JP2009266438A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP2009266438A
JP2009266438A JP2008111871A JP2008111871A JP2009266438A JP 2009266438 A JP2009266438 A JP 2009266438A JP 2008111871 A JP2008111871 A JP 2008111871A JP 2008111871 A JP2008111871 A JP 2008111871A JP 2009266438 A JP2009266438 A JP 2009266438A
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
carbonate
separator
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008111871A
Other languages
Japanese (ja)
Other versions
JP5262266B2 (en
Inventor
Hiroe Nakagawa
裕江 中川
Yohei Shibata
洋平 柴田
Yukiko Fujino
有希子 藤野
Tokuo Inamasu
徳雄 稲益
Toshiyuki Onda
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2008111871A priority Critical patent/JP5262266B2/en
Publication of JP2009266438A publication Critical patent/JP2009266438A/en
Application granted granted Critical
Publication of JP5262266B2 publication Critical patent/JP5262266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery in which a non-aqueous electrolyte and a separator have fire retardancy and these are compatible with high-rate discharge characteristics excellently. <P>SOLUTION: The non-aqueous electrolyte battery uses a separator made of polyimide and uses a non-aqueous electrolyte containing fluorinated aliphatic carbonate. When polyimide separator is used, by using the non-aqueous electrolyte containing fluorinated aliphatic carbonate, the rate of improvement of the high-rate discharge characteristics becomes about 30%. This is a remarkable difference compared with the case in which the rate of improvement stays at about 3% when a polyethylene separator is used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は非水電解質電池に関するもので、特に、非水電解質電池のセパレータと非水電解質の改良に関するものである。   The present invention relates to a non-aqueous electrolyte battery, and more particularly to improvement of a separator and a non-aqueous electrolyte of a non-aqueous electrolyte battery.

現在、リチウムイオン二次電池に代表される非水電解質電池は、携帯電話、PHS(簡易携帯電話)、小型コンピューター等の携帯機器類用電源として広く用いられている。このようなリチウムイオン二次電池を構成する正極活物質としては主にLiCoOが、負極活物質としては主にグラファイトが、非水電解質としては、主にLiPF6等の電解質がエチレンカーボネート等を主構成成分とする非水溶媒に溶解されたものが用いられている。 Currently, nonaqueous electrolyte batteries represented by lithium ion secondary batteries are widely used as power sources for portable devices such as mobile phones, PHS (simple mobile phones), and small computers. LiCoO 2 is mainly used as a positive electrode active material constituting such a lithium ion secondary battery, graphite is mainly used as a negative electrode active material, and an electrolyte such as LiPF 6 is mainly used as a nonaqueous electrolyte such as ethylene carbonate. Those dissolved in a non-aqueous solvent as a main constituent are used.

LiCoOを含有する正極を用いたリチウムイオン二次電池は、温度がおよそ150℃にまで達すると熱暴走を起こすおそれがあることから、このような場合に電池が危険な状態に陥ることを避けるため、セパレータには、異常時に孔閉塞して電流を遮断し、電池の発熱、発火を防ぐ、いわゆるシャットダウン機能が求められている。即ち、高温下で収縮しやすく、電池が高温となった時に、電流遮断効果が確実に発現され、電池の安全性を向上できるという観点から、セパレータの材質としてポリオレフィン類が採用され、なかでも、適切な温度でシャットダウン機能を発現させるため、ポリエチレンを主成分とするものが用いられている。 Lithium ion secondary batteries using a positive electrode containing LiCoO 2 may cause thermal runaway when the temperature reaches approximately 150 ° C. Therefore, in such a case, avoid the battery from falling into a dangerous state. For this reason, the separator is required to have a so-called shutdown function that closes the hole in the event of an abnormality to cut off the current and prevent the battery from being heated and ignited. That is, it is easy to shrink at high temperature, and when the battery becomes hot, the current interruption effect is surely expressed, and from the viewpoint of improving the safety of the battery, polyolefins are adopted as the material of the separator, In order to exhibit a shutdown function at an appropriate temperature, a polyethylene-based material is used.

特許文献1〜4には、難燃性もしくは自己消火性を有する非水電解質を実現するため、樹脂材料の難燃化剤として知られている高引火点溶媒であるリン酸エステル化合物を添加する技術が提案されている。また、フッ素化アルキル基などのハロゲンを含有する炭酸エステル化合物を添加する技術も検討され、提案されている。例えば特許文献5などには、ハロゲン化鎖状カーボネート、特にフッ素化鎖状カーボネートを使用する技術が、特許文献6などには、ハロゲン化環状カーボネート、特にフッ素化環状カーボネートを使用する技術が開示されている。これらの化合物のうち、特にフッ素含有化合物は、電気化学的安定性に優れ、かつ、引火点が高い性質を有しているとされている。   In Patent Documents 1 to 4, a phosphate compound that is a high flash point solvent known as a flame retardant for resin materials is added in order to realize a non-aqueous electrolyte having flame retardancy or self-extinguishing properties. Technology has been proposed. Further, a technique for adding a carbonate compound containing a halogen such as a fluorinated alkyl group has been studied and proposed. For example, Patent Document 5 discloses a technique using a halogenated chain carbonate, particularly a fluorinated chain carbonate, and Patent Document 6 discloses a technique using a halogenated cyclic carbonate, particularly a fluorinated cyclic carbonate. ing. Among these compounds, fluorine-containing compounds are said to have excellent electrochemical stability and high flash point properties.

しかしながら、これら既に提案されている非水電解質が充分な難燃性を発揮するためには、このような化合物を多量に(例えば特許文献4によれば20〜40体積%)添加する必要があるため、高率放電特性を始めとした充分な電池特性が得られないという問題点があった。また、化合物の種類によっては、非水電解質を構成するリチウム塩の溶解性あるいは他の有機溶媒との相溶性が低く、多量に添加できないため、非水電解質が充分な難燃性を発揮できないという問題点があった。さらに言うならば、これらの化合物は、一般的な非水電解質を構成する有機溶媒に比較して非常にコスト高であり、主溶媒として大量に使用するのは現実的ではないという問題があった。   However, in order for these already proposed nonaqueous electrolytes to exhibit sufficient flame retardancy, it is necessary to add such a compound in a large amount (for example, 20 to 40 vol% according to Patent Document 4). Therefore, there is a problem that sufficient battery characteristics such as high rate discharge characteristics cannot be obtained. Also, depending on the type of compound, the solubility of the lithium salt constituting the non-aqueous electrolyte or the compatibility with other organic solvents is low, and a large amount cannot be added, so that the non-aqueous electrolyte cannot exhibit sufficient flame retardancy. There was a problem. Furthermore, these compounds have a problem that they are very expensive compared to organic solvents constituting general non-aqueous electrolytes, and it is not practical to use them in large quantities as a main solvent. .

特許文献7には、非水電解質電池に用いることのできるセパレータとしてポリイミド製多孔質膜が提案されているが、ポリイミド製多孔質膜は上記シャットダウン効果が期待できないため、汎用のリチウムイオン二次電池には採用されていない。   Patent Document 7 proposes a polyimide porous membrane as a separator that can be used in a nonaqueous electrolyte battery. However, since the polyimide porous membrane cannot be expected to have the shutdown effect, a general-purpose lithium ion secondary battery is proposed. Has not been adopted.

一方、近年、電力貯蔵用電源や電気自動車用電源等の比較的大型の産業用電池としても、非水電解質電池を適用しようとする検討が盛んに行われている。このような用途の電池には、高エネルギー密度特性だけでなく安全性が重視され、「燃えない電池」とすることが求められることから、正極活物質材料として熱的安定性の極めて高いリン酸鉄リチウムに代表されるポリアニオン型正極材料が採用されると共に、非水電解質材料やセパレータ材料にも難燃性もしくは自己消火性を有する材料を用いることが求められている。
特開平7−114940号公報 特開平8−88023号公報 特開平11−40193号公報 特開2001−307768号公報 特開平7−6786号公報 特開平10−247519号公報 特開2003−138057号公報
On the other hand, in recent years, studies have been actively conducted to apply nonaqueous electrolyte batteries as relatively large industrial batteries such as power storage power supplies and electric vehicle power supplies. For such batteries, not only high energy density characteristics but also safety is important, and it is required to be a “non-burning battery”. Therefore, phosphoric acid with extremely high thermal stability as a positive electrode active material. A polyanion-type positive electrode material typified by iron lithium is adopted, and a non-aqueous electrolyte material or a separator material is required to use a material having flame retardancy or self-extinguishing properties.
Japanese Patent Laid-Open No. 7-114940 JP-A-8-88023 Japanese Patent Laid-Open No. 11-40193 JP 2001-307768 A Japanese Patent Laid-Open No. 7-6786 Japanese Patent Laid-Open No. 10-247519 JP 2003-138057 A

本発明は、非水電解質及びセパレータが難燃性を有し、且つ、良好な高率放電特性を備える非水電解質電池を提供することを目的とする。   An object of the present invention is to provide a non-aqueous electrolyte battery in which the non-aqueous electrolyte and the separator have flame retardancy and have good high rate discharge characteristics.

なお、本発明者らの知見によれば、ポリイミド製のセパレータを非水電解質電池に用いると、ポリオレフィン製のセパレータを用いた場合と比較して、セパレータの膜厚、開孔率、透気度などの特性が同じにもかかわらず、高率放電特性が低くなる傾向があるという問題点があった。   According to the knowledge of the present inventors, when a polyimide separator is used for a non-aqueous electrolyte battery, the separator film thickness, porosity, and air permeability are lower than when a polyolefin separator is used. In spite of the same characteristics, there is a problem that the high rate discharge characteristics tend to be low.

上記課題を解決するため、本発明者らは、鋭意検討の結果、ポリイミドを含有するセパレータを用ると共に、フッ素化炭酸エステル化合物を含有している非水電解質を用いることにより、驚くべきことに、電池に難燃性を付与できるだけでなく、良好な高率放電特性を備えた非水電解質電池が得られることを見出し、本発明に至った。すなわち、本発明の技術的構成及びその作用効果は以下の通りである。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。   In order to solve the above-mentioned problems, the present inventors have surprisingly made use of a separator containing polyimide and a non-aqueous electrolyte containing a fluorinated carbonate compound as a result of intensive studies. The present inventors have found that a nonaqueous electrolyte battery having not only flame retardancy but also good high rate discharge characteristics can be obtained. That is, the technical configuration and operational effects of the present invention are as follows. However, the action mechanism includes estimation, and the correctness does not limit the present invention.

本発明は、正極、負極、セパレータ及び非水電解質を備える非水電解質電池において、前記セパレータはポリイミドを含有し、且つ、前記非水電解質はフッ素化炭酸エステル化合物を含有していることを特徴とする非水電解質電池である。   The present invention is a non-aqueous electrolyte battery comprising a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte, wherein the separator contains a polyimide, and the non-aqueous electrolyte contains a fluorinated carbonate compound. It is a nonaqueous electrolyte battery.

このような構成によれば、非水電解質中に上記したフッ素化炭酸エステル化合物を含有することにより、非水電解質の引火点が上昇もしくは消滅し、非水電解質が難燃性もしくは自己消火性を示すようになる。さらに、ポリイミドを含有するセパレータを用いることにより、その高い熱安定性によって熱分解が抑制されるだけでなく、さらに高温下で熱分解した場合にも熱分解ガスが難燃性を示す。従って、自己消火性又は難燃性を示す電解質とセパレータとの組み合わせとなるため、広い温度範囲で優れた難燃性を有し、安全性に優れた非水電解質電池とすることができる。さらに、特筆すべきは、非水電解質が充分な難燃性を発揮するために、比較的多量に上記した鎖状炭酸エステル化合物を含有する場合にも、上記した非水電解質とセパレータとの組み合わせとすることにより、良好な高率放電特性を有する非水電解質電池を構築できることである。よって、難燃性と、良好な高率放電特性を両立することができる非水電解質電池を提供できる。   According to such a configuration, by containing the above-mentioned fluorinated carbonate compound in the non-aqueous electrolyte, the flash point of the non-aqueous electrolyte rises or disappears, and the non-aqueous electrolyte has flame retardancy or self-extinguishing properties. As shown. Furthermore, by using a separator containing polyimide, not only thermal decomposition is suppressed by its high thermal stability, but also pyrolysis gas exhibits flame retardancy even when pyrolysis is performed at a higher temperature. Therefore, since it is a combination of an electrolyte exhibiting self-extinguishing properties or flame retardancy and a separator, a nonaqueous electrolyte battery having excellent flame retardancy in a wide temperature range and excellent in safety can be obtained. Furthermore, it should be noted that the combination of the non-aqueous electrolyte and the separator described above also includes a relatively large amount of the chain carbonate compound so that the non-aqueous electrolyte exhibits sufficient flame retardancy. Thus, a nonaqueous electrolyte battery having good high rate discharge characteristics can be constructed. Therefore, it is possible to provide a non-aqueous electrolyte battery that can achieve both flame retardancy and good high-rate discharge characteristics.

また、本発明の非水電解質電池は、前記フッ素化炭酸エステル化合物の含有量が、非水電解質の全重量に対し、5重量%以上であることを特徴としている。   The nonaqueous electrolyte battery of the present invention is characterized in that the content of the fluorinated carbonate compound is 5% by weight or more based on the total weight of the nonaqueous electrolyte.

このような構成によれば、鎖状炭酸エステル化合物の含有量が、非水電解質の全重量に対して5重量%以上であることによって、非水電解質電池が難燃性と、良好な高率放電特性を確実に両立することができる。   According to such a configuration, the content of the chain carbonate compound is 5% by weight or more with respect to the total weight of the nonaqueous electrolyte, so that the nonaqueous electrolyte battery has flame retardancy and a good high rate. It is possible to reliably achieve both discharge characteristics.

また、本発明の非水電解質電池は、リチウム含有ポリアニオン金属複合化合物を含有していることを特徴としている。   The nonaqueous electrolyte battery of the present invention is characterized by containing a lithium-containing polyanion metal composite compound.

このような構成によれば、リチウム含有ポリアニオン金属複合化合物が熱的安定性に優れ、高温においても分解して酸素を放出しないことから、これを非水電解質電池の正極活物質として使用することによって、非水電解質及びセパレータが難燃性を有し、且つ、良好な高率放電特性を両立する非水電解質電池の安全性をさらに飛躍的に高めることができる。   According to such a configuration, since the lithium-containing polyanion metal composite compound has excellent thermal stability and does not decompose and release oxygen even at high temperatures, it can be used as a positive electrode active material for a nonaqueous electrolyte battery. In addition, the safety of the nonaqueous electrolyte battery that has both non-flammable electrolyte and separator and flame retardancy and good high-rate discharge characteristics can be dramatically improved.

本発明によれば、非水電解質及びセパレータが難燃性を有し、且つ、良好な高率放電特性を両立する非水電解質電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte battery in which the non-aqueous electrolyte and the separator are flame retardant and have both good high rate discharge characteristics.

以下に、本発明の実施の形態を例示するが、本発明は、これらの記述に限定されるものではない。   Embodiments of the present invention are illustrated below, but the present invention is not limited to these descriptions.

本発明に係る非水電解質電池は、正極活物質を主要構成成分とする正極と、負極活物質を主要構成成分とする負極と、正極と負極との間に設けられたポリイミドを含有するセパレータと、リチウム塩及びフッ素化炭酸エステル化合物とを少なくとも含有する非水電解質と、から構成される。   A nonaqueous electrolyte battery according to the present invention includes a positive electrode having a positive electrode active material as a main constituent, a negative electrode having a negative electrode active material as a main constituent, and a separator containing polyimide provided between the positive electrode and the negative electrode. And a non-aqueous electrolyte containing at least a lithium salt and a fluorinated carbonate compound.

前記フッ素化炭酸エステル化合物としては、フッ素化環状炭酸エステル化合物及びフッ素化鎖状炭酸エステル化合物が挙げられる。ここで、フッ素化環状炭酸エステル化合物を用いても良いが、フッ素化鎖状炭酸エステル化合物を選択すると、フッ素化されていない同一構造の炭酸エステルに対する沸点降下の影響を小さくできるため、難燃性の観点で好ましい。フッ素化鎖状炭酸エステルとしては、化1で示されるものが例示される。
(但し、w、zはそれぞれ1〜3の整数であり、且つ、x、yはそれぞれ0〜2の整数であり、且つ、n、mはそれぞれ0〜7の整数である。)
Examples of the fluorinated carbonate compound include fluorinated cyclic carbonate compounds and fluorinated chain carbonate compounds. Here, a fluorinated cyclic carbonate compound may be used. However, if a fluorinated chain carbonate compound is selected, the influence of a drop in boiling point on a carbonate ester having the same structure that is not fluorinated can be reduced. From the viewpoint of Examples of the fluorinated chain carbonate include those represented by Chemical Formula 1.
(W and z are each an integer of 1 to 3, x and y are each an integer of 0 to 2, and n and m are integers of 0 to 7, respectively.)

ここで、エステル構造部分に隣接する炭素原子にはフッ素原子が結合していてもよいが、合成が容易であるとはいえない。また、w、zのいずれか一方は0であってもよいが、そのようなものも合成が容易であるとはいえない。従って、化1に例示した構造のフッ素化鎖状炭酸エステル化合物が好ましい。   Here, although a fluorine atom may be bonded to the carbon atom adjacent to the ester structure portion, it cannot be said that the synthesis is easy. Further, either one of w and z may be 0, but such a thing cannot be said to be easy to synthesize. Therefore, the fluorinated chain carbonate compound having the structure exemplified in Chemical Formula 1 is preferable.

化1で示されるフッ素化鎖状炭酸エステル化合物としては、例えば、ジ(1,1,1−トリフルオロエチル)カーボネート、(1,1,1−トリフルオロエチル)メチルカーボネート、ジ(1,1−ジフルオロエチル)カーボネート、ジ(1,1,2,2−テトラフルオロプロピル)カーボネート、ジ(1,1,2,2,3,3,−ヘキサフルオロブチル)カーボネート、ジ(1H,1H,5H−オクタフルオロペンチル)カーボネート、ジ(1H,1H,7H−ドデカフルオロへプチル)カーボネート、ジ(1H,1H,3H,7H−パーフルオロへプチル)カーボネート、ジ(1H,1H,9H−ヘキサデカフルオロノニル)カーボネート等の単独又はそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。なかでも本発明においては、ジ(1,1,1−トリフルオロエチル)カーボネート、(1,1,1−トリフルオロエチル)メチルカーボネート、ジ(1,1−ジフルオロエチル)カーボネート、ジ(1,1,2,2−テトラフルオロプロピル)カーボネートから選択される少なくとも1種であることが特に好ましい。   Examples of the fluorinated chain carbonate compound represented by Chemical Formula 1 include di (1,1,1-trifluoroethyl) carbonate, (1,1,1-trifluoroethyl) methyl carbonate, and di (1,1 -Difluoroethyl) carbonate, di (1,1,2,2-tetrafluoropropyl) carbonate, di (1,1,2,2,3,3, -hexafluorobutyl) carbonate, di (1H, 1H, 5H -Octafluoropentyl) carbonate, di (1H, 1H, 7H-dodecafluoroheptyl) carbonate, di (1H, 1H, 3H, 7H-perfluoroheptyl) carbonate, di (1H, 1H, 9H-hexadecafluoro Nonyl) carbonate and the like alone or a mixture of two or more thereof may be mentioned, but are not limited thereto. . Among them, in the present invention, di (1,1,1-trifluoroethyl) carbonate, (1,1,1-trifluoroethyl) methyl carbonate, di (1,1-difluoroethyl) carbonate, di (1, Particularly preferred is at least one selected from 1,2,2-tetrafluoropropyl) carbonate.

なお、本発明におけるフッ素化炭酸エステル化合物の含有量は、非水電解質の全重量に対して5重量%以上であることが好ましく、特に優れた難燃性と高率放電特性とを両立できる非水電解質を得るためには、10重量%以上50重量%以下であることがより好ましい。   In addition, the content of the fluorinated carbonate compound in the present invention is preferably 5% by weight or more based on the total weight of the nonaqueous electrolyte, and can particularly achieve both excellent flame retardancy and high rate discharge characteristics. In order to obtain a water electrolyte, it is more preferably 10 wt% or more and 50 wt% or less.

非水電解質を構成する有機溶媒は、フッ素化炭酸エステル化合物以外にも、一般に非水電解質電池用非水電解質に使用される有機溶媒が使用できる。例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート等の環状カーボネート;γ−ブチロラクトン、γ−バレロラクトン、プロピオラクトン等の環状エステル;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジフェニルカーボネート等の鎖状カーボネート;酢酸メチル、酪酸メチル等の鎖状エステル;テトラヒドロフラン又はその誘導体、1,3−ジオキサン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキサラン又はその誘導体等の単独又はそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   As the organic solvent constituting the nonaqueous electrolyte, in addition to the fluorinated carbonate compound, an organic solvent generally used for a nonaqueous electrolyte for a nonaqueous electrolyte battery can be used. For example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate; cyclic esters such as γ-butyrolactone, γ-valerolactone, propiolactone; dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, diphenyl carbonate, etc. Chain carbonates; chain esters such as methyl acetate and methyl butyrate; ethers such as tetrahydrofuran or derivatives thereof, 1,3-dioxane, dimethoxyethane, diethoxyethane, methoxyethoxyethane, methyldiglyme; acetonitrile, benzonitrile, etc. Nitriles of dioxalane or derivatives thereof alone or a mixture of two or more thereof, but not limited thereto.

なお、本発明においては、非水電解質に炭素−炭素二重結合を有する環状カーボネートを含有することにより、本発明の効果が充分に発揮できるため好ましく、なかでも、ビニレンカーボネート、スチレンカーボネート、カテコールカーボネート、ビニルエチレンカーボネート、1−フェニルビニレンカーボネート、1,2−ジフェニルビニレンカーボネートから選ばれる少なくとも1種を含有することが好ましい。これらは単独で用いてもよく、2種以上混合して用いてもよいが、特に、ビニレンカーボネートを少なくとも含有することが好ましい。   In addition, in this invention, since the effect of this invention can fully be exhibited by containing the cyclic carbonate which has a carbon-carbon double bond in a nonaqueous electrolyte, Especially, vinylene carbonate, styrene carbonate, catechol carbonate It is preferable to contain at least one selected from vinylethylene carbonate, 1-phenyl vinylene carbonate, and 1,2-diphenyl vinylene carbonate. These may be used singly or in combination of two or more, but it is particularly preferable to contain at least vinylene carbonate.

炭素−炭素二重結合を有する環状カーボネートの含有量は、非水電解質の全重量に対して0.01重量%〜10重量%であることが好ましく、より好ましくは0.10重量%〜5重量%、さらに好ましくは0.10重量%〜2重量%である。炭素−炭素二重結合を有する環状カーボネートの含有量が、非水電解質の全重量に対して0.01重量%以上であることによって、初充電時における非水電解質を構成するその他の有機溶媒の分解をほぼ完全に抑制し、充電をより確実に行うことができる。また、10重量%以下であることによって、炭素−炭素二重結合を有する環状カーボネートが正極上で分解することによる電池性能の劣化がほとんど発生せず、充分な電池性能を発揮することができる。   The content of the cyclic carbonate having a carbon-carbon double bond is preferably 0.01% by weight to 10% by weight, more preferably 0.10% by weight to 5% by weight with respect to the total weight of the nonaqueous electrolyte. %, More preferably 0.10 wt% to 2 wt%. When the content of the cyclic carbonate having a carbon-carbon double bond is 0.01% by weight or more based on the total weight of the nonaqueous electrolyte, other organic solvents constituting the nonaqueous electrolyte at the time of initial charge Disassembly can be suppressed almost completely, and charging can be performed more reliably. Further, when the content is 10% by weight or less, deterioration of battery performance due to decomposition of the cyclic carbonate having a carbon-carbon double bond on the positive electrode hardly occurs, and sufficient battery performance can be exhibited.

非水電解質を構成するリチウム塩としては、一般に非水電解質電池に使用される広電位領域において安定であるリチウム塩が使用できる。例えば、LiBF、LiPF、LiClO、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSOなどが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上混合して用いてもよい。 As the lithium salt constituting the non-aqueous electrolyte, a lithium salt that is stable in a wide potential region generally used for a non-aqueous electrolyte battery can be used. For example, LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 and the like, but are not limited thereto. These may be used alone or in combination of two or more.

非水電解質における電解質塩の濃度としては、優れた高率放電特性を有する非水電解質電池を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、1mol/l〜2.5mol/lである。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l, more preferably 1 mol / l to obtain a non-aqueous electrolyte battery having excellent high rate discharge characteristics. 2.5 mol / l.

本発明電池に用いるポリイミドを含有するセパレータとしては、ポリイミド成分と共に他のポリマー成分を含有するものを用いることができるが、ポリイミド成分の比率が高い方が本発明の効果の点で好ましい。具体的には、ポリイミド成分の比率は、60%以上が好ましく、75%以上がより好ましく、90%以上がさらに好ましく、100%が最も好ましい。例えば、ポリイミド樹脂からなる微多孔膜が好ましい。セパレータの形態としては、微多孔膜の他、織布、不織布であってもよい。また、ポリイミド製微多孔膜とポリエチレンを主成分とするポリオレフィン製微多孔膜を貼り合わせたセパレータでもよく、このようなものはシャットダウン機能が求められる電池用途に用いることができる。ただ、リチウム含有ポリアニオン金属複合化合物を含有している正極を用いる場合など、シャットダウン機能を必要としない電池用途においては、ポリイミド成分の比率が低減する原因となるため、ポリイミド製微多孔膜とポリオレフィン製微多孔膜を貼り合わせたセパレータを用いないことが、本発明の効果の点で好ましい。ポリイミド成分を含有するポリマーアロイからなる微多孔膜、織布、不織布でも良いが、ポリイミド樹脂は軟化点が高いため、他のポリマー成分とのブレンドは必ずしも容易ではない。本発明におけるポリイミドとしては、芳香族ポリイミドが好ましい。   As a separator containing a polyimide used for the battery of the present invention, a separator containing another polymer component together with a polyimide component can be used, but a higher ratio of the polyimide component is preferable from the viewpoint of the effect of the present invention. Specifically, the ratio of the polyimide component is preferably 60% or more, more preferably 75% or more, still more preferably 90% or more, and most preferably 100%. For example, a microporous film made of polyimide resin is preferable. As a form of the separator, a woven fabric or a non-woven fabric may be used in addition to the microporous membrane. Moreover, the separator which bonded together the microporous film made from a polyimide, and the microporous film made from polyolefin which has polyethylene as a main component may be used, and such a thing can be used for the battery use as which a shutdown function is calculated | required. However, in battery applications that do not require a shutdown function, such as when using a positive electrode that contains a lithium-containing polyanion metal composite compound, the ratio of the polyimide component is reduced. In view of the effects of the present invention, it is preferable not to use a separator to which a microporous film is bonded. A microporous film made of a polymer alloy containing a polyimide component, a woven fabric, or a non-woven fabric may be used. However, since a polyimide resin has a high softening point, blending with other polymer components is not always easy. The polyimide in the present invention is preferably an aromatic polyimide.

非水電解質電池用セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the non-aqueous electrolyte battery separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.

セパレータの平均孔径は、電極間のショート(短絡)が防止できる程度に小さく、正極と負極との間の電気抵抗が高くなりすぎない程度に大きいのが好ましいことから、0.01μm〜5μmであることが好ましい。平均孔径が5μmを超えると、正極活物質微粒子と負極活物質微粒子との接触による微小短絡が起こりやすく、0.01μmより少ないと、正極と負極との間の電気抵抗が高くなることによって電池特性が低下する傾向となる。このように、微小短絡を回避するために、セパレータの平均孔径は、0.01μm〜5μmであることが好ましく、より好ましくは0.01μm〜1μm、さらに好ましくは0.05μm〜0.1μmである。   The average pore diameter of the separator is 0.01 μm to 5 μm because it is preferably small enough to prevent short-circuiting between the electrodes and large so that the electrical resistance between the positive electrode and the negative electrode does not become too high. It is preferable. When the average pore diameter exceeds 5 μm, micro short-circuiting is likely to occur due to contact between the positive electrode active material fine particles and the negative electrode active material fine particles. Tends to decrease. Thus, in order to avoid a minute short circuit, the average pore diameter of the separator is preferably 0.01 μm to 5 μm, more preferably 0.01 μm to 1 μm, and still more preferably 0.05 μm to 0.1 μm. .

セパレータは、厚みが30μm以下のシート状多孔性基材を好適に使用でき、シート状多孔性基材の表面から裏面への透気度は、好ましくは20秒/100ml〜500秒/100ml、より好ましくは40秒/100ml〜200秒/100ml、さらに好ましくは50秒/100ml〜150秒/100mlである。透気度が20秒/100mlより少ないと正極活物質微粒子と負極活物質微粒子との接触による微小短絡が起こりやすく、500秒/100mlを超えると正極と負極との間の電気抵抗が高くなることで電池特性が低下する傾向となる。   As the separator, a sheet-like porous substrate having a thickness of 30 μm or less can be suitably used, and the air permeability from the front surface to the back surface of the sheet-like porous substrate is preferably 20 seconds / 100 ml to 500 seconds / 100 ml, It is preferably 40 seconds / 100 ml to 200 seconds / 100 ml, more preferably 50 seconds / 100 ml to 150 seconds / 100 ml. When the air permeability is less than 20 seconds / 100 ml, a micro short-circuit is likely to occur due to contact between the positive electrode active material fine particles and the negative electrode active material fine particles. As a result, battery characteristics tend to deteriorate.

本発明における非水電解質電池用セパレータの形状としては、微多孔膜や不織布、織布等を、単独あるいは併用することが好ましい。   As the shape of the separator for a nonaqueous electrolyte battery in the present invention, it is preferable to use a microporous membrane, a nonwoven fabric, a woven fabric or the like alone or in combination.

本発明に係る非水電解質電池が備える正極に用いることのできる正極活物質としては、限定されるものではないが、電池の安全性を飛躍的に向上させることができることから、リチウム含有ポリアニオン金属複合化合物を主要構成成分とすることが好ましく、例えば、LiFePO、LiCoPO、LiVOPO、LiVPOF、LiMnPO、LiMnFe1−xPO、LiNiVO、LiCoVO、Li(PO、LiFeP、LiFe(PO、LiCoSiO、LiMnSiO、LiFeSiO、LiTePO等)などが挙げられる。これらは単独で用いてもよく、2種以上混合して用いてもよい。なお、これらのリチウム含有ポリアニオン金属複合化合物にも、種々の酸化物、硫化物等を用いることができる。例えば、二酸化マンガン(MnO)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLiMn又はLiMnO)、リチウムニッケル複合酸化物(例えばLiNiO)、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケルコバルト複合酸化物(例えばLiNi1−yCo)、リチウムニッケルコバルトマンガン複合酸化物(LiNiCoMn1−y−z)、スピネル型リチウムマンガンニッケル複合酸化物(LiMn2−yNi)、硫酸鉄(Fe(SO)、バナジウム酸化物(例えばV)などが挙げられる。また、ポリアニリンやポリピロールなどの導電性ポリマー材料、ジスルフィド系ポリマー材料、イオウ(S)、フッ化カーボンなどの有機材料及び無機材料も挙げられる。これらは単独で用いてもよく、2種以上混合して用いてもよい。 The positive electrode active material that can be used for the positive electrode included in the nonaqueous electrolyte battery according to the present invention is not limited, but can significantly improve the safety of the battery. The compound is preferably a main constituent component, for example, LiFePO 4 , LiCoPO 4 , LiVOPO 4 , LiVPO 4 F, LiMnPO 4 , LiMn x Fe 1-x PO 4 , LiNiVO 4 , LiCoVO 4 , Li 3 V 2 (PO 4 ) 3 , LiFeP 2 O 7 , Li 3 Fe 2 (PO 4 ) 3 , Li 2 CoSiO 4 , Li 2 MnSiO 4 , Li 2 FeSiO 4 , LiTePO 4, etc.). These may be used alone or in combination of two or more. Various oxides and sulfides can be used for these lithium-containing polyanion metal composite compounds. For example, manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (eg, Li x Mn 2 O 4 or Li x MnO 2 ), lithium nickel composite oxide (eg, Li x NiO 2 ) , Lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel cobalt composite oxide (for example, LiNi 1-y Co y O 2 ), lithium nickel cobalt manganese composite oxide (LiNi x Co y Mn 1-yz O) 2), spinel type lithium-manganese-nickel composite oxide (Li x Mn 2-y Ni y O 4), iron sulfate (Fe 2 (SO 4), and the like 3), vanadium oxide (e.g. V 2 O 5) . Further, conductive polymer materials such as polyaniline and polypyrrole, disulfide-based polymer materials, organic materials such as sulfur (S) and carbon fluoride, and inorganic materials are also included. These may be used alone or in combination of two or more.

以下、本発明のさらなる詳細を実施例により説明するが、本発明はこれらの記述に限定されるものではない。   Hereinafter, although the further detail of this invention is demonstrated by an Example, this invention is not limited to these description.

(本発明電池)
本発明電池における非水電解質電池の断面図を図1に示す。
(Invention battery)
A cross-sectional view of a nonaqueous electrolyte battery in the battery of the present invention is shown in FIG.

本発明におけるリチウム電池は、正極1、負極2、及びセパレータ3からなる極群4と、非水電解質と、金属樹脂複合フィルム5から構成されている。正極1は、正極合剤11が正極集電体12上に塗布されてなる。また、負極2は、負極合剤21が負極集電体22上に塗布されてなる。非水電解質は極群4に含浸されている。金属樹脂複合フィルム5は、極群4を覆い、その四方を熱溶着により封止されている。   The lithium battery in the present invention includes a pole group 4 including a positive electrode 1, a negative electrode 2, and a separator 3, a nonaqueous electrolyte, and a metal resin composite film 5. The positive electrode 1 is formed by applying a positive electrode mixture 11 on a positive electrode current collector 12. The negative electrode 2 is formed by applying a negative electrode mixture 21 on a negative electrode current collector 22. The nonaqueous electrolyte is impregnated in the pole group 4. The metal resin composite film 5 covers the pole group 4 and is sealed on all four sides by heat welding.

次に、上記構成の電池の製造方法を説明する。   Next, a method for manufacturing the battery having the above configuration will be described.

正極1は次のようにして得た。正極活物質であるLiFePOと、導電剤であるアセチレンブラックと、結着剤であるポリフッ化ビニリデンとを含有し、N−メチル−2−ピロリドンを溶媒とするペーストをアルミ箔からなる正極集電体12の片面に塗布した後、乾燥し、正極合剤11の厚みが0.1mmとなるようにプレスした。以上の工程により正極1を得た。 The positive electrode 1 was obtained as follows. A positive electrode current collector made of an aluminum foil made of a paste containing LiFePO 4 as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder, and using N-methyl-2-pyrrolidone as a solvent. After apply | coating to the single side | surface of the body 12, it dried and pressed so that the thickness of the positive mix 11 might be set to 0.1 mm. The positive electrode 1 was obtained by the above process.

また、負極2は、次のようにして得た。負極活物質であるグラファイトと、結着剤であるポリフッ化ビニリデンとを含有し、N−メチル−2−ピロリドンを溶媒とするペーストを銅箔からなる負極集電体22の片面に塗布した後、乾燥し、負極合剤21厚みが0.1mmとなるようにプレスした。以上の工程により負極2を得た。   Moreover, the negative electrode 2 was obtained as follows. After applying a paste containing negative electrode active material graphite and polyvinylidene fluoride as binder and using N-methyl-2-pyrrolidone as a solvent to one side of negative electrode current collector 22 made of copper foil, It dried and pressed so that the negative mix 21 thickness might be set to 0.1 mm. The negative electrode 2 was obtained by the above process.

セパレータ3にはポリイミド製微多孔膜(厚さ25μm、開孔率50%)を用いた。   As the separator 3, a polyimide microporous film (thickness: 25 μm, porosity: 50%) was used.

極群4は、正極合剤11と負極合剤21とを対向させ、その間にセパレータ3を配し、正極1、セパレータ3、負極2の順に積層することにより、構成した。   The pole group 4 was configured by facing the positive electrode mixture 11 and the negative electrode mixture 21, placing the separator 3 therebetween, and laminating the positive electrode 1, the separator 3, and the negative electrode 2 in this order.

非水電解質は、エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒(比重1.258)1リットルに、前記混合溶媒に対してさらにフッ素化炭酸エステル化合物としてジ(1,1,1−トリフルオロエチル)カーボネートを3重量%、ビニレンカーボネートを2重量%混合し、さらに1モルのLiPFを溶解させることにより得た。これを電解質a1とする。 The non-aqueous electrolyte was mixed with 1 liter of a mixed solvent (specific gravity 1.258) in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1, and di (1,2) as a fluorinated carbonate compound with respect to the mixed solvent. It was obtained by mixing 3% by weight of 1,1-trifluoroethyl) carbonate and 2% by weight of vinylene carbonate and further dissolving 1 mol of LiPF 6 . This is designated as electrolyte a1.

次に、非水電解質中に極群4を浸漬させることにより、極群4に非水電解質を含浸させ、た。さらに、金属樹脂複合フィルム5で極群4を覆い、その四方を熱溶着により封止した。   Next, the electrode group 4 was impregnated with the non-aqueous electrolyte by immersing the electrode group 4 in the non-aqueous electrolyte. Furthermore, the pole group 4 was covered with the metal resin composite film 5, and the four sides were sealed by heat welding.

以上の製法により得られた非水電解質電池を本発明電池A1とする。なお、本発明電池A1の設計容量は、10mAhである。   The nonaqueous electrolyte battery obtained by the above production method is referred to as the present invention battery A1. The design capacity of the battery A1 of the present invention is 10 mAh.

非水電解質として、エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒1リットルに、前記混合溶媒に対してさらにフッ素化炭酸エステル化合物としてジ(1,1,1−トリフルオロエチル)カーボネートを5重量%、ビニレンカーボネートを2重量%混合し、さらに1モルのLiPFを溶解させたもの(電解質a2)を用いた以外は、本発明電池A1と同一の原料及び製法により、容量10mAhの非水電解質電池を作製し、本発明電池A2とした。 As a non-aqueous electrolyte, 1 liter of a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1, and di (1,1,1-trifluoro) as a fluorinated carbonate compound with respect to the mixed solvent. Except for using 5% by weight of ethyl) carbonate and 2% by weight of vinylene carbonate and further dissolving 1 mol of LiPF 6 (electrolyte a2), the same raw materials and production method as in the present invention battery A1, A non-aqueous electrolyte battery having a capacity of 10 mAh was produced and designated as a battery A2 of the present invention.

非水電解質として、エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒1リットルに、前記混合溶媒に対してさらにフッ素化炭酸エステル化合物としてジ(1,1,1−トリフルオロエチル)カーボネートを20重量%、ビニレンカーボネートを2重量%混合し、さらに1モルのLiPFを溶解させたもの(電解質a3)を用いた以外は、本発明電池A1と同一の原料及び製法により、容量10mAhの非水電解質電池を作製し、本発明電池A3とした。 As a non-aqueous electrolyte, 1 liter of a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1, and di (1,1,1-trifluoro) as a fluorinated carbonate compound with respect to the mixed solvent. Ethyl) 20% by weight of carbonate, 2% by weight of vinylene carbonate, and 1 mol of LiPF 6 dissolved (electrolyte a3) were used, except for using the same raw materials and production method as in the present invention battery A1, A non-aqueous electrolyte battery having a capacity of 10 mAh was produced and designated as a battery A3 of the present invention.

非水電解質として、エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒1リットルに、前記混合溶媒に対してさらにフッ素化炭酸エステル化合物としてジ(1,1,1−トリフルオロエチル)カーボネートを50重量%、ビニレンカーボネートを2重量%混合し、さらに1モルのLiPFを溶解させたもの(電解質a4)を用いた以外は、本発明電池A1と同一の原料及び製法により、設計容量10mAhの非水電解質電池を作製し、本発明電池A4とした。 As a non-aqueous electrolyte, 1 liter of a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1, and di (1,1,1-trifluoro) as a fluorinated carbonate compound with respect to the mixed solvent. Except for using 50% by weight of ethyl) carbonate and 2% by weight of vinylene carbonate and further dissolving 1 mol of LiPF 6 (electrolyte a4), the same raw materials and production method as in the present invention battery A1, A non-aqueous electrolyte battery having a design capacity of 10 mAh was produced and designated as the present invention battery A4.

非水電解質として、エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒1リットルに、前記混合溶媒に対してさらにフッ素化炭酸エステル化合物として(1,1,1−トリフルオロエチル)メチルカーボネートを20重量%、ビニレンカーボネートを2重量%混合し、さらに1モルのLiPFを溶解させたもの(電解質b)を用いた以外は、本発明電池A1と同一の原料及び製法により、設計容量10mAhの非水電解質電池を作製し、本発明電池Bとした。 As a non-aqueous electrolyte, 1 liter of a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was further mixed with (1,1,1-trifluoroethyl) as a fluorinated carbonate compound with respect to the mixed solvent. ) Except for using 20 wt% methyl carbonate, 2 wt% vinylene carbonate, and further dissolving 1 mol of LiPF 6 (electrolyte b), the same raw materials and production method as in the present invention battery A1, A non-aqueous electrolyte battery having a design capacity of 10 mAh was produced and designated as a battery B of the present invention.

非水電解質として、エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒1リットルに、前記混合溶媒に対してさらにフッ素化炭酸エステル化合物としてジ(1,1−ジフルオロエチル)カーボネートを20重量%、ビニレンカーボネートを2重量%混合し、さらに1モルのLiPFを溶解させたもの(電解質c)を用いた以外は、本発明電池A1と同一の原料及び製法により、設計容量10mAhの非水電解質電池を作製し、本発明電池Cとした。 As a non-aqueous electrolyte, 1 liter of a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1, and di (1,1-difluoroethyl) carbonate as a fluorinated carbonate compound with respect to the mixed solvent. 20% by weight, vinylene carbonate 2% by weight, and 1 mol of LiPF 6 dissolved (electrolyte c) was used. A non-aqueous electrolyte battery was produced and designated as the battery C of the present invention.

非水電解質として、エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒1リットルに、前記混合溶媒に対してさらにフッ素化炭酸エステル化合物としてジ(1,1,2,2−テトラフルオロプロピル)カーボネートを20重量%、ビニレンカーボネートを2重量%混合し、さらに1モルのLiPFを溶解させたもの(電解質d)を用いた以外は、本発明電池A1と同一の原料及び製法により、設計容量10mAhの非水電解質電池を作製し、本発明電池Dとした。 As a nonaqueous electrolyte, 1 liter of a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was further mixed with di (1,1,2,2-) as a fluorinated carbonate compound with respect to the mixed solvent. Tetrafluoropropyl) carbonate 20 wt%, vinylene carbonate 2 wt% mixed, and 1 mol of LiPF 6 dissolved (electrolyte d) was used, except for using the same raw material and manufacturing method as the present invention battery A1 Thus, a non-aqueous electrolyte battery having a design capacity of 10 mAh was produced, and this battery D was obtained.

(比較電池)
フッ素化炭酸エステル化合物を含有しない非水電解質として、エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒1リットルに、ビニレンカーボネートを2重量%混合し、さらに1モルのLiPFを溶解させたもの(電解質e)を用いた以外は、本発明電池A1と同一の原料及び製法により、設計容量10mAhの非水電解質電池を作製し、比較電池Eとした。
(Comparison battery)
As a non-aqueous electrolyte containing no fluorinated carbonate compound, 2% by weight of vinylene carbonate was mixed with 1 liter of a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1, and 1 mol of LiPF 6 was further mixed. A non-aqueous electrolyte battery having a design capacity of 10 mAh was produced as a comparative battery E using the same raw materials and production method as in the battery A1 of the present invention, except that a solution in which the electrolyte was dissolved (electrolyte e) was used.

セパレータとして、ポリエチレン製微多孔膜(厚さ25μm、開孔率50%)を用いたた以外は、本発明電池A3と同一の原料及び製法により、設計容量10mAhの非水電解質電池を作製し、比較電池Fとした。   A non-aqueous electrolyte battery with a design capacity of 10 mAh was produced by the same raw material and production method as the battery A3 of the present invention, except that a polyethylene microporous membrane (thickness 25 μm, porosity 50%) was used as a separator. A comparative battery F was obtained.

非水電解質として、電解質eを用いた以外は、比較電池Fと同一の原料及び製法により、設計容量10mAhの非水電解質電池を作製し、比較電池Gとした。   A non-aqueous electrolyte battery having a design capacity of 10 mAh was produced as a comparative battery G using the same raw materials and manufacturing method as those of the comparative battery F except that the electrolyte e was used as the non-aqueous electrolyte.

(電解質塩燃焼性試験)
まず、非水電解質(電解質a1〜a4、b〜e)について、電解質燃焼性試験を行った。時計皿に各電解質を5ml取り、アルコールランプの火を10秒間近づけて着火・燃焼の有無を確認した。結果を表1に示す。表1に示すように、比較電池E及びGに用いた電解質eは燃焼性を有した。これに対して本発明電池A1〜4、B、C、D及び比較電池Fに用いた電解質a〜dは自己消火性又は難燃性を示し、高い安全性を有することが確認された。
(Electrolytic salt flammability test)
First, an electrolyte flammability test was performed on the nonaqueous electrolytes (electrolytes a1 to a4 and be). 5 ml of each electrolyte was taken on a watch glass, and the presence of ignition / combustion was confirmed by bringing the fire of an alcohol lamp closer to 10 seconds. The results are shown in Table 1. As shown in Table 1, the electrolyte e used for the comparative batteries E and G had combustibility. In contrast, the electrolytes a to d used in the batteries A1 to B, B, C, and D of the present invention and the comparative battery F exhibited self-extinguishing properties or flame retardancy, and were confirmed to have high safety.

本願明細書において、難燃性とは、炎にさらしても燃えることがない性質をいう。また、自己消化性とは、炎にさらされる間は燃えるが、炎を離すと少なくとも2,3秒以内には消火する性質をいう。   In this specification, flame retardancy refers to the property of not burning even when exposed to flame. Self-extinguishing refers to the property of burning while exposed to a flame but extinguishing within at least a few seconds when the flame is released.

(セパレータ燃焼性試験)
次に、本発明電池A1〜A4、B、C、D及び比較電池Eのセパレータに用いたポリイミド製微多孔膜と比較電池F、Gのセパレータに用いたポリエチレン製微多孔膜について、セパレータ燃焼性試験を行った。金網にガラスフィルターを敷いた上に各セパレータを1g取り、カセットコンロにて加熱して着火・燃焼の有無を確認した。その結果、比較電池F及びGに用いたポリエチレン製微多孔膜をカセットコンロの炎にかざすと、溶解した後燃焼が観察されたのに対し、本発明電池A1〜4、B、C、D及び比較電池Eに用いたポリイミド製微多孔膜をカセットコンロの炎にかざしても、燃焼が観察されなかった。また、両者のセパレータ片をガラス管付きゴム栓を取り付けた試験管の底に入れ、該試験管の底をガスバーナーで加熱すると共に、ガラス管の出口に別のガスバーナーの炎を近付けることにより、熱分解ガスが燃焼性を示すか否かについて試験を行ったところ、前記ポリエチレン製微多孔膜については熱分解ガスに着火して燃焼が継続したのに対し、前記ポリイミド製微多孔膜については熱分解ガスに一瞬着火したように見えたがすぐに消火した。このことから、ポリイミド製微多孔膜が難燃性を示し、高い安全性を有することが確認された。
(Separator flammability test)
Next, separator combustibility of the microporous membrane made of polyimide used for the separators of the inventive batteries A1 to A4, B, C, D and the comparative battery E and the microporous membrane made of polyethylene used for the separators of the comparative batteries F and G A test was conducted. 1 g of each separator was taken on a wire mesh with a glass filter and heated with a cassette stove to check for ignition and combustion. As a result, when the polyethylene microporous film used for the comparative batteries F and G was held over the flame of the cassette stove, combustion was observed after melting, whereas the present batteries A1 to B, B, C, D, and Combustion was not observed when the polyimide microporous film used for Comparative Battery E was held over the flame of a cassette stove. Moreover, by putting both separator pieces into the bottom of a test tube equipped with a rubber stopper with a glass tube, heating the bottom of the test tube with a gas burner, and bringing the flame of another gas burner close to the outlet of the glass tube When the pyrolysis gas was tested for flammability, the polyethylene microporous membrane ignited the pyrolysis gas and continued combustion, whereas the polyimide microporous membrane The pyrolysis gas seemed to ignite for a moment, but immediately extinguished. From this, it was confirmed that the polyimide microporous film exhibits flame retardancy and has high safety.

(電池性能試験)
さらに、本発明電池A1〜A4、B、C、D及び比較電池E、F、Gについて、初期放電容量、高率放電容量の測定を行った。初期放電容量は、20℃において、電流10mA、終止電圧3.7Vの定電流定電圧充電した後、20℃において、電流2mA、終止電圧2.0Vの定電流放電を行い、このときの放電容量を「初期放電容量(mAh)」とした。次に、20℃において、電流10mA、終止電圧3.7Vの定電流定電圧充電した後、20℃において、電流30mA、終止電圧2.0Vの定電流放電をおこない、このときの放電容量を「高率放電容量(mAh)」とした。また、同一のセパレータを用いたフッ素化炭酸エステル化合物を混合していない非水電解質電池の高率放電容量に対する、フッ素化炭酸エステル化合物を混合した非水電解質電池の高率放電容量の向上率を「高率放電容量向上率(%)」とした。以上の結果をまとめて表2に示す。
(Battery performance test)
Furthermore, the initial discharge capacity and the high-rate discharge capacity were measured for the inventive batteries A1 to A4, B, C, D and the comparative batteries E, F, G. The initial discharge capacity is a constant current constant voltage charge at 20 ° C. with a current of 10 mA and a final voltage of 3.7 V, and then at 20 ° C., a constant current discharge with a current of 2 mA and a final voltage of 2.0 V is performed. Was defined as “initial discharge capacity (mAh)”. Next, after charging at a constant current and a constant voltage with a current of 10 mA and a final voltage of 3.7 V at 20 ° C., a constant current discharge with a current of 30 mA and a final voltage of 2.0 V was performed at 20 ° C., and the discharge capacity at this time was expressed as “ High rate discharge capacity (mAh) ". In addition, the improvement rate of the high rate discharge capacity of the nonaqueous electrolyte battery mixed with the fluorinated carbonate compound to the high rate discharge capacity of the nonaqueous electrolyte battery not mixed with the fluorinated carbonate compound using the same separator. “High rate discharge capacity improvement rate (%)”. The above results are summarized in Table 2.

前記電解質塩燃焼性試験及びセパレータ燃焼性試験の結果から、自己消火性又は難燃性を示す電解質とセパレータとの組み合わせとなる本発明電池A1〜4、B、C、Dは、広い温度範囲で優れた難燃性を有する「燃えない電池」とすることが可能となる。   From the results of the electrolyte salt flammability test and the separator flammability test, the present invention batteries A1 to B, B, C, and D, which are combinations of the self-extinguishing or flame retardant electrolyte and the separator, are in a wide temperature range. A “non-burning battery” having excellent flame retardancy can be obtained.

また、表2に示すように、本発明電池A1〜4、B、C、Dは、比較電池Eと比較して、同等の初期放電容量が得られるだけでなく、高率放電容量が優れていることが確認された。ここで特筆すべきは、本発明電池A3と比較電池E間、比較電池FとG間を比較すると、ポリエチレン製微多孔膜をセパレータに用いた比較電池Gに対する比較電池Fの高率放電容量向上率と比較して、ポリイミド製微多孔膜をセパレータに用いた比較電池Eに対する本発明電池A3の高率放電容量向上率の方が良好であることが確認された。従って、ポリイミド製微多孔膜からなるセパレータと、フッ素化炭酸エステル化合物を含有している電解質との組み合わせとなる本発明電池A1〜4、B、C、Dは、特に良好な高率放電特性を有することが確認された。   In addition, as shown in Table 2, the batteries A1 to 4, B, C, and D of the present invention have not only the same initial discharge capacity as the comparison battery E, but also excellent high-rate discharge capacity. It was confirmed that Here, it should be noted that when the battery A3 of the present invention is compared with the comparative battery E and between the comparative batteries F and G, the high rate discharge capacity of the comparative battery F with respect to the comparative battery G using the polyethylene microporous membrane as a separator is improved It was confirmed that the high rate discharge capacity improvement rate of the battery A3 of the present invention relative to the comparative battery E using the polyimide microporous membrane as a separator was better than the rate. Therefore, the present invention batteries A1 to A4, B, C, and D, which are a combination of a separator made of a microporous membrane made of polyimide and an electrolyte containing a fluorinated carbonate compound, have particularly good high rate discharge characteristics. It was confirmed to have.

よって、本発明電池A1〜4、B、C、Dは、比較電池E、F、G、Hと比較して、難燃性と良好な高率放電特性とを兼ね備える非水電解質電池であることが確認された。   Therefore, the present invention batteries A1 to A4, B, C, and D are non-aqueous electrolyte batteries that have both flame retardancy and good high rate discharge characteristics as compared with comparative batteries E, F, G, and H. Was confirmed.

また、特に優れた難燃性と高率放電特性とを兼ね備える非水電解質電池とするためには、本発明電池A1〜A4間の比較により、フッ素化炭酸エステル化合物の含有量は5重量%以上が好ましいことが確認された。   In addition, in order to obtain a non-aqueous electrolyte battery having particularly excellent flame retardancy and high rate discharge characteristics, the content of the fluorinated carbonate compound is 5% by weight or more by comparison between the batteries A1 to A4 of the present invention. Was confirmed to be preferable.

なお、さらに優れた難燃性を有する非水電解質電池とするためには、熱的安定性に優れ、高温においても分解して酸素を放出しないリチウム含有ポリアニオン金属複合化合物を、正極活物質として用いることが特に好ましい。本実施例では、正極活物質としてLiFePOを用いたが、LiMnPO等のその他のリチウム含有ポリアニオン金属複合化合物でも同様の効果が得られる。 In order to obtain a non-aqueous electrolyte battery having further excellent flame retardancy, a lithium-containing polyanion metal composite compound that is excellent in thermal stability and does not decompose and release oxygen even at high temperatures is used as a positive electrode active material. It is particularly preferred. In this example, LiFePO 4 was used as the positive electrode active material, but the same effect can be obtained with other lithium-containing polyanion metal composite compounds such as LiMnPO 4 .

本発明の非水電解質電池の断面図である。It is sectional drawing of the nonaqueous electrolyte battery of this invention.

符号の説明Explanation of symbols

1 正極
11 正極合剤
12 正極集電体
2 負極合剤
21 負極合剤
22 負極集電体
3 セパレータ
4 極群
5 金属樹脂複合フィルム
DESCRIPTION OF SYMBOLS 1 Positive electrode 11 Positive electrode mixture 12 Positive electrode collector 2 Negative electrode mixture 21 Negative electrode mixture 22 Negative electrode collector 3 Separator 4 Electrode group 5 Metal resin composite film

Claims (3)

正極、負極、セパレータ及び非水電解質を備える非水電解質電池において、前記セパレータはポリイミドを含有し、且つ、前記非水電解質はフッ素化炭酸エステル化合物を含有していることを特徴とする非水電解質電池。 A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the separator contains a polyimide, and the non-aqueous electrolyte contains a fluorinated carbonate compound. battery. 前記フッ素化炭酸エステル化合物の含有量が、非水電解質の全重量に対し、5重量%以上であることを特徴とする請求項1記載の非水電解質電池。 The nonaqueous electrolyte battery according to claim 1, wherein the content of the fluorinated carbonate compound is 5% by weight or more based on the total weight of the nonaqueous electrolyte. 前記正極は、リチウム含有ポリアニオン金属複合化合物を含有していることを特徴とする請求項1又は2記載の非水電解質電池。 The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode contains a lithium-containing polyanion metal composite compound.
JP2008111871A 2008-04-22 2008-04-22 Non-aqueous electrolyte battery Active JP5262266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111871A JP5262266B2 (en) 2008-04-22 2008-04-22 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111871A JP5262266B2 (en) 2008-04-22 2008-04-22 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2009266438A true JP2009266438A (en) 2009-11-12
JP5262266B2 JP5262266B2 (en) 2013-08-14

Family

ID=41392036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111871A Active JP5262266B2 (en) 2008-04-22 2008-04-22 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP5262266B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151037A (en) * 2011-01-20 2012-08-09 Kanto Denka Kogyo Co Ltd Positive electrode active material and method for producing the same
EP2575199A1 (en) * 2011-09-30 2013-04-03 Fuji Jukogyo Kabushiki Kaisha Lithium-ion secondary battery
WO2014067891A1 (en) * 2012-10-30 2014-05-08 Basf Se Lithium-ion secondary battery comprising lithium cobalt phosphate as cathode active material
JP2014517507A (en) * 2011-04-29 2014-07-17 シェンジェン ハイフューチャー エレクトリック カンパニー リミテッド Polyimide capacitor battery and manufacturing method thereof
CN105377807A (en) * 2013-07-09 2016-03-02 索尔维公司 Fluorinated carbonates comprising double bond-containing groups, methods for their manufacture and uses thereof
US11239462B2 (en) 2016-07-29 2022-02-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
WO2022113855A1 (en) * 2020-11-30 2022-06-02 パナソニックIpマネジメント株式会社 Secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116630A (en) * 1996-10-15 1998-05-06 Toray Ind Inc Non-aqueous electrolyte secondary battery
JP2000294229A (en) * 1999-04-08 2000-10-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JP2000306568A (en) * 1999-04-23 2000-11-02 Ube Ind Ltd Porous film and battery separator used therewith
JP2003036884A (en) * 2001-07-19 2003-02-07 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2007214031A (en) * 2006-02-10 2007-08-23 Gs Yuasa Corporation:Kk Method of manufacturing positive electrode active material, and battery using it
JP2007250415A (en) * 2006-03-17 2007-09-27 Mitsui Chemicals Inc Nonaqueous electrolyte solution and lithium secondary battery using the same
JP2007287677A (en) * 2006-03-24 2007-11-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007305352A (en) * 2006-05-10 2007-11-22 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2007335331A (en) * 2006-06-16 2007-12-27 Sony Corp Positive electrode active material and its manufacturing method, positive electrode, its manufacturing method, and secondary battery
JP2007335406A (en) * 2006-05-19 2007-12-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116630A (en) * 1996-10-15 1998-05-06 Toray Ind Inc Non-aqueous electrolyte secondary battery
JP2000294229A (en) * 1999-04-08 2000-10-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JP2000306568A (en) * 1999-04-23 2000-11-02 Ube Ind Ltd Porous film and battery separator used therewith
JP2003036884A (en) * 2001-07-19 2003-02-07 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2007214031A (en) * 2006-02-10 2007-08-23 Gs Yuasa Corporation:Kk Method of manufacturing positive electrode active material, and battery using it
JP2007250415A (en) * 2006-03-17 2007-09-27 Mitsui Chemicals Inc Nonaqueous electrolyte solution and lithium secondary battery using the same
JP2007287677A (en) * 2006-03-24 2007-11-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007305352A (en) * 2006-05-10 2007-11-22 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2007335406A (en) * 2006-05-19 2007-12-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007335331A (en) * 2006-06-16 2007-12-27 Sony Corp Positive electrode active material and its manufacturing method, positive electrode, its manufacturing method, and secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151037A (en) * 2011-01-20 2012-08-09 Kanto Denka Kogyo Co Ltd Positive electrode active material and method for producing the same
JP2014517507A (en) * 2011-04-29 2014-07-17 シェンジェン ハイフューチャー エレクトリック カンパニー リミテッド Polyimide capacitor battery and manufacturing method thereof
EP2575199A1 (en) * 2011-09-30 2013-04-03 Fuji Jukogyo Kabushiki Kaisha Lithium-ion secondary battery
WO2014067891A1 (en) * 2012-10-30 2014-05-08 Basf Se Lithium-ion secondary battery comprising lithium cobalt phosphate as cathode active material
CN105377807A (en) * 2013-07-09 2016-03-02 索尔维公司 Fluorinated carbonates comprising double bond-containing groups, methods for their manufacture and uses thereof
US20160145190A1 (en) * 2013-07-09 2016-05-26 Solvay Sa Fluorinated carbonates comprising double bond-containing groups, methods for their manufacture and uses thereof
US11239462B2 (en) 2016-07-29 2022-02-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
WO2022113855A1 (en) * 2020-11-30 2022-06-02 パナソニックIpマネジメント株式会社 Secondary battery

Also Published As

Publication number Publication date
JP5262266B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5258353B2 (en) Nonaqueous electrolyte secondary battery
JP5092416B2 (en) Nonaqueous electrolyte secondary battery
JP5314885B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same
KR102379224B1 (en) Nonaqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising the same
WO2013051634A1 (en) Non-aqueous electrolyte and battery
WO2006038614A1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
WO2013051635A1 (en) Battery and non-aqueous electrolyte
JP2009176534A (en) Non-aqueous electrolyte secondary battery
JP5262266B2 (en) Non-aqueous electrolyte battery
WO2012011507A1 (en) Non-aqueous electrolyte for secondary batteries, and secondary battery
EP3346540B1 (en) Flame-resistant electrolyte for secondary cell, and secondary cell including said electrolyte
JP5050404B2 (en) Non-aqueous electrolyte secondary battery
JP2009140641A (en) Nonaqueous electrolyte, gel electrolyte, and secondary battery using the same
JP5360463B2 (en) Non-aqueous electrolyte secondary battery
JP2010205474A (en) Nonaqueous electrolyte and lithium ion secondary battery including the same
WO2019093411A1 (en) Electrolyte exhibiting fire-extinguishing properties, and secondary battery including said electrolyte
EP3723180A1 (en) Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
US20170317383A1 (en) Lithium-ion secondary battery
JP2006286571A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP5171505B2 (en) Non-aqueous secondary battery
CN111448705B (en) Nonaqueous electrolyte solution and lithium secondary battery comprising same
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP5277044B2 (en) Non-aqueous electrolyte

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5262266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150