JP2007250415A - Nonaqueous electrolyte solution and lithium secondary battery using the same - Google Patents

Nonaqueous electrolyte solution and lithium secondary battery using the same Download PDF

Info

Publication number
JP2007250415A
JP2007250415A JP2006074223A JP2006074223A JP2007250415A JP 2007250415 A JP2007250415 A JP 2007250415A JP 2006074223 A JP2006074223 A JP 2006074223A JP 2006074223 A JP2006074223 A JP 2006074223A JP 2007250415 A JP2007250415 A JP 2007250415A
Authority
JP
Japan
Prior art keywords
carbonate
positive electrode
lithium
battery
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006074223A
Other languages
Japanese (ja)
Other versions
JP4976715B2 (en
Inventor
Akio Hibara
昭男 檜原
Yoshinobu Nogi
栄信 野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2006074223A priority Critical patent/JP4976715B2/en
Publication of JP2007250415A publication Critical patent/JP2007250415A/en
Application granted granted Critical
Publication of JP4976715B2 publication Critical patent/JP4976715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical element having a cathode potential of 4.5 V or higher in a full charged condition and nonaqueous electrolyte solution which has limited capacity fall due to charge/discharge cycles at a high temperature especially in a high voltage lithium secondary battery and provide an electrochemical element and a lithium secondary battery using the above electrolyte solution. <P>SOLUTION: The nonaqueous solvent contains a ring-shaped carbonate and a chain carbonate as main compositions and the ring carbonate of 60 wt.% or more is a fluorine ethylene carbonate in which fluorine atoms are combined direct with a carbonate ring, and moreover, the ring-shaped carbonate and the ring-shaped carbonate are contained in a predetermined ratio. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、満充電状態の正極電位が金属リチウムの電位に対して4.35V以上である電気化学素子に使用する非水電解液であって、高温での充放電サイクルに伴う容量低下が少なく、高温保存時の電解液分解ガスの生成が少ない電解液に関する。   The present invention is a non-aqueous electrolyte for use in an electrochemical device having a fully charged positive electrode potential of 4.35 V or more with respect to the potential of metallic lithium, and has a small capacity drop due to a charge / discharge cycle at a high temperature. Further, the present invention relates to an electrolytic solution that generates little decomposition gas during storage at a high temperature.

電気化学素子は、電池、キャパシタ、エレクトロクロミズム素子などに例示される電気化学反応を利用した素子である。
このうち、リチウム電池は、高電圧かつ高エネルギー密度を有しており、また貯蔵安定性などの信頼性も高いので、民生用電子機器の電源として広く用いられている。リチウム電池の代表例としては、リチウムイオン二次電池が挙げられる。これは、リチウムを吸蔵、放出が可能な炭素材料を活物質とする負極と、リチウムと遷移金属との複合酸化物などを活物質とする正極と、非水電解液とを含んで構成される電池である。
キャパシタの代表例として非水系電気二重層キャパシタが挙げられる。これは活性炭などの高表面積電子伝導物質を活物質とする正極と負極と、非水電解液とを含んで構成される。エネルギー密度は低いが比較的に高電圧で寿命が長い特徴がある。電気二重層キャパシタでは、電気は電極表面の電気二重層へのイオンの静電吸着により蓄えられるので、純然たる電気化学反応が起こっていないが、広義に本発明で論じられる電気化学素子に含める。また、近年、リチウム二次電池とキャパシタの中間的な性質を持つ電気化学素子として、電気化学キャパシタが提案されている。これは、リチウムを吸蔵、放出が可能でかつ高表面積な物質を正極と負極の少なくとも一方の活物質に含んで構成されるキャパシタである。
The electrochemical element is an element utilizing an electrochemical reaction exemplified by a battery, a capacitor, an electrochromic element and the like.
Among these, lithium batteries are widely used as power sources for consumer electronic devices because of their high voltage and high energy density and high reliability such as storage stability. A typical example of the lithium battery is a lithium ion secondary battery. This includes a negative electrode using a carbon material capable of inserting and extracting lithium as an active material, a positive electrode using a composite oxide of lithium and a transition metal as an active material, and a non-aqueous electrolyte. It is a battery.
A typical example of the capacitor is a non-aqueous electric double layer capacitor. This is comprised including the positive electrode and negative electrode which use high surface area electron conductive materials, such as activated carbon, as an active material, and a non-aqueous electrolyte. Although it has a low energy density, it is characterized by a relatively high voltage and a long lifetime. In the electric double layer capacitor, since electricity is stored by electrostatic adsorption of ions to the electric double layer on the electrode surface, a pure electrochemical reaction does not occur, but it is included in the electrochemical element discussed in the present invention in a broad sense. In recent years, electrochemical capacitors have been proposed as electrochemical elements having intermediate properties between lithium secondary batteries and capacitors. This is a capacitor configured to contain a material capable of inserting and extracting lithium and having a high surface area in at least one of a positive electrode and a negative electrode.

ここで、非水電解液は正極と負極間のイオンの受け渡しをする役割を担う。電池の充放電特性を高めるには正極と負極間のイオンの受け渡し速度をなるべく高める必要があり、そのためには、非水電解液のイオン伝導度を高くすること、非水電解液の粘度を低くすることなどが必要である。また、電池の高温保存特性、サイクル安定性などを高めるためには、化学的、電気化学的な反応性の高い正極と負極とに対して、非水電解液が安定である必要がある。
このような要件を満たす非水電解液としては、リチウムイオン電池では、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトンなどの環状エステルと、ジエチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート、プロピオン酸メチルなどの鎖状エステルとの混合溶媒にLiPFなどのリチウム塩を溶解したものが挙げられる。また、非水電解液に、フッ素化エチレンカーボネート(たとえば、特許文献1、2参照)を含有することにより、電池の充放電サイクル特性が向上することも報告されている。特許文献2では、フッ素化エチレンカーボネートとして4,5−ジフルオロエチレンカーボネートとジメチルカーボネートの体積比1:1の溶媒からなる非水電解液のみが例示されているが、電解液の配合比率に関しては記載がない。これらの従来技術で充放電サイクル特性が向上するのは、負極に対する非水電解液の電気化学的安定性が向上するためと考えられる。
Here, the non-aqueous electrolyte plays a role of transferring ions between the positive electrode and the negative electrode. In order to improve the charge / discharge characteristics of the battery, it is necessary to increase the ion transfer rate between the positive electrode and the negative electrode as much as possible. For this purpose, the ion conductivity of the non-aqueous electrolyte is increased and the viscosity of the non-aqueous electrolyte is decreased. It is necessary to do. Further, in order to improve the high temperature storage characteristics, cycle stability, etc. of the battery, it is necessary that the non-aqueous electrolyte is stable with respect to the positive and negative electrodes having high chemical and electrochemical reactivity.
As a non-aqueous electrolyte satisfying such requirements, in lithium ion batteries, cyclic esters such as propylene carbonate, ethylene carbonate, and γ-butyrolactone, and chain forms such as diethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, and methyl propionate are used. What melt | dissolved lithium salts, such as LiPF 6 , in the mixed solvent with ester is mentioned. It has also been reported that the charge / discharge cycle characteristics of a battery are improved by containing fluorinated ethylene carbonate (see, for example, Patent Documents 1 and 2) in the nonaqueous electrolytic solution. Patent Document 2 exemplifies only a non-aqueous electrolyte composed of a solvent having a volume ratio of 1: 1 between 4,5-difluoroethylene carbonate and dimethyl carbonate as the fluorinated ethylene carbonate. However, the blending ratio of the electrolyte is described. There is no. The reason why the charge / discharge cycle characteristics are improved by these conventional techniques is considered to be because the electrochemical stability of the non-aqueous electrolyte with respect to the negative electrode is improved.

ところで、最近の携帯型機器の目覚しい高機能化に伴い、従来よりもさらにエネルギー密度の高い電気化学素子が強く求められている。
このような電気化学素子としては、満充電状態の正極の電位を金属リチウムの電位に対して4.35V以上にしたリチウム電池(以後「高電圧系リチウム二次電池」と称す)が例示される(たとえば、特許文献3参照)。このリチウム電池は、従来のリチウムイオン電池よりも正極単位体積あたりのリチウムの吸蔵・放出量を高めることができ、かつ、電池電圧を高める事ができるため、電池のエネルギー密度を向上できる。しかしながら、満充電時の正極の電位が高くなることから、特に高温で電解液の酸化分解反応が起こりやすくなり、高温での充放電サイクルに伴う容量低下や、高温保存時の電解液分解ガス生成による電池外装缶の膨れや、電池内圧を検知して作動する安全素子の異常作動などが起こる虞がある。
By the way, with the recent remarkable improvement in functions of portable devices, there is a strong demand for electrochemical elements having a higher energy density than before.
As such an electrochemical element, a lithium battery (hereinafter referred to as “high voltage lithium secondary battery”) in which the potential of the positive electrode in a fully charged state is set to 4.35 V or more with respect to the potential of metallic lithium is exemplified. (For example, refer to Patent Document 3). This lithium battery can increase the occlusion / release amount of lithium per unit volume of the positive electrode and can increase the battery voltage as compared with the conventional lithium ion battery, so that the energy density of the battery can be improved. However, because the potential of the positive electrode during full charge increases, the oxidative decomposition reaction of the electrolytic solution is likely to occur particularly at high temperatures, the capacity decreases with charge / discharge cycles at high temperatures, and the generation of electrolytic decomposition gas during storage at high temperatures. There is a possibility that the battery outer can swells due to, or the safety element that operates by detecting the internal pressure of the battery operates abnormally.

高電圧系リチウム二次電池の充放電サイクルに伴う容量低下を抑制するために、たとえば、高電圧系リチウム二次電池の電解質として、フルオロアルキルスルホン酸系リチウム塩を電解質溶質に使用することや、スルホン系添加剤を含有させるなど種々の方法が例示されているが十分ではない。高電圧系リチウム二次電池の保存ガスを抑制するために、電解質として、ジフルオロエチレンカーボネートとフッ素化鎖状カーボネートの組み合わせに関して記載がある(たとえば、特許文献4参照)。しがしながら、この文献では、発明の課題を解決する手段及び実施例にはフッ素化エチレンカーボネートとフッ素化鎖状カーボネートの組み合わせに関して具体的な例示は全く無く、また、電池の充放電サイクル特性の改善に関する記載が無い。   In order to suppress the capacity reduction associated with the charge / discharge cycle of the high voltage lithium secondary battery, for example, as an electrolyte of the high voltage lithium secondary battery, a fluoroalkylsulfonic acid lithium salt is used as an electrolyte solute, Various methods such as incorporating a sulfone-based additive are exemplified, but it is not sufficient. In order to suppress the storage gas of the high-voltage lithium secondary battery, there is a description regarding a combination of difluoroethylene carbonate and fluorinated chain carbonate as an electrolyte (for example, see Patent Document 4). However, in this document, there is no specific example regarding the combination of fluorinated ethylene carbonate and fluorinated chain carbonate in the means and examples for solving the problems of the invention, and charge / discharge cycle characteristics of the battery. There is no description about improvement.

特許公表2001−501355号公報Patent Publication 2001-501355 特開平07−240232号公報Japanese Patent Application Laid-Open No. 07-240232 特開2004−281158号公報JP 2004-281158 A 特開2003−168480号公報JP 2003-168480 A

本発明の目的は、満充電状態の正極電位が金属リチウムの電位に対して4.35V以上である電気化学素子(特に高電圧系リチウム二次電池)において、高温での充放電サイクルに伴う電池の容量低下が少なく、かつ、高温保存時のガス発生の少ない非水電解液、及びそれを用いた電気化学素子およびリチウム二次電池を得ることである。   An object of the present invention is to provide a battery accompanying a charge / discharge cycle at a high temperature in an electrochemical element (particularly a high-voltage lithium secondary battery) in which the positive electrode potential in a fully charged state is 4.35 V or more with respect to the potential of metallic lithium. It is to obtain a non-aqueous electrolytic solution with a small capacity decrease and a gas generation during high-temperature storage, and an electrochemical device and a lithium secondary battery using the same.

上記課題に鑑み、本発明者らは鋭意検討を行った結果、本発明を完成させるに至った。 すなわち本発明の非水電解液は、
[1]環状カーボネートおよび鎖状カーボネートを主たる成分として含有する非水溶媒と電解質溶質からなり、環状カーボネートの60重量%以上がカーボネート環にフッ素原子が直結したフッ素化エチレンカーボネートであり且つ環状カーボネートと鎖状カーボネートの重量比率が3:97〜35:65である満充電状態の正極電位が金属リチウムの電位を基準として4.35V以上である電気化学素子用の非水電解液、
[2]鎖状カーボネートの25重量%以上がフッ素化鎖状カーボネートである[1]記載の非水電解液、
[3]フッ素化エチレンカーボネートが4−フルオロエチレンカーボネートである[1]または[2]記載の非水電解液、
[4][1]ないし[3]のいずれかに記載の非水電解液、リチウムイオンまたはアニオンと可逆的な電気化学反応可能な正極活物質を有する正極、並びにリチウムイオンを充放電可能な負極活物質を有する負極を含み、満充電状態の正極の電位が金属リチウムの電位を基準として4.35V以上であるリチウム二次電池、
に関するものである。
In view of the above problems, the present inventors have intensively studied, and as a result, have completed the present invention. That is, the non-aqueous electrolyte of the present invention is
[1] A non-aqueous solvent containing a cyclic carbonate and a chain carbonate as main components and an electrolyte solute, wherein 60% by weight or more of the cyclic carbonate is a fluorinated ethylene carbonate in which a fluorine atom is directly bonded to the carbonate ring, and the cyclic carbonate A non-aqueous electrolyte for an electrochemical device in which the positive electrode potential in a fully charged state in which the weight ratio of the chain carbonate is from 3:97 to 35:65 is 4.35 V or more based on the potential of metallic lithium,
[2] The nonaqueous electrolytic solution according to [1], wherein 25% by weight or more of the chain carbonate is a fluorinated chain carbonate,
[3] The nonaqueous electrolytic solution according to [1] or [2], wherein the fluorinated ethylene carbonate is 4-fluoroethylene carbonate,
[4] The nonaqueous electrolytic solution according to any one of [1] to [3], a positive electrode having a positive electrode active material capable of reversible electrochemical reaction with lithium ions or anions, and a negative electrode capable of charging and discharging lithium ions A lithium secondary battery including a negative electrode having an active material, wherein the fully charged positive electrode has a potential of 4.35 V or more based on the potential of metallic lithium;
It is about.

本発明の非水電解液は、満充電状態の正極の電位が金属リチウムの電位を基準として4.35V以上である電気化学素子に用いると、高温での充放電サイクル特性を向上し、高温保存時の電解液分解ガスに起因する電池の膨れを抑制できる。従って、本発明の非水電解液を使用すると、高温での充放電サイクル特性に優れ、高温保存ガスによる膨れの小さい、高エネルギー密度のリチウム二次電池や電気二重層キャパシタを得ることができる。   When the non-aqueous electrolyte of the present invention is used for an electrochemical device in which the potential of the fully charged positive electrode is 4.35 V or more with respect to the potential of metallic lithium, the charge / discharge cycle characteristics at high temperature are improved, and storage at high temperature is possible. The swelling of the battery due to the electrolyte decomposition gas at the time can be suppressed. Therefore, when the non-aqueous electrolyte of the present invention is used, a high energy density lithium secondary battery or electric double layer capacitor having excellent charge / discharge cycle characteristics at high temperatures and small swelling due to high temperature storage gas can be obtained.

以下に、本発明の非水電解液、及び、特に、それを用いたリチウム二次電池について説明する。
本発明の非水電解液は、環状カーボネートおよび鎖状カーボネートを主たる成分として含有する非水溶媒と電解質溶質からなり、環状カーボネートの60重量%以上がカーボネート環にフッ素原子が直結したフッ素化エチレンカーボネートであり且つ環状カーボネートと鎖状カーボネートの重量比率が3:97〜35:65である満充電状態の正極電位が金属リチウムの電位を基準として4.35V以上である電気化学素子に用いられるものである。
以下では、電気化学素子として、高電圧系リチウム二次電池用の非水電解液を例に説明する。
Hereinafter, the nonaqueous electrolytic solution of the present invention and, in particular, a lithium secondary battery using the nonaqueous electrolytic solution will be described.
The nonaqueous electrolytic solution of the present invention comprises a nonaqueous solvent containing a cyclic carbonate and a chain carbonate as main components and an electrolyte solute, and 60% by weight or more of the cyclic carbonate has a fluorine atom directly bonded to the carbonate ring. And the weight ratio of the cyclic carbonate to the chain carbonate is 3:97 to 35:65 and is used for an electrochemical device in which the positive electrode potential in a fully charged state is 4.35 V or more with respect to the potential of metallic lithium. is there.
Below, the non-aqueous electrolyte for high voltage system lithium secondary batteries is demonstrated to an example as an electrochemical element.

〔環状カーボネート〕
本発明に係る環状カーボネートとしては、4-フルオロエチレンカーボネートなどのフッ素化エチレンカーボネートが必須成分である。他に、非フッ素化環状炭酸エステルが挙げられる。非フッ素化環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、1,2−ペンテンカーボネート、1,2−ヘキセンカーボネート、1,2−ヘプテンカーボネート、1,2−オクテンカーボネート、1,2−ノネンカーボネート、1,2−デセンカーボネート、1,2−ドデセンカーボネート、5,6−ドデセンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、1,2−ジビニルエチレンカーボネートなどが例示される。
[Cyclic carbonate]
As the cyclic carbonate according to the present invention, fluorinated ethylene carbonate such as 4-fluoroethylene carbonate is an essential component. Other examples include non-fluorinated cyclic carbonates. Non-fluorinated cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate, 1,2-pentene carbonate, 1,2-hexene carbonate, 1,2-heptene carbonate, 1,2-octene carbonate, 1,2 -Nonene carbonate, 1,2-decene carbonate, 1,2-dodecene carbonate, 5,6-dodecene carbonate, vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene carbonate and the like are exemplified.

本発明では、環状カーボネート全量に対して、カーボネート環にフッ素原子が直結したフッ素化エチレンカーボネートを60重量%以上含有する事が必須である。環状カーボネート中のカーボネート環にフッ素原子が直結したフッ素化エチレンカーボネートの比率が多いほど、高温かつ高電圧のときでの正極における電解液の酸化電気分解が少なくなる為、高電圧系リチウム二次電池の高温での充放電サイクル特性が向上する。環状カーボネート中のフッ素化エチレンカーボネートの比率は、60重量%以上、好ましくは75重量%以上、更に好ましくは80重量%以上、最も望ましくは90重量%以上である。この範囲にあれば、満充電状態の正極電位が金属リチウムの電位を基準として4.35V以上である電気化学素子に用いる非水電解液として好ましい。   In the present invention, it is essential to contain 60% by weight or more of fluorinated ethylene carbonate in which fluorine atoms are directly bonded to the carbonate ring with respect to the total amount of cyclic carbonate. The higher the ratio of fluorinated ethylene carbonate in which fluorine atoms are directly linked to the carbonate ring in the cyclic carbonate, the less the oxidative electrolysis of the electrolyte in the positive electrode at high temperature and high voltage. The charge / discharge cycle characteristics at high temperatures are improved. The ratio of fluorinated ethylene carbonate in the cyclic carbonate is 60% by weight or more, preferably 75% by weight or more, more preferably 80% by weight or more, and most desirably 90% by weight or more. If it exists in this range, it is preferable as a non-aqueous electrolyte used for the electrochemical element whose positive electrode potential of a full charge state is 4.35V or more on the basis of the electric potential of metallic lithium.

一方、環状カーボネートのうち、非フッ素化環状カーボネートは、リチウムの標準酸化還元電位を基準として4.35V以上の正極において、高温で酸化分解されやすいので極力含有させない方が良い。非フッ素化環状カーボネートを電解液のイオン伝導度向上等の観点で止むを得ず含有させる場合は、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートが望ましく、前述の正極での反応性を減じて、充放電サイクル特性への悪影響を軽減する観点では、プロピレンカーボネートが最も望ましい。また、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートは高温高電圧での正極で酸化分解されやすいが、負極の還元分解反応を抑制する作用が高いので、微量ならば含有させても良い。含有させる場合、負極の還元分解反応性によって適宜調整するが、0.05重量%から2重量%が適当である。   On the other hand, among the cyclic carbonates, non-fluorinated cyclic carbonates are preferably not contained as much as possible because they are easily oxidatively decomposed at a high temperature at a positive electrode of 4.35 V or higher with reference to the standard oxidation-reduction potential of lithium. In the case where the non-fluorinated cyclic carbonate is unavoidably contained from the viewpoint of improving the ionic conductivity of the electrolytic solution, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate are desirable. Propylene carbonate is most desirable from the viewpoint of reducing reactivity at the positive electrode and reducing adverse effects on charge / discharge cycle characteristics. Vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate are easily oxidatively decomposed at the positive electrode at high temperature and high voltage. However, they have a high effect of suppressing the reductive decomposition reaction of the negative electrode, so they may be contained in trace amounts. When it is contained, it is appropriately adjusted depending on the reductive decomposition reactivity of the negative electrode, but 0.05 to 2% by weight is appropriate.

〔カーボネート環にフッ素原子が直結したフッ素化エチレンカーボネート〕
本発明に係るカーボネート環にフッ素原子が直結したフッ素化エチレンカーボネートは、エチレンカーボネートの「カーボネート環に直接結合した水素をフッ素原子に置換した」化合物である。このようなフッ素化エチレンカーボネートとしては種々の公知のものを使用できる。たとえば、4−フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4,4,5−トリフルオロエチレンカーボネート、4,4,5,5−テトラフルオロエチレンカーボネートである。
[Fluorinated ethylene carbonate with a fluorine atom directly attached to the carbonate ring]
The fluorinated ethylene carbonate in which a fluorine atom is directly bonded to the carbonate ring according to the present invention is a compound of ethylene carbonate in which “hydrogen directly bonded to the carbonate ring is substituted with a fluorine atom”. Various known fluorinated ethylene carbonates can be used. For example, 4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4,4,5-trifluoroethylene carbonate, 4,4,5,5-tetrafluoroethylene carbonate.

これらの中でも、4−フルオロエチレンカーボネートが、上記の他のフッ素化エチレンカーボネートよりも粘度が上昇し難く且つリチウム配位力の低下が生じ難いので電解液のイオン伝導度の低下が少なく、また熱的安定性も優れ、さらに、4−フルオロエチレンカーボネートは負極での電解液分解に対する保護皮膜の形成性が高く、負極での電解液の還元反応抑制作用が優れる性質も併せ持つので、最も望ましい。これらのフッ素化エチレンカーボネートは、1種を単独で使用でき、または2種以上を併用できる。   Among these, 4-fluoroethylene carbonate is less liable to increase in viscosity than the above-mentioned other fluorinated ethylene carbonates and is less likely to cause a decrease in lithium coordinating power. 4-fluoroethylene carbonate is most preferable because 4-fluoroethylene carbonate has a high ability to form a protective film against the decomposition of the electrolytic solution at the negative electrode and has a property of suppressing the reduction reaction of the electrolytic solution at the negative electrode. These fluorinated ethylene carbonates can be used alone or in combination of two or more.

なお、フッ素化エチレンカーボネートと類似の環状カーボネートとして、トリフルオロメチルエチレンカーボネート、ジフルオロメチルエチレンカーボネート、フルオロメチルエチレンカーボネートなどの、「カーボネート環に直接結合しない水素をフッ素原子に置換した」エチレンカーボネートが例示されるが、これらの化合物は本発明の効果が十分に得られず不適当である。これらの化合物は高温高電圧での正極での安定性は高いと推測されるが、負極に形成される保護皮膜が高温で不安定化し、電解液の還元分解反応性が増加するためと推測している。   Examples of cyclic carbonates similar to fluorinated ethylene carbonate include ethylene carbonates such as trifluoromethyl ethylene carbonate, difluoromethyl ethylene carbonate, and fluoromethyl ethylene carbonate, in which hydrogen that does not directly bond to the carbonate ring is substituted with fluorine atoms. However, these compounds are inappropriate because the effects of the present invention are not sufficiently obtained. These compounds are presumed to have high stability at the positive electrode at high temperature and high voltage, but the protective film formed on the negative electrode is destabilized at high temperature and the reductive decomposition reactivity of the electrolyte is increased. ing.

〔鎖状カーボネート〕
本発明に係る鎖状カーボネートとしては、フッ素化鎖状カーボネートと非フッ素化鎖状カーボネートが例示される。本発明では、フッ素化鎖状カーボネートが含有される方が、高電圧系リチウム二次電池の高温での充放電サイクル特性が向上し、高温保存時の電解液分解ガス発生が少なくなるため望ましい。
[Chain carbonate]
Examples of the chain carbonate according to the present invention include fluorinated chain carbonate and non-fluorinated chain carbonate. In the present invention, it is desirable that the fluorinated chain carbonate is contained because the charge / discharge cycle characteristics at a high temperature of the high voltage lithium secondary battery are improved and the generation of an electrolyte decomposition gas during storage at a high temperature is reduced.

非フッ素化鎖状カーボネートとして、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、ジペンチルカーボネート、ジヘキシルカーボネート、ジオクチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルブチルカーボネート、メチルペンチルカーボネート、メチルヘキシルカーボネート、メチルオクチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、エチルペンチルカーボネート、エチルヘキシルカーボネート、エチルオクチルカーボネートなどが挙げられる。電解液のイオン伝導度や粘度が優れ電池の出力特性を向上する観点では、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネートが好ましい。   Non-fluorinated chain carbonates include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, dipentyl carbonate, dihexyl carbonate, dioctyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl butyl carbonate, methyl pentyl carbonate, methyl hexyl carbonate, Examples include methyl octyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, ethyl pentyl carbonate, ethyl hexyl carbonate, and ethyl octyl carbonate. From the viewpoint of excellent ionic conductivity and viscosity of the electrolytic solution and improving the output characteristics of the battery, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and methyl propyl carbonate are preferable.

電池の出力特性を向上し、かつ、高温高電圧での充放電サイクル特性および高温保存ガスの両方を満足する観点では、炭素数が4以下のフッ素化鎖状カーボネートと、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネートから選ばれる1種以上の鎖状カーボネートとを混合することが好ましい。この場合に鎖状カーボネート中にフッ素化鎖状カーボネートが25重量%以上さらには45重量%以上含まれることが望ましい。   From the viewpoint of improving the output characteristics of the battery and satisfying both the charge / discharge cycle characteristics at high temperature and high voltage and the high temperature storage gas, fluorinated chain carbonate having 4 or less carbon atoms, dimethyl carbonate, diethyl carbonate, It is preferable to mix one or more chain carbonates selected from methyl ethyl carbonate and methyl propyl carbonate. In this case, it is desirable that the fluorinated chain carbonate is contained in the chain carbonate in an amount of 25 wt% or more, more preferably 45 wt% or more.

〔フッ素化鎖状カーボネート〕
本発明に係るフッ素化鎖状カーボネートは、カーボネート基(−OCOO−)を有した鎖状のカーボネートの水素原子の一部またはすべてをフッ素原子で置換した構造を有するものである。フッ素化鎖状カーボネートとしては種々のものが挙げられるが、例えば下記構造式を有するものが挙げられる。

(式中、R1 、R2 はアルキル基をあらわし、少なくとも一方は水素原子の一部または全部をフッ素原子で置換したアルキル基である。)
[Fluorinated chain carbonate]
The fluorinated chain carbonate according to the present invention has a structure in which a part or all of hydrogen atoms of a chain carbonate having a carbonate group (—OCOO—) is substituted with a fluorine atom. Although various things are mentioned as a fluorinated chain carbonate, For example, what has the following structural formula is mentioned.

(Wherein R 1 and R 2 represent an alkyl group, and at least one of them is an alkyl group in which a part or all of hydrogen atoms are substituted with fluorine atoms.)

このような鎖状フッ素化カーボネートとしては、例えば、メチル−2,2,2−トリフルオロエチルカーボネート、エチル−2,2,2−トリフルオロエチルカーボネート、メチル2,2,3,3,3−ペンタフルオロプロピルカーボネート、メチル2,2,3,3−テトラフルオロプロピルカーボネート、メチル−3,3,3−トリフルオロプロピルカーボネート、メチル−2,2,3,3,4,4,4−ヘプタフルオロブチルカーボネート、2,2,2−トリフルオロエチル−2,2,3,3,3−ペンタフルオロプロピルカーボネート、ジ(2,2,2−トリフルオロエチル)カーボネート、フルオロメチルメチルカーボネート、(ジフルオロメチル)メチルカーボネート、ビス(フルオロメチル)カーボネート、(1−フルオロエチル)メチルカーボネート、(2−フルオロエチル)メチルカーボネート、エチルフルオロメチルカーボネート、(1−フルオロエチル)フルオロメチルカーボネート、(2−フルオロエチル)フルオロメチルカーボネート、(1,2−ジフルオロエチル)メチルカーボネート、(1,1−ジフルオロエチル)メチルカーボネート、(1−フルオロエチル)エチルカーボネート、(2−フルオロエチル)エチルカーボネート、エチル(1,1−ジフルオロエチル)カーボネート、エチル(1,2−ジフルオロエチル)カーボネート、ビス(1−フルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、(1−フルオロエチル)(2−フルオロエチル)カーボネート、などが挙げられる。イオン伝導度と粘度の観点からは炭素数が5以下のフッ素化鎖状カーボネートが望ましい。さらに、高温高電圧での正極での安定性を考慮すると、メチル−2,2,2−トリフルオロエチルカーボネート、エチル−2,2,2−トリフルオロエチルカーボネート、ジ−2,2,2−トリフルオロエチルカーボネートなどの2,2,2−トリフルオロエチル基を有するカーボネートが特に望ましい。上記の鎖状フッ素化カーボネートは、1種を単独で使用でき、または2種以上を併用できる。   Examples of such chain fluorinated carbonates include methyl-2,2,2-trifluoroethyl carbonate, ethyl-2,2,2-trifluoroethyl carbonate, methyl 2,2,3,3,3- Pentafluoropropyl carbonate, methyl 2,2,3,3-tetrafluoropropyl carbonate, methyl-3,3,3-trifluoropropyl carbonate, methyl-2,2,3,3,4,4,4-heptafluoro Butyl carbonate, 2,2,2-trifluoroethyl-2,2,3,3,3-pentafluoropropyl carbonate, di (2,2,2-trifluoroethyl) carbonate, fluoromethyl methyl carbonate, (difluoromethyl ) Methyl carbonate, bis (fluoromethyl) carbonate, (1-fluoroethyl) methyl carbonate, (2-fluoro Ethyl) methyl carbonate, ethyl fluoromethyl carbonate, (1-fluoroethyl) fluoromethyl carbonate, (2-fluoroethyl) fluoromethyl carbonate, (1,2-difluoroethyl) methyl carbonate, (1,1-difluoroethyl) methyl Carbonate, (1-fluoroethyl) ethyl carbonate, (2-fluoroethyl) ethyl carbonate, ethyl (1,1-difluoroethyl) carbonate, ethyl (1,2-difluoroethyl) carbonate, bis (1-fluoroethyl) carbonate , Bis (2-fluoroethyl) carbonate, (1-fluoroethyl) (2-fluoroethyl) carbonate, and the like. From the viewpoint of ionic conductivity and viscosity, a fluorinated chain carbonate having 5 or less carbon atoms is desirable. Further, considering the stability at the positive electrode at high temperature and high voltage, methyl-2,2,2-trifluoroethyl carbonate, ethyl-2,2,2-trifluoroethyl carbonate, di-2,2,2- A carbonate having a 2,2,2-trifluoroethyl group such as trifluoroethyl carbonate is particularly desirable. The chain fluorinated carbonates can be used alone or in combination of two or more.

鎖状カーボネート中のフッ素化鎖状カーボネートは、その含有比率が高いほど、高電圧系リチウム二次電池での高温での充放電サイクル特性が向上し、高温高電圧での電解液分解ガス生成量が低下する。この観点では、鎖状カーボネート中のフッ素化鎖状カーボネートの比率は、25重量%以上さらには45重量%以上が望ましく、最も望ましくは75重量%以上である。   The higher the content ratio of the fluorinated chain carbonate in the chain carbonate, the better the charge / discharge cycle characteristics at high temperature in the high voltage lithium secondary battery, and the amount of electrolyte decomposition gas generated at high temperature and high voltage. Decreases. From this viewpoint, the ratio of the fluorinated chain carbonate in the chain carbonate is preferably 25% by weight or more, more preferably 45% by weight or more, and most preferably 75% by weight or more.

一方で、鎖状カーボネート中のフッ素化鎖状カーボネートの比率が多いほど、電池の出力特性に関わる電解液のイオン伝導度が低下する。高温高電圧での充放電サイクル特性及び高温保存時のガス生成の抑制に加えて、電池の出力特性を両立させる観点では、鎖状カーボネート中のフッ素化鎖状カーボネートの比率は25〜85重量%とするのが好ましく、さらには45〜65重量%が好ましい。但し、電池の出力特性が特に強く求められる場合は、鎖状カーボネート中のフッ素化鎖状カーボネートの比率は25重量%以下としても良い。この場合でも、比較的に良好な充放電サイクル特性と、高温保存時のガス抑制作用を示すが、不十分になる虞がある。   On the other hand, the higher the ratio of fluorinated chain carbonate in the chain carbonate, the lower the ionic conductivity of the electrolyte solution related to the output characteristics of the battery. In addition to suppressing charge / discharge cycle characteristics at high temperature and high voltage and gas generation during high temperature storage, the ratio of the fluorinated chain carbonate in the chain carbonate is 25 to 85% by weight in terms of achieving both battery output characteristics. It is preferable to be 45 to 65% by weight. However, when the output characteristics of the battery are particularly demanded, the ratio of the fluorinated chain carbonate in the chain carbonate may be 25% by weight or less. Even in this case, relatively good charge / discharge cycle characteristics and gas suppression action during high-temperature storage are shown, but this may be insufficient.

〔非水溶媒の組成〕
本発明に係る非水溶媒は、前記環状カーボネートおよび前記鎖状カーボネートを主たる成分として含有し、環状カーボネートの60重量%以上がカーボネート環にフッ素原子が直結したフッ素化エチレンカーボネートであり、環状カーボネートと鎖状カーボネートの重量比率が3:97〜35:65である。ここで、主たる成分という意味は、非水溶媒中の90重量%以上、望ましくは95重量%以上が環状カーボネートおよび鎖状カーボネートからなるという意味である。
[Composition of non-aqueous solvent]
The non-aqueous solvent according to the present invention contains the cyclic carbonate and the chain carbonate as main components, and 60% by weight or more of the cyclic carbonate is fluorinated ethylene carbonate in which a fluorine atom is directly bonded to the carbonate ring, The weight ratio of the chain carbonate is 3:97 to 35:65. Here, the meaning of the main component means that 90% by weight or more, preferably 95% by weight or more in the non-aqueous solvent is composed of a cyclic carbonate and a chain carbonate.

前述したように、環状カーボネート中のフッ素化エチレンカーボネートの含有量の比率、および鎖状カーボネート中のフッ素化鎖状カーボネートの含有量の比率を高めるほど、高電圧系リチウム二次電池での高温での充放電サイクル特性が向上する。   As described above, the higher the ratio of the content of fluorinated ethylene carbonate in the cyclic carbonate and the ratio of the content of fluorinated chain carbonate in the chain carbonate, the higher the temperature in the high voltage lithium secondary battery. The charge / discharge cycle characteristics of the are improved.

しかしながら、フッ素化環状カーボネートは、高温高電圧の正極での安定性が高いのに非水溶媒中のフッ素化環状カーボネートの含有量を単に増加させるだけでは、かえってガス発生量が増えることがある従来、満充電状態の正極電位が金属リチウムの電位を基準として4.3Vより小さいリチウム二次電池では、環状の炭酸エステルの含有量が増えるほど高温保存時のガス生成量が減少する傾向が知られているが、当該正極電位が4.3V以上のリチウム二次電池については明らかにされていなかった。例えば、特許文献2に示されたフッ素化環状カーボネートを含有する電解液の組成(フッ素化エチレンカーボネート/鎖状カーボネート=5/5(体積比))では、高温保存時のガス生成量が大幅に増加した。   However, although the fluorinated cyclic carbonate is highly stable at a high temperature and high voltage positive electrode, simply increasing the content of the fluorinated cyclic carbonate in the non-aqueous solvent may increase the amount of gas generated. In a lithium secondary battery in which the positive electrode potential in a fully charged state is smaller than 4.3 V based on the potential of metallic lithium, it is known that the amount of gas generated during high-temperature storage decreases as the content of cyclic carbonate increases. However, the lithium secondary battery having a positive electrode potential of 4.3 V or higher has not been clarified. For example, the composition of the electrolytic solution containing a fluorinated cyclic carbonate disclosed in Patent Document 2 (fluorinated ethylene carbonate / chain carbonate = 5/5 (volume ratio)) greatly increases the amount of gas generated during high-temperature storage. Increased.

上記の問題点を解決するために鋭意検討した結果、本発明の非水電解液の非水溶媒の構成は、環状カーボネート中のカーボネート環にフッ素原子が直結したフッ素化エチレンカーボネートの比率を60重量%以上にするとともに、環状カーボネートと鎖状カーボネートの重量比率を3:97〜35:65であり、好ましくは5:95〜25:75に制限する。このような構成であれば、満充電状態の正極電位が金属リチウムの電位を基準として4.3V以上の電気化学素子に用いたときに、高温保存時のガス生成量が大幅に減少し、電圧低下度が抑制され、かつ、充放電サイクル特性も良好になる。一方、全非水溶媒中の環状カーボネートの重量比率が35重量%を超える場合は、環状カーボネート中のカーボネート環にフッ素原子が直結したフッ素化エチレンカーボネートの比率を60重量%以上にしても、急激に高温保存ガスの生成量が増加するため望ましくない。   As a result of intensive studies to solve the above problems, the composition of the nonaqueous solvent of the nonaqueous electrolytic solution of the present invention is that the ratio of fluorinated ethylene carbonate in which fluorine atoms are directly bonded to the carbonate ring in the cyclic carbonate is 60 wt. % And the weight ratio of cyclic carbonate to chain carbonate is 3:97 to 35:65, preferably 5:95 to 25:75. With such a configuration, the amount of gas generated during high-temperature storage is greatly reduced when the positive electrode potential in a fully charged state is used for an electrochemical element of 4.3 V or higher with respect to the potential of metallic lithium. The degree of decrease is suppressed, and the charge / discharge cycle characteristics are also improved. On the other hand, when the weight ratio of the cyclic carbonate in the total non-aqueous solvent exceeds 35% by weight, even if the ratio of the fluorinated ethylene carbonate in which the fluorine atom is directly bonded to the carbonate ring in the cyclic carbonate is 60% by weight or more, In addition, the production amount of the high-temperature storage gas increases, which is undesirable.

〔その他の化合物〕
本発明に係る非水溶媒は、前述の環状カーボネートおよび前述の鎖状カーボネートを主たる成分として含有し、本発明の目的を損なわない範囲で、その残部にその他の化合物を含んでいても良い。
高電圧系リチウム二次電池において、その他の化合物としては、1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロパ−1−エンスルトン、γ−ブチロラクトン、リン酸トリメチル、リン酸トリス(2,2,2−トリフルオロエチル)、リン酸トリス(トリメチルシリル)、硫酸エチレン、硫酸プロピレン、硫酸ブテン、硫酸ペンテン、フルオロベンゼン、ジ(2,2,2−トリフルオロエトキシ)エタンなどが例示される。これらのうち、特に、1,3−プロパ−1−エンスルトンとリン酸トリス(トリメチルシリル)とが好ましい。
[Other compounds]
The non-aqueous solvent according to the present invention contains the aforementioned cyclic carbonate and the aforementioned chain carbonate as main components, and may contain other compounds in the balance as long as the object of the present invention is not impaired.
In the high voltage lithium secondary battery, other compounds include 1,3-propane sultone, 1,4-butane sultone, 1,3-prop-1-ene sultone, γ-butyrolactone, trimethyl phosphate, tris phosphate ( 2,2,2-trifluoroethyl), tris (trimethylsilyl) phosphate, ethylene sulfate, propylene sulfate, butene sulfate, pentene sulfate, fluorobenzene, di (2,2,2-trifluoroethoxy) ethane and the like. The Of these, 1,3-prop-1-ene sultone and tris (trimethylsilyl) phosphate are particularly preferable.

〔非水電解液〕
本発明の非水電解液は、前記の非水溶媒と電解質溶質を含む。リチウム電池用の電解質溶質としてはリチウム塩が挙げられ、この分野で常用されるものを使用できる。たとえば、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1〜8の整数)、LiN(SO(2k+1)(k=1〜8の整数)、LiPF(C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)、LiBF(C(2k+1)(4−n)(n=1〜3、k=1〜8の整数)などが挙げられる。また、次の一般式で示されるリチウム塩も使用することができる。LiC(SO11)(SO12)(SO13)、LiN(SOOR14)(SOOR15)、LiN(SO16)(SOOR17)、LiN(SO16)(SOF)、LiN(SOF)(ここで、R11〜R17は、互いに同一であっても異なっていてもよく、炭素数1〜8のパーフルオロアルキル基である)。また、ホウ酸エステル系リチウム塩もしくはリン酸エステル系リチウム塩として、ビス(オキサラト)ホウ酸リチウム、ジフルオロ(オキサラト)ホウ酸リチウム、ビス(オキサラト)フルオロリン酸リチウム、トリフルオロ(オキサラト)リン酸リチウムが挙げられる。リチウム塩は1種を単独で使用できまたは2種以上を併用できる。
[Non-aqueous electrolyte]
The nonaqueous electrolytic solution of the present invention contains the nonaqueous solvent and an electrolyte solute. Examples of electrolyte solutes for lithium batteries include lithium salts, and those commonly used in this field can be used. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiN (SO 2 C k F (2k + 1) ) 2 ( k = 1 to 8 integer), LiPF n (C k F (2k + 1)) (6-n) (n = 1~5, k = 1~8 integer), LiBF n (C k F (2k + 1)) (4-n) (n = 1 to 3, k = 1 to 8) and the like. Moreover, the lithium salt shown by the following general formula can also be used. LiC (SO 2 R 11 ) (SO 2 R 12 ) (SO 2 R 13 ), LiN (SO 2 OR 14 ) (SO 2 OR 15 ), LiN (SO 2 R 16 ) (SO 2 OR 17 ), LiN ( SO 2 R 16 ) (SO 2 F), LiN (SO 2 F) 2 (wherein R 11 to R 17 may be the same as or different from each other, and are perfluoroalkyl having 1 to 8 carbon atoms) Group). Also, as borate ester lithium salt or phosphate ester lithium salt, bis (oxalato) lithium borate, difluoro (oxalato) lithium borate, bis (oxalato) fluorophosphate, trifluoro (oxalato) lithium phosphate Is mentioned. A lithium salt can be used individually by 1 type, or can use 2 or more types together.

これらのリチウム塩の中でも、非水電解液のイオン伝導性の観点から、LiPF、LiPF(C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)、LiN(SOCF、LiN(SOが好ましい。本発明の非水電解液に使用される溶媒はフッ素で置換されているために、イオン伝導度に関わるリチウムイオンへの配位力が弱く、リチウム塩の解離性が悪くなる。このために、リチウム塩は出来る限り解離性の良い塩である必要がある。よって、LiPF、LiPF(C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)が最も望ましい。
非水電解液に含まれるリチウム塩の量は、通常この分野で使用される範囲であれば良く、非水電解液中に1〜50重量%、好ましくは5〜25重量%の濃度で非水電解液中に溶解される。
Among these lithium salts, LiPF 6 , LiPF n (C k F (2k + 1) ) (6-n) (n = 1 to 5, k = 1 to 8 ) from the viewpoint of ionic conductivity of the nonaqueous electrolytic solution. Integer), LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2 are preferable. Since the solvent used in the nonaqueous electrolytic solution of the present invention is substituted with fluorine, the coordination power to lithium ions related to ionic conductivity is weak, and the dissociation property of the lithium salt is deteriorated. For this reason, the lithium salt needs to be a salt having good dissociation as much as possible. Thus, LiPF 6, LiPF n (C k F (2k + 1)) (6-n) (n = 1~5, k = 1~8 integer) is most desirable.
The amount of the lithium salt contained in the non-aqueous electrolyte may be within the range normally used in this field, and the non-aqueous electrolyte is non-aqueous at a concentration of 1 to 50% by weight, preferably 5 to 25% by weight. Dissolved in the electrolyte.

〔正極〕
本発明に係るリチウム二次電池の正極は、正極活物質層と正極集電体とを含む。
正極活物質としては、リチウムあるいはアニオンを電気化学的に挿入および脱離できる物質であり、満充電状態の正極電位が金属リチウムの電位を基準として4.35V以上になる物質であれば特に制限なく使用できる。リチウムを電気化学的に挿入および脱離できる物質としては、LiCoOなどのリチウム含有遷移金属酸化物、MnOなどのリチウムを含有しない金属酸化物などが挙げられる。アニオンを電気化学的に挿入および脱離できる物質としては、アニオンを電気化学的にドープおよび脱ドープできる炭素材料、導電性高分子などが挙げられる。正極活物質は1種を単独で使用できまたは2種以上を併用できる。
正極集電体としても公知のものを使用でき、たとえば、Al、Ti、Zr、Hf、Nb、Ta、これらを含む合金などの、非水電解液中での陽極酸化によって表面に不動態被膜を形成する金属などが挙げられる。
[Positive electrode]
The positive electrode of the lithium secondary battery according to the present invention includes a positive electrode active material layer and a positive electrode current collector.
The positive electrode active material is a material that can electrochemically insert and desorb lithium or anions, and is not particularly limited as long as the positive electrode potential in a fully charged state is 4.35 V or more with respect to the potential of metallic lithium. Can be used. Examples of the substance capable of electrochemically inserting and removing lithium include lithium-containing transition metal oxides such as LiCoO 2 and metal oxides not containing lithium such as MnO 2 . Examples of substances that can electrochemically insert and desorb anions include carbon materials that can electrochemically dope and dedoped anions, and conductive polymers. A positive electrode active material can be used individually by 1 type, or can use 2 or more types together.
As the positive electrode current collector, known ones can be used. For example, a passive film is formed on the surface by anodic oxidation in a non-aqueous electrolyte such as Al, Ti, Zr, Hf, Nb, Ta, and alloys containing these. Examples thereof include metals to be formed.

本発明の非水電解液を用いたリチウム二次電池においては、正極単位体積中のリチウムの貯蔵密度を高めるために、満充電状態の正極の電位が金属リチウムの電位を基準として4.35V以上で使用するのに好ましい。このような正極材料としては、従来のLiCoOに加えて、LiMnの一般式で示されるようなスピネル型Mn酸化物に他の遷移金属を固溶させた酸化物や、LiNiCoMn(1−x−y)の一般式で示されるような、層状NiもしくはCo酸化物に一部Mnを固溶させて構造を安定化させた酸化物などが例示される。 In the lithium secondary battery using the non-aqueous electrolyte of the present invention, in order to increase the storage density of lithium in the positive electrode unit volume, the potential of the fully charged positive electrode is 4.35 V or more with respect to the potential of metallic lithium. Preferred for use in. As such a positive electrode material, in addition to the conventional LiCoO 2 , an oxide obtained by dissolving another transition metal in a spinel type Mn oxide as represented by the general formula of LiMn x M y O 2 , LiNi Examples thereof include oxides in which Mn is partially dissolved in layered Ni or Co oxide to stabilize the structure, as represented by the general formula of x Co y Mn (1-xy) O 2. .

また、非水系の電気二重層キャパシタは、リチウム二次電池と類似の構成をしており、その正極は活物質として活性炭などの高表面積の導電物質が使用されている。正極での電解液の酸化分解安定性の観点から正極電位は金属リチウム基準で4.3Vより小さいのが普通であるが、近年では、エネルギー密度を向上するために4.35V以上に充電するものも例示されているが、正極の電位が4.35Vを超えると、特に高温での正極での電解液の分解反応性が増加するため、従来の非水電解液を用いると、高温での充放電サイクル特性が低下し、高温保存時のガス生成量が増加する。
本発明の非水電解液は、高温高電圧の正極上の反応性が低いため、高温高電圧での充放電サイクル特性が向上し、さらに、高温保存時のガス生成量を減ずることができる。本発明の非水電解液は、正極の電位が高いほど、従来の非水電解液に対する優位性が大きくなり、正極電位が4.35V以上、さらには4.40V以上、さらには4.45V以上でより有効性が高まる。
In addition, the non-aqueous electric double layer capacitor has a configuration similar to that of a lithium secondary battery, and the positive electrode uses a high surface area conductive material such as activated carbon as an active material. From the viewpoint of the oxidative decomposition stability of the electrolyte solution at the positive electrode, the positive electrode potential is usually less than 4.3 V on the basis of metallic lithium, but in recent years, it is charged to 4.35 V or more in order to improve the energy density. However, when the potential of the positive electrode exceeds 4.35 V, the decomposition reactivity of the electrolytic solution at the positive electrode increases particularly at high temperatures. Therefore, when a conventional nonaqueous electrolytic solution is used, charging at a high temperature is possible. Discharge cycle characteristics deteriorate, and the amount of gas generated during high-temperature storage increases.
Since the non-aqueous electrolyte of the present invention has low reactivity on the positive electrode of high temperature and high voltage, the charge / discharge cycle characteristics at high temperature and high voltage are improved, and further, the amount of gas generated during high temperature storage can be reduced. In the nonaqueous electrolyte of the present invention, the higher the positive electrode potential, the greater the advantage over the conventional nonaqueous electrolyte, and the positive electrode potential is 4.35 V or more, further 4.40 V or more, further 4.45 V or more. Increases effectiveness.

〔負極〕
本発明に係るリチウム二次電池の負極は、負極活物質層および負極集電体を含む。負極活物質層は、金属リチウム、リチウムイオンの吸蔵・放出が可能な炭素材料、Al、Si、Sn、Sb又はGeの単体、化合物、もしくは、いずれか1種を含有しリチウムと合金化することが可能な合金類を負極活物質として含有する。
[Negative electrode]
The negative electrode of the lithium secondary battery according to the present invention includes a negative electrode active material layer and a negative electrode current collector. The negative electrode active material layer contains metallic lithium, a carbon material capable of occluding and releasing lithium ions, and a simple substance, compound, or any one of Al, Si, Sn, Sb, or Ge, and alloyed with lithium. Alloys that can be used as a negative electrode active material.

負極活物質層は、たとえば、負極活物質粒子と導電剤等をポリフッ化ビニリデンなどのバインダーで成型しシート状、フィルム状にしたもの、負極活物質粒子を金属シート中あるいは表面に包埋してシート状、フィルム状にしたもの、負極活物質そのものを薄膜状にしたものなどが挙げられる。
本発明の非水電解液は、高温高電圧の正極での安定性が高いだけでなく、負極に対する還元安定性も高い特徴を有する。これは、フッ素で置換されたエチレンカーボネートにより負極表面に安定な保護皮膜が形成されるためと推測している。なお、このような保護皮膜は、「カーボネート環にフッ素原子が直結した」エチレンカーボネートのみで形成されると考えられる。「カーボネート環に直接結合しない水素をフッ素原子で置換した」エチレンカーボネートでは形成が不十分でかえって保護皮膜を不安定化する虞があるので不適当である。
The negative electrode active material layer is formed, for example, by forming negative electrode active material particles and a conductive agent with a binder such as polyvinylidene fluoride into a sheet or film, and embedding the negative electrode active material particles in a metal sheet or on the surface. Examples include a sheet form, a film form, and a negative electrode active material itself made into a thin film form.
The non-aqueous electrolyte of the present invention has not only high stability at a high temperature and high voltage positive electrode but also high reduction stability with respect to the negative electrode. This is presumed to be because a stable protective film is formed on the negative electrode surface by ethylene carbonate substituted with fluorine. In addition, it is thought that such a protective film is formed only with ethylene carbonate “a fluorine atom is directly bonded to a carbonate ring”. “Ethylene carbonate in which hydrogen that is not directly bonded to the carbonate ring is substituted with a fluorine atom” is not suitable because ethylene carbonate is insufficiently formed and may destabilize the protective film.

負極活物質は、前述のいずれでも良いが、電池の高エネルギー密度化が更に期待できるAl、Si、Sn、Sb又はGeの単体、それらの酸化物、硫化物、炭化物などの化合物、もしくは、いずれか1種を含有しリチウムと合金化することが可能な合金類から選ばれる少なくとも1種を含む負極活物質を含有してもよく、含有する場合はAl、Sn、Si単体もしくはその合金が特に好ましい。これらは従来の主要な負極活物質である炭素材料に比べて、単位体積当りのリチウム吸蔵量を格段に多くできるので、電池中の負極の占める体積を大幅に減ずる事ができ、電池のエネルギー密度を高めることができる。   The negative electrode active material may be any of the above, but Al, Si, Sn, Sb or Ge alone, compounds such as oxides, sulfides, carbides, etc., which can be expected to further increase the energy density of the battery, or any Or a negative electrode active material containing at least one selected from alloys that can be alloyed with lithium, and if included, Al, Sn, Si alone or an alloy thereof is particularly preferable. These can significantly increase the amount of lithium occlusion per unit volume compared to conventional carbon materials, which are the main negative electrode active materials, so the volume of the negative electrode in the battery can be greatly reduced, and the energy density of the battery Can be increased.

電気二重層キャパシタは、リチウム二次電池と類似の構成をしており、その負極は活物質として活性炭などの高表面積の導電物質が使用されている。   The electric double layer capacitor has a configuration similar to that of a lithium secondary battery, and the negative electrode uses a high surface area conductive material such as activated carbon as an active material.

〔セパレータ〕
本発明に係るリチウム二次電池のセパレータは、正極と負極とを電気的に絶縁し、かつリチウムイオンを透過する膜であって、多孔性膜、不織布膜、高分子電解質などが使用できる。多孔性膜としては微多孔性高分子フィルムが好ましく、その材質はポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステルなどである。多孔性ポリオレフィンフィルムが特に好ましく、その具体例としては、多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルムなどが挙げられる。多孔性ポリオレフィンフィルム上には、PVDFなどの熱安定性や化学的安定性に優れる他の樹脂がコーティングされていてもよい。高分子電解質としては、リチウム塩を溶解した高分子、非水電解液で膨潤させた高分子などが挙げられる。
[Separator]
The separator of the lithium secondary battery according to the present invention is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and a porous film, a nonwoven fabric film, a polymer electrolyte, or the like can be used. The porous film is preferably a microporous polymer film, and the material thereof is polyolefin, polyimide, polyvinylidene fluoride, polyester or the like. A porous polyolefin film is particularly preferable, and specific examples thereof include a porous polyethylene film, a porous polypropylene film, and a multilayer film of a porous polyethylene film and polypropylene. The porous polyolefin film may be coated with another resin having excellent thermal stability and chemical stability such as PVDF. Examples of the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swollen with a nonaqueous electrolytic solution, and the like.

〔リチウム二次電池〕
本発明のリチウム二次電池は、種々公知の構成を採ることができ、通常は、前記の非水電解液、負極、正極及びセパレータにより構成され、これらが金属缶もしくはアルミニウムをラミネートした樹脂袋などに密封された構造である。また、非水電解液の代りに、非水電解液を可塑剤に用いたゲル状の高分子電解質も用いることができ、本発明の非水電解液は高分子電解質の可塑剤としても用いることができる。
このような構成にすることで、本発明のリチウム二次電池は、充放電サイクル特性が向上し、高温保存時の電圧低下度やガスの発生による膨れを抑制できるので、リチウム二次電池の高容量化に対応できる。満充電状態の電位がリチウム標準酸化還元電位で4.35V以上である正極を用いても、非水電解液と正極との反応が少ないので、高温保存ガスの発生が抑えられ、高温での充放電サイクル特性に優れ、高容量のリチウム電池が得られる。
[Lithium secondary battery]
The lithium secondary battery of the present invention can take various known configurations, and is usually composed of the non-aqueous electrolyte, the negative electrode, the positive electrode, and the separator, which can be a metal can or a resin bag laminated with aluminum. It is a sealed structure. In addition, a gel-like polymer electrolyte using a non-aqueous electrolyte as a plasticizer can be used instead of the non-aqueous electrolyte, and the non-aqueous electrolyte of the present invention can also be used as a plasticizer for a polymer electrolyte. Can do.
With such a configuration, the lithium secondary battery of the present invention has improved charge / discharge cycle characteristics and can suppress the voltage drop during high-temperature storage and swelling due to gas generation. Capable of increasing capacity. Even when a positive electrode with a fully charged potential of 4.35 V or higher in terms of the standard oxidation-reduction potential is used, the reaction between the non-aqueous electrolyte and the positive electrode is small, so that the generation of high-temperature storage gas can be suppressed, and A lithium battery having excellent discharge cycle characteristics and a high capacity can be obtained.

本発明のリチウム二次電池は、任意の形状にすることができ、たとえば、円筒型、コイン型、角型、フィルム型などにすることができる。しかしながら、電池の基本構造は電池の形状に関係なく同じであり、目的に応じて設計変更を施すことができる。たとえば、本発明のリチウム二次電池が円筒型の場合は、シート状の負極とシート状の正極とを、セパレータを介して巻回した巻回体に前述の非水電解液を含浸させ、この巻回体をその上下に絶縁板が載置されるように電池缶に収納した構成になっている。またコイン型の場合には、円盤状負極、セパレータおよび円盤状正極の積層体に、非水電解液が含浸され、必要に応じて、スペーサー板が挿入された状態で、コイン型電池缶に収納された構成になる。   The lithium secondary battery of the present invention can have any shape, for example, a cylindrical shape, a coin shape, a square shape, a film shape, or the like. However, the basic structure of the battery is the same regardless of the shape of the battery, and the design can be changed according to the purpose. For example, when the lithium secondary battery of the present invention is cylindrical, a wound body in which a sheet-like negative electrode and a sheet-like positive electrode are wound through a separator is impregnated with the non-aqueous electrolyte described above, The wound body is housed in a battery can so that the insulating plates are placed above and below the wound body. In the case of a coin type, a laminate of a disc-shaped negative electrode, a separator and a disc-shaped positive electrode is impregnated with a non-aqueous electrolyte and stored in a coin-type battery can with a spacer plate inserted if necessary. The configuration is

本発明のリチウム二次電池は、従来のリチウム二次電池と同様の用途に使用できる。たとえば、各種の民生用電子機器類、その中でも特に、携帯電話、モバイル、ラップトップ式パーソナルコンピュータ、カメラ、携帯用ビデオレコーダ、携帯用CDプレーヤ、携帯用MDプレーヤ、電動工具、電気自動車の電源として好適に使用できる。   The lithium secondary battery of this invention can be used for the same use as the conventional lithium secondary battery. For example, as a power source for various consumer electronic devices, in particular, cellular phones, mobiles, laptop personal computers, cameras, portable video recorders, portable CD players, portable MD players, electric tools, and electric vehicles It can be used suitably.

以下、実施例および比較例を示して本発明を具体的に説明するが、本発明はこの実施例によって限定されるものではない。
〔非水電解液の調製〕
炭酸エステルを混合して非水溶媒を作製し、これLiPF(電解質溶質)を混合し、電解液中のリチウム塩の濃度を1mol/lとなるように調製した。使用した炭酸エステルは以下の通りであり、その混合割合(非水溶媒全量に対する重量比)を表1に示す。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited by this Example.
(Preparation of non-aqueous electrolyte)
Carbonate ester was mixed to prepare a non-aqueous solvent, and this was mixed with LiPF 6 (electrolyte solute) to prepare a lithium salt concentration in the electrolytic solution of 1 mol / l. The carbonic acid esters used are as follows, and the mixing ratio (weight ratio with respect to the total amount of the nonaqueous solvent) is shown in Table 1.

・4−フルオロエチレンカーボネート(略号FEC/カーボネート環にフッ素原子が直結したフッ素化エチレンカーボネート)
・4,5−ジフルオロエチレンカーボネート(略号DFEC/カーボネート環にフッ素原子が直結したフッ素化エチレンカーボネート)
・トリフルオロメチルエチレンカーボネート(略号TFPC/カーボネート環に直接結合しない水素をフッ素原子に置換したエチレンカーボネート)
・エチレンカーボネート(略号EC/非フッ素化環状カーボネート)
・プロピレンカーボネート(略号PC/非フッ素化環状カーボネート)
・ジエチルカーボネート(略号DEC/非フッ素化鎖状カーボネート)
・エチルメチルカーボネート(略号EMC/非フッ素化鎖状カーボネート)
・ジメチルカーボネート(略号DMC/フッ素化鎖状カーボネート)
・メチル−2,2,2−トリフルオロエチルカーボネート(略号MFEC/フッ素化鎖状の炭酸エステル)
・ 4-Fluoroethylene carbonate (abbreviation: FEC / fluorinated ethylene carbonate with a fluorine atom directly attached to the carbonate ring)
・ 4,5-difluoroethylene carbonate (abbreviation DFEC / fluorinated ethylene carbonate with a fluorine atom directly attached to the carbonate ring)
・ Trifluoromethylethylene carbonate (abbreviation: TFPC / ethylene carbonate in which hydrogen not directly bonded to carbonate ring is substituted with fluorine atom)
・ Ethylene carbonate (abbreviated EC / non-fluorinated cyclic carbonate)
・ Propylene carbonate (abbreviation PC / non-fluorinated cyclic carbonate)
・ Diethyl carbonate (abbreviated DEC / non-fluorinated chain carbonate)
・ Ethylmethyl carbonate (abbreviated as EMC / non-fluorinated chain carbonate)
・ Dimethyl carbonate (abbreviation DMC / fluorinated chain carbonate)
・ Methyl-2,2,2-trifluoroethyl carbonate (abbreviation: MFEC / fluorinated chain carbonate)

〔試験電池の作製〕
<負極>
黒鉛負極シート、リチウム負極シート及びアルミニウム負極シートを準備した。
(1)黒鉛負極シート
人造黒鉛(TIMCAL社製 SFG6)20重量部、天然黒鉛系黒鉛(三井鉱山(株)製 GDR)80重量部にカルボキシメチルセルロース1重量部、SBRラテックス2重量部を水溶媒でペースト状とし混錬して負極合剤スラリーを調製した。次に、この負極合剤スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して黒鉛負極シートを得た。
(2)リチウム負極シート
厚さ20μmの金属リチウム箔を負極として用いた。
(3)アルミニウム負極シート
厚さ15μmのアルミニウム箔を負極として用いた。
[Production of test battery]
<Negative electrode>
A graphite negative electrode sheet, a lithium negative electrode sheet, and an aluminum negative electrode sheet were prepared.
(1) Graphite negative electrode sheet 20 parts by weight of artificial graphite (manufactured by TIMCAL, SFG6), 80 parts by weight of natural graphite-based graphite (GDR, manufactured by Mitsui Mining Co., Ltd.), 1 part by weight of carboxymethyl cellulose, and 2 parts by weight of SBR latex in an aqueous solvent A paste mixture was kneaded to prepare a negative electrode mixture slurry. Next, this negative electrode mixture slurry was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 μm, dried, and then compressed by a roll press to obtain a graphite negative electrode sheet.
(2) Lithium negative electrode sheet A metal lithium foil having a thickness of 20 μm was used as the negative electrode.
(3) Aluminum negative electrode sheet An aluminum foil having a thickness of 15 μm was used as the negative electrode.

<正極>
LiCoO(商品名:HLC−22、本荘FMCエナジーシステムズ(株)製)82部、黒鉛(導電剤)7部、アセチレンブラック(導電剤)3部およびポリフッ化ビニリデン(結着剤)8部を混合し、N−メチルピロリドン80部に分散させ、LiCoO合剤スラリーを調製した。このLiCoO合剤スラリーを厚さ20μmのアルミ箔に塗布乾燥しロールプレスし、正極シートを得た。
<Positive electrode>
LiCoO 2 (trade name: HLC-22, manufactured by Honjo FMC Energy Systems Co., Ltd.) 82 parts, graphite (conductive agent) 7 parts, acetylene black (conductive agent) 3 parts, and polyvinylidene fluoride (binder) 8 parts The mixture was mixed and dispersed in 80 parts of N-methylpyrrolidone to prepare a LiCoO 2 mixture slurry. This LiCoO 2 mixture slurry was applied to an aluminum foil having a thickness of 20 μm, dried and roll-pressed to obtain a positive electrode sheet.

<コイン型電池の作製>
前記正極シートを直径13mmに打ち抜いてコイン型正極とした。また前記黒鉛負極シート及び前記リチウム負極シートを直径14mmにうちぬいてコイン型負極とした。ステンレス製の2032サイズ電池缶の負極缶内に、上記コイン型負極、厚さ25μmで直径16mmの微多孔性ポリプロピレンフィルム(三井化学(株)製)からなるセパレータ、上記コイン型正極の順序で積層した。これに非水電解液20μl注入してセパレータに吸収させた後に、その積層体の上にアルミニウム製の板、およびバネを重ねた。最後に、ポリプロピレン製のガスケットを介して電池の正極缶を被せ、缶蓋をかしめることによって電池内の気密性を保持し、直径20mmで高さ3.2mmのコイン型電池を得た。このコイン型電池を0.5mAの電流で4.2Vから2.85Vの充放電を行った後に、3.8Vに充電し各種評価に備えた。なお、4.2Vから2.85Vに放電した放電容量は約4mAhであった。
<Production of coin-type battery>
The positive electrode sheet was punched into a diameter of 13 mm to obtain a coin-type positive electrode. The graphite negative electrode sheet and the lithium negative electrode sheet were wound to a diameter of 14 mm to form a coin-type negative electrode. In the negative electrode can of a stainless steel 2032 size battery can, the above-mentioned coin-type negative electrode, a separator made of a microporous polypropylene film (made by Mitsui Chemicals) having a thickness of 25 μm and a diameter of 16 mm, and the coin-type positive electrode are laminated in this order. did. After injecting 20 μl of the non-aqueous electrolyte into the separator and absorbing the separator, an aluminum plate and a spring were stacked on the laminate. Finally, the positive electrode can of the battery was covered with a gasket made of polypropylene, and the can lid was caulked to maintain airtightness in the battery, thereby obtaining a coin-type battery having a diameter of 20 mm and a height of 3.2 mm. The coin-type battery was charged and discharged from 4.2 V to 2.85 V at a current of 0.5 mA, and then charged to 3.8 V to prepare for various evaluations. The discharge capacity discharged from 4.2 V to 2.85 V was about 4 mAh.

<ラミネート型電池の作製>
前記アルミニウム負極シート及び前記正極シートを適宜切り出し、それぞれ負極及び正極とした。この負極及び正極を幅40mmで長さ60mmの微多孔性ポリプロピレンフィルム(三井化学(株)製)からなるセパレータを介して積層して電極群を作製した。この電極群を、アルミニウムと樹脂の多層フィルムで作製した筒状袋に、負極および正極の各リードが筒状袋の片方の開放部から引き出されるように収容し、リードが引き出された側を熱融着して閉じた。この状態で真空乾燥した後に、引き続いて非水電解液0.4mlを電極群に注入した後に、もう一方の開放部を熱融着して密封し、ラミネート型電池を作製した。このラミネート型電池を1.4mAの電流で3.8Vに充電し各種評価に備えた。なお、4.1Vから2.85Vに放電した放電容量は約40mAhであった。
<Production of laminated battery>
The said aluminum negative electrode sheet and the said positive electrode sheet were cut out suitably, and it was set as the negative electrode and the positive electrode, respectively. The negative electrode and the positive electrode were laminated via a separator made of a microporous polypropylene film (manufactured by Mitsui Chemicals, Inc.) having a width of 40 mm and a length of 60 mm to produce an electrode group. This electrode group is accommodated in a cylindrical bag made of a multilayer film of aluminum and resin so that the negative and positive leads are drawn from one open part of the cylindrical bag, and the side where the leads are drawn is heated. Fused and closed. After vacuum-drying in this state, 0.4 ml of nonaqueous electrolyte was subsequently injected into the electrode group, and the other open portion was heat-sealed and sealed to produce a laminate type battery. This laminated battery was charged to 3.8 V with a current of 1.4 mA to prepare for various evaluations. The discharge capacity discharged from 4.1 V to 2.85 V was about 40 mAh.

〔高温高電圧での充放電サイクル試験(正極充電電圧4.48V)〕
表1に示す電解液を用いて前述のようにして得られたコイン型電池(黒鉛負極シート使用)を使用し、50℃の条件下、3.5mA定電流で4.4V定電圧の条件で充電した後、3.5mA定電流で2.8Vまで放電することを1サイクルとして充放電を行った。また、100サイクルごとに、3.5mA定電流かつ4.4V定電圧の条件で充電した後に1mAで放電する充放電を行った。なお、このとき満充電状態での正極の電位は金属リチウムの電位基準で4.48Vであった。3サイクル目の放電容量に対する200サイクル目の放電容量の比率(%)を高温高電圧サイクル容量維持率として、結果を表2に示した。
[Charge / discharge cycle test at high temperature and high voltage (positive electrode charge voltage 4.48V)]
Using a coin-type battery (using a graphite negative electrode sheet) obtained as described above by using the electrolytic solution shown in Table 1, under the condition of 50 ° C., 3.5 mA constant current and 4.4 V constant voltage. After charging, charging / discharging was performed by discharging to 2.8 V at a constant current of 3.5 mA as one cycle. In addition, every 100 cycles, charging / discharging at 1 mA was performed after charging at a constant current of 3.5 mA and a constant voltage of 4.4 V. At this time, the potential of the positive electrode in the fully charged state was 4.48 V on the basis of the potential of metallic lithium. The ratio (%) of the discharge capacity at the 200th cycle to the discharge capacity at the 3rd cycle was defined as the high temperature / high voltage cycle capacity retention rate, and the results are shown in Table 2.

〔充電電圧を変更した場合の充放電サイクル試験(正極充電電圧4.38Vおよび4.28V)〕
充電電圧を4.3Vにする以外は「高温高電圧での充放電サイクル試験」と全く同じ条件で充放電サイクル試験を行った。このときの満充電状態での正極の電位は金属リチウムの電位基準で4.38Vであった。
さらに、充電電圧を4.3Vにする以外は「高温高電圧での充放電サイクル試験」と全く同じ条件で充放電サイクル試験を行った。このときの満充電状態での正極の電位は金属リチウムの電位基準で4.38Vであった。
以上の高温サイクル試験を実施例2および比較例10の電池行い表2に示した。
[Charge / discharge cycle test when the charge voltage is changed (positive charge voltage 4.38V and 4.28V)]
The charge / discharge cycle test was performed under exactly the same conditions as the “charge / discharge cycle test at high temperature and high voltage” except that the charge voltage was 4.3V. At this time, the potential of the positive electrode in the fully charged state was 4.38 V on the basis of the potential of metallic lithium.
Furthermore, a charge / discharge cycle test was performed under exactly the same conditions as the “charge / discharge cycle test at high temperature and high voltage” except that the charge voltage was set to 4.3V. At this time, the potential of the positive electrode in the fully charged state was 4.38 V on the basis of the potential of metallic lithium.
The above high-temperature cycle test was performed for the batteries of Example 2 and Comparative Example 10 and is shown in Table 2.

〔高温高電圧での電池の電圧維持性試験〕
表1に示した電解液を用いて前述のようにして得られたコイン型電池(リチウム負極シート使用)を使用し、0.5mA定電流かつ4.48V定電圧の条件で充電し、このときの電圧を「保存前電圧」とした。なお、満充電状態での正極の電位は金属リチウムの電位に対して4.48Vである。
この電池を60℃の恒温槽に入れ170時間保管した後の電池の電圧を測定し、このときの電圧を「保存後電圧」とした。正極での電解液の酸化分解反応が起こりやすいほど保管後の電池電圧が低下するので、電池の電圧低下度(=保存前電圧−保存後電圧、mV)は、正極での電解液の酸化分解の指標である。表2に、結果を示した。
[Battery voltage sustainability test at high temperature and high voltage]
Using a coin-type battery (using a lithium negative electrode sheet) obtained as described above with the electrolyte shown in Table 1, the battery was charged under the conditions of a constant current of 0.5 mA and a constant voltage of 4.48 V. The voltage was defined as “voltage before storage”. Note that the potential of the positive electrode in a fully charged state is 4.48 V with respect to the potential of metallic lithium.
The voltage of the battery after the battery was put in a thermostat at 60 ° C. and stored for 170 hours was measured, and the voltage at this time was defined as “voltage after storage”. Since the battery voltage after storage decreases so that the oxidative decomposition reaction of the electrolytic solution at the positive electrode is more likely to occur, the voltage drop level of the battery (= voltage before storage−voltage after storage, mV) is oxidative decomposition of the electrolytic solution at the positive electrode. It is an indicator. Table 2 shows the results.

〔高温高電圧での電池の電池膨れ試験〕
表1に示した電解液を用いて前述のようにして得られたラミネート型電池(アルミニウム負極シート使用)を作製した。ラミネート型電池では、電解液の分解によりガスが発生すると、その外装体の材質がアルミニウムラミネートフィルムであるため、ラミネート型電池全体がほぼ均等に膨張する。ラミネート電池の「初期充電後の電池体積」及び「高温保存後の電池体積」を測定し、その差分を高温保存中の電解液分解ガスによる「電池膨れ」とした。
ラミネート電池を1.4mA定電流かつ4.1V定電圧で初期充電したときの電池の体積を「初期充電後の電池体積」とした。初期充電時の正極の電位は金属リチウムの電位に対して4.35Vであった。
上記のようにして充電したラミネート型電池を、85℃で3日間高温保存した後の体積を「高温保存後の電池体積」とした。尚、電池の体積は再度アルキメデス法で求めた。結果を表2に示した。尚、表2中の、「−」は未測定であることを示す。
[Battery swelling test of batteries at high temperature and high voltage]
Using the electrolytic solution shown in Table 1, a laminate type battery (using an aluminum negative electrode sheet) obtained as described above was produced. In a laminated battery, when gas is generated due to decomposition of the electrolytic solution, since the material of the outer package is an aluminum laminated film, the entire laminated battery expands almost uniformly. The “battery volume after initial charge” and “battery volume after high-temperature storage” of the laminate battery were measured, and the difference between them was defined as “battery swelling” due to electrolyte decomposition gas during high-temperature storage.
The volume of the battery when the laminate battery was initially charged at a constant current of 1.4 mA and a constant voltage of 4.1 V was defined as “battery volume after initial charge”. The potential of the positive electrode during initial charging was 4.35 V with respect to the potential of metallic lithium.
The volume of the laminated battery charged as described above after high temperature storage at 85 ° C. for 3 days was defined as “battery volume after high temperature storage”. The volume of the battery was again determined by the Archimedes method. The results are shown in Table 2. In Table 2, “-” indicates that no measurement was performed.

〔試験結果の解説〕
表2に示した実施例の結果から、環状カーボネートと鎖状カーボネートの重量比率が5:95〜35:65でかつ環状カーボネートの60重量%以上がカーボネート環にフッ素原子が直結したエチレンカーボネートである電解液を使用すると、高温高電圧で保管時の電圧低下度とガス生成量が優れ、かつ高温高電圧の充放電サイクル特性が優れ、かつ、が少ないリチウム電池が得られる事が分かる。
特に実施例2と比較例10の正極充電電圧を代えた時のサイクル容量維持率の比較から、正極充電電圧が4.35V以下である4.28V充電の場合は共に優れたサイクル容量維持率を示した。一方、正極充電電圧が4.35Vを超える4.38V充電の場合は実施例2の方が比較例10よりも優れたサイクル容量維持率を示し、さらに正極充電電圧が4.48Vの場合は、比較例10よりも非常に優れたサイクル容量維持率を示した。
特に、実施例7〜12の比較から、鎖状カーボネート中のフッ素置換鎖状カーボネートの比率が多くなるほどに、電圧低下度とガス生成量および充放電サイクル特性が共に優れる事が分かる。
また、実施例6と7の比較から、カーボネート環にフッ素原子が直結したエチレンカーボネートとしてフルオロエチレンカーボネートの方がジフルオロエチレンカーボネートよりもガス生成量が少なく優れることが分かる。フッ素置換数が多いDFECの方が、本来はFECよりも耐酸化性が良いはずであるが、FECの熱的安定性がDFECよりも優れるためと思われる。
[Explanation of test results]
From the results of Examples shown in Table 2, the weight ratio of the cyclic carbonate to the chain carbonate is 5:95 to 35:65, and 60% by weight or more of the cyclic carbonate is ethylene carbonate in which a fluorine atom is directly connected to the carbonate ring. When the electrolytic solution is used, it can be seen that a lithium battery can be obtained that has excellent voltage drop and gas generation during storage at high temperature and high voltage, and excellent charge / discharge cycle characteristics at high temperature and high voltage.
In particular, from the comparison of the cycle capacity retention rate when the positive electrode charge voltage of Example 2 and Comparative Example 10 was changed, in the case of 4.28 V charge where the positive electrode charge voltage is 4.35 V or less, both have an excellent cycle capacity retention rate. Indicated. On the other hand, in the case of 4.38V charging where the positive electrode charging voltage exceeds 4.35V, Example 2 shows a better cycle capacity retention rate than Comparative Example 10, and when the positive electrode charging voltage is 4.48V, The cycle capacity retention rate was much better than that of Comparative Example 10.
In particular, from the comparison of Examples 7 to 12, it can be seen that as the ratio of the fluorine-substituted chain carbonate in the chain carbonate is increased, both the voltage drop degree, the gas generation amount, and the charge / discharge cycle characteristics are excellent.
Further, from comparison between Examples 6 and 7, it can be seen that fluoroethylene carbonate is superior to difluoroethylene carbonate in producing less gas than ethylene carbonate having a fluorine atom directly bonded to the carbonate ring. Although DFEC with a larger number of fluorine substitutions should have better oxidation resistance than FEC originally, it seems that the thermal stability of FEC is superior to DFEC.

これらに対して、比較例1〜3の結果から、環状カーボネートの60重量%以上がカーボネート環にフッ素原子が直結したエチレンカーボネートであっても、環状カーボネートと鎖状カーボネートの重量比率が2:98よりも少ない場合は、電圧低下度とガス生成量が優れるが、充放電サイクル特性が大きく劣ることが分かる。
また、比較例7〜9の結果から、環状カーボネートの60重量%以上がカーボネート環にフッ素原子が直結したエチレンカーボネートであっても、環状カーボネートと鎖状カーボネートの重量比率が40:60を超える場合は、電圧低下度と充放電サイクル特性が優れるが、ガス生成量が大きく劣ることが分かる。
また、比較例4,5,6,10,11,12の結果から、環状カーボネートと鎖状カーボネートの重量比率が5:95〜35:65であっても、環状カーボネート中のカーボネート環にフッ素原子が直結したエチレンカーボネートの比率が60重量%よりも低い場合は、電圧低下度とガス生成量、充放電サイクル特性共に劣ることが分かる。
また、実施例2と比較例13の比較から、環状カーボネートが「カーボネート環に直接結合しない水素をフッ素原子に置換した」エチレンカーボネートである場合は、電解液組成が本発明の電解液と同様であっても、本発明の効果は得られないことが分かる。
On the other hand, from the results of Comparative Examples 1 to 3, even if 60% by weight or more of the cyclic carbonate is ethylene carbonate in which a fluorine atom is directly bonded to the carbonate ring, the weight ratio of the cyclic carbonate to the chain carbonate is 2:98. If the amount is less, the voltage drop degree and the gas generation amount are excellent, but the charge / discharge cycle characteristics are greatly inferior.
In addition, from the results of Comparative Examples 7 to 9, when the weight ratio of the cyclic carbonate to the chain carbonate exceeds 40:60 even if 60% by weight or more of the cyclic carbonate is ethylene carbonate in which a fluorine atom is directly bonded to the carbonate ring. It is understood that the voltage drop degree and charge / discharge cycle characteristics are excellent, but the gas generation amount is greatly inferior.
Further, from the results of Comparative Examples 4, 5, 6, 10, 11, and 12, even if the weight ratio of the cyclic carbonate to the chain carbonate is 5:95 to 35:65, a fluorine atom is present in the carbonate ring in the cyclic carbonate. When the ratio of ethylene carbonate directly connected to is lower than 60% by weight, it is understood that the degree of voltage drop, gas generation amount, and charge / discharge cycle characteristics are inferior.
Further, from the comparison between Example 2 and Comparative Example 13, when the cyclic carbonate is ethylene carbonate “with hydrogen atoms not directly bonded to the carbonate ring substituted by fluorine atoms”, the electrolytic solution composition is the same as the electrolytic solution of the present invention. Even if it exists, it turns out that the effect of this invention is not acquired.

〔まとめ〕
以上に説明した実験結果より、環状カーボネート中の60重量%以上がフッ素原子がカーボネート環に直結したフッ素化エチレンカーボネートであり、かつ、非水溶媒中の環状カーボネートと鎖状カーボネートの重量比率が3:98から35:65であると、正極上での電解液の酸化分解反応が抑制され、高温高電圧での充放電サイクル特性、電圧の維持性、電池の膨れの全てでバランス良く優れる電池を得られる事がわかった。
[Summary]
From the experimental results described above, 60% by weight or more of the cyclic carbonate is fluorinated ethylene carbonate in which fluorine atoms are directly connected to the carbonate ring, and the weight ratio of the cyclic carbonate to the chain carbonate in the non-aqueous solvent is 3 : From 98 to 35:65, the oxidative decomposition reaction of the electrolyte on the positive electrode is suppressed, and a battery with excellent balance in charge / discharge cycle characteristics at high temperature and high voltage, voltage sustainability, and battery swelling is obtained. I understood that I could get it.

Claims (4)

環状カーボネートおよび鎖状カーボネートを主たる成分として含有する非水溶媒と電解質溶質からなり、環状カーボネートの60重量%以上がカーボネート環にフッ素原子が直結したフッ素化エチレンカーボネートであり且つ環状カーボネートと鎖状カーボネートの重量比率が3:97〜35:65である満充電状態の正極電位が金属リチウムの電位を基準として4.35V以上である電気化学素子用の非水電解液。 A non-aqueous solvent containing a cyclic carbonate and a chain carbonate as main components and an electrolyte solute, and 60% by weight or more of the cyclic carbonate is a fluorinated ethylene carbonate in which a fluorine atom is directly connected to the carbonate ring, and the cyclic carbonate and the chain carbonate A non-aqueous electrolyte for an electrochemical device in which the positive electrode potential in a fully charged state with a weight ratio of 3:97 to 35:65 is 4.35 V or more with respect to the potential of metallic lithium. 鎖状カーボネートの25重量%以上がフッ素化鎖状カーボネートである請求項1記載の非水電解液。 The nonaqueous electrolytic solution according to claim 1, wherein 25% by weight or more of the chain carbonate is a fluorinated chain carbonate. フッ素化エチレンカーボネートが4−フルオロエチレンカーボネートである請求項1または2に記載の非水電解液。 The nonaqueous electrolytic solution according to claim 1 or 2, wherein the fluorinated ethylene carbonate is 4-fluoroethylene carbonate. 請求項1ないし3のいずれかに記載の非水電解液、リチウムイオンまたはアニオンと可逆的な電気化学反応可能な正極活物質を有する正極、並びにリチウムイオンを充放電可能な負極活物質を有する負極を含み、満充電状態の正極の電位が金属リチウムの電位を基準として4.35V以上であるリチウム二次電池。

4. A non-aqueous electrolyte according to claim 1, a positive electrode having a positive electrode active material capable of reversible electrochemical reaction with lithium ions or anions, and a negative electrode having a negative electrode active material capable of charging and discharging lithium ions. A lithium secondary battery in which the potential of the fully charged positive electrode is 4.35 V or more with respect to the potential of the metallic lithium.

JP2006074223A 2006-03-17 2006-03-17 Non-aqueous electrolyte and lithium secondary battery using the same Active JP4976715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074223A JP4976715B2 (en) 2006-03-17 2006-03-17 Non-aqueous electrolyte and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074223A JP4976715B2 (en) 2006-03-17 2006-03-17 Non-aqueous electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2007250415A true JP2007250415A (en) 2007-09-27
JP4976715B2 JP4976715B2 (en) 2012-07-18

Family

ID=38594466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074223A Active JP4976715B2 (en) 2006-03-17 2006-03-17 Non-aqueous electrolyte and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4976715B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016422A (en) * 2006-06-07 2008-01-24 Sony Corp Electrolyte and battery using the same, electrolyte for square battery, and square battery using the same
WO2008035638A1 (en) * 2006-09-19 2008-03-27 Daihatsu Motor Co., Ltd. Electrochemical capacitor
JP2008103697A (en) * 2006-09-19 2008-05-01 Daihatsu Motor Co Ltd Electrochemical capacitor
JP2008123714A (en) * 2006-11-08 2008-05-29 Sony Corp Electrolytic solution and battery
JP2008186803A (en) * 2007-01-04 2008-08-14 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
JP2009164053A (en) * 2008-01-09 2009-07-23 Sony Corp Battery
JP2009266438A (en) * 2008-04-22 2009-11-12 Gs Yuasa Corporation Non-aqueous electrolyte battery
JP2010129449A (en) * 2008-11-28 2010-06-10 Sanyo Electric Co Ltd Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
WO2010128584A1 (en) * 2009-05-08 2010-11-11 パナソニック株式会社 Nonaqueous solvent, nonaqueous electrolyte solution using same, and nonaqueous secondary battery
WO2013100081A1 (en) * 2011-12-28 2013-07-04 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
JP2014086221A (en) * 2012-10-22 2014-05-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2014525667A (en) * 2011-09-02 2014-09-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Lithium ion battery
US9070951B2 (en) 2009-09-18 2015-06-30 Daikin Industries, Ltd. Solvent for nonaqueous electrolyte solution of lithium secondary battery
JP2015191737A (en) * 2014-03-27 2015-11-02 ダイキン工業株式会社 Electrolyte and electrochemical device
US9178246B2 (en) 2010-03-02 2015-11-03 Sony Corporation Nonaqueous electrolyte battery and nonaqueous electrolyte
JP2016143536A (en) * 2015-01-30 2016-08-08 三菱化学株式会社 Nonaqueous type electrolyte and nonaqueous electrolyte secondary battery using the same
JP2016143449A (en) * 2015-01-29 2016-08-08 三菱化学株式会社 Nonaqueous type electrolytic solution and nonaqueous type electrolytic solution secondary battery using the same
JPWO2015147007A1 (en) * 2014-03-27 2017-04-13 ダイキン工業株式会社 Electrolytic solution and electrochemical device
JPWO2015147000A1 (en) * 2014-03-27 2017-04-13 ダイキン工業株式会社 Electrolytic solution and electrochemical device
JP2017126489A (en) * 2016-01-14 2017-07-20 株式会社Gsユアサ Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017126488A (en) * 2016-01-14 2017-07-20 株式会社Gsユアサ Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017134986A (en) * 2016-01-27 2017-08-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2018125090A (en) * 2017-01-30 2018-08-09 トヨタ自動車株式会社 Lithium ion secondary battery
US10340521B2 (en) 2014-02-28 2019-07-02 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US10923764B2 (en) 2016-12-26 2021-02-16 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
US10950896B2 (en) 2016-12-26 2021-03-16 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method of producing nonaqueous electrolyte secondary battery
JP2021136172A (en) * 2020-02-27 2021-09-13 三井化学株式会社 Lithium secondary battery, and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210296703A1 (en) 2018-07-26 2021-09-23 Mitsui Chemicals, Inc. Non-aqueous electrolyte solution for battery and lithium secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078820A (en) * 2003-08-28 2005-03-24 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
WO2006132372A1 (en) * 2005-06-10 2006-12-14 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery and carbonate compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078820A (en) * 2003-08-28 2005-03-24 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
WO2006132372A1 (en) * 2005-06-10 2006-12-14 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery and carbonate compound

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016422A (en) * 2006-06-07 2008-01-24 Sony Corp Electrolyte and battery using the same, electrolyte for square battery, and square battery using the same
WO2008035638A1 (en) * 2006-09-19 2008-03-27 Daihatsu Motor Co., Ltd. Electrochemical capacitor
JP2008103697A (en) * 2006-09-19 2008-05-01 Daihatsu Motor Co Ltd Electrochemical capacitor
US8159815B2 (en) 2006-09-19 2012-04-17 Daihatsu Motor Co., Ltd. Electrochemical capacitor
JP2008123714A (en) * 2006-11-08 2008-05-29 Sony Corp Electrolytic solution and battery
JP2008186803A (en) * 2007-01-04 2008-08-14 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
US9728809B2 (en) 2007-01-04 2017-08-08 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP4715848B2 (en) * 2008-01-09 2011-07-06 ソニー株式会社 battery
US8216726B2 (en) 2008-01-09 2012-07-10 Sony Corporation Battery
JP2009164053A (en) * 2008-01-09 2009-07-23 Sony Corp Battery
JP2009266438A (en) * 2008-04-22 2009-11-12 Gs Yuasa Corporation Non-aqueous electrolyte battery
JP2010129449A (en) * 2008-11-28 2010-06-10 Sanyo Electric Co Ltd Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
WO2010128584A1 (en) * 2009-05-08 2010-11-11 パナソニック株式会社 Nonaqueous solvent, nonaqueous electrolyte solution using same, and nonaqueous secondary battery
US9070951B2 (en) 2009-09-18 2015-06-30 Daikin Industries, Ltd. Solvent for nonaqueous electrolyte solution of lithium secondary battery
US9178246B2 (en) 2010-03-02 2015-11-03 Sony Corporation Nonaqueous electrolyte battery and nonaqueous electrolyte
JP2014525667A (en) * 2011-09-02 2014-09-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Lithium ion battery
KR20190058708A (en) 2011-12-28 2019-05-29 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
JPWO2013100081A1 (en) * 2011-12-28 2015-05-11 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
KR20200113013A (en) 2011-12-28 2020-10-05 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20140116078A (en) 2011-12-28 2014-10-01 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20200029625A (en) 2011-12-28 2020-03-18 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
WO2013100081A1 (en) * 2011-12-28 2013-07-04 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
JP2014086221A (en) * 2012-10-22 2014-05-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
US10340521B2 (en) 2014-02-28 2019-07-02 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP2015191737A (en) * 2014-03-27 2015-11-02 ダイキン工業株式会社 Electrolyte and electrochemical device
JPWO2015147000A1 (en) * 2014-03-27 2017-04-13 ダイキン工業株式会社 Electrolytic solution and electrochemical device
US10355312B2 (en) 2014-03-27 2019-07-16 Daikin Industries, Ltd. Electrolyte and electrochemical device
JPWO2015147007A1 (en) * 2014-03-27 2017-04-13 ダイキン工業株式会社 Electrolytic solution and electrochemical device
JP2016143449A (en) * 2015-01-29 2016-08-08 三菱化学株式会社 Nonaqueous type electrolytic solution and nonaqueous type electrolytic solution secondary battery using the same
JP2016143536A (en) * 2015-01-30 2016-08-08 三菱化学株式会社 Nonaqueous type electrolyte and nonaqueous electrolyte secondary battery using the same
JP2017126488A (en) * 2016-01-14 2017-07-20 株式会社Gsユアサ Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017126489A (en) * 2016-01-14 2017-07-20 株式会社Gsユアサ Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017134986A (en) * 2016-01-27 2017-08-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US10923764B2 (en) 2016-12-26 2021-02-16 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
US10950896B2 (en) 2016-12-26 2021-03-16 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method of producing nonaqueous electrolyte secondary battery
JP2018125090A (en) * 2017-01-30 2018-08-09 トヨタ自動車株式会社 Lithium ion secondary battery
JP2021136172A (en) * 2020-02-27 2021-09-13 三井化学株式会社 Lithium secondary battery, and method for manufacturing the same
JP7428346B2 (en) 2020-02-27 2024-02-06 三井化学株式会社 Lithium secondary battery and method for manufacturing lithium secondary battery

Also Published As

Publication number Publication date
JP4976715B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4976715B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
EP3518334B1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising said additive
EP3512028B1 (en) Electrolyte additive and non-aqueous electrolyte solution for lithium secondary battery containing the same
US9960450B2 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery
JP6974434B2 (en) Non-aqueous electrolyte
US10177413B2 (en) Lithium ion secondary battery
JP5243035B2 (en) Lithium secondary battery
WO2017038041A1 (en) Non-aqueous electrolyte secondary battery
JP6131953B2 (en) Lithium secondary battery
CN104577197B (en) Rechargeable nonaqueous electrolytic battery
US9793576B2 (en) Nonaqueous electrolytic solution and energy storage device using same
WO2016159117A1 (en) Nonaqueous electrolyte and nonaqueous secondary battery
JP2010123287A (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
JP2008147119A (en) Electrolytic solution and battery
KR20090092220A (en) Non-aqueous electrolyte secondary battery
JP6868969B2 (en) Non-aqueous secondary battery and non-aqueous electrolyte used for it
JP6565916B2 (en) Nonaqueous electrolyte secondary battery
JPH0997627A (en) Nonaqueous electrolyte and lithium secondary battery
JP2016048624A (en) Lithium secondary battery
JP6767151B2 (en) Non-aqueous electrolyte and non-aqueous secondary battery
JP2011187163A (en) Nonaqueous electrolyte, and lithium ion secondary battery
JP4765629B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP2007053080A (en) Non-aqueous electrolytic solution, and electrochemical energy accumulating device using the same
WO2020022452A1 (en) Nonaqueous electrolyte solution for batteries and lithium secondary battery
JP6224382B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Ref document number: 4976715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250