JP2007305352A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007305352A
JP2007305352A JP2006130950A JP2006130950A JP2007305352A JP 2007305352 A JP2007305352 A JP 2007305352A JP 2006130950 A JP2006130950 A JP 2006130950A JP 2006130950 A JP2006130950 A JP 2006130950A JP 2007305352 A JP2007305352 A JP 2007305352A
Authority
JP
Japan
Prior art keywords
carbonate
weight
secondary battery
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006130950A
Other languages
Japanese (ja)
Other versions
JP5050404B2 (en
Inventor
Yukiko Fujino
有希子 藤野
Hiroe Nakagawa
裕江 中川
Sadahiro Katayama
禎弘 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2006130950A priority Critical patent/JP5050404B2/en
Publication of JP2007305352A publication Critical patent/JP2007305352A/en
Application granted granted Critical
Publication of JP5050404B2 publication Critical patent/JP5050404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high fire retardancy of an electrolyte and excellent high rate discharge characteristics. <P>SOLUTION: In the nonaqueous electrolyte secondary battery equipped with a positive electrode, a negative electrode, and a nonaqueous electrolyte, the nonaqueous electrolyte contains a fluorinated chain carbonate compound in which a methylene group is adjoined to a carbonate group, and having -CHF<SB>2</SB>at a molecule chain end; a cyclic carbonate compound having C-C π-bonding; and a cyclic compound having S=O bonding. A ratio of the fluorinated carbonate in an electrolyte solvent is ≥20 wt.%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は非水電解液二次電池に関するもので、特に、非水電解液二次電池の非水電解液の改良に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a non-aqueous electrolyte solution of a non-aqueous electrolyte secondary battery.

近年、非水電解液二次電池は、携帯電話、PHS(簡易携帯電話)、小型コンピューター等の携帯機器類用電源、電力貯蔵用電源、電気自動車用電源として注目されている。   In recent years, non-aqueous electrolyte secondary batteries have attracted attention as power sources for portable devices such as mobile phones, PHS (simple mobile phones) and small computers, power storage power sources, and electric vehicle power sources.

非水電解液二次電池は、一般に、正極と負極と非水電解液とを備えており、正極は正極活物質を含み、負極は負極活物質を含み、非水溶媒とリチウム塩とを含有する非水電解液とから構成される。   A nonaqueous electrolyte secondary battery generally includes a positive electrode, a negative electrode, and a nonaqueous electrolyte, the positive electrode includes a positive electrode active material, the negative electrode includes a negative electrode active material, and includes a nonaqueous solvent and a lithium salt. And a non-aqueous electrolyte.

非水電解液二次電池を構成する正極活物質としてはリチウム含有遷移金属酸化物が、負極活物質としてはグラファイトに代表される炭素材料が、非水電解液としては、エチレンカーボネートを主構成成分とする非水溶媒に六フッ化リン酸リチウム(LiPF6)等の電解質を溶解したものが広く知られている。これらの非水溶媒は一般に揮発しやすく、引火性を有するため、可燃性物質に分類されるものである。 Lithium-containing transition metal oxide is used as the positive electrode active material constituting the non-aqueous electrolyte secondary battery, carbon material typified by graphite as the negative electrode active material, and ethylene carbonate as the non-aqueous electrolyte. A solution in which an electrolyte such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a nonaqueous solvent is widely known. These nonaqueous solvents are generally classified as flammable substances because they are easily volatile and have flammability.

そこで、特に電力貯蔵用電源や電気自動車用電源等の比較的大型の非水電解液二次電池の用途には、引火の恐れがないような非水電解液の使用が望まれており、難燃性を有する非水電解液を用いる技術が近年注目されている。   Therefore, the use of non-aqueous electrolytes that do not pose a risk of flammability is particularly desired for applications of relatively large non-aqueous electrolyte secondary batteries such as power storage power sources and electric vehicle power sources. In recent years, a technique using a non-aqueous electrolyte having flammability has attracted attention.

難燃性を有する非水電解液を実現するため、高引火点溶媒であり難燃性を有し電気化学的に酸化・還元を受けにくいフッ素化カーボネート化合物を添加する技術が検討され、特許文献1〜3などにおいて提案されている。   In order to realize a non-aqueous electrolyte having flame retardancy, a technology for adding a fluorinated carbonate compound, which is a high flash point solvent, flame retardancy, and is less susceptible to oxidation and reduction electrochemically, has been studied. 1-3.

また、特許文献4では、非水溶媒中に、酸化および還元に対して安定な、炭素数9以下のフッ素含有芳香族化合物、脂肪族炭化水素及びフッ素含有脂肪族炭化水素化合物からなる群から選ばれる少なくとも1種の化合物を含有することで、これらの化合物が、不飽和結合を有する環状炭酸エステル又は酸無水物並びに含硫黄有機化合物だけでは抑制不十分であった正極および負極表面の活性点に存在することにより、不飽和結合を有する環状炭酸エステル又は酸無水物、含硫黄有機化合物、及び他の電解液成分の副反応を抑制し、全体として、高温保存時の電池内部で生じる副反応を抑制し、大電流放電特性を向上させることができる非水系電解液二次電池が開示されている。   In Patent Document 4, the non-aqueous solvent is selected from the group consisting of a fluorine-containing aromatic compound having 9 or less carbon atoms, an aliphatic hydrocarbon, and a fluorine-containing aliphatic hydrocarbon compound that is stable against oxidation and reduction. By containing at least one kind of compound, these compounds become active sites on the surfaces of the positive electrode and the negative electrode, which were insufficiently suppressed only by the cyclic carbonate or acid anhydride having an unsaturated bond and the sulfur-containing organic compound. Suppresses side reactions of cyclic carbonates or acid anhydrides having unsaturated bonds, sulfur-containing organic compounds, and other electrolyte components, and as a whole, side reactions that occur inside the battery during high-temperature storage. A non-aqueous electrolyte secondary battery that can suppress and improve large current discharge characteristics is disclosed.

さらに、特許文献5では、非水溶媒中に、ビフェニル、アルキルビフェニルなどの過充電時に電池の最大動作電圧以上の電圧で反応する化合物(過充電抑制剤)を含有することで、過充電時の安全性を確保するとともに、高容量で保存特性、負荷特性及びサイクル特性の優れた電池を作製することができる非水系電解液二次電池が開示されている。   Furthermore, in patent document 5, by containing the compound (overcharge inhibitor) which reacts with the voltage more than the maximum operating voltage of a battery at the time of overcharge, such as biphenyl and alkylbiphenyl, in a nonaqueous solvent, A non-aqueous electrolyte secondary battery capable of securing a safety and producing a battery having a high capacity and excellent storage characteristics, load characteristics, and cycle characteristics is disclosed.

なお、特許文献4および5には、非水系電解液二次電池において、非水溶媒中に、不飽和結合を有する環状炭酸エステルと含硫黄有機化合物とを含有する技術が開示され、非水溶媒中の不飽和結合を有する環状炭酸エステルの含有量は0.01〜5重量%が好ましく、含硫黄有機化合物の含有量は0.01〜5重量%が好ましいこと、さらに、非水溶媒中にフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート等のフッ素化カーボネートを0.1〜5重量%含有していると、含有していない場合と比較して、容量維持特性及びサイクル特性がより良好であることが記載されている。
特開平10−116629号公報 特開平10−116630号公報 特開平11―307120号公報 特開2003−331915号公報 特開2003−338317号公報
Patent Documents 4 and 5 disclose techniques for containing a cyclic carbonate having an unsaturated bond and a sulfur-containing organic compound in a non-aqueous solvent in a non-aqueous electrolyte secondary battery. The content of the cyclic carbonate having an unsaturated bond is preferably 0.01 to 5% by weight, the content of the sulfur-containing organic compound is preferably 0.01 to 5% by weight, and further, in the non-aqueous solvent. When 0.1 to 5% by weight of fluorinated carbonate such as fluoroethylene carbonate and trifluoropropylene carbonate is contained, the capacity retention characteristics and cycle characteristics may be better than when they are not contained. Are listed.
JP-A-10-116629 JP-A-10-116630 JP-A-11-307120 JP 2003-331915 A JP 2003-338317 A

しかしながら、特許文献1〜3で提案されている非水電解液が充分な難燃性を発揮するためには、フッ素化カーボネート化合物を多量に(例えば特許文献3によれば35〜70体積%)添加する必要があるため、高率放電特性を始めとした充分な電池特性が得られないという問題点があった。また、フッ素化カーボネート化合物によっては、非水電解液を構成するリチウム塩やその他の有機溶媒との溶解性が低く、多量に添加できないため、非水電解液が充分な難燃性を発揮できないという問題点があった。   However, in order for the non-aqueous electrolyte proposed in Patent Documents 1 to 3 to exhibit sufficient flame retardancy, a large amount of fluorinated carbonate compound (for example, 35 to 70% by volume according to Patent Document 3). Since it is necessary to add, there has been a problem that sufficient battery characteristics such as high rate discharge characteristics cannot be obtained. Also, depending on the fluorinated carbonate compound, the solubility in lithium salts and other organic solvents constituting the non-aqueous electrolyte is low, and it cannot be added in a large amount, so that the non-aqueous electrolyte cannot exhibit sufficient flame retardancy. There was a problem.

また、特許文献4や特許文献5で開示された非水溶媒中にフッ素化カーボネート化合物を0.01〜5重量%含有させる技術は、電解液の難燃化を目的とするものではなく、得られる電解液が難燃性・自己消火性を示さないという問題があった。   In addition, the technique of adding 0.01 to 5% by weight of the fluorinated carbonate compound in the non-aqueous solvent disclosed in Patent Document 4 and Patent Document 5 is not intended to make the electrolyte solution flame-retardant. There was a problem that the obtained electrolyte did not exhibit flame retardancy and self-extinguishing properties.

本発明は、上記記問題点に鑑みてなされたものであり、その目的は、優れた電解液の難燃性を有し、且つ、良好な高率放電特性を有する非水電解液二次電池を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its object is a non-aqueous electrolyte secondary battery having excellent electrolyte flame retardancy and good high rate discharge characteristics. Is to provide.

上記課題を解決するため、本発明者らは、鋭意検討の結果、非水電解液を構成する非水溶媒の構成を特定のものとすることにより、驚くべきことに、優れた電解液の難燃性を有し、且つ、高いエネルギー密度と良好な高率放電特性を有する非水電解液二次電池が得られることを見出し、本発明をなすに至った。   In order to solve the above-mentioned problems, the present inventors have surprisingly made it difficult to make an excellent electrolyte solution by making a specific configuration of the non-aqueous solvent constituting the non-aqueous electrolyte solution as a result of intensive studies. The present inventors have found that a nonaqueous electrolyte secondary battery having flammability and having a high energy density and good high rate discharge characteristics can be obtained.

請求項1の発明は、正極と負極と非水電解液とを備えた非水電解液二次電池において、前記非水電解液が、カーボネート基にメチレン基が隣接し、分子鎖末端に−CHFを有するフッ素化鎖状カーボネート化合物と、炭素−炭素π結合を有する環状カーボネート化合物と、S=O結合を有する環状化合物とを含むことを特徴とする。 The invention of claim 1 is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte has a carbonate group and a methylene group adjacent to each other and —CHF at the molecular chain end. It includes a fluorinated chain carbonate compound having 2 ; a cyclic carbonate compound having a carbon-carbon π bond; and a cyclic compound having an S═O bond.

請求項1の発明によれば、非水電解液がフッ素化鎖状カーボネート化合物を含むことにより、非水電解液の引火点が上昇もしくは消滅し、非水電解液が難燃性もしくは自己消火性を示すようになる。また、フッ素化鎖状カーボネート化合物の分子鎖末端がCFHであるため、非水電解液を構成するリチウム塩やその他の有機溶媒との溶解性が高く維持できるため、フッ素化鎖状カーボネート化合物を多量に添加することが可能となり、多量に添加した場合でも良好な電池特性を維持することができ、安全性に優れ、かつ、良好な高率放電特性を有する非水電解液二次電池を提供することができる。 According to the invention of claim 1, the non-aqueous electrolyte contains a fluorinated chain carbonate compound, whereby the flash point of the non-aqueous electrolyte rises or disappears, and the non-aqueous electrolyte is flame retardant or self-extinguishing. Will come to show. In addition, since the molecular chain terminal of the fluorinated chain carbonate compound is CF 2 H, it is possible to maintain high solubility in lithium salts and other organic solvents constituting the non-aqueous electrolyte solution. A non-aqueous electrolyte secondary battery that can maintain good battery characteristics even when added in large quantities, is excellent in safety, and has good high-rate discharge characteristics. Can be provided.

さらに、炭素−炭素π結合を有するカーボネート化合物とS=O結合を有する環状化合物とを同時に含有することにより、初充電時にこれらの化合物が負極上で分解し、負極表面にリチウムイオン透過性に優れた緻密な保護被膜が形成されるため、非水電解液を構成するその他の有機溶媒の分解をより効果的に抑制できる。よって、充放電効率が高く、高いエネルギー密度と優れた高率放電特性を有する非水電解液二次電池を得ることができる。   Furthermore, by simultaneously containing a carbonate compound having a carbon-carbon π bond and a cyclic compound having an S═O bond, these compounds are decomposed on the negative electrode during the initial charge, and the lithium ion permeability is excellent on the negative electrode surface. Therefore, the decomposition of other organic solvents constituting the non-aqueous electrolyte can be more effectively suppressed. Therefore, a non-aqueous electrolyte secondary battery having high charge / discharge efficiency, high energy density, and excellent high rate discharge characteristics can be obtained.

請求項2の発明は、請求項1に記載の非水電解液二次電池において、電解液溶媒に占めるフッ素化鎖状カーボネート化合物の割合が20重量%以上であることを特徴とする。   According to a second aspect of the present invention, in the nonaqueous electrolyte secondary battery according to the first aspect, the proportion of the fluorinated chain carbonate compound in the electrolytic solution solvent is 20% by weight or more.

請求項2の発明によれば、電解液溶媒に占めるフッ素化鎖状カーボネート化合物の割合を20重量%以上とすることにより、電解液の難燃性を高め、初充電時における有機溶媒の分解をほぼ完全に抑制することができる。   According to the invention of claim 2, by setting the ratio of the fluorinated chain carbonate compound in the electrolytic solution solvent to 20% by weight or more, the flame retardancy of the electrolytic solution is increased, and the organic solvent is decomposed at the time of initial charge. It can be suppressed almost completely.

請求項3の発明は、請求項1または2に記載の非水電解液二次電池において、電解液溶媒に占める炭素−炭素π結合を有する環状カーボネート化合物とS=O結合を有する環状化合物の合計の割合が1重量%以上、20重量%以下であることを特徴とする。   The invention according to claim 3 is the nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the total of the cyclic carbonate compound having a carbon-carbon π bond and the cyclic compound having an S═O bond in the electrolyte solvent The ratio is 1% by weight or more and 20% by weight or less.

請求項3の発明によれば、電解液溶媒に占める炭素−炭素π結合を有するカーボネート化合物とS=O結合を有する環状化合物の合計の割合を1重量%以上、20重量%以下とすることにより、負極表面により緻密なリチウムイオン透過性の保護被膜が形成される。   According to the invention of claim 3, the total ratio of the carbonate compound having a carbon-carbon π bond and the cyclic compound having an S═O bond in the electrolyte solvent is 1 wt% or more and 20 wt% or less. A dense lithium ion-permeable protective coating is formed on the negative electrode surface.

本発明の非水電解液二次電池によれば、安全性に優れ、かつ、高いエネルギー密度と優れた高率放電特性を有する非水電解液二次電池を得ることができる。   According to the non-aqueous electrolyte secondary battery of the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery that is excellent in safety and has high energy density and excellent high rate discharge characteristics.

以下に、本発明の実施の形態を例示するが、本発明は、これらの記述に限定されるものではない。また、本発明の技術的構成およびその作用効果は以下の通りであるが、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。   Embodiments of the present invention are illustrated below, but the present invention is not limited to these descriptions. Moreover, although the technical structure of this invention and its effect are as follows, about an action mechanism, presumption is included and the right or wrong does not restrict | limit this invention.

本発明は、正極と負極と非水電解液とを備えた非水電解液二次電池において、前記非水電解液が、カーボネート基にメチレン基が隣接し、分子鎖末端に−CHFを有するフッ素化鎖状カーボネート化合物と、炭素−炭素π結合を有する環状カーボネート化合物と、S=O結合を有する環状化合物とを含むことを特徴とする。 The present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte has a carbonate group adjacent to a methylene group and a molecular chain terminal having —CHF 2 . It includes a fluorinated chain carbonate compound, a cyclic carbonate compound having a carbon-carbon π bond, and a cyclic compound having an S═O bond.

なお、本発明において、フッ素化鎖状カーボネート化合物は例えばつぎの一般式(1)で表される化合物である。   In the present invention, the fluorinated chain carbonate compound is, for example, a compound represented by the following general formula (1).

Figure 2007305352
なお、一般式(1)において、x、yはそれぞれ0〜2の整数であり、m、nはそれぞれ0〜7の整数とする。m、nを0〜7の整数とすることにより、電解液の粘度を低く保つことができ、良好な電池性能が得られる。また、(CF2−xおよび(CF2−yは直鎖または分岐のどちらの構造でもよい。
Figure 2007305352
In the general formula (1), x and y are each an integer of 0 to 2, and m and n are each an integer of 0 to 7. By setting m and n to integers of 0 to 7, the viscosity of the electrolytic solution can be kept low, and good battery performance can be obtained. Further, (CF x H 2−x ) m and (CF y H 2−y ) n may have a linear or branched structure.

本発明によれば、カーボネート基にメチレン基が隣接し、分子鎖末端に−CHFを有するフッ素化鎖状カーボネート化合物を用いることにより、非水電解液中に多量に添加した場合でも良好な電池特性を維持することができ、安全性に優れた非水電解液電池とすることができる。 According to the present invention, by using a fluorinated chain carbonate compound having a methylene group adjacent to a carbonate group and having —CHF 2 at the molecular chain terminal, a good battery can be obtained even when added in a large amount to a non-aqueous electrolyte. The characteristics can be maintained, and a non-aqueous electrolyte battery excellent in safety can be obtained.

さらに、非水電解液中に炭素−炭素π結合を有する環状カーボネート化合物と、S=O結合を有する環状化合物とを共に含有することにより、初充電時に、負極表面にリチウムイオン透過性の保護被膜が形成されるため、非水電解液を構成するフッ素化鎖状カーボネート化合物を始めとするその他の有機溶媒の分解を確実に抑制できるので、2サイクル目以降の充放電を充分に行うことができ、充放電効率を向上させることができる。   Furthermore, by containing both a cyclic carbonate compound having a carbon-carbon π bond and a cyclic compound having an S═O bond in the non-aqueous electrolyte, a lithium ion-permeable protective coating is formed on the negative electrode surface during initial charging. Therefore, the decomposition of other organic solvents including the fluorinated chain carbonate compound constituting the non-aqueous electrolyte can be reliably suppressed, so that the second and subsequent cycles can be sufficiently charged and discharged. The charge / discharge efficiency can be improved.

本発明に用いるフッ素化鎖状カーボネート化合物としては、例えば、ジ(2,2−ジフルオロエチル)カーボネート、ジ(2,2,3,3−テトラフルオロプルピル)カーボネート、ジ(2,2,3,3,4,4−ヘキサフルオロブチル)カーボネート、ジ(1H,1H,7H−ドデカフルオロへプチル)カーボネート、ジ(1H,1H,3H,7H−パーフルオロへプチル)カーボネート、ジ(1H,1H,9H−ヘキサデカフルオロノニル)カーボネート等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   Examples of the fluorinated chain carbonate compound used in the present invention include di (2,2-difluoroethyl) carbonate, di (2,2,3,3-tetrafluoropropyl) carbonate, di (2,2,3). , 3,4,4-hexafluorobutyl) carbonate, di (1H, 1H, 7H-dodecafluoroheptyl) carbonate, di (1H, 1H, 3H, 7H-perfluoroheptyl) carbonate, di (1H, 1H , 9H-hexadecafluorononyl) carbonate or the like, or a mixture of two or more thereof, but is not limited thereto.

こられの中も、ジ(2,2−ジフルオロエチル)カーボネート、ジ(2,2,3,3−テトラフルオロプルピル)カーボネート、ジ(2,2,3,3,4,4−ヘキサフルオロブチル)カーボネート、ジ(2,2−ジフルオロエチル)カーボネートから選択される少なくとも1種であることが特に好ましい。その理由は、これらの化合物が比較的低い粘度を有しているという特徴のため、大量に混合した場合に優れた電解質の難燃性と優れた高率放電特性とを確実に兼ね備えた非水電解液二次電池とすることができる。   Among these, di (2,2-difluoroethyl) carbonate, di (2,2,3,3-tetrafluoropropyl) carbonate, di (2,2,3,3,4,4-hexafluoro Particularly preferred is at least one selected from butyl) carbonate and di (2,2-difluoroethyl) carbonate. The reason for this is that these compounds have a relatively low viscosity, so that when mixed in large quantities, the non-aqueous solution reliably combines excellent electrolyte flame retardancy and excellent high rate discharge characteristics. It can be set as an electrolyte secondary battery.

なお、本発明における電解液溶媒に占めるフッ素化鎖状カーボネート化合物の割合は20重量%以上であることが好ましく、特に優れた電解質の難燃性と高率放電特性とを得るためには、20重量%以上50重量%以下であることがより好ましい。電解液溶媒に占めるフッ素化鎖状カーボネート化合物の割合を20重量%以上とすることによって、電解液の難燃性を確実にすることができる。なお、電解液溶媒に占めるフッ素化鎖状カーボネート化合物の割合が50重量%を越えると、リチウム塩の溶解性が低下し、電池性能が低下する恐れがある。   The ratio of the fluorinated chain carbonate compound in the electrolyte solvent in the present invention is preferably 20% by weight or more. In order to obtain particularly excellent flame retardancy and high rate discharge characteristics of the electrolyte, 20 More preferably, it is at least 50% by weight. By setting the ratio of the fluorinated chain carbonate compound in the electrolytic solution solvent to 20% by weight or more, the flame retardancy of the electrolytic solution can be ensured. If the proportion of the fluorinated chain carbonate compound in the electrolyte solvent exceeds 50% by weight, the solubility of the lithium salt is lowered, and the battery performance may be lowered.

本発明で用いる炭素−炭素π結合を有する環状カーボネート化合物としては、ビニレンカーボネート、スチレンカーボネート、カテコールカーボネート、ビニルエチレンカーボネート、1−フェニルビニレンカーボネート、1,2−ジフェニルビニレンカーボネートから選ばれる少なくとも1種であることが好ましい。   The cyclic carbonate compound having a carbon-carbon π bond used in the present invention is at least one selected from vinylene carbonate, styrene carbonate, catechol carbonate, vinyl ethylene carbonate, 1-phenyl vinylene carbonate, and 1,2-diphenyl vinylene carbonate. Preferably there is.

また、本発明で用いるS=O結合を有する環状化合物が、エチレンサルファイト、プロピレンサルファイト、スルフォラン、スルフォレン、1,3−プロパンスルトン、1,4−ブタンスルトンおよびこれらの誘導体から選ばれる少なくとも1種であることが好ましい。   The cyclic compound having an S═O bond used in the present invention is at least one selected from ethylene sulfite, propylene sulfite, sulfolane, sulfolene, 1,3-propane sultone, 1,4-butane sultone, and derivatives thereof. It is preferable that

炭素−炭素π結合を有する環状カーボネート化合物およびS=O結合を有する環状化合物がこれらの化合物から選ばれる少なくとも1種であることにより、初充電時に負極表面に形成されるリチウムイオン透過性の保護被膜が、より緻密で、且つ、リチウムイオン透過性に優れたものとなるため、非水電解液を構成するその他の有機溶媒の分解をより効果的に抑制でき、2サイクル目以降の充放電を充分に行うことができ、充放電効率を向上させ、高いエネルギー密度と優れた高率放電特性を有する非水電解液二次電池とすることができる。   Lithium ion-permeable protective coating formed on the surface of the negative electrode at the time of initial charge when the cyclic carbonate compound having a carbon-carbon π bond and the cyclic compound having an S═O bond are at least one selected from these compounds However, since it is denser and has superior lithium ion permeability, decomposition of other organic solvents constituting the non-aqueous electrolyte can be more effectively suppressed, and charge and discharge after the second cycle are sufficient. The charge / discharge efficiency can be improved, and a non-aqueous electrolyte secondary battery having high energy density and excellent high rate discharge characteristics can be obtained.

本発明において、電解液溶媒に占める炭素−炭素π結合を有する環状カーボネート化合物とS=O結合を有する環状化合物の合計の割合は、1重量%以上20重量%以下とすることが好ましい。   In the present invention, the total proportion of the cyclic carbonate compound having a carbon-carbon π bond and the cyclic compound having an S═O bond in the electrolyte solution solvent is preferably 1% by weight or more and 20% by weight or less.

このことによって、初充電時における非水電解液を構成するその他の有機溶媒の分解をほぼ完全に抑制し、2サイクル目以降の充電をより確実に行うことができる。また、20重量%以下であることによって、過剰に含有された炭素−炭素π結合を有する環状カーボネート化合物やS=O結合を有する環状化合物が正極上で分解することによる電池性能の劣化がほとんど発生せず、高いエネルギー密度と優れた高率放電特性を有する非水電解液電池を得ることができる。   By this, decomposition | disassembly of the other organic solvent which comprises the nonaqueous electrolyte at the time of first charge can be suppressed almost completely, and charge after the 2nd cycle can be performed more reliably. In addition, when the content is 20% by weight or less, the battery performance is almost deteriorated due to decomposition of the excessively contained cyclic carbonate compound having a carbon-carbon π bond or cyclic compound having an S═O bond on the positive electrode. Thus, a non-aqueous electrolyte battery having high energy density and excellent high rate discharge characteristics can be obtained.

なお、炭素−炭素π結合を有する環状カーボネート化合物とS=O結合を有する環状化合物の含有量の比率は、任意に選択することができるが、重量比で1:1前後であることが好ましい。   In addition, although the ratio of content of the cyclic carbonate compound having a carbon-carbon π bond and the cyclic compound having an S═O bond can be arbitrarily selected, it is preferably about 1: 1 by weight.

非水電解液を構成する有機溶媒は、フッ素化鎖状カーボネート化合物と、炭素−炭素π結合を有する環状カーボネート化合物と、S=O結合を有する環状化合物以外にも、一般に非水電解液二次電池用非水電解液に使用される有機溶媒が使用できる。   In addition to the fluorinated chain carbonate compound, the cyclic carbonate compound having a carbon-carbon π bond, and the cyclic compound having an S═O bond, the organic solvent constituting the nonaqueous electrolyte is generally a nonaqueous electrolyte secondary solution. The organic solvent used for the non-aqueous electrolyte for batteries can be used.

例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート等の環状カーボネート、γ−ブチロラクトン、γ−バレロラクトン、プロピオラクトン等の環状エステル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジフェニルカーボネート等の鎖状カーボネート、酢酸メチル、酪酸メチル等の鎖状エステル、テトラヒドロフランまたはその誘導体、1,3−ジオキサン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、メチルジグライム等のエーテル類、アセトニトリル、ベンゾニトリル等のニトリル類、ジオキサランまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   For example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, cyclic esters such as γ-butyrolactone, γ-valerolactone, propiolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, diphenyl carbonate, etc. Chain esters such as chain carbonate, methyl acetate, methyl butyrate, tetrahydrofuran or derivatives thereof, ethers such as 1,3-dioxane, dimethoxyethane, diethoxyethane, methoxyethoxyethane, methyldiglyme, acetonitrile, benzonitrile, etc. These nitriles, dioxalane or derivatives thereof may be used alone or as a mixture of two or more thereof, but are not limited thereto.

非水電解液を構成するリチウム塩としては、一般に非水電解液二次電池に使用される広電位領域において安定であるリチウム塩が使用できる。例えば、LiBF、LiPF、LiClO、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSOなどが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上混合して用いてもよい。 As the lithium salt constituting the non-aqueous electrolyte, a lithium salt that is stable in a wide potential region generally used for a non-aqueous electrolyte secondary battery can be used. For example, LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 and the like, but are not limited thereto. These may be used alone or in combination of two or more.

非水電解液における電解質塩の濃度としては、優れた高率放電特性を有する非水電解液電池を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、1mol/l〜2.5mol/lである。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l, more preferably 1 mol / l in order to reliably obtain a non-aqueous electrolyte battery having excellent high rate discharge characteristics. 1 to 2.5 mol / l.

本発明の非水電解液二次電池に用いる正極材料としては、リチウムを吸蔵・放出可能なマンガン酸リチウム(LiMn)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)などのリチウムを吸蔵放出可能なリチウム複合酸化物や、性能改善のために上記の各種複合酸化物の遷移金属部分を他の遷移金属や軽金属などで部分的に置換したリチウム複合酸化物、などが挙げられる。 Examples of the positive electrode material used in the non-aqueous electrolyte secondary battery of the present invention include lithium manganate (LiMn 2 O 4 ), lithium cobaltate (LiCoO 2 ), and lithium nickelate (LiNiO 2 ) capable of inserting and extracting lithium. Lithium composite oxides that can occlude and release lithium, and lithium composite oxides in which the transition metal part of the above-mentioned various composite oxides is partially substituted with other transition metals or light metals to improve performance. It is done.

また、負極材料としては、リチウムを吸蔵・放出可能な天然グラファイト、人造グラファイト、コークス類、難黒鉛化性炭素、低温焼成易黒鉛化性炭素、フラーレン、カーボンナノチューブ、カーボンブラック、活性炭などの炭素材料が挙げられる。   In addition, as negative electrode materials, carbon materials such as natural graphite, artificial graphite, coke, non-graphitizable carbon, low-temperature calcinable graphitizable carbon, fullerene, carbon nanotube, carbon black, activated carbon, etc., capable of inserting and extracting lithium Is mentioned.

本発明の非水電解液二次電池に用いるセパレータとしては、ポリエチレンやポリプロピレン等のポリオレフィン樹脂を主成分とする微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものであってもよい。   As the separator used in the non-aqueous electrolyte secondary battery of the present invention, a microporous membrane mainly composed of a polyolefin resin such as polyethylene or polypropylene is used, and a plurality of microporous materials having different materials, weight average molecular weights and porosity are used. Those obtained by laminating films, or those containing a suitable amount of various plasticizers, antioxidants, flame retardants and the like in these microporous films may be used.

その他の電池の構成要素として、集電体、端子、絶縁板、電池ケース等があるが、これらの部品についても従来用いられてきたものをそのまま用いて差し支えない。   Other battery components include a current collector, a terminal, an insulating plate, a battery case, and the like. However, these components may be used as they are.

以下、本発明のさらなる詳細を実施例により説明するが、本発明はこれらの記述に限定されるものではない。   Hereinafter, although the further detail of this invention is demonstrated by an Example, this invention is not limited to these description.

[実施例1〜13および比較例1〜5]
[実施例1]
本発明の非水電解液二次電池の断面を図1に示す。図1において、記号1は正極、2は負極、3はセパレータ、4は極群、5は金属樹脂複合フィルム、11は正極合剤、12は正極集電体、21は負極合剤、22は負極集電体である。
[Examples 1 to 13 and Comparative Examples 1 to 5]
[Example 1]
A cross section of the non-aqueous electrolyte secondary battery of the present invention is shown in FIG. In FIG. 1, symbol 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is an electrode group, 5 is a metal resin composite film, 11 is a positive electrode mixture, 12 is a positive electrode current collector, 21 is a negative electrode mixture, and 22 is It is a negative electrode current collector.

本発明の非水電解液二次電池は、正極1、負極2、およびセパレータ3からな極群4と、非水電解液(図示せず)と、金属樹脂複合フィルム5から構成されている。正極1は、正極合剤11が正極集電体12上に塗布されたものである。また、負極2は、負極合剤21が負極集電体22上に塗布されたものである。非水電解液は極群4に含浸されている。金属樹脂複合フィルム5は、極群4を覆い、その四方を熱溶着により封止されている。   The non-aqueous electrolyte secondary battery of the present invention is composed of an electrode group 4 including a positive electrode 1, a negative electrode 2, and a separator 3, a non-aqueous electrolyte (not shown), and a metal resin composite film 5. The positive electrode 1 is obtained by applying a positive electrode mixture 11 on a positive electrode current collector 12. The negative electrode 2 is obtained by applying a negative electrode mixture 21 on a negative electrode current collector 22. The non-aqueous electrolyte is impregnated in the electrode group 4. The metal resin composite film 5 covers the pole group 4 and is sealed on all four sides by heat welding.

次に、非水電解液二次電池の製造方法を説明する。正極1は次のようにして得た。まず、LiCoOと、導電剤であるアセチレンブラックを混合し、さらに結着剤としてポリフッ化ビニリデンのN−メチル−2−ピロリドン(NMP)溶液を混合し、この混合物をアルミ箔からなる正極集電体12の片面に塗布した後、乾燥し、正極合剤11の厚みが0.09mmとなるようにプレスした。 Next, a method for manufacturing a nonaqueous electrolyte secondary battery will be described. The positive electrode 1 was obtained as follows. First, LiCoO 2 and acetylene black, which is a conductive agent, are mixed, and a N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene fluoride is further mixed as a binder, and this mixture is a positive electrode current collector made of an aluminum foil. After apply | coating to the single side | surface of the body 12, it dried and pressed so that the thickness of the positive mix 11 might be set to 0.09 mm.

また、負極2は、次のようにして得た。まず、負極活物質であるグラファイトと、結着剤であるカルボキシメチルセルロース(CMC)とスチレンブタジエンゴム(SMR)の水溶液を混合し、この混合物を銅箔からなる負極集電体22の片面に塗布した後、乾燥し、負極合剤21厚みが0.08mmとなるようにプレスした。   Moreover, the negative electrode 2 was obtained as follows. First, graphite, which is a negative electrode active material, and an aqueous solution of carboxymethyl cellulose (CMC), which is a binder, and styrene butadiene rubber (SMR) are mixed, and this mixture is applied to one side of a negative electrode current collector 22 made of copper foil. Then, it dried and pressed so that the negative mix 21 might be set to 0.08 mm.

一方、セパレータ3にはポリエチレン製微多孔膜(厚さ25μm、開孔率50%)を用いた。そして、極群4は、正極合剤11と負極合剤21とを対向させ、その間にセパレータ3を配し、正極1、セパレータ3、負極2の順に積層することにより構成した。   On the other hand, a polyethylene microporous film (thickness: 25 μm, porosity: 50%) was used for the separator 3. And the pole group 4 was comprised by making the positive electrode mixture 11 and the negative electrode mixture 21 oppose, arranging the separator 3 between them, and laminating | stacking the positive electrode 1, the separator 3, and the negative electrode 2 in order.

非水電解液はつぎのようにして作製した。まず、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比1:1で混合した混合溶媒を作製した。つぎに、このECとDECの混合溶媒とジ(2,2,3,3−テトラフルオロプロピル)カーボネート(TFPC)とビニレンカーボネート(VC)と1,3−プロパンスルトン(PS)とを、重量比86:10:2:2となるように混合した。得られたEC、DEC、TFPC、VCおよびPSを含む混合溶媒に、LiPFを1mol/Lとなるように溶解した。 The non-aqueous electrolyte was prepared as follows. First, a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 1 was prepared. Next, the mixed solvent of EC and DEC, di (2,2,3,3-tetrafluoropropyl) carbonate (TFPC), vinylene carbonate (VC), and 1,3-propane sultone (PS) are mixed in a weight ratio. It mixed so that it might become 86: 10: 2: 2. LiPF 6 was dissolved in the mixed solvent containing the obtained EC, DEC, TFPC, VC and PS so as to be 1 mol / L.

このようにして、非水溶媒としてECとDECとTFPCとVCとPSとを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC10重量%、VC2重量%、PS2重量%である非水電解液を得た。これを非水電解液aとする。 In this way, EC, DEC, TFPC, VC and PS are included as non-aqueous solvents, the concentration of LiPF 6 is 1 mol / l, and the proportion of the electrolyte solvent is TFPC 10 wt%, VC 2 wt%, PS 2 wt. % Non-aqueous electrolyte was obtained. This is designated as non-aqueous electrolyte a.

次に、この非水電解液a中に極群4を浸漬させ、極群4に非水電解液を含浸させ、さらに、金属樹脂複合フィルム5で極群4を覆い、その四方を熱溶着により封止した。このようにして作製した設計容量30mAhの電池を実施例1の非水電解液二次電池Aとする。   Next, the electrode group 4 is immersed in the non-aqueous electrolyte solution a, the electrode group 4 is impregnated with the non-aqueous electrolyte solution, and the electrode group 4 is covered with the metal resin composite film 5, and the four sides thereof are thermally welded. Sealed. The battery with the designed capacity of 30 mAh thus produced is referred to as non-aqueous electrolyte secondary battery A of Example 1.

[実施例2]
非水溶媒としてEC、DEC、TFPC、VCおよびPSを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC20重量%、VC2重量%、PS2重量%である非水電解液を得た。これを非水電解液bとする。
[Example 2]
Nonaqueous electrolysis that includes EC, DEC, TFPC, VC and PS as nonaqueous solvents, the concentration of LiPF 6 is 1 mol / l, and the proportion of the electrolyte solvent is 20% by weight of TFPC, 2% by weight of VC, and 2% by weight of PS A liquid was obtained. This is designated as non-aqueous electrolyte b.

非水電解液bを用いたこと以外は実施例1と同様にして、実施例2の非水電解液二次電池Bを作製した。   A nonaqueous electrolyte secondary battery B of Example 2 was produced in the same manner as Example 1 except that the nonaqueous electrolyte b was used.

[実施例3]
非水溶媒としてEC、DEC、TFPC、VCおよびPSを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC50重量%、VC2重量%、PS2重量%である非水電解液を得た。これを非水電解液cとする。
[Example 3]
Nonaqueous electrolysis that includes EC, DEC, TFPC, VC and PS as nonaqueous solvents, the concentration of LiPF 6 is 1 mol / l, and the proportion of the electrolyte solvent is 50% by weight of TFPC, 2% by weight of VC, and 2% by weight of PS A liquid was obtained. This is designated as non-aqueous electrolyte c.

非水電解液cを用いたこと以外は実施例1と同様にして、実施例3の非水電解液二次電池Cを作製した。   A nonaqueous electrolyte secondary battery C of Example 3 was produced in the same manner as Example 1 except that the nonaqueous electrolyte c was used.

[実施例4]
非水溶媒としてEC、DEC、TFPC、VCおよびPSを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC70重量%、VC2重量%、PS2重量%である非水電解液を得た。これを非水電解液dとする。
[Example 4]
Nonaqueous electrolysis that includes EC, DEC, TFPC, VC and PS as nonaqueous solvents, the concentration of LiPF 6 is 1 mol / l, and the proportion of the electrolyte solvent is 70% by weight of TFPC, 2% by weight of VC, and 2% by weight of PS A liquid was obtained. This is designated as non-aqueous electrolyte d.

非水電解液dを用いたこと以外は実施例1と同様にして、実施例4の非水電解液二次電池Dを作製した。   A nonaqueous electrolyte secondary battery D of Example 4 was produced in the same manner as in Example 1 except that the nonaqueous electrolyte d was used.

[実施例5]
非水溶媒としてEC、DEC、TFPC、VCおよびPSを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC50重量%、VC0.5重量%、PS0.5重量%である非水電解液を得た。これを非水電解液eとする。
[Example 5]
EC, DEC, TFPC, VC and PS are included as non-aqueous solvents, the concentration of LiPF 6 is 1 mol / l, and the proportion of the electrolyte solvent is 50% by weight of TFPC, 0.5% by weight of VC, and 0.5% by weight of PS. A non-aqueous electrolyte was obtained. This is designated as a non-aqueous electrolyte e.

非水電解液eを用いたこと以外は実施例1と同様にして、実施例5の非水電解液二次電池Eを作製した。   A nonaqueous electrolyte secondary battery E of Example 5 was produced in the same manner as Example 1 except that the nonaqueous electrolyte e was used.

[実施例6]
非水溶媒としてEC、DEC、TFPC、VCおよびPSを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC50重量%、VC10重量%、PS10重量%である非水電解液を得た。これを非水電解液fとする。
[Example 6]
Nonaqueous electrolysis that includes EC, DEC, TFPC, VC and PS as nonaqueous solvents, the concentration of LiPF 6 is 1 mol / l, and the proportion of the electrolyte solution is 50% by weight of TFPC, 10% by weight of VC, and 10% by weight of PS. A liquid was obtained. This is designated as non-aqueous electrolyte f.

非水電解液fを用いたこと以外は実施例1と同様にして、実施例6の非水電解液二次電池Fを作製した。   A nonaqueous electrolyte secondary battery F of Example 6 was produced in the same manner as in Example 1 except that the nonaqueous electrolyte f was used.

[実施例7]
TFPCの代わりにジ(2,2−ジフルオロエチル)カーボネート(DFEC)を用い、非水溶媒としてEC、DEC、DFEC、VCおよびPSを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、DFEC20重量%、VC2重量%、PS2重量%である非水電解液を得た。これを非水電解液gとする。
[Example 7]
Di (2,2-difluoroethyl) carbonate (DFEC) is used in place of TFPC, EC, DEC, DFEC, VC and PS are included as non-aqueous solvents, the concentration of LiPF 6 is 1 mol / l, and the electrolyte solvent A non-aqueous electrolyte having a proportion of 20% by weight of DFEC, 2% by weight of VC, and 2% by weight of PS was obtained. This is designated as non-aqueous electrolyte g.

非水電解液gを用いたこと以外は実施例1と同様にして、実施例7の非水電解液二次電池Gを作製した。   A nonaqueous electrolyte secondary battery G of Example 7 was produced in the same manner as Example 1 except that the nonaqueous electrolyte solution g was used.

[実施例8]
VCの代わりにスチレンカーボネート(SC)、PSの代わりにスルフォラン(SF)を用い、非水溶媒としてEC、DEC、DFEC、SCおよびSFを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、DFEC20重量%、SC2重量%、SF2重量%である非水電解液を得た。これを非水電解液hとする。
[Example 8]
Styrene carbonate (SC) is used instead of VC, sulfolane (SF) is used instead of PS, EC, DEC, DFEC, SC and SF are included as non-aqueous solvents, and the concentration of LiPF 6 is 1 mol / l. A nonaqueous electrolytic solution having a ratio of 20% by weight of DFEC, 2% by weight of SC, and 2% by weight of SF was obtained. This is designated as a non-aqueous electrolyte h.

非水電解液hを用いたこと以外は実施例1と同様にして、実施例8の非水電解液二次電池Hを作製した。   A nonaqueous electrolyte secondary battery H of Example 8 was produced in the same manner as Example 1, except that the nonaqueous electrolyte h was used.

[実施例9]
TFPCの代わりにジ(2,2,3,3,4,4−ヘキサフルオロブチル)カーボネート(HFBC)、VCの代わりにビニルエチレンカーボネート(VEC)、PSの代わりにエチレンサルファイト(ES)を用い、非水溶媒としてEC、DEC、HFBC、VECおよびESを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、HFBC20重量%、VEC2重量%、ES2重量%である非水電解液を得た。これを非水電解液iとする。
[Example 9]
Di (2,2,3,3,4,4-hexafluorobutyl) carbonate (HFBC) instead of TFPC, vinyl ethylene carbonate (VEC) instead of VC, and ethylene sulfite (ES) instead of PS Non-aqueous solvent containing EC, DEC, HFBC, VEC and ES as the non-aqueous solvent, the concentration of LiPF 6 is 1 mol / l, and the proportion of the electrolyte solvent is 20% by weight, 2% by weight of VEC, and 2% by weight of ES An electrolytic solution was obtained. This is designated as non-aqueous electrolyte i.

非水電解液iを用いたこと以外は実施例1と同様にして、実施例9の非水電解液二次電池Iを作製した。   A nonaqueous electrolyte secondary battery I of Example 9 was produced in the same manner as in Example 1 except that the nonaqueous electrolyte i was used.

[実施例10]
非水溶媒としてEC、DEC、TFPC、VCおよびPSを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC20重量%、VC0.5重量%、PS0.3重量%である非水電解液を得た。これを非水電解液jとする。
[Example 10]
EC, DEC, TFPC, VC and PS are included as non-aqueous solvents, the concentration of LiPF 6 is 1 mol / l, and the proportion of the electrolyte solvent is 20% by weight of TFPC, 0.5% by weight of VC, and 0.3% by weight of PS. A non-aqueous electrolyte was obtained. This is designated as non-aqueous electrolyte j.

非水電解液jを用いたこと以外は実施例1と同様にして、実施例10の非水電解液二次電池Jを作製した。   A nonaqueous electrolyte secondary battery J of Example 10 was produced in the same manner as in Example 1 except that the nonaqueous electrolyte j was used.

[実施例11]
非水溶媒としてEC、DEC、TFPC、VCおよびPSを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC20重量%、VC0.3重量%、PS0.5重量%である非水電解液を得た。これを非水電解液kとする。
[Example 11]
EC, DEC, TFPC, VC and PS are included as non-aqueous solvents, the concentration of LiPF 6 is 1 mol / l, and the proportion of the electrolyte solvent is 20% by weight of TFPC, 0.3% by weight of VC, and 0.5% by weight of PS. A non-aqueous electrolyte was obtained. This is designated as non-aqueous electrolyte k.

非水電解液kを用いたこと以外は実施例1と同様にして、実施例11の非水電解液二次電池Kを作製した。   A nonaqueous electrolyte secondary battery K of Example 11 was produced in the same manner as Example 1 except that the nonaqueous electrolyte k was used.

[実施例12]
非水溶媒としてEC、DEC、TFPC、VCおよびPSを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC20重量%、VC15重量%、PS10重量%である非水電解液を得た。これを非水電解液lとする。
[Example 12]
Nonaqueous electrolysis that includes EC, DEC, TFPC, VC and PS as nonaqueous solvents, the concentration of LiPF 6 is 1 mol / l, and the proportion of the electrolyte solvent is 20% by weight of TFPC, 15% by weight of VC, and 10% by weight of PS. A liquid was obtained. This is designated as non-aqueous electrolyte 1.

非水電解液lを用いたこと以外は実施例1と同様にして、実施例12の非水電解液二次電池Lを作製した。   A nonaqueous electrolyte secondary battery L of Example 12 was produced in the same manner as Example 1 except that the nonaqueous electrolyte solution l was used.

[実施例13]
非水溶媒としてEC、DEC、TFPC、VCおよびPSを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC20重量%、VC10重量%、PS15重量%である非水電解液を得た。これを非水電解液mとする。
[Example 13]
Nonaqueous electrolysis that includes EC, DEC, TFPC, VC and PS as nonaqueous solvents, the concentration of LiPF 6 is 1 mol / l, and the proportion of the electrolyte solution solvent is 20% by weight of TFPC, 10% by weight of VC, and 15% by weight of PS. A liquid was obtained. This is designated as non-aqueous electrolyte m.

非水電解液mを用いたこと以外は実施例1と同様にして、実施例13の非水電解液二次電池Mを作製した。   A nonaqueous electrolyte secondary battery M of Example 13 was produced in the same manner as Example 1 except that the nonaqueous electrolyte m was used.

[比較例1]
非水溶媒としてEC、DECおよびTFPCを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC20重量%である非水電解液を得た。これを非水電解液nとする。
[Comparative Example 1]
A non-aqueous electrolyte solution containing EC, DEC and TFPC as the non-aqueous solvent, the LiPF 6 concentration being 1 mol / l, and the proportion of the electrolyte solvent being TFPC was 20% by weight was obtained. This is designated as non-aqueous electrolyte n.

非水電解液nを用いたこと以外は実施例1と同様にして、比較例1の非水電解液二次電池Nを作製した。   A nonaqueous electrolyte secondary battery N of Comparative Example 1 was produced in the same manner as in Example 1 except that the nonaqueous electrolyte n was used.

[比較例2]
非水溶媒としてEC、DEC、TFPCおよびVCを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC20重量%、VC2重量%である非水電解液を得た。これを非水電解液oとする。
[Comparative Example 2]
A nonaqueous electrolytic solution containing EC, DEC, TFPC, and VC as the nonaqueous solvent, the concentration of LiPF 6 being 1 mol / l, and the proportion of the electrolyte solution being 20% by weight of TFPC and 2% by weight of VC was obtained. This is designated as non-aqueous electrolyte o.

非水電解液oを用いたこと以外は実施例1と同様にして、比較例2の非水電解液二次電池Oを作製した。   A nonaqueous electrolyte secondary battery O of Comparative Example 2 was produced in the same manner as in Example 1 except that the nonaqueous electrolyte o was used.

[比較例3]
非水溶媒としてEC、DEC、TFPCおよびPSを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFPC20重量%、PS2重量%である非水電解液を得た。これを非水電解液pとする。
[Comparative Example 3]
A nonaqueous electrolytic solution containing EC, DEC, TFPC, and PS as the nonaqueous solvent, the concentration of LiPF 6 being 1 mol / l, and the proportion of the electrolyte solution being 20% by weight of TFPC and 2% by weight of PS was obtained. This is designated as non-aqueous electrolyte p.

非水電解液pを用いたこと以外は実施例1と同様にして、比較例3の非水電解液二次電池Pを作製した。   A nonaqueous electrolyte secondary battery P of Comparative Example 3 was produced in the same manner as in Example 1 except that the nonaqueous electrolyte p was used.

[比較例4]
TFPCの代わりにジ(2,2,2−トリフルオロエチル)カーボネート(TFE)を用い、非水溶媒としてEC、DEC、TFE、VCおよびPSを含み、LiPFの濃度が1mol/lで、電解液溶媒に占める割合が、TFE20重量%、VC2重量%、PS2重量%である非水電解液を得た。これを非水電解液qとする。
[Comparative Example 4]
Di (2,2,2-trifluoroethyl) carbonate (TFE) is used instead of TFPC, and EC, DEC, TFE, VC and PS are used as non-aqueous solvents, and the concentration of LiPF 6 is 1 mol / l. A nonaqueous electrolytic solution having a ratio of 20% by weight of TFE, 2% by weight of VC, and 2% by weight of PS was obtained in the liquid solvent. This is designated as non-aqueous electrolyte q.

非水電解液qを用いたこと以外は実施例1と同様にして、比較例4の非水電解液二次電池Qを作製した。   A nonaqueous electrolyte secondary battery Q of Comparative Example 4 was produced in the same manner as in Example 1 except that the nonaqueous electrolyte solution q was used.

[比較例5]
非水溶媒としてECおよびDECを含み、LiPFの濃度が1mol/lである非水電解液を得た。これを非水電解液rとする。非水電解液rを用いたこと以外は実施例1と同様にして、比較例5の非水電解液二次電池Rを作製した。
[Comparative Example 5]
A nonaqueous electrolytic solution containing EC and DEC as a nonaqueous solvent and having a LiPF 6 concentration of 1 mol / l was obtained. This is designated as non-aqueous electrolyte r. A nonaqueous electrolyte secondary battery R of Comparative Example 5 was produced in the same manner as in Example 1 except that the nonaqueous electrolyte r was used.

なお、実施例1〜13および比較例1〜5において、電解質中のECとDECの混合比は、すべて体積比で1:1であった。   In Examples 1 to 13 and Comparative Examples 1 to 5, the mixing ratio of EC and DEC in the electrolyte was all 1: 1 by volume.

実施例1〜13の非水電解液二次電池A〜Mおよび比較例1〜5の非水電解液二次電池N〜Rの、電解液に含まれるECとDEC以外の溶媒の種類および組成(重量%)表1にまとめた。   Types and compositions of solvents other than EC and DEC contained in the electrolytes of the nonaqueous electrolyte secondary batteries A to M of Examples 1 to 13 and the nonaqueous electrolyte secondary batteries N to R of Comparative Examples 1 to 5 (% By weight) are summarized in Table 1.

Figure 2007305352
Figure 2007305352

なお、表1において、TFPCはジ(2,2,3,3−テトラフルオロプロピル)カーボネートを、DFECはジ(2,2−ジフルオロエチル)カーボネートを、HFBCはジ(2,2,3,3,4,4−ヘキサフルオロブチル)カーボネートを、TFEはにジ(2,2,2−トリフルオロエチル)カーボネートを、VCはビニレンカーボネートを、SCはスチレンカーボネートを、VECはビニルエチレンカーボネートを、PSは1,3−プロパンスルトンを、SFはスルフォランを、ESはエチレンサルファイトを表す。   In Table 1, TFPC is di (2,2,3,3-tetrafluoropropyl) carbonate, DFEC is di (2,2-difluoroethyl) carbonate, and HFBC is di (2,2,3,3). , 4,4-hexafluorobutyl) carbonate, TFE is di (2,2,2-trifluoroethyl) carbonate, VC is vinylene carbonate, SC is styrene carbonate, VEC is vinylethylene carbonate, PS Represents 1,3-propane sultone, SF represents sulfolane, and ES represents ethylene sulfite.

[電解液燃焼性試験]
まず、実施例1〜13の非水電解液二次電池A〜Mおよび比較例1〜5の非水電解液二次電池N〜Rに用いた非水電解液a〜rについて、電解液燃焼性試験を行った。ガラスフィルターに電解液を染み込ませ、大気中にて10秒間試験炎にさらした後、試験炎を遠ざけ、引火の様子を目視により観察した。
[Electrolyte flammability test]
First, the non-aqueous electrolytes a to r used in the non-aqueous electrolyte secondary batteries A to M of Examples 1 to 13 and the non-aqueous electrolyte secondary batteries N to R of Comparative Examples 1 to 5 were subjected to electrolyte combustion. A sex test was performed. The glass solution was infiltrated with an electrolyte solution, and exposed to a test flame in the atmosphere for 10 seconds. Then, the test flame was moved away, and the state of ignition was visually observed.

この試験において、10秒後に試験炎を遠ざけた時に、電解液に引火していた炎がすぐに消えた場合は「難燃性を示す」ものと判断し、試験炎を遠ざけて3秒後に引火していた炎が消えた場合は「難燃性が不十分」と判断し、試験炎を遠ざけて5秒後においても炎が消えなかった場合は「燃焼性を有する」と判断した。   In this test, when the test flame is moved away 10 seconds later, if the flame ignited by the electrolyte immediately disappears, it is judged as “showing flame retardancy”, and the test flame is moved away and ignited 3 seconds later. When the flame had disappeared, it was judged that “flame retardance was insufficient”, and when the flame did not disappear even after 5 seconds from the test flame, it was judged as “having combustibility”.

[電池性能試験]
次に、実施例1〜13の非水電解液二次電池A〜Mおよび比較例1〜5の非水電解液二次電池N〜Rについて、初期放電容量、高率放電容量の測定を行った。まず、20℃において、30mA定電流で4.2Vまで、さらに4.2V定電圧で、合計2.5時間充電した後、20℃において、6mA定電流で終止電圧3Vまでの放電を行い、この時の放電容量を「初期放電容量」(mAh)とした。つぎに、20℃において、30mA定電流で4.2Vまで、さらに4.2V定電圧で、合計2.5時間充電した後、20℃において、90mA定電流で終止電圧3Vまでの放電を行い、この時の放電容量を「高率放電容量」とした。
[Battery performance test]
Next, for the non-aqueous electrolyte secondary batteries A to M of Examples 1 to 13 and the non-aqueous electrolyte secondary batteries N to R of Comparative Examples 1 to 5, the initial discharge capacity and the high-rate discharge capacity were measured. It was. First, at 20 ° C., the battery was charged with a constant current of 30 mA up to 4.2 V, and further with a constant voltage of 4.2 V for a total of 2.5 hours, and then discharged at 20 ° C. with a constant current of 6 mA up to a final voltage of 3 V. The discharge capacity at that time was defined as “initial discharge capacity” (mAh). Next, at 20 ° C., the battery was charged at a constant current of 30 mA to 4.2 V, and further at a constant voltage of 4.2 V for a total of 2.5 hours, and then discharged at 20 ° C. at a constant current of 90 mA to a final voltage of 3 V. The discharge capacity at this time was defined as “high rate discharge capacity”.

電解液燃焼性試験および電池性能試験の結果を表2にまとめた。なお、表2において、「難燃性」欄における、○印は難燃性を示したもの、△印は難燃性が不十分なもの、×印は燃焼性を有するものであることを示す。   The results of the electrolyte flammability test and the battery performance test are summarized in Table 2. In Table 2, in the “Flame Retardancy” column, a symbol “◯” indicates flame retardancy, a symbol “Δ” indicates insufficient flame retardancy, and a symbol “×” indicates combustibility. .

Figure 2007305352
Figure 2007305352

表2に示すように、本発明の実施例1の電池Aおよび比較例5の電池Rは、初期放電容量および高率放電容量は良好であった。しかし、比較例5の電池Rに用いた電液解rは燃焼性を有したのに対し、実施例1の電池Aに用いた電解液aは、燃焼性は示さなかったが、難燃性が不十分であった。   As shown in Table 2, the initial discharge capacity and the high rate discharge capacity of the battery A of Example 1 and the battery R of Comparative Example 5 of the present invention were good. However, while the electrolysis solution r used in the battery R of Comparative Example 5 had combustibility, the electrolytic solution a used in the battery A of Example 1 did not show combustibility, but it was flame retardant. Was insufficient.

また、本発明の実施例2〜13の電池B〜Mでは、初期放電容量および高率放電容量がともに優れているだけでなく、これらの電池に用いた電解液b〜mはすべて難燃性を示し、燃焼性試験結果も良好であり、優れた電解質の難燃性と高率放電特性とを兼ね備える非水電解液電池であることが確認された。   Further, in the batteries B to M of Examples 2 to 13 of the present invention, not only the initial discharge capacity and the high rate discharge capacity are both excellent, but also the electrolytes b to m used in these batteries are all flame retardant. The results of the flammability test were also good, and it was confirmed that the battery was a non-aqueous electrolyte battery having both excellent flame retardancy of the electrolyte and high rate discharge characteristics.

これに対し、比較例1〜4の電池N〜Qに用いた電解液n〜qは難燃性を示したが、初期放電容量は設計容量に対してやや低く、さらに高率放電容量に劣ることがわかった。   In contrast, the electrolytes n to q used in the batteries N to Q of Comparative Examples 1 to 4 showed flame retardancy, but the initial discharge capacity was slightly lower than the design capacity, and was inferior to the high rate discharge capacity. I understood it.

なお、実施例1〜13の電池A〜Mにおいて、フッ素化鎖状カーボネート化合物の含有量が20重量%以上である、実施例2〜13の電池B〜Mでは、電解液が難燃性で、高率放電特性に優れた非水電解液二次電池が得られ、これらの中でもフッ素化鎖状カーボネート化合物の含有量が50重量%以下である、実施例2、3、実施例6〜10の電池C、D、F〜Jでは、特に高率放電特性が優れていた。   In the batteries A to M of Examples 1 to 13, in the batteries B to M of Examples 2 to 13 in which the content of the fluorinated chain carbonate compound is 20% by weight or more, the electrolyte solution is flame retardant. In addition, non-aqueous electrolyte secondary batteries excellent in high rate discharge characteristics are obtained, and among these, the content of the fluorinated chain carbonate compound is 50% by weight or less, Examples 2, 3, and Examples 6 to 10 The batteries C, D and F to J were particularly excellent in high rate discharge characteristics.

したがって、電解液中のフッ素化鎖状カーボネート化合物の含有量は、20重量%以上が好ましく、より好ましくは20重量%以上50重量%以下であることが確認された。   Therefore, it was confirmed that the content of the fluorinated chain carbonate compound in the electrolytic solution is preferably 20% by weight or more, more preferably 20% by weight or more and 50% by weight or less.

また、実施例2、5、6の電池B、E、Fと、実施例10〜13の電池J〜Mを比較した場合、高率放電特性は実施例2、5、6の電池B、E、Fの方が優れていたことから、電解液溶媒に占める炭素−炭素π結合を有する環状化合物とS=O結合を有する環状化合物の合計の割合が、1重量%以上、20重量%以下である場合に、電解質が難燃性で、高率放電特性に優れ、しかも充放電効率が高い非水電解液二次電池が得られることが確認された。   Further, when the batteries B, E, and F of Examples 2, 5, and 6 were compared with the batteries J to M of Examples 10 to 13, the high rate discharge characteristics were the batteries B and E of Examples 2, 5, and 6, respectively. Since F was superior, the ratio of the total of the cyclic compound having a carbon-carbon π bond and the cyclic compound having an S═O bond in the electrolyte solvent was 1% by weight or more and 20% by weight or less. In some cases, it was confirmed that a non-aqueous electrolyte secondary battery having a nonflammable electrolyte, excellent high-rate discharge characteristics, and high charge / discharge efficiency can be obtained.

本発明の非水電解液二次電池の断面を示す図。The figure which shows the cross section of the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

1 正極
11 正極合剤
12 正極集電体
2 負極合剤
21 負極合剤
22 負極集電体
3 セパレータ
4 極群
5 金属樹脂複合フィルム
DESCRIPTION OF SYMBOLS 1 Positive electrode 11 Positive electrode mixture 12 Positive electrode collector 2 Negative electrode mixture 21 Negative electrode mixture 22 Negative electrode collector 3 Separator 4 Electrode group 5 Metal resin composite film

Claims (3)

正極と負極と非水電解液とを備えた非水電解液二次電池において、前記非水電解液は、カーボネート基にメチレン基が隣接し、分子鎖末端に−CHFを有するフッ素化鎖状カーボネート化合物と、炭素−炭素π結合を有する環状カーボネート化合物と、S=O結合を有する環状化合物とを含むことを特徴とする非水電解液二次電池。 In a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, the nonaqueous electrolyte is a fluorinated chain having a carbonate group adjacent to a methylene group and having —CHF 2 at the molecular chain end. A non-aqueous electrolyte secondary battery comprising a carbonate compound, a cyclic carbonate compound having a carbon-carbon π bond, and a cyclic compound having an S═O bond. 電解液溶媒に占めるフッ素化鎖状カーボネート化合物の割合が20重量%以上であることを特徴とする請求項1に記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the proportion of the fluorinated chain carbonate compound in the electrolyte solvent is 20% by weight or more. 電解液溶媒に占める炭素−炭素π結合を有する環状カーボネート化合物とS=O結合を有する環状化合物の合計の割合が1重量%以上、20重量%以下であることを特徴とする請求項1または2に記載の非水電解液二次電池。 3. The total proportion of a cyclic carbonate compound having a carbon-carbon π bond and a cyclic compound having an S═O bond in the electrolyte solvent is 1% by weight or more and 20% by weight or less. A nonaqueous electrolyte secondary battery according to 1.
JP2006130950A 2006-05-10 2006-05-10 Non-aqueous electrolyte secondary battery Expired - Fee Related JP5050404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006130950A JP5050404B2 (en) 2006-05-10 2006-05-10 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006130950A JP5050404B2 (en) 2006-05-10 2006-05-10 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007305352A true JP2007305352A (en) 2007-11-22
JP5050404B2 JP5050404B2 (en) 2012-10-17

Family

ID=38839124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006130950A Expired - Fee Related JP5050404B2 (en) 2006-05-10 2006-05-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5050404B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266438A (en) * 2008-04-22 2009-11-12 Gs Yuasa Corporation Non-aqueous electrolyte battery
JP2009289557A (en) * 2008-05-28 2009-12-10 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
WO2010014387A2 (en) * 2008-07-29 2010-02-04 3M Innovative Properties Company Electrolyte composition, lithium-containing electrochemical cell, battery pack, and device including the same
JP2011044255A (en) * 2009-08-19 2011-03-03 Mitsubishi Chemicals Corp Nonaqueous electrolyte, and nonaqueous electrolyte battery
US8435679B2 (en) 2006-12-20 2013-05-07 3M Innovative Properties Counsel Fluorinated compounds for use in lithium battery electrolytes
JP2013239451A (en) * 2013-07-12 2013-11-28 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2014020729A1 (en) * 2012-08-01 2014-02-06 トヨタ自動車株式会社 Non-aqueous electrolyte solution secondary battery
EP2800197A1 (en) * 2013-05-02 2014-11-05 Westfälische Wilhelms-Universität Münster Fluorinated carbonates as solvent for lithium sulfonimide-based electrolytes
WO2015147000A1 (en) * 2014-03-27 2015-10-01 ダイキン工業株式会社 Electrolyte and electrochemical device
WO2015147007A1 (en) * 2014-03-27 2015-10-01 ダイキン工業株式会社 Electrolyte and electrochemical device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219992A (en) * 1992-11-18 1994-08-09 Mitsui Petrochem Ind Ltd New carbonic ester compound
JP2003197253A (en) * 2001-12-26 2003-07-11 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004296389A (en) * 2003-03-28 2004-10-21 Sanyo Electric Co Ltd Nonaqueous electrolyte solution secondary battery
JP2005047875A (en) * 2003-07-31 2005-02-24 Asahi Glass Co Ltd METHOD FOR PRODUCING BIS(omega-HYDRODIFLUOROALKYL) CARBONATE AND NONAQUEOUS ELECTROLYTE
JP2005100851A (en) * 2003-09-25 2005-04-14 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005166553A (en) * 2003-12-04 2005-06-23 Mitsubishi Chemicals Corp Nonaqueous electrolytic for lithium ion secondary battery, and the lithium ion secondary battery
JP2007019010A (en) * 2005-06-10 2007-01-25 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219992A (en) * 1992-11-18 1994-08-09 Mitsui Petrochem Ind Ltd New carbonic ester compound
JP2003197253A (en) * 2001-12-26 2003-07-11 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004296389A (en) * 2003-03-28 2004-10-21 Sanyo Electric Co Ltd Nonaqueous electrolyte solution secondary battery
JP2005047875A (en) * 2003-07-31 2005-02-24 Asahi Glass Co Ltd METHOD FOR PRODUCING BIS(omega-HYDRODIFLUOROALKYL) CARBONATE AND NONAQUEOUS ELECTROLYTE
JP2005100851A (en) * 2003-09-25 2005-04-14 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005166553A (en) * 2003-12-04 2005-06-23 Mitsubishi Chemicals Corp Nonaqueous electrolytic for lithium ion secondary battery, and the lithium ion secondary battery
JP2007019010A (en) * 2005-06-10 2007-01-25 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9406977B2 (en) 2006-12-20 2016-08-02 3M Innovative Properties Company Fluorinated compounds for use in lithium battery electrolytes
US8435679B2 (en) 2006-12-20 2013-05-07 3M Innovative Properties Counsel Fluorinated compounds for use in lithium battery electrolytes
JP2009266438A (en) * 2008-04-22 2009-11-12 Gs Yuasa Corporation Non-aqueous electrolyte battery
JP2009289557A (en) * 2008-05-28 2009-12-10 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
WO2010014387A2 (en) * 2008-07-29 2010-02-04 3M Innovative Properties Company Electrolyte composition, lithium-containing electrochemical cell, battery pack, and device including the same
WO2010014387A3 (en) * 2008-07-29 2010-05-06 3M Innovative Properties Company Electrolyte composition, lithium-containing electrochemical cell, battery pack, and device including the same
JP2011044255A (en) * 2009-08-19 2011-03-03 Mitsubishi Chemicals Corp Nonaqueous electrolyte, and nonaqueous electrolyte battery
WO2014020729A1 (en) * 2012-08-01 2014-02-06 トヨタ自動車株式会社 Non-aqueous electrolyte solution secondary battery
CN104508869A (en) * 2012-08-01 2015-04-08 丰田自动车株式会社 Non-aqueous electrolyte solution secondary battery
US9543572B2 (en) 2012-08-01 2017-01-10 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
JPWO2014020729A1 (en) * 2012-08-01 2016-07-11 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
EP2800197A1 (en) * 2013-05-02 2014-11-05 Westfälische Wilhelms-Universität Münster Fluorinated carbonates as solvent for lithium sulfonimide-based electrolytes
WO2014177702A1 (en) * 2013-05-02 2014-11-06 Westfälische Wilhelms-Universität Münster Fluorinated carbonates as solvent for lithium sulfonimide-based electrolytes
WO2014177704A1 (en) * 2013-05-02 2014-11-06 Solvay Fluor Gmbh Fluorinated carbonates as solvent for lithium sulfonimide-based electrolytes
JP2013239451A (en) * 2013-07-12 2013-11-28 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
CN106133988B (en) * 2014-03-27 2019-11-26 大金工业株式会社 Electrolyte and electrochemical device
CN106133988A (en) * 2014-03-27 2016-11-16 大金工业株式会社 Electrolyte and electrochemical device
CN106133986A (en) * 2014-03-27 2016-11-16 大金工业株式会社 Electrolyte and electrochemical device
WO2015147007A1 (en) * 2014-03-27 2015-10-01 ダイキン工業株式会社 Electrolyte and electrochemical device
JPWO2015147000A1 (en) * 2014-03-27 2017-04-13 ダイキン工業株式会社 Electrolytic solution and electrochemical device
JPWO2015147007A1 (en) * 2014-03-27 2017-04-13 ダイキン工業株式会社 Electrolytic solution and electrochemical device
US10355312B2 (en) 2014-03-27 2019-07-16 Daikin Industries, Ltd. Electrolyte and electrochemical device
WO2015147000A1 (en) * 2014-03-27 2015-10-01 ダイキン工業株式会社 Electrolyte and electrochemical device

Also Published As

Publication number Publication date
JP5050404B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5092416B2 (en) Nonaqueous electrolyte secondary battery
JP5050404B2 (en) Non-aqueous electrolyte secondary battery
JP4972922B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery
JP5258353B2 (en) Nonaqueous electrolyte secondary battery
JP6299603B2 (en) Nonaqueous electrolyte for secondary battery and lithium ion secondary battery
JP5573313B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
WO2012004839A1 (en) Secondary battery
JP4972915B2 (en) Non-aqueous electrolyte battery
JP5429845B2 (en) Non-aqueous electrolyte, gel electrolyte and secondary battery using them
JP4012174B2 (en) Lithium battery with efficient performance
JP2007173180A (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP2005514750A (en) Electrolyte system and energy storage device using the same
WO2017038755A1 (en) Flame-resistant electrolyte for secondary cell, and secondary cell including said electrolyte
WO2011149072A1 (en) Nonaqueous electrolyte solution for secondary battery, and secondary battery
JP5573639B2 (en) Non-aqueous electrolyte for lithium secondary battery
JP4345642B2 (en) Secondary battery
JP2015069704A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
JP5012767B2 (en) Secondary battery
WO2012011508A1 (en) Non-aqueous electrolyte for use in secondary batteries, and secondary battery
JP2016131059A (en) Electrolytic solution for nonaqueous electrolyte battery and nonaqueous electrolyte battery arranged by use thereof
JP5262266B2 (en) Non-aqueous electrolyte battery
JP5421220B2 (en) Secondary battery electrolyte and secondary battery
JP2015065130A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
JP6052101B2 (en) Nonaqueous electrolyte secondary battery
WO2012081710A1 (en) Nonaqueous electrolyte for secondary battery and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Ref document number: 5050404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees