic solution for lithium ion secondary batteries, and lithium ion secondary battery having the same
JP2016523429A (en) * 2013-06-07 2016-08-08 フオルクスワーゲン・アクチエンゲゼルシヤフトVolkswagen Aktiengesellschaft Novel electrolyte compositions for high energy anodes
US10069165B2 (en) 2013-06-07 2018-09-04 Volkswagen Aktiengesellschaft Electrolyte composition for a lithium-ion battery
US20160087311A1 (en) * 2013-06-07 2016-03-24 Volkswagen Aktiengesellschaft Electrolyte composition for high-energy anodes
WO2015147110A1 (en) * 2014-03-25 2015-10-01 株式会社日本触媒 Non-aqueous electrolyte and lithium ion secondary battery comprising same
US10290900B2 (en) 2014-03-25 2019-05-14 Nippon Shokubai Co., Ltd. Non-aqueous electrolytic solution and lithium ion secondary battery comprising same
JP2015191737A (en) * 2014-03-27 2015-11-02 ダイキン工業株式会社 Electrolyte and electrochemical device
US10971755B2 (en) 2014-04-23 2021-04-06 Murata Manufacturing Co., Ltd. Secondary battery-use electrolytic solution, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2016058326A (en) * 2014-09-11 2016-04-21 株式会社日本触媒 Nonaqueous electrolyte and lithium ion secondary battery including the same
JP2017037744A (en) * 2015-08-07 2017-02-16 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP2017041426A (en) * 2015-08-21 2017-02-23 株式会社日本触媒 Lithium ion secondary battery
JP2017041425A (en) * 2015-08-21 2017-02-23 株式会社日本触媒 Lithium ion secondary battery
JP2017084739A (en) * 2015-10-30 2017-05-18 株式会社日本触媒 Lithium ion secondary battery
JP2018147740A (en) * 2017-03-06 2018-09-20 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery
WO2019146731A1 (en) 2018-01-25 2019-08-01 三井化学株式会社 Nonaqueous electrolyte solution for batteries, and lithium secondary battery
CN109686924A (en) * 2018-12-17 2019-04-26 深圳先进技术研究院 Pre- embedding potassium cathode, preparation method and application, potassium base Dual-ion cell and preparation method thereof and electrical equipment
WO2021017759A1 (en) * 2019-07-30 2021-02-04 宁德时代新能源科技股份有限公司 Lithium-ion battery and related battery module, battery pack, and device

Also Published As

Publication number Publication date
JP5339869B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5339869B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
KR101033697B1 (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary cell comprising the same
EP2206189B1 (en) Non-aqueous electrolyte lithium secondary battery
KR100898857B1 (en) Non-aqueous electrolyte and secondary battery using the same
JP4012174B2 (en) Lithium battery with efficient performance
JP2009140919A (en) Nonaqueous secondary battery
JP2009164082A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
US20160126592A1 (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
US8524399B2 (en) Non-aqueous electrolyte and secondary battery comprising the same
JP2020528639A (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery containing it
JP2008210573A (en) Nonaqueous electrolyte secondary battery
KR20080109644A (en) Non-aqueous electrolyte and secondary battery using the same
US20100190064A1 (en) Nonaqueous electrolyte secondary battery
JP5310711B2 (en) Nonaqueous electrolyte secondary battery
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JP2005149750A (en) Nonaqueous electrolyte secondary battery
US9337479B2 (en) Nonaqueous electrolyte secondary battery
US20110274986A1 (en) Nonaqueous electrolyte secondary battery and nonaqueous electrolytic solution for nonaqueous electrolyte secondary battery
JP4739778B2 (en) Nonaqueous electrolyte secondary battery
CN105336984A (en) Lithium-ion battery and electrolyte thereof
US8563179B2 (en) Nonaqueous secondary battery
US8999589B2 (en) Nonaqueous secondary battery
JP2005203342A (en) Secondary battery
JP2014067629A (en) Nonaqueous electrolyte secondary battery
JP2008251212A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R151 Written notification of patent or utility model registration

Ref document number: 5339869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250