JP2010122150A - Magnetic core structure of clamp type current sensor - Google Patents

Magnetic core structure of clamp type current sensor Download PDF

Info

Publication number
JP2010122150A
JP2010122150A JP2008297924A JP2008297924A JP2010122150A JP 2010122150 A JP2010122150 A JP 2010122150A JP 2008297924 A JP2008297924 A JP 2008297924A JP 2008297924 A JP2008297924 A JP 2008297924A JP 2010122150 A JP2010122150 A JP 2010122150A
Authority
JP
Japan
Prior art keywords
magnetic core
magnetic
magnetic flux
sensor
hall element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008297924A
Other languages
Japanese (ja)
Inventor
Naoki Yumiyama
直樹 弓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Electrical Instruments Works Ltd
Original Assignee
Kyoritsu Electrical Instruments Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Electrical Instruments Works Ltd filed Critical Kyoritsu Electrical Instruments Works Ltd
Priority to JP2008297924A priority Critical patent/JP2010122150A/en
Publication of JP2010122150A publication Critical patent/JP2010122150A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce measuring errors of a minute current flowing in a measured conductor introduced in a clamp sensor. <P>SOLUTION: A magnetic-core structure of a clamp type current sensor includes magnetic flux convergence projections 11b, 12b projected from end faces of reference end faces 11a, 12a on respective first and connected ends 11, 12 second to magnetic cores 10A, 10B. When a right sensor 3 and a left sensor 4 are closed to pinch the measured conductor L, the respective magnetic flux convergence projections 11b, 12b of the first and second connected ends 11, 12 face Hall elements 5a, 5b. Since the magnetic flux density of the inside of the magnetic core 10 is concentrated on the Hall elements 5a, 5b, as the result, a magnetic flux change amount detected with the Hall elements 5a, 5b is large, and measuring errors are reduced even if a current flowing in the measured conductor L is extremely small. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、開閉自在に形成されたクランプセンサが、その閉止時に接触する磁気コアの合わせ端部相互間に、すき間が介在する場合であっても、前記すき間から受ける計測上の悪影響を抑制することができるようにしたクランプセンサの磁気コア構造に関する。   The present invention suppresses an adverse measurement effect received from the gap even when a gap is interposed between the end portions of the magnetic cores that are in contact with each other when the clamp sensor formed to be openable and closable. The present invention relates to a magnetic core structure of a clamp sensor that can be used.

従来より、開閉自在なクランプセンサを備えてなるクランプ式電流計は、活線状態にある被測定導体をそのままクランプセンサ内に導入して電流値を計測することができることから、各種の分野において広く利用されている。そして、直流電流と交流電流を計測することができるクランプ式電流計として、閉止時に電流センサの合わせ端部相互間に生じるすき間に挟まれるようにホール素子を配置し、電流センサ内の磁束密度の変化を検知でるよう形成されたものも知られている(例えば、特許文献1を参照)。   Conventionally, a clamp-type ammeter equipped with an openable / closable clamp sensor can measure a current value by directly introducing a conductor to be measured in a live state into the clamp sensor. It's being used. Then, as a clamp-type ammeter that can measure DC current and AC current, a Hall element is arranged so that it is sandwiched between gaps between the matching ends of the current sensor when closed, and the magnetic flux density in the current sensor is Those formed so as to detect a change are also known (see, for example, Patent Document 1).

特開2003−43073号公報JP 2003-43073 A

しかしながら、特許文献1に記載された従来のクランプ式電流計においては、その閉止時に電流センサの合わせ端部相互間にすき間が生じるのは、その構造上からも不可避的であるから、クランプセンサ内に被測定導体を導入して被測定導体に流れる微小の電流を計測する場合には、電流センサの合わせ端部相互間に生じる磁束密度の量が小さいため、計測誤差が大きくなることもあり、例えば磁束変化を検出するために使用するホール素子の厚さを薄く形成することで、閉止時に電流センサの合わせ端部相互間に生じるすき間を小さくしなければならないという設計上の煩雑さがあった。   However, in the conventional clamp-type ammeter described in Patent Document 1, it is unavoidable that the gap is generated between the matching ends of the current sensor when the current sensor is closed. When measuring the minute current flowing in the conductor to be measured by introducing the conductor to be measured, the measurement error may increase because the amount of magnetic flux density generated between the matching ends of the current sensor is small. For example, the Hall element used to detect a change in magnetic flux is made thin so that the gap generated between the matching ends of the current sensor at the time of closing must be reduced. .

また、従来のクランプ式電流計における磁気コアでは、ホール素子による効率的な磁束検知が困難であるという問題もある。例えば、図6(イ)は従来の磁気コア1000の側面図、図6(ロ)は従来の磁気コア1000を合わせ端部1001面側から見た正面図、図6(ハ)は従来の磁気コア1000を閉止させ電流センサを形成した状態で、被測定導体をクランプセンサ内に導入し電流値を計測した場合に、合わせ端部1001の面に生じる磁束密度の分布を等高線のグラフで示したものである。   Further, the magnetic core in the conventional clamp type ammeter has a problem that it is difficult to efficiently detect the magnetic flux by the Hall element. For example, FIG. 6A is a side view of a conventional magnetic core 1000, FIG. 6B is a front view of the conventional magnetic core 1000 viewed from the end 1001 side, and FIG. In the state where the core 1000 is closed and the current sensor is formed, the distribution of the magnetic flux density generated on the surface of the mating end portion 1001 is shown by a contour graph when the measured conductor is introduced into the clamp sensor and the current value is measured. Is.

図6(ハ)より分かるように、従来の合わせ端部1001の面における磁束密度の分布は、外側の磁束密度量が大きく、中心に向かうにつれて磁束密度量が小さくなっており、合わせ端部1001の中央に磁束密度検知用のホール素子を配置した場合、ホール素子のセンサ部を通る磁束密度量が十分とはいえないために、誤差要因となる。   As can be seen from FIG. 6C, the magnetic flux density distribution on the surface of the conventional mating end portion 1001 is such that the outer magnetic flux density amount is larger and the magnetic flux density amount is smaller toward the center. When the Hall element for detecting the magnetic flux density is arranged at the center of the magnetic field, the amount of magnetic flux passing through the sensor part of the Hall element is not sufficient, which causes an error.

本発明は、上記課題を解決するためになされたもので、クランプセンサ内に導入された被測定導体に流されている電流の大小に関わらず計測誤差を少なくして計測することができるクランプ式電流センサを実現し得る磁気コア構造の提供を目的とする。   The present invention has been made to solve the above-described problems, and is a clamp type capable of measuring with a small measurement error regardless of the magnitude of the current flowing in the conductor to be measured introduced into the clamp sensor. An object of the present invention is to provide a magnetic core structure capable of realizing a current sensor.

上記の課題を解決するために、請求項1に係る発明は、計器本体に開閉自在に軸支される左右一対の左側センサ部と右側センサ部とからなり、かつ、両センサ部の閉止時に磁気コアが略円環形状となって被測定導体を挟み込み、それぞれの合わせ端部を介して相互の直接的もしくは間接的な接触による閉磁路が形成され、被測定導体を流れる電流により生ずる磁束をホール素子で検知することにより、被測定導体に流れる電流を検出するクランプ式電流センサの磁気コア構造であって、少なくともホール素子に対向する一方のセンサ部における磁気コアの合わせ端部には、ホール素子のセンサ部よりも面積が大である基準端面部より突出する磁束収束用突起を設けたことを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is composed of a pair of left and right sensor parts that are pivotally supported by an instrument main body so as to be openable and closable, and is magnetic when both sensor parts are closed. The core is shaped like an annulus and the measured conductor is sandwiched between them. A closed magnetic circuit is formed by direct or indirect contact with each other through the mating ends, and the magnetic flux generated by the current flowing through the measured conductor is holed. A magnetic core structure of a clamp-type current sensor that detects a current flowing through a conductor to be measured by detecting with an element, wherein at least one sensor portion facing the hall element has a hall element at a matching end of the magnetic core. And a magnetic flux converging protrusion that protrudes from a reference end face portion having an area larger than that of the sensor portion.

また、請求項2に係る発明は、前記請求項1に記載のクランプ式電流センサの磁気コア構造において、前記磁束収束用突起は、ホール素子に対向する左右両方の磁気コアの合わせ端部に設けるものとし、左側磁気コアの磁束収束用突起と右側磁気コアの磁束収束用突起を結ぶ仮想磁路中にホール素子のセンサ部を配置するようにしたことを特徴とする。   According to a second aspect of the present invention, in the magnetic core structure of the clamp-type current sensor according to the first aspect, the magnetic flux converging protrusions are provided at both end portions of the left and right magnetic cores facing the Hall element. The sensor element of the Hall element is arranged in a virtual magnetic path connecting the magnetic flux converging protrusion of the left magnetic core and the magnetic flux converging protrusion of the right magnetic core.

また、請求項3に係る発明は、前記請求項2に記載のクランプ式電流センサの磁気コア構造において、前記左側磁気コアの磁束収束用突起と右側磁気コアの磁束収束用突起の形状は、ホール素子のセンサ部と同一形状としたことを特徴とする。   The invention according to claim 3 is the magnetic core structure of the clamp type current sensor according to claim 2, wherein the shape of the magnetic flux converging projection of the left magnetic core and the magnetic flux converging projection of the right magnetic core is a hole. It has the same shape as the sensor part of the element.

また、請求項4に係る発明は、前記請求項1に記載のクランプ式電流センサの磁気コア構造において、前記磁束収束用突起は、ホール素子に対向する左右両方の磁気コアの合わせ端部に設けるものとし、左側磁気コアの磁束収束用突起と右側磁気コアの磁束収束用突起の形状は、互いに異なる形状としたことを特徴とする。   According to a fourth aspect of the present invention, in the magnetic core structure of the clamp type current sensor according to the first aspect, the magnetic flux converging protrusions are provided at the matching end portions of both the left and right magnetic cores facing the Hall element. The shape of the magnetic flux converging protrusion of the left magnetic core and the shape of the magnetic flux converging protrusion of the right magnetic core are different from each other.

また、請求項5に係る発明は、前記請求項1〜請求項4の何れか1項に記載のクランプ式電流センサの磁気コア構造において、磁束収束用突起形成凸部を設けた同一形状の透磁性板材を積層処理することにより、透磁性板材の積層方向に同一形状となる磁束収束用突起が形成されるようにしたことを特徴とする。   According to a fifth aspect of the present invention, in the magnetic core structure of the clamp-type current sensor according to any one of the first to fourth aspects, a transparent member having the same shape provided with a projection for forming a magnetic flux concentrating projection is provided. The magnetic plate material is laminated so that magnetic flux converging projections having the same shape are formed in the lamination direction of the magnetically permeable plate material.

また、請求項6に係る発明は、前記請求項1〜請求項5の何れか1項に記載のクランプ式電流センサの磁気コア構造において、前記左側センサ部および/または右側センサ部にゼロフラックス方式用の帰還コイルを設けるようにしたことを特徴とする。   According to a sixth aspect of the present invention, in the magnetic core structure of the clamp type current sensor according to any one of the first to fifth aspects, a zero-flux method is used for the left sensor part and / or the right sensor part. This is characterized in that a feedback coil is provided.

請求項1に係るクランプ式電流センサの磁気コア構造によれば、計器本体に開閉自在に軸支される左右一対の左側センサ部と右側センサ部とからなり、かつ、両センサ部の閉止時に磁気コアが略円環形状となって被測定導体を挟み込み、それぞれの合わせ端部を介して相互の直接的もしくは間接的な接触による閉磁路が形成され、被測定導体を流れる電流により生ずる磁束をホール素子で検知することにより、被測定導体に流れる電流を検出するクランプ式電流センサの磁気コア構造であって、少なくともホール素子に対向する一方のセンサ部における磁気コアの合わせ端部には、ホール素子のセンサ部よりも面積が大である基準端面部より突出する磁束収束用突起を設けたので、磁気コア内部の磁束密度が磁束収束用突起に集中するため、ホール素子のセンサ部に検出される磁束密度の変化量を効果的に大きくすることが出来る。   According to the magnetic core structure of the clamp type current sensor according to claim 1, the clamp-type current sensor includes a pair of left and right left and right sensor portions that are pivotally supported by the instrument body so as to be openable and closable. The core is shaped like an annulus and the measured conductor is sandwiched between them. A closed magnetic circuit is formed by direct or indirect contact with each other through the mating ends, and the magnetic flux generated by the current flowing through the measured conductor is holed. A magnetic core structure of a clamp-type current sensor that detects a current flowing through a conductor to be measured by detecting with an element, wherein at least one sensor portion facing the hall element has a hall element at a matching end of the magnetic core. Since the magnetic flux concentrating protrusions that protrude from the reference end face part having a larger area than the sensor part of the magnetic core are provided, the magnetic flux density inside the magnetic core is concentrated on the magnetic flux converging protrusions. The variation of the magnetic flux density detected in the sensor unit Lumpur element effectively it is possible to increase.

また、請求項2に係るクランプ式電流センサの磁気コア構造によれば、前記磁束収束用突起は、ホール素子に対向する左右両方の磁気コアの合わせ端部に設けるものとし、左側磁気コアの磁束収束用突起と右側磁気コアの磁束収束用突起を結ぶ仮想磁路中にホール素子のセンサ部を配置するようにしたので、左右両側の磁束収束用突起によって磁束が集中した磁路中に配置されたホール素子のセンサ部にて検出される磁束密度の変化量も大きくなり、被測定導体に流されている電流が微小であった場合でも、計測誤差を少なくできる。   According to the magnetic core structure of the clamp type current sensor according to claim 2, the magnetic flux converging protrusion is provided at a matching end of both the left and right magnetic cores facing the Hall element, and the magnetic flux of the left magnetic core Since the sensor element of the Hall element is arranged in the virtual magnetic path connecting the converging protrusion and the magnetic flux converging protrusion of the right magnetic core, it is arranged in the magnetic path where the magnetic flux is concentrated by the magnetic flux converging protrusions on the left and right sides. The amount of change in magnetic flux density detected by the sensor element of the Hall element is also increased, and measurement errors can be reduced even when the current flowing through the conductor to be measured is very small.

また、請求項3に係るクランプ式電流センサの磁気コア構造によれば、前記左側磁気コアの磁束収束用突起と右側磁気コアの磁束収束用突起の形状は、ホール素子のセンサ部と同一形状としたので、ホール素子のセンサ部にて検出される磁束密度の変化量を効果的に高めることが出来る。   According to the magnetic core structure of the clamp-type current sensor according to claim 3, the shape of the magnetic flux converging protrusion of the left magnetic core and the shape of the magnetic flux converging protrusion of the right magnetic core are the same shape as the sensor portion of the Hall element. Therefore, the amount of change in the magnetic flux density detected by the sensor portion of the Hall element can be effectively increased.

また、請求項4に係るクランプ式電流センサの磁気コア構造によれば、前記磁束収束用突起は、ホール素子に対向する左右両方の磁気コアの合わせ端部に設けるものとし、左側磁気コアの磁束収束用突起と右側磁気コアの磁束収束用突起の形状は、互いに異なる形状としたので、双方の磁束収束用突起の形状に応じた磁路が生ずることとなり、ホール素子の配設位置に応じた好適な検知状態となるような設計を高い自由度で行える。   According to the magnetic core structure of the clamp type current sensor according to claim 4, the magnetic flux converging protrusion is provided at a matching end portion of both the left and right magnetic cores facing the Hall element, and the magnetic flux of the left magnetic core Since the shape of the magnetic flux converging protrusions of the converging protrusion and the right magnetic core are different from each other, a magnetic path corresponding to the shape of the magnetic flux converging protrusions of both is generated, and the shape corresponding to the arrangement position of the Hall element is generated. It is possible to design with a high degree of freedom so as to achieve a suitable detection state.

また、請求項5に係るクランプ式電流センサの磁気コア構造によれば、磁束収束用突起形成凸部を設けた同一形状の透磁性板材を積層処理することにより、透磁性板材の積層方向に同一形状となる磁束収束用突起が形成されるようにしたので、一種類の抜き型で磁気コアを作成することが可能となり、初期投資費用を少なくできる。   According to the magnetic core structure of the clamp type current sensor according to claim 5, the same shape of the magnetically permeable plate material provided with the magnetic flux converging projection forming convex portion is laminated, so that it is the same in the laminating direction of the permeable plate material. Since the magnetic flux converging projections having a shape are formed, it is possible to create a magnetic core with one type of punching die, and the initial investment cost can be reduced.

また、請求項6に係るクランプ式電流センサの磁気コア構造によれば、前記左側センサ部および/または右側センサ部にゼロフラックス方式用の帰還コイルを設けるようにしたので、磁気コアの磁束変化量が小さくなり、これにより、より確度の向上及び、測定電流範囲と測定周波数帯域を広げることもできる。   According to the magnetic core structure of the clamp type current sensor according to claim 6, since the zero-flux type feedback coil is provided in the left sensor part and / or the right sensor part, the magnetic flux change amount of the magnetic core Thus, the accuracy can be further improved and the measurement current range and the measurement frequency band can be expanded.

次に、本発明に係るクランプ式電流センサの磁気コア構造の最良の実施の形態を、添付図面に基づいて詳細に説明する。   Next, the best embodiment of the magnetic core structure of the clamp type current sensor according to the present invention will be described in detail with reference to the accompanying drawings.

本発明を適用可能なクランプ式電流センサ1は、例えば、直流電流と交流電流を計測することができるものであり、計器本体2に開閉自在に軸支される左右一対の左側センサ部3と右側センサ部4とからなり、かつ、両センサ部3,4の閉止時に、内部の磁気コア10A,10Bが略円環形状となって被測定導体L(例えば、活線状態の電線)を挟み込み、それぞれの合わせ端部を介して相互の直接的もしくは間接的な接触による閉磁路が形成され、被測定導体Lを流れる電流により生ずる磁束をホール素子5a,5bで検知することにより、被測定導体Lに流れる電流を検出するものである。左側センサ部3および右側センサ部4の両方、或いはどちらか一方にゼロフラックス方式用の帰還コイルを設ければ、より確度の向上及び、測定電流範囲と測定周波数帯域を広げることもできる。   The clamp-type current sensor 1 to which the present invention can be applied is capable of measuring, for example, a direct current and an alternating current. When the two sensor parts 3 and 4 are closed, the internal magnetic cores 10A and 10B are substantially in an annular shape and sandwich the conductor L to be measured (for example, a live wire), Closed magnetic paths are formed by direct or indirect contact with each other through the mating ends, and the magnetic flux generated by the current flowing through the measured conductor L is detected by the Hall elements 5a and 5b, whereby the measured conductor L Is to detect the current flowing through the. If a feedback coil for the zero flux method is provided in both or one of the left sensor unit 3 and the right sensor unit 4, the accuracy can be improved and the measurement current range and the measurement frequency band can be expanded.

なお、本実施形態においては、左側センサ部3に設ける左側磁気コア10Aと右側センサ4に設ける右側磁気コア10Bは、同一のものを用いるものとしたので、以下では、特に区別する必要のない場合は、左側磁気コア10Aと右側磁気コア10Bを総称して単に磁気コア10とよぶ。   In the present embodiment, since the left magnetic core 10A provided in the left sensor unit 3 and the right magnetic core 10B provided in the right sensor 4 are the same, in the following, there is no need to distinguish between them. The left magnetic core 10A and the right magnetic core 10B are collectively referred to simply as the magnetic core 10.

磁気コア10は、図2(イ)の側面図に示すような半円弧状で、図2(ロ)の正面図に示すような厚さを有するもので、ホール素子5aに対向する第1合わせ端部11と、ホール素子5bに対向する第2合わせ端部12を備える。そして、磁気コア10の第1合わせ端部11は、ホール素子5aのセンサ部よりも面積が大である基準端面部11aより突出する磁束収束用突起11bを設けたものであり、第2合わせ端部12は、ホール素子5bのセンサ部よりも面積が大である基準端面部12aより突出する磁束収束用突起12bを設けたものである。   The magnetic core 10 has a semicircular arc shape as shown in the side view of FIG. 2 (a) and a thickness as shown in the front view of FIG. 2 (b). An end 11 and a second mating end 12 facing the hall element 5b are provided. The first mating end portion 11 of the magnetic core 10 is provided with a magnetic flux converging projection 11b projecting from the reference end surface portion 11a having a larger area than the sensor portion of the Hall element 5a. The part 12 is provided with a magnetic flux converging protrusion 12b that protrudes from a reference end face part 12a having a larger area than the sensor part of the Hall element 5b.

第1,第2合わせ端部11,12の磁束収束用突起11b,12bは、それぞれホール素子5a,5bに対向させて設けるもので、左側磁気コア10Aの磁束収束用突起11bと右側磁気コア10Bの磁束収束用突起11bを結ぶ仮想磁路中(概ね、基準端面部11aに直交する仮想線上)にホール素子5aのセンサ部を配置し、左側磁気コア10Aの磁束収束用突起12bと右側磁気コア10Bの磁束収束用突起12bを結ぶ仮想磁路中にホール素子5bのセンサ部を配置する。   The magnetic flux converging projections 11b and 12b of the first and second mating end portions 11 and 12 are provided to face the Hall elements 5a and 5b, respectively, and the magnetic flux converging projection 11b of the left magnetic core 10A and the right magnetic core 10B. The sensor portion of the Hall element 5a is arranged in a virtual magnetic path connecting the magnetic flux converging projections 11b (generally on a virtual line orthogonal to the reference end face portion 11a), and the magnetic flux converging projection 12b of the left magnetic core 10A and the right magnetic core The sensor portion of the Hall element 5b is arranged in a virtual magnetic path connecting the magnetic flux converging protrusions 12b of 10B.

これにより、磁気コア10内部の磁束密度の変化量が微小であっても、磁束が流出あるいは流入する第1,第2合わせ端部11,12においては、磁束収束用突起11b,12bに磁束を効果的に集中させることができるため、左側磁気コア10Aの磁束収束用突起11bと右側磁気コア10Bの磁束収束用突起11bを結ぶ仮想磁路中に配置したホール素子5aおよび左側磁気コア10Aの磁束収束用突起12bと右側磁気コア10Bの磁束収束用突起12bを結ぶ仮想磁路中に配置したホール素子5bで検出される磁束変化量が大きくなり、計測誤差を抑制できる。   Thereby, even if the amount of change in the magnetic flux density inside the magnetic core 10 is very small, the magnetic flux is applied to the magnetic flux converging projections 11b and 12b at the first and second mating end portions 11 and 12 where the magnetic flux flows out or flows. Since the magnetic flux can be effectively concentrated, the magnetic flux of the Hall element 5a and the left magnetic core 10A arranged in a virtual magnetic path connecting the magnetic flux converging protrusion 11b of the left magnetic core 10A and the magnetic flux converging protrusion 11b of the right magnetic core 10B. The amount of magnetic flux change detected by the Hall element 5b arranged in the virtual magnetic path connecting the converging protrusion 12b and the magnetic flux converging protrusion 12b of the right magnetic core 10B increases, and measurement errors can be suppressed.

図2(ハ)は、磁気コア10を閉止させ電流センサを形成した状態で、被測定導体をクランプセンサ内に導入し電流値を計測した場合に、縦5mm横4mmの合わせ端部11,12に生じる磁束密度の分布を等高線で示した特性図である。合わせ端部11に設ける磁束収束用突起11bは、高さ0.5mm、幅1.1mmである。図2(ハ)の特性図より、合わせ端部11での磁束密度の分布は、磁束収束用突起11b上で最も大きくなることが明らかであるから、左右の磁気コア10A,10Bの磁束収束用突起11bに挟まれるように配置したホール素子5aにて検出される磁束密度の変化量も大きくなり、被測定導体Lに流されている電流が微小であっても、計測誤差を少なくできる。   FIG. 2 (c) shows a case in which the current core is formed by closing the magnetic core 10 and the measured conductor is introduced into the clamp sensor and the current value is measured, and the matching end portions 11 and 12 of 5 mm in length and 4 mm in width are measured. FIG. 6 is a characteristic diagram showing a distribution of magnetic flux density generated in FIG. The magnetic flux converging projection 11b provided on the mating end 11 has a height of 0.5 mm and a width of 1.1 mm. From the characteristic diagram of FIG. 2 (c), it is clear that the distribution of the magnetic flux density at the mating end portion 11 is the largest on the magnetic flux converging protrusion 11b. The amount of change in the magnetic flux density detected by the Hall element 5a arranged so as to be sandwiched between the protrusions 11b is also increased, and the measurement error can be reduced even if the current flowing through the conductor L to be measured is very small.

なお、本実施形態の磁気コア10においては、第1,第2合わせ端部11,12の両方に磁束収束用突起11b,12bを設けるものとしたが、ホール素子5が片側にしかない場合は、一方の合わせ端部に磁束収束用突起を設けておけばよい。また、ホール素子5の両側に磁束収束用突起を設けるものに限らず、一方にのみ磁束収束用突起を設けるだけでも、ホール素子5のセンサ部で検出できる磁束密度を高めることが出来る。さらに、ホール素子5の両側に設ける磁束収束用突起は必ずしも同一形状である必要はなく、ホール素子5の両側で各々異なる形状の磁束収束用突起を設けても構わない。   In the magnetic core 10 of the present embodiment, the magnetic flux converging projections 11b and 12b are provided on both the first and second mating end portions 11 and 12, but when the Hall element 5 is only on one side, It is only necessary to provide a magnetic flux converging projection on one of the mating ends. Further, the magnetic flux density that can be detected by the sensor portion of the Hall element 5 can be increased not only by providing the magnetic flux converging protrusions on both sides of the Hall element 5 but also by providing the magnetic flux converging protrusions only on one side. Furthermore, the magnetic flux converging protrusions provided on both sides of the Hall element 5 do not necessarily have the same shape, and magnetic flux converging protrusions having different shapes may be provided on both sides of the Hall element 5.

次に、上述した第1実施形態に係る磁気コア10の製造工程の一例を、図3に基づき説明する。   Next, an example of the manufacturing process of the magnetic core 10 according to the first embodiment will be described with reference to FIG.

例えば、図3(イ)に示すように、半円弧状の薄い透磁性板材であるパーマロイ材13の一方の第1端部131には、磁気コア10の合わせ端部11における基準端面部11aとなる凹端部131aと、磁束収束用突起11bとなる凸端部131bを設け、他方の第2端部132には、磁気コア10の合わせ端部12における基準端面部12aとなる凹端部132aと、磁束収束用突起12bとなる凸端部132bを設けてあり、複数枚のパーマロイ材13を接着または、溶接、かしめ、などで積層処理することにより、図3(ロ)に示すように、挟み込む被測定導体導と同一方向に、直線形状になった磁束収束用突起11b,12bが形成される。   For example, as shown in FIG. 3 (a), the first end 131 of the permalloy material 13 which is a semi-circular thin magnetic permeable plate material has a reference end surface portion 11a in the mating end portion 11 of the magnetic core 10 and A concave end portion 131a and a convex end portion 131b serving as the magnetic flux concentrating projection 11b. The other second end portion 132 has a concave end portion 132a serving as the reference end surface portion 12a in the mating end portion 12 of the magnetic core 10. And a convex end 132b to be a magnetic flux concentrating projection 12b, and by laminating a plurality of permalloy materials 13 by bonding, welding, caulking, etc., as shown in FIG. Magnetic flux converging projections 11b and 12b having a linear shape are formed in the same direction as the conductor to be measured to be sandwiched.

このように、同一形状のパーマロイ材13を積層することで磁気コア10を製造する場合には、磁束収束用突起11b,12bを形成することが容易であると共に、一種類の抜き型で磁気コア10を製造できることから、初期投資費用を抑制できるという利点もある。   As described above, when the magnetic core 10 is manufactured by laminating the permalloy material 13 having the same shape, the magnetic flux concentrating protrusions 11b and 12b can be easily formed, and the magnetic core can be formed with one type of punching die. Since 10 can be manufactured, there is also an advantage that the initial investment cost can be suppressed.

なお、同一形状のパーマロイ材13を積層することで磁気コア10を製造する方法は、あくまでも製造方法の一例であり、特に、この製造方法に限定されるものではない。例えば、透磁性板材として、パーマロイ材の変わりにフェライト、珪素鋼板、アモルファス等を使用しても良いし、磁気コア生成後に端部を研磨、または切断することで、それぞれの磁気コアに磁束収束用突起を形成するようにしてもよい。その他、従来形状の磁気コアの平坦な合わせ端部に対して、別途作成した磁束収束用突起形状の部材を接着する等して磁束収束用突起を形成することもできる。   The method of manufacturing the magnetic core 10 by laminating the same shape permalloy material 13 is merely an example of a manufacturing method, and is not particularly limited to this manufacturing method. For example, ferrite, silicon steel plate, amorphous, etc. may be used as the magnetically permeable plate instead of the permalloy material, or the end of the magnetic core is polished or cut after the magnetic core is generated, so that each magnetic core is used for magnetic flux convergence. A protrusion may be formed. In addition, the magnetic flux converging protrusions can be formed by, for example, bonding a separately formed magnetic flux converging protrusion-shaped member to the flat mating end of the conventional magnetic core.

次に、第2実施形態に係る磁気コア20の構造と、その製造工程の一例を、図4に基づき説明する。   Next, the structure of the magnetic core 20 according to the second embodiment and an example of the manufacturing process will be described with reference to FIG.

例えば、図4(イ)に示すように、半円弧状の薄い短パーマロイ材23と、同じく半円形状の薄い長パーマロイ材24とを適宜に積層処理することで、図4(ロ)に示すように、ホール素子5aに対向する第1合わせ端部21と、ホール素子5bに対向する第2合わせ端部22を備える磁気コア20を製造する。   For example, as shown in FIG. 4 (a), a thin arc-shaped thin short permalloy material 23 and a semi-circular thin long permalloy material 24 are appropriately laminated, as shown in FIG. 4 (b). As described above, the magnetic core 20 including the first mating end portion 21 facing the Hall element 5a and the second mating end portion 22 facing the Hall element 5b is manufactured.

この磁気コア20は、第1合わせ端部21の基準端面部21aを短パーマロイ材23の第1端面231により生ぜしめ、第1合わせ端部21の磁束収束用突起21bを長パーマロイ材24の第1端面241により生ぜしめ、第2合わせ端部22の基準端面部22aを短パーマロイ材23の第2端面232により生ぜしめ、第2合わせ端部22の磁束収束用突起22bを長パーマロイ材24の第2端面242により生ぜしめたものである。   In the magnetic core 20, the reference end surface portion 21 a of the first mating end portion 21 is formed by the first end surface 231 of the short permalloy material 23, and the magnetic flux converging projection 21 b of the first mating end portion 21 is the first end surface 231 of the long permalloy material 24. The first end surface 241 is formed, the reference end surface portion 22 a of the second mating end portion 22 is formed by the second end surface 232 of the short permalloy material 23, and the magnetic flux converging projection 22 b of the second mating end portion 22 is formed of the long permalloy material 24. This is caused by the second end face 242.

本実施形態の磁気コア20においては、長パーマロイ材24の突出する端部(短パーマロイ材23よりも突出する部分)がそのまま磁束収束用突起21b,22bとなるので、上述した第1実施形態の磁気コア10のように、薄いパーマロイ材13に磁束収束用突起11b,12bとなる凸端部131b,132bを設けておく必要がないので、簡単な形状の抜き型で短パーマロイ材23および長パーマロイ材24を作成できるという利点がある。   In the magnetic core 20 of the present embodiment, the protruding end portion of the long permalloy material 24 (the portion protruding from the short permalloy material 23) becomes the magnetic flux converging protrusions 21b and 22b as they are. Unlike the magnetic core 10, it is not necessary to provide the protruding end portions 131b and 132b to be the magnetic flux concentrating projections 11b and 12b on the thin permalloy material 13, so that the short permalloy material 23 and the long permalloy 23 can be formed with a simple shape. There is an advantage that the material 24 can be produced.

また、本実施形態の磁気コア20における磁束収束用突起21b,22bは、挟み込む被測定導体導と直交する方向に、直線状に形成されるので、上述した第1実施形態の磁気コア10の磁束収束用突起11b,12bとは直交する向きに磁束収束用突起21b,22bが形成されることとなる。従って、クランプ式電流センサにおける一方のセンサ部に磁気コア10を、他方のセンサ部に磁気コア20を用いれば、磁気コア10の磁束収束用突起11b(又は12b)と磁気コア20の磁束収束用突起21b(又は22b)が直交して正対するような配置となるため、磁気コア10,20内部の磁束密度が磁束収束用突起11b(又は12b)と磁束収束用突起21b(又は22b)が直交する一点に集中することとなり、この直交点にホール素子5a(又は5b)のセンサ部が位置するような配置構造に設定しておけば、左側センサ部3と右側センサ部4に各々同じ磁気コアを用いた場合(ホール素子5a,5bを挟んで対向する磁束収束用突起の形状が同じ場合)よりも、ホール素子5a,5bのセンサ部にて検出される磁束密度の変化量が大きくなり、被測定導体に流されている電流が微小であった場合でも、計測誤差を一層少なくできる。   Moreover, since the magnetic flux concentrating projections 21b and 22b in the magnetic core 20 of the present embodiment are formed in a straight line in a direction perpendicular to the conductor to be measured to be sandwiched, the magnetic flux of the magnetic core 10 of the first embodiment described above. Magnetic flux converging projections 21b and 22b are formed in a direction orthogonal to the converging projections 11b and 12b. Therefore, if the magnetic core 10 is used for one sensor part and the magnetic core 20 is used for the other sensor part in the clamp type current sensor, the magnetic flux concentrating protrusion 11b (or 12b) of the magnetic core 10 and the magnetic flux converging of the magnetic core 20 are used. Since the protrusions 21b (or 22b) are arranged so as to face each other at right angles, the magnetic flux density inside the magnetic cores 10 and 20 is perpendicular to the magnetic flux convergence protrusions 11b (or 12b) and the magnetic flux convergence protrusions 21b (or 22b). If the arrangement structure is set such that the sensor part of the Hall element 5a (or 5b) is located at this orthogonal point, the left and right sensor parts 3 and 4 have the same magnetic core. The magnetic flux density detected by the sensor portions of the Hall elements 5a and 5b than when the magnetic flux converging projections facing each other across the Hall elements 5a and 5b are used. Variation is large, even if the current which flows in the measured conductor was small, the measurement error can be further reduced.

次に、第3実施形態に係る磁気コア30の構造と、その製造工程の一例を、図5に基づき説明する。   Next, the structure of the magnetic core 30 according to the third embodiment and an example of the manufacturing process will be described with reference to FIG.

例えば、図5(イ)に示すように、半円弧状の無突起パーマロイ材33と、同じく半円形状の薄い有突起パーマロイ材32とを適宜に積層処理することで、図5(ロ)に示すように、ホール素子5aに対向する第1合わせ端部31と、ホール素子5bに対向する第2合わせ端部32を備える磁気コア30を製造する。   For example, as shown in FIG. 5 (a), by appropriately laminating a semicircular arc-shaped non-projecting permalloy material 33 and a semi-circular thin perforated permalloy material 32 as shown in FIG. 5 (b). As shown, a magnetic core 30 having a first mating end 31 facing the Hall element 5a and a second mating end 32 facing the Hall element 5b is manufactured.

この磁気コア30は、第1合わせ端部31の基準端面部31aを無突起パーマロイ材33の第1端面331および有突起パーマロイ材34の第1端部341における凹端部341aにより生ぜしめ、第1合わせ端部31の磁束収束用突起31bを有突起パーマロイ材34の第1端面341における凸端部341bにより生ぜしめ、第2合わせ端部32の基準端面部32aを無突起パーマロイ材33の第2端面332および有突起パーマロイ材34の第2端部342における凹端部342aにより生ぜしめ、第2合わせ端部32の磁束収束用突起32bを有突起パーマロイ材34の第2端面342における凸端部342bにより生ぜしめたものである。   In the magnetic core 30, the reference end surface portion 31a of the first mating end portion 31 is generated by the first end surface 331 of the non-protruding permalloy material 33 and the concave end portion 341a of the first end portion 341 of the protruding permalloy material 34. The magnetic flux converging projection 31b of the first mating end 31 is formed by the convex end portion 341b of the first end surface 341 of the protruding permalloy material 34, and the reference end surface portion 32a of the second mating end portion 32 is the first end of the non-projecting permalloy material 33. The convex end of the second end surface 342 of the protruding permalloy material 34 is formed by the concave end portion 342a of the second end surface 332 and the second end portion 342 of the protruding permalloy material 34. This is produced by the portion 342b.

本実施形態の磁気コア30においては、有突起パーマロイ材34の第1,第2端部341,342における凸端部341b,342bが積層された部分のみが磁束収束用突起31b,32bとなるので、上述した第1,第2実施形態の磁気コア10,20の磁束収束用突起11b,12b,21b,22bよりも小さく形成することができる。これにより、本実施形態の磁気コア30では、磁気コア30内部の磁束密度が、磁束収束用突起31b,32bに集中するため、結果として、磁束収束用突起31b(又は32b)に挟まれるように配置したホール素子5a(又は5b)にて検知される磁束密度の変化量も大きくなり、被測定導体に流されている電流が微小であった場合でも、計測誤差をより少なくできる。加えて、磁気コア30の磁束収束用突起31b,32bを、ホール素子5a,5bのセンサ部と同一形状としておけば、ホール素子5a,5bにて検知される磁束密度の変化量を効果的に高めることが出来る。   In the magnetic core 30 of the present embodiment, only the portions where the convex end portions 341b and 342b of the first and second end portions 341 and 342 of the protruding permalloy material 34 are stacked serve as magnetic flux converging projections 31b and 32b. The magnetic flux converging projections 11b, 12b, 21b, and 22b of the magnetic cores 10 and 20 of the first and second embodiments described above can be formed smaller. Thereby, in the magnetic core 30 of this embodiment, since the magnetic flux density inside the magnetic core 30 concentrates on the magnetic flux convergence protrusions 31b and 32b, as a result, it is sandwiched between the magnetic flux convergence protrusions 31b (or 32b). The amount of change in magnetic flux density detected by the arranged Hall element 5a (or 5b) is also increased, and even when the current flowing through the conductor to be measured is very small, the measurement error can be further reduced. In addition, if the magnetic flux concentrating protrusions 31b and 32b of the magnetic core 30 have the same shape as the sensor portions of the Hall elements 5a and 5b, the amount of change in magnetic flux density detected by the Hall elements 5a and 5b can be effectively reduced. Can be increased.

なお、本実施形態の磁気コア30は、上述のように無突起パーマロイ材33と有突起パーマロイ材34の2種類の板材を積層処理して製造する場合、前述した第1実施形態の磁気コア10よりも製造工程が煩雑となり、また、有突起パーマロイ材34には複雑な形状の抜き型が必要であるから、前述した第2実施形態の磁気コア20よりもコストアップとなるため、左右センサ部3,4の両方に磁気コア30を用いると、クランプ式電流センサのコストアップが懸念される。そこで、左右センサ部3,4の一方に磁気コア30を用い、他方には前述した磁気コア10又は磁気コア20を用いるようにしても良い。片側のみ磁気コア30を採用した場合でも、磁気コア30内部の磁束密度が磁束収束用突起31b(又は32b)の一点に集中するので、この磁束収束用突起31b(又は32b)にホール素子5a(又は5b)のセンサ部が近接する配置構造に設定しておけば、磁束密度の変化量を大きくすることが可能であり、被測定導体に流されている電流が微小であった場合でも、計測誤差を少なくできる。   When the magnetic core 30 of the present embodiment is manufactured by laminating the two types of plate materials of the non-protruding permalloy material 33 and the protruding permalloy material 34 as described above, the magnetic core 10 of the first embodiment described above. Since the manufacturing process is more complicated than that, and the protruding permalloy material 34 requires a complicated punching die, the cost is higher than the magnetic core 20 of the second embodiment described above. If the magnetic core 30 is used for both 3 and 4, there is a concern about the cost increase of the clamp type current sensor. Therefore, the magnetic core 30 may be used for one of the left and right sensor units 3 and 4 and the magnetic core 10 or the magnetic core 20 described above may be used for the other. Even when the magnetic core 30 is used only on one side, the magnetic flux density inside the magnetic core 30 is concentrated on one point of the magnetic flux converging projection 31b (or 32b), so that the Hall element 5a ( Alternatively, if the sensor unit of 5b) is set in an adjacent arrangement structure, it is possible to increase the amount of change in magnetic flux density, and even if the current flowing through the conductor to be measured is very small, The error can be reduced.

以上、本発明に係るクランプ式電流センサの磁気コア構造の実施形態を添付図面に基づいて説明したが、本発明の包摂範囲は、これらの実施形態に限定されるものではなく、公知既存の手法を適宜転用することで実現しても構わない。   As described above, the embodiments of the magnetic core structure of the clamp type current sensor according to the present invention have been described based on the accompanying drawings. However, the inclusion range of the present invention is not limited to these embodiments, and a publicly known existing technique is used. You may implement | achieve by diverting suitably.

本発明に係る磁気コア構造の第1実施形態を適用したセンサ部の動作説明図である。It is operation | movement explanatory drawing of the sensor part to which 1st Embodiment of the magnetic core structure which concerns on this invention is applied. (イ)は第1実施形態に係る磁気コアの側面図、(ロ)は第1実施形態に係る磁気コアの正面図、(ハ)は第1実施形態に係る磁気コア一対を閉止させて電流センサを形成した状態で電流値を計測したときに合わせ端部に生ずる磁束密度の分布を示す特性図である。(A) is a side view of the magnetic core according to the first embodiment, (B) is a front view of the magnetic core according to the first embodiment, and (C) is a current that closes the pair of magnetic cores according to the first embodiment. It is a characteristic view which shows distribution of the magnetic flux density which arises in a matching edge part when an electric current value is measured in the state which formed the sensor. 第1実施形態に係る磁気コア構造の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the magnetic core structure which concerns on 1st Embodiment. 第2実施形態に係る磁気コア構造の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the magnetic core structure which concerns on 2nd Embodiment. 第3実施形態に係る磁気コア構造の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the magnetic core structure which concerns on 3rd Embodiment. (イ)は従来の磁気コアの側面図、(ロ)は従来の磁気コアの正面図、(ハ)は従来の磁気コア一対を閉止させて電流センサを形成した状態で電流値を計測したときに合わせ端部に生ずる磁束密度の分布を示す特性図である。(A) is a side view of a conventional magnetic core, (B) is a front view of the conventional magnetic core, and (C) is a current value measured with a conventional magnetic core pair closed to form a current sensor. It is a characteristic view which shows distribution of the magnetic flux density which arises in the edge part to match.

符号の説明Explanation of symbols

1 クランプ式電流センサ
2 計器本体
3 左側センサ部
4 右側センサ部
10 磁気コア(第1実施形態)
11 第1合わせ端部
11a 基準端面部
11b 磁束収束用突起
12 第2合わせ端部
12a 基準端面部
12b 磁束収束用突起
13 パーマロイ材
131 第1端部
131a 凹端部
131b 凸端部
132 第2端部
132a 凹端部
132b 凸端部
DESCRIPTION OF SYMBOLS 1 Clamp-type current sensor 2 Instrument main body 3 Left sensor part 4 Right sensor part 10 Magnetic core (1st Embodiment)
DESCRIPTION OF SYMBOLS 11 1st alignment edge part 11a Reference | standard end surface part 11b Magnetic flux convergence protrusion 12 2nd alignment edge part 12a Reference | standard end surface part 12b Magnetic flux convergence protrusion 13 Permalloy material 131 1st edge part 131a Concave edge part 131b Convex edge part 132 2nd edge Part 132a Concave end part 132b Convex end part

Claims (6)

計器本体に開閉自在に軸支される左右一対の左側センサ部と右側センサ部とからなり、かつ、両センサ部の閉止時に磁気コアが略円環形状となって被測定導体を挟み込み、それぞれの合わせ端部を介して相互の直接的もしくは間接的な接触による閉磁路が形成され、被測定導体を流れる電流により生ずる磁束をホール素子で検知することにより、被測定導体に流れる電流を検出するクランプ式電流センサの磁気コア構造であって、
少なくともホール素子に対向する一方のセンサ部における磁気コアの合わせ端部には、ホール素子のセンサ部よりも面積が大である基準端面部より突出する磁束収束用突起を設けたことを特徴とするクランプ式電流センサの磁気コア構造。
It consists of a left and right pair of left and right sensor parts that are pivotally supported by the instrument body so that it can be opened and closed, and when both sensor parts are closed, the magnetic core becomes a substantially annular shape to sandwich the conductor to be measured. A clamp that detects the current flowing through the conductor to be measured by detecting the magnetic flux generated by the current flowing through the conductor to be measured by the Hall element by forming a closed magnetic circuit through direct or indirect contact with each other through the mating end. A magnetic core structure of an electric current sensor,
A magnetic flux converging protrusion that protrudes from a reference end surface portion having a larger area than the sensor portion of the Hall element is provided at a matching end portion of the magnetic core in at least one sensor portion facing the Hall element. Magnetic core structure of clamp type current sensor.
前記磁束収束用突起は、ホール素子に対向する左右両方の磁気コアの合わせ端部に設けるものとし、左側磁気コアの磁束収束用突起と右側磁気コアの磁束収束用突起を結ぶ仮想磁路中にホール素子のセンサ部を配置するようにしたことを特徴とする請求項1に記載のクランプ式電流センサの磁気コア構造。   The magnetic flux converging protrusions are provided at the matching ends of both the left and right magnetic cores facing the Hall element, and in the virtual magnetic path connecting the magnetic flux converging protrusions of the left magnetic core and the magnetic flux converging protrusions of the right magnetic core. 2. The magnetic core structure of a clamp type current sensor according to claim 1, wherein a sensor portion of the Hall element is arranged. 前記左側磁気コアの磁束収束用突起と右側磁気コアの磁束収束用突起の形状は、ホール素子のセンサ部と同一形状としたことを特徴とする請求項2に記載のクランプ式電流センサの磁気コア構造。   The magnetic core of the clamp type current sensor according to claim 2, wherein the shape of the magnetic flux converging protrusion of the left magnetic core and the shape of the magnetic flux converging protrusion of the right magnetic core are the same shape as the sensor part of the Hall element. Construction. 前記磁束収束用突起は、ホール素子に対向する左右両方の磁気コアの合わせ端部に設けるものとし、左側磁気コアの磁束収束用突起と右側磁気コアの磁束収束用突起の形状は、互いに異なる形状としたことを特徴とする請求項1に記載のクランプ式電流センサの磁気コア構造。   The magnetic flux converging protrusions are provided at the matching ends of both the left and right magnetic cores facing the Hall element, and the shapes of the magnetic flux converging protrusions of the left magnetic core and the right magnetic core are different from each other. The magnetic core structure of the clamp type current sensor according to claim 1, wherein 磁束収束用突起形成凸部を設けた同一形状の透磁性板材を積層処理することにより、透磁性板材の積層方向に同一形状となる磁束収束用突起が形成されるようにしたことを特徴とする請求項1〜請求項4の何れか1項に記載のクランプ式電流センサの磁気コア構造。   Magnetic flux converging projections having the same shape are formed in the laminating direction of the magnetically permeable plate material by laminating the same shape of permeable plate material provided with magnetic flux converging projection forming convex portions. The magnetic core structure of the clamp type current sensor according to any one of claims 1 to 4. 前記左側センサ部および/または右側センサ部にゼロフラックス方式用の帰還コイルを設けるようにしたことを特徴とする請求項1〜請求項5の何れか1項に記載のクランプ式電流センサの磁気コア構造。   The magnetic core of the clamp type current sensor according to any one of claims 1 to 5, wherein a feedback coil for a zero flux system is provided in the left sensor part and / or the right sensor part. Construction.
JP2008297924A 2008-11-21 2008-11-21 Magnetic core structure of clamp type current sensor Pending JP2010122150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008297924A JP2010122150A (en) 2008-11-21 2008-11-21 Magnetic core structure of clamp type current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008297924A JP2010122150A (en) 2008-11-21 2008-11-21 Magnetic core structure of clamp type current sensor

Publications (1)

Publication Number Publication Date
JP2010122150A true JP2010122150A (en) 2010-06-03

Family

ID=42323614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008297924A Pending JP2010122150A (en) 2008-11-21 2008-11-21 Magnetic core structure of clamp type current sensor

Country Status (1)

Country Link
JP (1) JP2010122150A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169539A (en) * 2018-03-22 2018-06-15 广东电网有限责任公司清远供电局 A kind of tong-type ammeter based on Hall effect
CN111157777A (en) * 2020-01-14 2020-05-15 清华大学 Design method of double-magnetic-core differential leakage current measurement sensor
CN111157776A (en) * 2020-01-14 2020-05-15 清华大学 Double-magnetic-core sensor for insulation leakage current of power equipment
US11002769B2 (en) 2017-03-06 2021-05-11 CVEngineering Corporation Current measurement device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157667U (en) * 1987-04-01 1988-10-17
JPH0572233A (en) * 1991-09-12 1993-03-23 Asahi Chem Ind Co Ltd Current sensor
JPH07239347A (en) * 1994-02-28 1995-09-12 Nippondenso Co Ltd Current-measuring apparatus of magnetic balance type

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157667U (en) * 1987-04-01 1988-10-17
JPH0572233A (en) * 1991-09-12 1993-03-23 Asahi Chem Ind Co Ltd Current sensor
JPH07239347A (en) * 1994-02-28 1995-09-12 Nippondenso Co Ltd Current-measuring apparatus of magnetic balance type

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11002769B2 (en) 2017-03-06 2021-05-11 CVEngineering Corporation Current measurement device
CN108169539A (en) * 2018-03-22 2018-06-15 广东电网有限责任公司清远供电局 A kind of tong-type ammeter based on Hall effect
CN108267621A (en) * 2018-03-22 2018-07-10 广东电网有限责任公司清远供电局 A kind of jaw type current measurer based on Hall element
CN111157777A (en) * 2020-01-14 2020-05-15 清华大学 Design method of double-magnetic-core differential leakage current measurement sensor
CN111157776A (en) * 2020-01-14 2020-05-15 清华大学 Double-magnetic-core sensor for insulation leakage current of power equipment

Similar Documents

Publication Publication Date Title
JP5366418B2 (en) Current detector and watt-hour meter using the same
JP2013148512A (en) Current sensor
JP2005308635A (en) Current sensor
JP6119296B2 (en) Current sensor
US8497677B2 (en) Current sensing device and manufacturing method of the same
US8952680B2 (en) Magnetic sensor and current measuring apparatus
JP2007113965A (en) Current sensor
JP2014122819A (en) Current sensor
JP2016099320A (en) Current sensor
JP2017187300A (en) Current sensor
KR101590298B1 (en) Magnetic sensor device
US20180106839A1 (en) Excitation core, sensor head, and current sensor
JP2010122150A (en) Magnetic core structure of clamp type current sensor
JP4629644B2 (en) Current detector
JP5121679B2 (en) Fluxgate magnetic sensor
WO2014045559A1 (en) Current sensor
JP2014006181A (en) Current sensor
JP2014070914A (en) Current sensor
JP2020067305A (en) Current sensor and method of manufacturing bus bar used for the same
JP2012198053A (en) Magnetic sensor and current sensor using the same
JP2014066623A (en) Current sensor
JP2013050330A (en) Magnetic sensor and current sensor using the same
JP6144597B2 (en) Current sensor
JP6580357B2 (en) Magnetic sensor
EP4297112A1 (en) Magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130716