JP2010121196A - コールドスプレー装置及びコールドスプレー方法 - Google Patents

コールドスプレー装置及びコールドスプレー方法 Download PDF

Info

Publication number
JP2010121196A
JP2010121196A JP2008298405A JP2008298405A JP2010121196A JP 2010121196 A JP2010121196 A JP 2010121196A JP 2008298405 A JP2008298405 A JP 2008298405A JP 2008298405 A JP2008298405 A JP 2008298405A JP 2010121196 A JP2010121196 A JP 2010121196A
Authority
JP
Japan
Prior art keywords
nozzle
material powder
temperature
working gas
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008298405A
Other languages
English (en)
Other versions
JP5556004B2 (ja
Inventor
Yohei Sakakibara
洋平 榊原
Yoshiyuki Yamane
善行 山根
Koki Yoshizawa
廣喜 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008298405A priority Critical patent/JP5556004B2/ja
Publication of JP2010121196A publication Critical patent/JP2010121196A/ja
Application granted granted Critical
Publication of JP5556004B2 publication Critical patent/JP5556004B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】粉末速度計測装置を用いて実際に材料粉末の噴射速度を測定することなく施工条件を判定することが可能な、コールドスプレー装置及びコールドスプレー方法を提供する。
【解決手段】材料粉末Aをノズルから作動ガスGと共に所定の施工条件で噴射して基材B上に付着させるコールドスプレー装置1であって、ノズル内の作動ガスGの流れ場を上記施工条件に基づいて解析して材料粉末Aの噴射速度を推定することで、ノズルから噴射される材料粉末Aを基材B上に付着させることが可能か否かを判定する施工条件判定システム100を有するという構成を採用する。
【選択図】図1

Description

本発明は、コールドスプレー装置及びコールドスプレー方法に関するものである。
近年、新しいコーティング方法として、コールドスプレー方法が注目されている。このコールドスプレー方法は、材料粉末を作動ガスと共にノズルから所定速度(音速〜超音速程度の高速度)で噴射し、固相状態のまま基材に衝突・付着させて被膜を形成する技術である。
材料粉末としては、金属、合金、金属間化合物、セラミックス等が用いられる。また、作動ガスとしては、空気、窒素、ヘリウム等が用いられ、この作動ガスをノズルに供給する際は、作動ガスの温度は材料粉末の融点よりも低い温度に設定される。
このコールドスプレー方法では、従来のプラズマ溶射法、フレーム溶射法、高速フレーム溶射法等に比べて、材料粉末を高温に加熱する必要がない。このため、加熱による材質変化(酸化や熱変質)が殆どなく、意図した性質を有する被膜を形成することができる。つまり、緻密で密度が高く、密着性が良好な被膜が得られる。
このようなコールドスプレー方法及びこのコールドスプレー方法を実施するコールドスプレー装置としては、例えば、特許文献1及び特許文献2に記載されるものが知られている。
特開2006−52449号公報 特開2008−93635号公報
ところで、コールドスプレー方法を用いて、ノズルから噴射される材料粉末を基材上に付着させる付着臨界条件としては、材料粉末の噴射速度がその重要な因子となることが知られている。このことから従来、コールドスプレー方法を用いて基材上に被膜を形成する施工が可能か否かを判定するに際しては、材料粉末の噴射速度に基づいてその施工条件を判定しており、このような材料粉末の噴射速度は、粉末速度測定装置を用いて実際に測定してその判定を行っていた。
しかしながら、材料粉末の噴射速度を測定する粉末速度測定装置は、高価でありコスト高になるという問題がある。また、材料粉末の種類と基材の種類との組合せにより、付着臨界条件は変化することから、その都度粉末速度測定装置を用いて材料粉末の噴射速度を測定しなければならず、施工に移行するまでに時間が掛かるという問題がある。
本発明は、上記問題点に鑑みてなされたものであり、粉末速度計測装置を用いて実際に材料粉末の噴射速度を測定することなく施工条件を判定することが可能な、コールドスプレー装置及びコールドスプレー方法を提供することを目的とする。
上記の課題を解決するために、本発明は、材料粉末をノズルから作動ガスと共に所定の施工条件で噴射して基材上に付着させるコールドスプレー装置であって、上記ノズル内の上記作動ガスの流れ場を上記施工条件に基づいて解析して上記材料粉末の噴射速度を推定することで、上記ノズルから噴射される上記材料粉末を上記基材上に付着させることが可能か否かを判定する施工条件判定システムを有するという構成を採用する。
このような構成を採用することによって、本発明では、所定の施工条件の下、ノズル内の作動ガスの流れ場を解析することによって、その流れ場において材料粉末に作用する力を算出して、材料粉末の噴射速度を推定することが可能となる。
また、本発明では、上記施工条件判定システムは、上記ノズルに供給する上記作動ガスのガス圧力と、上記ノズルに供給する上記作動ガスのガス温度と、上記ノズルに供給する上記作動ガスのガス種類と、上記ノズルの形状とに基づいて、上記解析を行うという構成を採用する。
このような構成を採用することによって、本発明では、ノズル内の作動ガスの流れ場の形成に影響をもたらす、作動ガスのガス圧力、ガス温度、ガス種類、及びノズルの形状に基づいて解析を行う。
また、本発明では、上記ノズルには、上記ノズルの長さ方向の温度分布を計測するための複数の温度センサが設けられており、上記施工条件判定システムは、上記解析により推定される上記ノズルの長さ方向の温度分布と、上記温度センサにより計測される上記温度分布との差が、所定の許容値の範囲内に収まる場合に、施工可能と判定するという構成を採用する。
このような構成を採用することによって、本発明では、解析により推定されるノズルの長さ方向の温度分布と、実測したノズルの長さ方向の温度分布との差が、所定の許容値の範囲内、つまり、解析結果と実測結果とのノズルの温度分布を比較することにより、解析が実際の流れ場を適切に再現している場合に、施工可能とする判定が行われる。
また、本発明では、上記施工条件判定システムは、上記解析により推定される上記ノズルの噴射口の作動ガス温度と、上記基材の種類に応じて設定される施工可能な基材臨界温度とに基づいて、上記施工条件を判定するという構成を採用する。
このような構成を採用することによって、本発明では、解析により推定されるノズルの噴射口の作動ガス温度と、基材の種類に応じて設定される施工可能な基材臨界温度とに基づいて、施工条件の判定が行われる。
また、本発明では、上記施工条件判定システムは、上記解析により推定される上記ノズル内の第2作動ガス温度と、上記材料粉末の種類に応じて設定される施工可能な材料粉末臨界温度とに基づいて、上記施工条件を判定するという構成を採用する。
このような構成を採用することによって、本発明では、解析により推定されるノズル内の第2作動ガス温度と、材料粉末の種類に応じて設定される施工可能な材料粉末臨界温度とに基づいて、施工条件の判定が行われる。
また、本発明では、上記施工条件判定システムは、上記解析結果と上記材料粉末の粒子径とに基づいて推定される上記噴射速度と、上記基材の種類と上記材料粉末の種類との組合せによって設定される施工可能な臨界噴射速度とに基づいて、上記施工条件を判定するという構成を採用する。
このような構成を採用することによって、本発明では、解析結果と材料粉末の粒子径とに基づいて推定される噴射速度と、基材の種類と材料粉末の種類との組合せによって設定される施工可能な臨界噴射速度とに基づいて、施工条件の判定が行われる。
また、本発明では、上記施工条件判定システムは、上記材料粉末のうち異なる粒子径を複数選択し、選択した複数の上記材料粉末の粒子径毎に上記噴射速度を複数推定して、複数の上記噴射速度と上記臨界噴射速度とに基づいて、上記材料粉末が上記基材上に付着する歩留まり率を推定し、推定した上記歩留まり率と、所定の歩留まり率とに基づいて、上記施工条件を判定するという構成を採用する。
このような構成を採用することによって、本発明では、材料粉末のうち異なる粒子径を複数選択し、選択した複数の材料粉末の粒子径毎に噴射速度を複数推定して、複数の噴射速度と臨界噴射速度とに基づいて、材料粉末が基材上に付着する歩留まり率を推定し、推定した歩留まり率と、所定の歩留まり率とに基づいて、施工条件の判定が行われる。
また、本発明では、上記施工条件判定システムは、上記判定の結果が施工不可である場合に、上記ノズルに供給する上記作動ガスのガス圧力と、上記ノズルに供給する上記作動ガスのガス温度と、上記ノズルに供給する上記作動ガスのガス種類と、上記ノズルの形状と、上記材料粉末の粒子径とのうち少なくともいずれか一つのパラメータを調整するように指示するという構成を採用する。
このような構成を採用することによって、本発明では、判定の結果が施工不可である場合に、材料粉末の噴射速度に影響をもたらす、作動ガスのガス圧力、ガス温度、ガス種類、ノズルの形状、及び材料粉末の粒子径のパラメータを調整するように指示することで、施工条件を変化させて施工可能に導くことができる。
また、本発明では、材料粉末をノズルから作動ガスと共に所定の施工条件で噴射して基材上に付着させるコールドスプレー方法であって、上記ノズル内の上記作動ガスの流れ場を上記施工条件に基づいて解析して上記材料粉末の噴射速度を推定することで、上記ノズルから噴射される上記材料粉末を上記基材上に付着させることが可能か否かを判定する施工条件判定工程を有するという構成を採用する。
本発明によれば、材料粉末をノズルから作動ガスと共に所定の施工条件で噴射して基材上に付着させるコールドスプレー装置であって、上記ノズル内の上記作動ガスの流れ場を上記施工条件に基づいて解析して上記材料粉末の噴射速度を推定することで、上記ノズルから噴射される上記材料粉末を上記基材上に付着させることが可能か否かを判定する施工条件判定システムを有するという構成を採用することによって、所定の施工条件の下、ノズル内の作動ガスの流れ場を解析することで、その流れ場において材料粉末に作用する力を算出して、材料粉末の噴射速度を推定することが可能となる。すなわち、推定した材料粉末の噴射速度に基づいて施工条件を判定することで、実際に粉末速度計測装置を用いて噴射速度を測定することなく、施工可能か否かの判定することができる。
したがって、本発明は、粉末速度計測装置を用いることと比べて、低コスト化及び施工に移行する時間の短縮化を図ることができるコールドスプレー装置を提供することができる効果がある。
以下、本発明に係るコールドスプレー装置及びコールドスプレー方法の実施形態について、図面を参照して説明する。
図1は、本実施形態に係るコールドスプレー装置1の概略構成を示す模式図である。
図2は、本実施形態に係るコールドスプレー部10の概略構成を示す模式図である。
図3は、本実施形態に係る施工条件判定システム100の概略構成を示すブロック図である。
コールドスプレー装置1は、コールドスプレー方法を用いて基材Bの表面上に保護層Rを形成するものであり、材料粉末Aをスプレーするコールドスプレー部10と、基材Bを載置すると共に基材Bを一定温度に温度制御する基材温度調整部50と、スプレーガン11(より詳しくはノズル11N)から噴射される材料粉末Aを基材B上に付着させることが可能か否かを判定する施工条件判定システム100から概略構成される。
コールドスプレー部10は、材料粉末Aを所定速度(例えば、音速〜超音速)で基材Bの表面に固相状態で衝突させて保護層Rを形成するための装置であって、図2に示すように、材料粉末Aを高圧の作動ガスGと共に噴射するスプレーガン11、所望量の材料粉末Aを作動ガスGと共にスプレーガン11に供給する粉末供給部12、作動ガスGを加熱してスプレーガン11に供給するガス加熱器13、粉末供給部12及びガス加熱器13に対して作動ガスGを供給する不図示のガス供給部、ノズル11Nの長さ方向の温度分布を計測する複数の温度センサ15を概略備えている。
ガス供給部から供給される高圧の作動ガスGは2つの経路に分岐され、一方の作動ガスG1はガス加熱器13を経て、室温以上に加熱された後、スプレーガン11に供給される。他方の作動ガスG2は、粉末供給部12へ送気され、キャリアガスとして材料粉末Aと共にスプレーガン11に供給される。
そして、スプレーガン11に供給された作動ガスG(G1,G2)と材料粉末Aは、スプレーガン11の先端のノズル11Nを経て音速〜超音速流となり、ノズル11Nの先端部(噴射口11N1)から噴出される。
なお、作動ガスGとしては、空気、窒素、ヘリウムなどが用いられる。
ノズル11Nは、スプレーガン11に対して取り外し/取り付け自在な構成となっており、いわゆる段付きノズルやストレートノズル等を採用することができる。本実施形態のノズル11Nは、図2に示すようにストレートノズルを採用している。
温度センサ15は、ノズル11Nの長さ方向において所定距離離間して複数その外壁に接続されており、接続された位置のノズル11Nの温度を検出すると共に、その検出結果を施工条件判定システム100に出力する構成となっている。温度センサ15としては、熱電対が好適に用いられる。
図1に戻り、基材温度調整部50は、基材Bを載置すると共に基材Bを加熱可能な加熱プレート52と、加熱プレート52内に埋め込まれて加熱ヒータ54と、加熱プレート52の温度を検出する温度センサ56と、温度センサ56の検出結果に基づいて加熱ヒータ54を作動させる温度制御部58等から構成されている。
加熱プレート52としては、熱伝導率が高い材料、例えば、銅やアルミニウム等が好適に用いられる。
加熱ヒータ54としては、高周波コイル(高周波誘導加熱装置)が好適に用いられる。
交流電源に接続された加熱ヒータ54(高周波コイル)を作動させると、加熱プレート52の表面付近に高密度のうず電流が発生し、そのジュール熱で加熱プレート52が誘導加熱するようになっている。
温度センサ56としては、熱電対が好適に用いられる。加熱プレート52に埋め込んだ温度センサ56(熱電対)により加熱プレート52の温度を検出する。加熱プレート52の温度は、基材Bの加熱温度とほぼ等しいので、この温度を基材Bの加熱温度とみなすことができる。
したがって、温度制御部58は、温度センサ56の検出結果に基づいて加熱ヒータ54を制御することで、基材Bを所望の温度に加熱・維持することが可能となっている。
施工条件判定システム100は、ノズル11N内の作動ガスGの流れ場を所定の施工条件に基づいて解析して材料粉末Aの噴射速度を推定することで、ノズル11Nから噴射される材料粉末Aを基材B上に付着させることが可能か否かを判定するものであり、図3に示すように、判定結果を出力する表示部101と、所定の施工条件を入力する操作部102と、解析や判定に用いられる所定の情報を記憶する記憶部103と、表示部101、操作部102、記憶部103及び複数の温度センサ15と電気的に接続されて所定の演算を行い、流れ場の解析と施工条件の判定とを概略行う演算部104とを備える構成となっている。
表示部101は、ディスプレイ等から構成されており、演算部104の制御の下に所定の情報を表示することによって、例えばユーザに施工条件の判定結果を通知させ、また、施工条件のパラメータの調整を指示するマンマシンインタフェースとして機能する。
操作部102は、ハードウエアキーとして物理的に備えられたキーボードやマウス等から構成されており、例えば施工条件のパラメータの入力に用いられる構成となっている。
記憶部103は、ROM(Read Only Memory)、RAM(Random Access Memory)やHDD(Hard Disk Drive)等の記憶媒体を有しており、その記憶媒体に予め、解析データ、基材データ、材料粉末データ、臨界噴射速度データ等が記憶されている。
解析データは、本実施形態におけるノズル11N内の作動ガスGの流れ場の熱流体解析を行うCFD(Computational Fluid Dynamics)ソフトに関する情報、例えば、ノズル11N内の流れ場のメッシュ情報や、作動ガスGのガス圧力、ガス温度、ガス種類及びノズル11Nの形状をパラメータとし、これらパラメータに基づいてノズル11N内の流れ場を解析する演算式の情報等から構成される。また、この解析結果と材料粉末Aの粒子径とに基づいて材料粉末Aの噴射速度を推定する演算式の情報等を有している。なお、これら演算式は、実験等によって予め求められるものである。
基材データは、基材Bの種類に応じて設定される施工可能な基材臨界温度(以下、Tcrit,sの符号で示すことがある)に関する情報から構成される。記憶されている基材Bの種類としては、例えば、アルミニウム(Al)、Al合金、ステンレス鋼、銅(Cu)、ニッケル(Ni)、Ni合金、タングステン・カーバイド(WC−Co)等が挙げられ、この種類に応じた基材臨界温度がそれぞれ記憶されている。なお、基材臨界温度とは、コールドスプレー方法において基材Bが許容できる上限の温度であり、例えば、所定温度の作動ガスGの噴き付けによって基材Bに材質変化、熱変形や溶融等が生じない臨界温度(例えば、基材BがAlの場合、基材臨界温度は300℃程度)に設定される。
材料粉末データは、材料粉末Aの種類に応じて設定される施工可能な材料粉末臨界温度(以下、Tcrit,pの符号で示すことがある)に関する情報から構成される。記憶されている材料粉末Aの種類としては、例えば、アルミニウム(Al)、Al合金、ステンレス鋼、銅(Cu)、ニッケル(Ni)、Ni合金、タングステン・カーバイド(WC−Co)等が挙げられ、この種類に応じた材料粉末臨界温度がそれぞれ記憶されている。なお、材料粉末臨界温度とは、コールドスプレー方法において材料粉末Aが許容できる上限の温度であり、例えば、所定温度の作動ガスGによって材料粉末Aが材質変化、熱変形や溶融等しない臨界温度(例えば、材料粉末AがAlの場合、材料粉末臨界温度は300℃程度)に設定される。
臨界噴射速度データは、基材Bの種類と材料粉末Aの種類との組合せによって設定される施工可能な臨界噴射速度(以下、Vcritの符号で示すことがある)に関する情報から構成される。この臨界噴射速度データは、基材Bの種類と材料粉末Aの種類とで臨界噴射速度が決定されるデータテーブル形式となっており、例えば、Alの基材Bに対し、Alの材料粉末Aを選択した場合の臨界噴射速度、あるいはAlの基材Bに対し、Niの材料粉末Aを選択した場合の臨界噴射速度等がこのデータテーブルと照合することで導出される。なお、臨界噴射速度とは、所定の基材Bに対し、所定の材料粉末Aが付着・堆積する臨界の噴射速度であり、例えば、基材BがAl、材料粉末AがAlの場合、臨界噴射速度は400m/s程度に設定される。
演算部104は、CPU(Central Processing Unit)等の電子部品、並びに表示部101、操作部102、記憶部103、温度センサ15との間で電気信号の授受を行う各種入出力インターフェース回路等から構成されている。この演算部104は、以下に説明する施工条件判定システム100のフローチャートに沿って所望の演算や、各構成機器の制御を行う構成となっている。
続いて、上記構成の施工条件判定システム100の施工条件判定の動作(施工条件判定工程)を図4〜図8を参照して説明する。なお、以下の説明では、基材BとしてAlを選択し、材料粉末Aとして同じくAlを選択した場合の施工条件の判定の例に沿って説明する。
図4は、本実施形態に係る施工条件判定システム100の動作を説明するフローチャートである。
図5は、本実施形態に係る施工条件判定システム100の動作を説明するフローチャートである。
図6は、本実施形態に係るノズル11Nの長さ方向の温度分布の解析結果と実測結果とを示す図である。
図7は、本実施形態に係る材料粉末Aの粒度分布を示す図である。
図8は、本実施形態に係る材料粉末Aの代表粒径毎の噴射速度の算出結果を示す図である。
図4に示すように、先ず、ユーザは、CFDによるノズル11N内の作動ガスGの流れ場の解析に係るパラメータ(第1パラメータ)である、ガス圧力、ガス温度、ガス種類、及びノズル形状を、操作部102を操作して施工条件判定システム100に入力する(ステップS1)。
本実施形態では、例えば、ガス圧力は0.6MPa、ガス温度は400℃、ガス種類は空気(圧縮空気)、ノズル形状は長さ120mmのストレートノズル、と入力する。
次に、演算部104は、入力された第1パラメータと記憶部103の解析データとに基づいて、ノズル11N内の作動ガスGの流れ場を解析する(ステップS2)。ここで、上記解析により、図6に示すような、縦軸に温度、横軸にノズル長さが設定されるグラフにより、ノズル11Nの長さ方向の温度分布が算出・推定される。
また、上記第1パラメータに基づいて、図2に示すコールドスプレー部10を動作させる。具体的には、ガス加熱器13及び不図示のガス供給部を駆動させ、120mmのストレートノズルのノズル11Nに作動ガスG(圧力が0.6MPa、温度が400℃の圧縮空気)を供給する。そして、複数の温度センサ15は、作動ガスGが供給されたノズル11Nの長さ方向の温度分布を実測して検出すると共に、この実測結果を演算部104に出力する。
次に、演算部104は、解析により推定されるノズル11Nの長さ方向の温度分布と、複数の温度センサ15により実測されるノズル11Nの長さ方向の温度分布とに基づいて、施工条件を判定する(ステップS3)。より詳しくは、図6に示すノズル11Nの温度分布の解析結果と実測結果との差が所定の許容値の範囲内にあるか否かを判断することで、施工条件を判定する。すなわち、ここでは、ノズル11Nの温度分布を指標として解析結果と実測結果とを比較することによって、解析により現実のノズル11N内の作動ガスGの流れ場が適切に再現されているかを判定する。
なお、本実施形態の当該所定の許容値は、解析結果と実測結果との差分の温度(ΔTn)がΔTn<40K(ケルビン)で示される範囲内にあるときに解析が適当になされていると経験則から判断できるため、40Kに設定されている。すなわち、ΔTn<40Kであれば、解析が現実のノズル11N内の作動ガスGの流れ場を適切に再現されていると判断し、次のステップS4に移行する。一方、ΔTn≧40Kであれば、解析が現実のノズル11N内の作動ガスGの流れ場を適切に再現しておらず、施工条件の判定の信用性が低下することから、演算部104は、表示部101にエラー表示(すなわち施工不可)を表示させた後(ステップS31)、動作を終了させる。
なお、ΔTn≧40Kである場合は、記憶部103に記憶されている解析データを修正するとともに再検討し、再び解析を行うこととなる。
ΔTn<40Kである場合、演算部104は、上記解析により推定される噴射口11N1の作動ガス温度である噴射口ガス温度(Tg out)を算出すると共に、上記解析により推定されるノズル11N内の作動ガス温度(第2作動ガス温度)であるノズル内ガス温度(Tg in)を算出する(ステップS4)。
なお、噴射口ガス温度は、上記解析により算出される基材Bに衝突する作動ガス温度のこと(つまり、噴射口11N1近傍の作動ガス温度)であり、本実施形態では図6に示す解析結果より(すなわち、ノズル長さ0.13mの位置の)200℃となる。
また、ノズル内ガス温度は、上記解析により算出されるノズル11N内の作動ガス温度(より詳しくは、ノズル11N内において最も温度が高い温度)のことであり、本実施形態では図6に示す解析結果より(すなわち、ノズル長さの2/3の位置である0.08mの位置の)280℃となる。
次に、演算部104は、入力された第2パラメータである基材Bの種類と記憶部103の基材データとに基づいて、基材臨界温度(Tcrit,s)を導出する。また、入力された第2パラメータである材料粉末Aの種類と記憶部103の材料粉末データとに基づいて、材料粉末臨界温度(Tcrit,p)を導出する(ステップS5)。
本実施形態では、基材Bは、Alを選択しているため、基材臨界温度は300℃となる。また、材料粉末Aは、Alを選択しているため、材料粉末臨界速度は300℃となる。
そして、演算部104は、算出した噴射口ガス温度と導出した基材臨界温度とに基づいて、施工条件を判定する(ステップS6)。すなわち、ここでは、噴射ガス温度を推定することによって噴射される作動ガスGが基材Bに材質変化、熱変形や溶融等の影響を及ぼすか否かに基づいて、施工条件の判定が行われる。
より詳しくは、噴射口ガス温度と基材臨界温度との関係が、Tg out≦Tcrit,sで示される場合は、施工可能であるとして次のステップS7に移行し、一方、当該関係が、Tg out>Tcrit,sで示される場合は、施工不可であるとしてステップS100に移行する。
ステップS100では、演算部104は、表示部101に施工不可表示をさせて、ユーザに判定結果を通知させると共に、入力したパラメータを調整するように指示する。ここでは、演算部104は、ステップS1に戻り、第1パラメータのうち、例えば、ガス温度のパラメータを調整するように指示することとなる。
Tg out≦Tcrit,sである場合、次に演算部104は、算出したノズル内ガス温度と導出した材料粉末臨界温度とに基づいて、施工条件を判定する(ステップS7)。すなわち、ここでは、ノズル内ガス温度を推定することによってノズル11N内において材料粉末Aに材質変化、熱変形や溶融等の影響を及ぼすか否かに基づいて、施工条件の判定が行われる。
より詳しくは、ノズル内ガス温度と材料粉末臨界温度との関係が、Tg in≦Tcrit,pで示される場合は、施工可能であるとして次のステップS8に移行し、一方、当該関係が、Tg in>Tcrit,pで示される場合は、施工不可であるとしてステップS100に移行する。
Tg in≦Tcrit,pである場合、ユーザは、噴射速度の算出に係るパラメータ(第3パラメータ)である材料粉末Aの粒度分布を、施工条件判定システム100に入力する(ステップS8、図5参照)。材料粉末Aの粒度分布は、例えば、図7に示す縦軸に累積度数、横軸に粒子径が設定されるグラフにて示される。材料粉末Aは、購入時に何マイクロメートル(μm)以下と指定でき、本実施形態では75μm以下と指定している。
次に、演算部104は、入力された第3パラメータと解析結果とに基づいて、ノズル1噴射速度(Vp)を算出する(ステップS9)。
噴射速度は、材料粉末Aの粒子径に基づいて算出される(後述)が、図7に示すように、市販の材料粉末Aにおいては、異なる粒子径のものが混在している。したがって、ここでは、材料粉末Aの噴射速度をより正確に推定するため、当該異なる粒子径を複数選択して、その選択した材料粉末Aの粒子径毎に噴射速度を算出する。具体的には、上記購入時に指定した粒子径(75μm)をdとし、図7に示すように、累積度数25%、50%、75%の粒子径d、d、dを噴射速度の算出のための代表値とする。すなわち、5μmの粒子径d、20μmの粒子径d、50μmの粒子径dを代表値とする。
次に、演算部104は、代表値である粒子径d、d、dを有する材料粉末Aを、解析したノズル11N内の作動ガスGの流れ場中に投入することで、噴射速度を推定・算出する。
噴射速度の推定には、先ず、作動ガスGの流れ場中に投入された材料粉末Aに作用する力を求める。作用する力は、材料粉末Aを所定の粒子径を有する球体であるとモデル化して、球体に対して作用する力(抗力)の演算式(実験等によって予め求められ、記憶部103に記憶されているもの)を用いて算出する。そして、投入された材料粉末Aが、解析において噴射口11N1に向かって移動するたびに、順次、その位置の作動ガスGの流れ場によって作用する力を算出して、材料粉末Aを進めていき、噴射速度を推定することとなる。
噴射速度(Vp)の結果は、例えば、図8に示すように、粒子径dの材料粉末Aの噴射速度(平均)は458m/sと、粒子径dの材料粉末Aの噴射速度(平均)は448m/sと、粒子径dの材料粉末Aの噴射速度(平均)は326m/sと算出される。
次に、演算部104は、基材Bの種類と材料粉末Aの種類との組合せによって設定される臨界噴射速度(Vcrit)を、記憶部103に記憶された臨界噴射速度データから導出する(ステップS10)。本実施形態の場合、基材BがAl、材料粉末AがAlであるため、臨界噴射速度は400m/sとなる。
そして、演算部104は、算出した噴射速度と導出した臨界噴射速度とに基づいて、施工条件を判定する(ステップS11)。すなわち、ここでは、噴射速度と臨界噴射速度を比較することによって、噴射された材料粉末Aが基材B上に付着・堆積することが可能か否かに基づいて、施工条件の判定が行われる。
より詳しくは、複数算出される噴射速度と臨界噴射速度との関係が一つでも、Vp≧Vcritで示される場合は、施工可能であるとして次のステップS12に移行し、一方、全ての当該関係が、Vp<Vcritで示される場合は、施工不可であるとしてステップS100に移行する。
本実施形態では、臨界噴射速度が400m/sであるため、図8に示すように粒子径dの材料粉末A及び粒子径dの材料粉末Aは基材B上に付着・堆積し、粒子径dの材料粉末Aは基材B上に付着・堆積することができないことがわかる。すなわち、粒度分布でいえば、累積度数50%程度までの材料粉末Aは、基材B上に付着することとなる。
次に、演算部104は、算出した複数の噴射速度と導出した臨界噴射速度に基づいて、材料粉末Aが基材B上に付着する歩留まり率(y%)を算出する(ステップS12)。
ここで歩留まり率とは、供給する材料粉末Aの量(個数)に対して、基材B上にどれだけの材料粉末Aの量が付着・堆積するかを示すものである。
概略的な歩留まり率(y%)を算出するために、以下の式(1)、(2)、(3)を用いる場合もある(n=1、2、3)。
y={Σd×i(d)/(d +d +d +d )}×100 …(1)
i(d)=1 (f(d)=Vp≧Vcrit) …(2)
i(d)=0 (f(d)=Vp<Vcrit) …(3)
すなわち、材料粉末Aの粒子径(d)から所定の関係式(f(d))で算出される噴射速度(Vp)が臨界噴射速度(Vcrit)以上ならばi(d)=1となり、当該粒子径の三乗が分子に積算され、一方、算出される噴射速度(Vp)が臨界噴射速度(Vcrit)より小さいならばi(d)=0となることで、歩留まり率(y%)が算出される。
本実施形態では、歩留まり率は、y=2.5%となる。また、パラメータを調整して、例えば、材料粉末Aの粒子径dでf(d)=Vp≧Vcritの場合であれば、41%の歩留まり率と算出される。
次に、演算部104は、算出した歩留まり率と所定の歩留まり率とに基づいて、施工条件を判定する(ステップS13)。すなわち、ここでは、算出した歩留まり率とユーザが予め設定する所定の歩留まり率(例えば、50%や80%等)とを比較することによって、施工条件の判定が行われる。
より詳しくは、算出した歩留まり率(y%)と所定の歩留まり率(Y%)との関係が、y≧Yで示される場合は、理想的に施工可能であるとして次のステップS14に移行し、一方、当該関係が、y<Tで示される場合は、施工不可であるとしてステップS100に移行する。
ここで、算出した歩留まり率が所定の歩留まり率より悪い(低い)場合には、コストの面から考慮して第1パラメータのガス温度を上げることが行われる。ここで、例えば、演算部104は、噴射口ガス温度(Tg out)及びノズル内ガス温度(Tg in)のいずれか一方が臨界の温度に至るまで温度を上昇させるような指示を表示部101に表示させる。
上記指示によっても、歩留まり率が改善されない場合は、演算部104は、次にコスト安のガス圧力を上げるような指示を表示部101に表示させる。
ガス温度、ガス圧力の調整によっても、歩留まり率が改善されない場合は、演算部104は、最終的には他のパラメータであるガス種類(ガス種類の分子量が小さいと材料粉末Aの加速性が向上するため、例えば、空気からヘリウム等への変更)、材料粉末Aの粒子径(購入時の材料粉末Aの粒子径を小さいものへ変更)あるいは、ノズル11Nの形状を調整するような指示を表示部101に表示させる。
y≧Yである場合、演算部104は、表示部101に施工可能表示をさせ、ユーザに施工条件の判定結果を通知させる(ステップS14)。
そして、ユーザは、当該判定結果に基づいた所望の施工条件の下でコールドスプレー装置1を用いてコールドスプレー方法を実施することとなる。
したがって、上述した本実施形態では、材料粉末Aをノズル11Nから作動ガスGと共に所定の施工条件で噴射して基材B上に付着させるコールドスプレー装置1であって、ノズル11N内の作動ガスGの流れ場を上記施工条件に基づいて解析して材料粉末Aの噴射速度を推定することで、ノズル11Nから噴射される材料粉末Aを基材B上に付着させることが可能か否かを判定する施工条件判定システム100を有するという構成を採用することによって、所定の施工条件の下、ノズル11N内の作動ガスGの流れ場を解析することで、その流れ場において材料粉末Aに作用する力を算出して、材料粉末Aの噴射速度を推定することが可能となる。すなわち、推定した材料粉末Aの噴射速度に基づいて施工条件を判定することで、実際に粉末速度計測装置を用いて噴射速度を測定することなく、施工可能か否かを判定することができる。また、材料粉末Aを実際に噴射する必要が無くなるためコスト安を図ることができる。
したがって、本実施形態では、粉末速度計測装置を用いることと比べて、低コスト化及び施工に移行する時間の短縮化を図ることができるコールドスプレー装置1を提供することができる効果がある。
また、本実施形態では、施工条件判定システム100は、ノズル11Nに供給する作動ガスGのガス圧力と、ノズル11Nに供給する作動ガスGのガス温度と、ノズル11Nに供給する作動ガスGのガス種類と、ノズル11Nの形状とに基づいて、上記解析を行うという構成を採用することによって、ノズル11N内の作動ガスGの流れ場の形成に影響をもたらす、作動ガスGのガス圧力、ガス温度、ガス種類、及びノズル11Nの形状に基づいて流れ場の解析を行うことで噴射速度を推定することができる。
また、本実施形態では、ノズル11Nには、ノズル11Nの長さ方向の温度分布を計測するための複数の温度センサ15が設けられており、施工条件判定システム100は、上記解析により推定されるノズル11Nの長さ方向の温度分布と、温度センサ15により計測される上記温度分布とに基づいて、上記施工条件を判定するという構成を採用することによって、解析により推定されるノズル11Nの長さ方向の温度分布と、実測したノズル11Nの長さ方向の温度分布とに基づいて、施工条件の判定が行われる。
また、本実施形態では、施工条件判定システム100は、上記解析により推定されるノズル11Nの長さ方向の温度分布と、温度センサにより計測される上記温度分布との差が、所定の許容値の範囲内に収まる場合に、施工可能と判定するという構成を採用することによって、解析により推定されるノズル11Nの長さ方向の温度分布と、実測したノズル11Nの長さ方向の温度分布との差が、所定の許容値の範囲内、つまり、解析結果と実測結果とのノズル11Nの温度分布を比較することにより、解析が実際の流れ場に沿って適切に再現されているときに、施工可能とする判定が行われる。このことから、施工条件の判定の信用性を向上させることが可能となる。
また、本実施形態では、施工条件判定システム100は、上記解析により推定されるノズル11Nの噴射口の噴射口ガス温度と、基材Bの種類に応じて設定される施工可能な基材臨界温度とに基づいて、上記施工条件を判定するという構成を採用することによって、噴射される作動ガスGが基材Bに材質変化、熱変形や溶融等の影響を及ぼすか否かに基づいた施工条件の判定が行われる。
また、本実施形態では、施工条件判定システム100は、上記解析により推定されるノズル11N内のノズル内ガス温度と、材料粉末Aの種類に応じて設定される施工可能な材料粉末臨界温度とに基づいて、上記施工条件を判定するという構成を採用することによって、ノズル11N内において作動ガスGが材料粉末Aに材質変化、熱変形や溶融等の影響を及ぼすか否かに基づいた施工条件の判定が行われる。
また、本実施形態では、施工条件判定システム100は、上記解析結果と材料粉末Aの粒子径とに基づいて推定される上記噴射速度と、基材Bの種類と材料粉末Aの種類との組合せによって設定される施工可能な臨界噴射速度とに基づいて、上記施工条件を判定するという構成を採用することによって、噴射された材料粉末Aが基材B上に付着・堆積することが可能か否かに基づいた施工条件の判定が行われる。
また、本実施形態では、施工条件判定システム100は、材料粉末Aのうち異なる粒子径を複数選択し、選択した複数の材料粉末Aの粒子径毎に上記噴射速度を複数推定して、複数の上記噴射速度と上記臨界噴射速度とに基づいて、材料粉末Aが基材B上に付着する歩留まり率を推定し、推定した上記歩留まり率と、所定の歩留まり率とに基づいて、上記施工条件を判定するという構成を採用することによって、材料粉末Aが基材B上に付着する歩留まり率を推定し、推定した歩留まり率と、所定の歩留まり率とに基づいて、施工条件の判定が行われる。
また、本実施形態では、施工条件判定システム100は、上記判定の結果が施工不可である場合に、ノズル11Nに供給する作動ガスGのガス圧力と、ノズル11Nに供給する作動ガスGのガス温度と、ノズル11Nに供給する作動ガスGのガス種類と、ノズル11Nの形状と、材料粉末Aの粒子径とのうち少なくともいずれか一つのパラメータを調整するように指示するという構成を採用することによって、判定の結果が施工不可である場合に、材料粉末Aの噴射速度に影響をもたらす、作動ガスGのガス圧力、ガス温度、ガス種類、ノズル11Nの形状、及び材料粉末Aの粒子径のパラメータを調整するように指示することで、施工条件を変化させて施工可能に導くことができる。
また、本実施形態では、上記指示は、上記ガス温度を、他の上記パラメータより優先して第1番目に調整するように指示するという構成を採用することによって、先ず、上記パラメータのうち調整することが最もコスト安のガス温度について調整指示がなされる。
また、本実施形態では、上記指定は、上記ガス温度の次に、上記ガス圧力を、他の上記パラメータより優先して第2番目に調整するよう設定されるという構成を採用することによって、ガス温度の次に、上記パラメータのうち調整することがコスト安のガス圧力について調整指示がなされる。
以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記実施形態では、噴射速度を算出するための材料粉末Aの粒子径の代表値は、d、d、dの3つを選択すると説明したが、本発明は、上記構成に限定されるものではなく、例えば、さらに多くの粒子径を代表値として選択する構成であっても良い。このように多くの代表粒子径を選択することで、材料粉末Aの噴射速度をより正確に推定することが可能となる。さらに、代表粒子径の選択数に応じて、歩留まり率の算出式も変化することとなる。
本発明の実施形態に係るコールドスプレー装置の概略構成を示す模式図である。 本発明の実施形態に係るコールドスプレー部の概略構成を示す模式図である。 本発明の実施形態に係る施工条件判定システムの概略構成を示すブロック樹脂構造体を示す図である。 本発明の実施形態に係る施工条件判定システムの動作を説明するフローチャートである。 本発明の実施形態に係る施工条件判定システムの動作を説明するフローチャートである。 本発明の実施形態に係るノズルの長さ方向の温度分布の解析結果と実測結果とを示す図である。 本発明の実施形態に係る材料粉末の粒度分布を示す図である。 本発明の実施形態に係る材料粉末の代表粒径毎の噴射速度の算出結果を示す図である。
符号の説明
A…材料粉末、B…基材、G…作動ガス、1…コールドスプレー装置、ノズル…11N、噴射口…11N1、15…温度センサ、100…施工条件判定システム

Claims (16)

  1. 材料粉末をノズルから作動ガスと共に所定の施工条件で噴射して基材上に付着させるコールドスプレー装置であって、
    前記ノズル内の前記作動ガスの流れ場を前記施工条件に基づいて解析して前記材料粉末の噴射速度を推定することで、前記ノズルから噴射される前記材料粉末を前記基材上に付着させることが可能か否かを判定する施工条件判定システムを有することを特徴とするコールドスプレー装置。
  2. 前記施工条件判定システムは、前記ノズルに供給する前記作動ガスのガス圧力と、前記ノズルに供給する前記作動ガスのガス温度と、前記ノズルに供給する前記作動ガスのガス種類と、前記ノズルの形状とに基づいて、前記解析を行うことを特徴とする請求項1に記載のコールドスプレー装置。
  3. 前記ノズルには、前記ノズルの長さ方向の温度分布を計測するための複数の温度センサが設けられており、
    前記施工条件判定システムは、前記解析により推定される前記ノズルの長さ方向の温度分布と、前記温度センサにより計測される前記温度分布との差が、所定の許容値の範囲内に収まる場合に、施工可能と判定することを特徴とする請求項1または2に記載のコールドスプレー装置。
  4. 前記施工条件判定システムは、前記解析により推定される前記ノズルの噴射口の作動ガス温度と、前記基材の種類に応じて設定される施工可能な基材臨界温度とに基づいて、前記施工条件を判定することを特徴とする請求項1〜3のいずれか一項に記載のコールドスプレー装置。
  5. 前記施工条件判定システムは、前記解析により推定される前記ノズル内の第2作動ガス温度と、前記材料粉末の種類に応じて設定される施工可能な材料粉末臨界温度とに基づいて、前記施工条件を判定することを特徴とする請求項1〜4のいずれか一項に記載のコールドスプレー装置。
  6. 前記施工条件判定システムは、前記解析結果と前記材料粉末の粒子径とに基づいて推定される前記噴射速度と、前記基材の種類と前記材料粉末の種類との組合せによって設定される施工可能な臨界噴射速度とに基づいて、前記施工条件を判定することを特徴とする請求項1〜5のいずれか一項に記載のコールドスプレー装置。
  7. 前記施工条件判定システムは、前記材料粉末のうち異なる粒子径を複数選択し、選択した複数の前記材料粉末の粒子径毎に前記噴射速度を複数推定して、複数の前記噴射速度と前記臨界噴射速度とに基づいて、前記材料粉末が前記基材上に付着する歩留まり率を推定し、推定した前記歩留まり率と、所定の歩留まり率とに基づいて、前記施工条件を判定することを特徴とする請求項6に記載のコールドスプレー装置。
  8. 前記施工条件判定システムは、前記判定の結果が施工不可である場合に、前記ノズルに供給する前記作動ガスのガス圧力と、前記ノズルに供給する前記作動ガスのガス温度と、前記ノズルに供給する前記作動ガスのガス種類と、前記ノズルの形状と、前記材料粉末の粒子径とのうち少なくともいずれか一つのパラメータを調整するように指示することを特徴とする請求項1〜7のいずれか一項に記載のコールドスプレー装置。
  9. 材料粉末をノズルから作動ガスと共に所定の施工条件で噴射して基材上に付着させるコールドスプレー方法であって、
    前記ノズル内の前記作動ガスの流れ場を前記施工条件に基づいて解析して前記材料粉末の噴射速度を推定することで、前記ノズルから噴射される前記材料粉末を前記基材上に付着させることが可能か否かを判定する施工条件判定工程を有することを特徴とするコールドスプレー方法。
  10. 前記施工条件判定工程では、前記ノズルに供給する前記作動ガスのガス圧力と、前記ノズルに供給する前記作動ガスのガス温度と、前記ノズルに供給する前記作動ガスのガス種類と、前記ノズルの形状とに基づいて、前記解析を行うことを特徴とする請求項9に記載のコールドスプレー方法。
  11. 前記ノズルには、前記ノズルの長さ方向の温度分布を計測するための複数の温度センサが設けられており、
    前記施工条件判定工程では、前記解析により推定される前記ノズルの長さ方向の温度分布と、前記温度センサにより計測される前記温度分布との差が、所定の許容値の範囲内に収まる場合に、施工可能と判定することを特徴とする請求項9または10に記載のコールドスプレー方法。
  12. 前記施工条件判定工程では、前記解析により推定される前記ノズルの噴射口の作動ガス温度と、前記基材の種類に応じて設定される施工可能な基材臨界温度とに基づいて、前記施工条件を判定することを特徴とする請求項9〜11のいずれか一項に記載のコールドスプレー方法。
  13. 前記施工条件判定工程では、前記解析により推定される前記ノズル内の第2作動ガス温度と、前記材料粉末の種類に応じて設定される施工可能な材料粉末臨界温度とに基づいて、前記施工条件を判定することを特徴とする請求項9〜12のいずれか一項に記載のコールドスプレー方法。
  14. 前記施工条件判定工程では、前記解析結果と前記材料粉末の粒子径とに基づいて推定される前記噴射速度と、前記基材の種類と前記材料粉末の種類との組合せによって設定される施工可能な臨界噴射速度とに基づいて、前記施工条件を判定することを特徴とする請求項9〜13のいずれか一項に記載のコールドスプレー方法。
  15. 前記施工条件判定工程では、前記材料粉末のうち異なる粒子径を複数選択し、選択した複数の前記材料粉末の粒子径毎に前記噴射速度を複数推定して、複数の前記噴射速度と前記臨界噴射速度とに基づいて、前記材料粉末が前記基材上に付着する歩留まり率を推定し、推定した前記歩留まり率と、所定の歩留まり率とに基づいて、前記施工条件を判定することを特徴とする請求項14に記載のコールドスプレー方法。
  16. 前記施工条件判定工程では、前記判定の結果が施工不可である場合に、前記ノズルに供給する前記作動ガスのガス圧力と、前記ノズルに供給する前記作動ガスのガス温度と、前記ノズルに供給する前記作動ガスのガス種類と、前記ノズルの形状と、前記材料粉末の粒子径とのうち少なくともいずれか一つのパラメータを調整するように指示することを特徴とする請求項9〜15のいずれか一項に記載のコールドスプレー方法。
JP2008298405A 2008-11-21 2008-11-21 コールドスプレー装置及びコールドスプレー方法 Expired - Fee Related JP5556004B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298405A JP5556004B2 (ja) 2008-11-21 2008-11-21 コールドスプレー装置及びコールドスプレー方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298405A JP5556004B2 (ja) 2008-11-21 2008-11-21 コールドスプレー装置及びコールドスプレー方法

Publications (2)

Publication Number Publication Date
JP2010121196A true JP2010121196A (ja) 2010-06-03
JP5556004B2 JP5556004B2 (ja) 2014-07-23

Family

ID=42322779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298405A Expired - Fee Related JP5556004B2 (ja) 2008-11-21 2008-11-21 コールドスプレー装置及びコールドスプレー方法

Country Status (1)

Country Link
JP (1) JP5556004B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052186A (ja) * 2010-09-01 2012-03-15 Ihi Corp コールドスプレー装置用エジェクタノズル及びコールドスプレー装置
WO2014073633A1 (ja) * 2012-11-12 2014-05-15 日立金属株式会社 コールドスプレー用粉末およびこれを用いたスパッタリングターゲットの製造方法
JP2016050352A (ja) * 2014-09-01 2016-04-11 国立大学法人 鹿児島大学 コールドスプレー溶射法のノズルにおけるガスの流通状態のノズル外周面温度に基づく診断方法
CN108188401A (zh) * 2018-03-22 2018-06-22 顺德职业技术学院 高频感应加热辅助冷喷涂沉积金属3d打印方法与设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031737A (ja) * 2005-07-22 2007-02-08 Fujifilm Corp 成膜装置及び成膜方法
JP2008111191A (ja) * 2006-10-27 2008-05-15 United Technol Corp <Utc> シール基材表面にアブレイダブル材料を堆積させる方法
JP2008127647A (ja) * 2006-11-22 2008-06-05 High Frequency Heattreat Co Ltd 表面処理装置およびその方法
JP2008127676A (ja) * 2006-11-24 2008-06-05 Toyohashi Univ Of Technology 金属皮膜の形成方法
JP2008159792A (ja) * 2006-12-22 2008-07-10 Sumitomo Electric Ind Ltd 放熱構造体およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031737A (ja) * 2005-07-22 2007-02-08 Fujifilm Corp 成膜装置及び成膜方法
JP2008111191A (ja) * 2006-10-27 2008-05-15 United Technol Corp <Utc> シール基材表面にアブレイダブル材料を堆積させる方法
JP2008127647A (ja) * 2006-11-22 2008-06-05 High Frequency Heattreat Co Ltd 表面処理装置およびその方法
JP2008127676A (ja) * 2006-11-24 2008-06-05 Toyohashi Univ Of Technology 金属皮膜の形成方法
JP2008159792A (ja) * 2006-12-22 2008-07-10 Sumitomo Electric Ind Ltd 放熱構造体およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052186A (ja) * 2010-09-01 2012-03-15 Ihi Corp コールドスプレー装置用エジェクタノズル及びコールドスプレー装置
WO2014073633A1 (ja) * 2012-11-12 2014-05-15 日立金属株式会社 コールドスプレー用粉末およびこれを用いたスパッタリングターゲットの製造方法
JP5679395B2 (ja) * 2012-11-12 2015-03-04 日立金属株式会社 コールドスプレー用粉末
JP2016050352A (ja) * 2014-09-01 2016-04-11 国立大学法人 鹿児島大学 コールドスプレー溶射法のノズルにおけるガスの流通状態のノズル外周面温度に基づく診断方法
CN108188401A (zh) * 2018-03-22 2018-06-22 顺德职业技术学院 高频感应加热辅助冷喷涂沉积金属3d打印方法与设备

Also Published As

Publication number Publication date
JP5556004B2 (ja) 2014-07-23

Similar Documents

Publication Publication Date Title
Arabgol et al. Influence of thermal properties and temperature of substrate on the quality of cold-sprayed deposits
Yi et al. Effect of the surface morphology of solidified droplet on remelting between neighboring aluminum droplets
Kotoban et al. Influence of a shape of single track on deposition efficiency of 316L stainless steel powder in cold spray
Pinkerton Advances in the modeling of laser direct metal deposition
JP5556004B2 (ja) コールドスプレー装置及びコールドスプレー方法
Wei et al. Splat formation during plasma spraying for 8 mol% yttria-stabilized zirconia droplets impacting on stainless steel substrate
Li et al. A theoretical model for prediction of deposition efficiency in cold spraying
Jodoin et al. Pulsed-Gas Dynamic Spraying: Process analysis, development and selected coating examples
Stokes et al. HVOF system definition to maximise the thickness of formed components
Fang et al. An investigation on effects of process parameters in fused-coating based metal additive manufacturing
Markus et al. Jet break up of liquid metal in twin fluid atomisation
JP2008302317A (ja) コールドスプレー方法、コールドスプレー装置
Mostaghimi et al. Splat formation in plasma-spray coating process
Haferl et al. Transport and solidification phenomena in molten microdroplet pileup
Ettouil et al. Predicting dynamic and thermal histories of agglomerated particles injected within a dc plasma jet
Fang et al. Experiments on remelting and solidification of molten metal droplets deposited in vertical columns
Kamnis et al. Mathematical modelling of Inconel 718 particles in HVOF thermal spraying
Fang et al. Heat transfer during deposition of molten aluminum alloy droplets to build vertical columns
Mandal et al. Experimental and numerical investigations on molten metal atomization techniques–A critical review
Lee et al. Microstructural evolution and mechanical properties of atmospheric plasma sprayed Y2O3 coating with state of in-flight particle
Yeganeh et al. Numerical modeling of aerosol deposition process
Liu et al. Effect of solid shield on coating properties in atmospheric plasma spray process
Huang et al. A ground-based work of droplet deposition manufacturing toward microgravity: Fine pileup of horizontally ejected metal droplets on vertical substrates
Wang et al. In-flight aggregation and deposition behaviour of particles in low pressure cold spray
Azwan et al. TIG torch surfacing of metallic materials–a critical review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

LAPS Cancellation because of no payment of annual fees