JP2010117281A - Method and device for detecting surface defect of slab - Google Patents

Method and device for detecting surface defect of slab Download PDF

Info

Publication number
JP2010117281A
JP2010117281A JP2008291551A JP2008291551A JP2010117281A JP 2010117281 A JP2010117281 A JP 2010117281A JP 2008291551 A JP2008291551 A JP 2008291551A JP 2008291551 A JP2008291551 A JP 2008291551A JP 2010117281 A JP2010117281 A JP 2010117281A
Authority
JP
Japan
Prior art keywords
slab
defect
unevenness
luminance
change rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008291551A
Other languages
Japanese (ja)
Other versions
JP5200872B2 (en
Inventor
Yoshiharu Kusumoto
義治 楠本
Yasuo Tomura
寧男 戸村
Akiyoshi Honda
昭芳 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008291551A priority Critical patent/JP5200872B2/en
Publication of JP2010117281A publication Critical patent/JP2010117281A/en
Application granted granted Critical
Publication of JP5200872B2 publication Critical patent/JP5200872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of detecting a surface defect of a slab for precisely detecting the surface defect such as slag biting produced in the slab. <P>SOLUTION: In the method for detecting the surface defect produced in the slab from the surface unevenness state and surface brightness distribution of the slab by irradiating the surface of the slab with a laser beam 8 to measure the surface unevenness state of the slab and imaging the surface of the slab to obtain the surface brightness distribution of the slab, the unevenness change ratio in the longitudinal direction of the surface of the slab is calculated by an unevenness change ratio calculating circuit 11, the position and size of the low brightness surface part of the slab determined to be the defect in the surface brightness distribution are calculated and, when the calculated position of the low brightness surface part of the slab coincides with the position of a part where the absolute value of the unevenness change ratio becomes a predetermined threshold value or above, the calculated position of the low brightness surface of the slab is determined to be the defect position of the slab and the size of the low brightness surface part of the slab determined as the defect position is determined as the size of the surface defect produced at the defect position. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、スラブの表面欠陥を検出する方法およびその装置に関し、特に、溶鋼を連続鋳造して得られたスラブに手入れを要する表面欠陥が発生しているか否かを検査するときに好適に用いられるスラブの表面欠陥検出方法およびスラブ表面欠陥検出装置に関する。   The present invention relates to a method and an apparatus for detecting a surface defect of a slab, and particularly suitable for inspecting whether or not a surface defect requiring maintenance has occurred in a slab obtained by continuously casting molten steel. The present invention relates to a surface defect detection method and a slab surface defect detection apparatus.

一般に、転炉などで精錬された溶鋼は、図4に示されるように、取鍋(レードル)1を経てダンディッシュ2からモールド(鋳型)3に鋳込まれる。そして、モールド3に鋳込まれた溶鋼はモールド3の下方に配置された多数のピンチローラ4の間を通過する間に表層部のみが凝固した連鋳材となり、さらに不図示の冷却水散水装置から散水される冷却水により冷却されて内部まで固化した後、切断装置5により所定の長さに切断されてスラブ6となる。   Generally, molten steel refined in a converter or the like is cast from a dundish 2 into a mold (mold) 3 through a ladle 1 as shown in FIG. The molten steel cast into the mold 3 becomes a continuous cast material in which only the surface layer portion is solidified while passing between a large number of pinch rollers 4 arranged below the mold 3, and a cooling water sprinkler (not shown) After being cooled by cooling water sprinkled from and solidified to the inside, it is cut into a predetermined length by a cutting device 5 to form a slab 6.

上記のようにして得られるスラブには、種々の表面欠陥が発生する。たとえば、溶鋼の鋳込み時に気泡が巻き込まれると、直径が0.3〜4mm程度のブローホールと称される表面欠陥がスラブ表面に発生する。また、溶鋼の凝固時に大きな曲げ応力が加わると、割れと称される表面欠陥がスラブ表面に発生する。さらに、溶鋼の鋳込み時に連続鋳造用パウダーが塊となって巻き込まれると、ブローホールや割れよりも面積の大きいノロ噛みと称される表面欠陥がスラブ表面に発生する。これらの表面欠陥はいずれもスラブの表面品質を低下させる要因となるため、溶鋼を連続鋳造して得られたスラブに手入れを要する表面欠陥が生じているか否かを検査する必要がある。   Various surface defects occur in the slab obtained as described above. For example, when bubbles are involved during casting of molten steel, surface defects called blowholes having a diameter of about 0.3 to 4 mm are generated on the slab surface. Further, when a large bending stress is applied during solidification of the molten steel, surface defects called cracks are generated on the slab surface. Furthermore, when the powder for continuous casting is rolled up as a lump at the time of casting molten steel, a surface defect called no-biting having a larger area than blow holes and cracks occurs on the slab surface. Since these surface defects all cause a reduction in the surface quality of the slab, it is necessary to inspect whether or not a surface defect requiring maintenance has occurred in the slab obtained by continuously casting molten steel.

溶鋼を連続鋳造して得られたスラブに表面欠陥が生じているか否かを検査する方法としては、スラブ表面上の所定領域を双方向から照射する一対の照明装置をスラブ移動方向に沿って互いに対向する如く配置すると共に、照明装置からの入射によりスラブ表面で反射する照明光をスラブ表面に対しほぼ垂直方向に受光してスラブ表面を撮像する撮像装置を上記一対の照明装置の間に配置して表面欠陥の有無を検出する方法(特許文献1参照)や、一対の冷却ドラムの間に形成された湯溜り部に供給された溶鋼を冷却ドラムを介して抜熱することによってスラブを製造する際、冷却ドラムを通過した直後のスラブ表面の凹み深さをレーザ距離計によって検出して割れの有無を検出する方法(特許文献2参照)などが知られている。
特開2004−219358号公報 特開平2−224851号公報(第2頁左下欄2行目〜第2頁右下欄13行目)
As a method for inspecting whether or not a surface defect has occurred in a slab obtained by continuously casting molten steel, a pair of illuminating devices that irradiate a predetermined area on the slab surface from both directions are mutually connected along the slab moving direction. An imaging device is arranged between the pair of illumination devices so as to face each other and receive the illumination light reflected on the slab surface by incidence from the illumination device in a direction substantially perpendicular to the slab surface. A method for detecting the presence or absence of surface defects (see Patent Document 1), and manufacturing a slab by removing heat through a cooling drum from molten steel supplied to a hot water pool formed between a pair of cooling drums. At the time, a method of detecting the presence or absence of cracks by detecting the depth of the slab surface immediately after passing through the cooling drum with a laser distance meter is known (see Patent Document 2).
JP 2004-219358 A JP-A-2-224851 (page 2, lower left column, line 2 to page 2, lower right column, line 13)

しかしながら、特許文献1に開示された方法は、撮像装置で得られたスラブ表面画像の濃淡からスラブに発生した表面欠陥を検出しているため、検出した表面欠陥がノロ噛みであるのか、それともノロ噛み以外の表面欠陥(例えばブローホール、割れ等)であるのかを判別することができないという問題点がある。
一方、特許文献2に開示された方法は、レーザ距離計により計測された表面凹みの深さから表面欠陥の有無を検査しているため、特許文献1に開示された方法と同様に、スラブに発生した表面欠陥がブローホールや割れであるのか、それともノロ噛みであるのかを判別することができないという問題点がある。
本発明は上述した問題点に鑑みてなされたもので、スラブに発生したノロ噛み等の表面欠陥を精度よく検出することのできるスラブ表面欠陥検出方法およびスラブ表面欠陥検出装置を提供することを目的とする。
However, since the method disclosed in Patent Document 1 detects a surface defect generated in the slab from the density of the slab surface image obtained by the imaging apparatus, whether the detected surface defect is a bite or noro. There is a problem that it is impossible to determine whether the surface defect is other than biting (for example, blowhole, crack, etc.).
On the other hand, since the method disclosed in Patent Document 2 inspects the presence or absence of surface defects from the depth of the surface dent measured by the laser distance meter, as in the method disclosed in Patent Document 1, There is a problem in that it is impossible to determine whether the generated surface defect is a blowhole or a crack or a bite.
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a slab surface defect detection method and a slab surface defect detection apparatus capable of accurately detecting surface defects such as slotting generated in a slab. And

上記目的を達成するために、請求項1の発明は、スラブの表面にレーザ光を照射して前記スラブの表面凹凸状態を計測すると共に、前記スラブの表面を撮像して前記スラブの表面輝度分布を取得し、前記表面凹凸状態と前記表面輝度分布とから前記スラブの表面に発生した表面欠陥を検出する方法であって、前記スラブの表面凹凸状態からスラブ表面の長手方向における凹凸変化率を算出すると共に、前記表面輝度分布の中で欠陥と判断されるスラブの低輝度表面部の位置と大きさを算出し、前記凹凸変化率の絶対値が予め定めた閾値以上となった部分の位置と前記低輝度表面部の位置とが一致したときに当該位置を欠陥位置と判定すると共に、前記欠陥位置と判定された低輝度表面部の大きさを前記欠陥位置に発生した表面欠陥の大きさと判定することを特徴とするものである。   In order to achieve the above object, the invention according to claim 1 is directed to irradiating the surface of the slab with laser light to measure the surface irregularity of the slab and to image the surface of the slab to obtain the surface luminance distribution of the slab. And detecting a surface defect generated on the surface of the slab from the surface unevenness state and the surface luminance distribution, and calculating the unevenness change rate in the longitudinal direction of the slab surface from the surface unevenness state of the slab. And calculating the position and size of the low-luminance surface portion of the slab that is determined to be a defect in the surface luminance distribution, and the position of the portion where the absolute value of the unevenness change rate is equal to or greater than a predetermined threshold; When the position of the low-luminance surface portion matches, the position is determined as a defect position, and the size of the low-luminance surface portion determined as the defect position is the size of the surface defect generated at the defect position. It is characterized in that constant.

請求項2の発明は、スラブの表面にレーザ光を照射して前記スラブの表面凹凸状態を計測すると共に、前記スラブの表面を撮像して前記スラブの表面輝度分布を取得し、前記表面凹凸状態と前記表面輝度分布とから前記スラブの表面に発生した表面欠陥を検出するスラブ表面欠陥検出装置であって、前記スラブの表面で反射したレーザ光を受光するレーザ光受光手段と、該レーザ光受光手段により受光されたレーザ光を基に前記スラブの表面凹凸状態を計測する表面凹凸状態計測手段と、該表面凹凸状態計測手段により計測された前記スラブの表面凹凸状態からスラブ表面の長手方向における凹凸変化率を算出する凹凸変化率算出手段と、前記スラブの表面を撮像して前記スラブの表面輝度情報を得る撮像手段と、該撮像手段から出力された画像信号を処理して前記スラブの表面輝度分布を取得する画像信号処理手段と、該画像信号処理手段により得られた表面輝度分布のうち欠陥と判断されるスラブの低輝度表面部を検出する低輝度表面部検出手段と、前記凹凸変化率算出手段により算出された前記凹凸変化率の絶対値が予め定めた閾値以上となった部分の位置と前記低輝度表面部検出手段により検出された低輝度表面部の位置とが一致したときに当該位置を欠陥位置と判定すると共に、前記欠陥位置と判定された低輝度表面部の大きさを前記欠陥位置に発生した表面欠陥の大きさと判定する表面欠陥判定手段とを備えたことを特徴とするものである。   The invention according to claim 2 irradiates the surface of the slab with laser light to measure the surface unevenness state of the slab, acquires the surface luminance distribution of the slab by imaging the surface of the slab, and the surface unevenness state. A surface defect detection device for detecting a surface defect generated on the surface of the slab from the surface luminance distribution, a laser beam receiving means for receiving the laser beam reflected by the surface of the slab, and the laser beam receiving unit Surface unevenness measuring means for measuring the surface unevenness state of the slab based on the laser beam received by the means, and unevenness in the longitudinal direction of the slab surface from the surface unevenness state of the slab measured by the surface unevenness state measuring means An unevenness change rate calculating means for calculating a change rate, an imaging means for imaging the surface of the slab to obtain surface luminance information of the slab, and output from the imaging means An image signal processing means for processing the image signal to obtain the surface luminance distribution of the slab, and a low luminance surface portion for detecting a low-luminance surface portion of the slab determined as a defect from the surface luminance distribution obtained by the image signal processing means. The position of the portion where the absolute value of the unevenness change rate calculated by the brightness surface portion detecting means and the unevenness change rate calculating means is equal to or greater than a predetermined threshold, and the low brightness detected by the low brightness surface portion detecting means When the position of the surface portion coincides with the surface defect, the position is determined as the defect position, and the size of the low-luminance surface portion determined as the defect position is determined as the size of the surface defect generated at the defect position. And a judging means.

請求項1及び請求項2の発明によると、レーザ光受光手段から出力された信号のみを基に表面欠陥の有無や種類を特定した場合や、撮像装置から出力された画像信号のみを基に表面欠陥の有無や種類を特定した場合のように、スラブの表面にノロ噛み等の表面欠陥が発生していると誤って判定してしまう可能性が少なくなり、表面欠陥の検出精度が向上するので、スラブに発生したノロ噛み等の表面欠陥を精度よく検出することができる。   According to the first and second aspects of the present invention, when the presence / absence or type of surface defect is specified based only on the signal output from the laser light receiving means, or the surface is determined based only on the image signal output from the imaging device. As the presence / absence and type of defects are specified, there is less possibility of mistakenly determining that surface defects such as biting have occurred on the surface of the slab, and surface defect detection accuracy is improved. Thus, it is possible to accurately detect surface defects such as biting in the slab.

以下、図1〜図3を参照して、本発明に係るスラブ表面欠陥検出方法とスラブ表面欠陥検出装置について説明する。
図1は本発明の一実施形態に係るスラブ表面欠陥検出装置の概略構成を示す図であり、図1に示されるように、本発明の一実施形態に係るスラブ表面欠陥検出装置は、レーザ投光器7a,7b、レーザ光受光手段としてのレーザ受光器9、表面凹凸状態計測手段としての表面凹凸状態計測回路10、凹凸変化率算出手段としての凹凸変化率算出回路11、スラブ表面照明手段としての照明装置12a,12b、撮像手段としてのCCDカメラ13a,13b、画像信号処理手段としての画像信号処理装置14、低輝度表面部検出手段としての低輝度表面部検出回路15、および表面欠陥判定手段としての判定装置16を備えている。
Hereinafter, a slab surface defect detection method and a slab surface defect detection apparatus according to the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing a schematic configuration of a slab surface defect detection apparatus according to an embodiment of the present invention. As shown in FIG. 1, the slab surface defect detection apparatus according to an embodiment of the present invention is a laser projector. 7a, 7b, a laser receiver 9 as a laser beam receiving means, a surface unevenness state measuring circuit 10 as a surface unevenness state measuring means, an unevenness change rate calculating circuit 11 as an unevenness change rate calculating means, and an illumination as a slab surface illumination means Devices 12a and 12b, CCD cameras 13a and 13b as imaging means, an image signal processing device 14 as image signal processing means, a low brightness surface portion detection circuit 15 as low brightness surface portion detection means, and a surface defect determination means A determination device 16 is provided.

レーザ投光器7a,7bは検査対象物であるスラブ6の表面に例えば0.1〜0.2mmのビーム幅を有するスリット状のレーザ光8を投光するものであり、スラブ6の幅方向に一定間隔で配列されている。また、レーザ投光器7a,7bはスラブ6からの輻射熱が届かない位置(例えば、スラブ表面から上方に2500mm以上離れた位置)に配置されており、従って、スラブ6の表面にはレーザ投光器7a,7bからのレーザ光8がほぼ真上から投光されるようになっている。なお、レーザ投光器7a,7bからスラブ6の表面に投光されたレーザ光はスラブ6の表面で反射した後、レーザ受光器9に入射するようになっている。   The laser projectors 7 a and 7 b project a slit-shaped laser beam 8 having a beam width of, for example, 0.1 to 0.2 mm onto the surface of the slab 6 that is an inspection object, and are constant in the width direction of the slab 6. Arranged at intervals. The laser projectors 7a and 7b are disposed at a position where the radiant heat from the slab 6 does not reach (for example, a position spaced 2500 mm or more upward from the surface of the slab). The laser beam 8 is projected from almost right above. The laser light projected on the surface of the slab 6 from the laser projectors 7 a and 7 b is reflected on the surface of the slab 6 and then enters the laser receiver 9.

レーザ受光器9はスラブ6の表面で反射したレーザ光8を受光してスラブ6の表面凹凸情報を得るためのものであり、このレーザ受光器9から出力された信号は表面凹凸状態計測回路10に供給されるようになっている。
表面凹凸状態計測回路10はレーザ受光器9から出力された信号を基にスラブ6の幅方向におけるスラブ表面の凹凸状態をスラブ6の進行方向である長手方向に連続的に計測してスラブ表面全体の凹凸データを取得するものであり、この表面凹凸状態計測回路10から出力された信号は凹凸変化率算出回路11に供給されるようになっている。
The laser receiver 9 receives laser light 8 reflected from the surface of the slab 6 to obtain surface unevenness information of the slab 6, and a signal output from the laser receiver 9 is a surface unevenness state measurement circuit 10. To be supplied.
The surface unevenness state measurement circuit 10 continuously measures the unevenness state of the slab surface in the width direction of the slab 6 in the longitudinal direction that is the traveling direction of the slab 6 based on the signal output from the laser receiver 9 to measure the entire surface of the slab. The data output from the surface unevenness state measurement circuit 10 is supplied to the unevenness change rate calculation circuit 11.

凹凸変化率算出回路11は表面凹凸状態計測回路10により計測したスラブ6の表面凹凸状態のデータを処理してスラブ表面の長手方向における凹凸変化率を算出するものであり、この凹凸変化率算出回路11から出力された信号は、スラブ6の表面に発生する表面欠陥情報として判定装置16に供給されるようになっている。
照明装置12a,12bはスラブ6の表面に照明光をスラブ6の全幅に亘って照射するものであり、これらの照明装置12a,12bは例えばスラブ6の幅方向に一定間隔で配列された複数個のハロゲンランプから構成されている。また、照明装置12a,12bはスラブ6の長手方向に間隔をおいて配置されており、照明装置12aと照明装置12bとの間には、後述するCCDカメラ13a,13bを配置するための空間部が形成されている。
The unevenness change rate calculation circuit 11 processes the surface unevenness data of the slab 6 measured by the surface unevenness state measurement circuit 10 to calculate the unevenness change rate in the longitudinal direction of the slab surface. The signal output from 11 is supplied to the determination device 16 as surface defect information generated on the surface of the slab 6.
The illuminating devices 12a and 12b irradiate the surface of the slab 6 with illumination light over the entire width of the slab 6, and these illuminating devices 12a and 12b are, for example, a plurality arranged at regular intervals in the width direction of the slab 6. The halogen lamp is made up of. The illumination devices 12a and 12b are arranged at intervals in the longitudinal direction of the slab 6, and a space portion for arranging CCD cameras 13a and 13b described later between the illumination devices 12a and 12b. Is formed.

CCDカメラ13a,13bは照明装置12a,12bからスラブ表面に照射された照明光の照射領域をスラブ6の表面に対してほぼ垂直な方向から撮像するものである。これらのCCDカメラ13a,13bとして例えばラインCCDカメラを用いることで、スラブ表面の凹凸状態を計測するときよりも長手方向の分解能が5〜10倍程度細かくなる。
画像信号処理装置14はCCDカメラ13a,13bから出力された画像信号を処理してスラブ6の表面輝度分布を取得するものであり、この画像信号処理装置14から出力された信号は低輝度表面部検出回路15に供給されるようになっている。
The CCD cameras 13a and 13b image the illumination area irradiated with the illumination light emitted from the illumination devices 12a and 12b on the surface of the slab 6 from a direction substantially perpendicular to the surface of the slab 6. By using, for example, a line CCD camera as these CCD cameras 13a and 13b, the resolution in the longitudinal direction is about 5 to 10 times smaller than when measuring the uneven state of the slab surface.
The image signal processing device 14 processes the image signals output from the CCD cameras 13a and 13b to obtain the surface luminance distribution of the slab 6, and the signal output from the image signal processing device 14 is a low luminance surface portion. It is supplied to the detection circuit 15.

低輝度表面部検出回路15は画像信号処理装置14により得られた表面輝度分布のうち予め設定した閾値より低いスラブ6の低輝度表面部(欠陥と判断される低輝度表面部)を検出するものであり、この低輝度表面部検出回路15から出力された信号は判定装置16に供給されるようになっている。
判定装置16は凹凸変化率算出回路11により算出されたスラブ表面の長手方向における凹凸変化率と低輝度表面部検出回路15により検出されたスラブ6の低輝度表面部に基づいて表面欠陥の有無、発生位置、種類、大きさ等を判定するものであり、位置情報取得部17、比較部18および判定部19を有している。
The low-luminance surface portion detection circuit 15 detects a low-luminance surface portion (low-luminance surface portion determined to be a defect) of the slab 6 that is lower than a preset threshold among the surface luminance distribution obtained by the image signal processing device 14. The signal output from the low luminance surface portion detection circuit 15 is supplied to the determination device 16.
The determination device 16 determines the presence or absence of surface defects based on the unevenness change rate in the longitudinal direction of the slab surface calculated by the unevenness change rate calculation circuit 11 and the low brightness surface portion of the slab 6 detected by the low brightness surface portion detection circuit 15. The generation position, type, size, and the like are determined, and the position information acquisition unit 17, the comparison unit 18, and the determination unit 19 are included.

位置情報取得部17は凹凸変化率算出回路11により算出されたスラブの内部側に凹となる方向の凹凸変化率の絶対値(以下単に「凹凸変化率の絶対値」と記す。)が予め定めた閾値以上となる箇所のスラブ表面位置情報を取得するものであり、この位置情報取得部17により取得されたスラブ表面位置情報は比較部18に供給されるようになっている。
比較部18は低輝度表面部検出回路15により検出された低輝度表面部の位置と位置情報取得部17により取得されたスラブ表面位置情報(凹凸変化率の絶対値が予め定めた閾値以上となる箇所のスラブ表面位置情報)とを比較するものであり、この比較部18の比較結果は判定部19に供給されるようになっている。
In the position information acquisition unit 17, the absolute value of the unevenness change rate in the direction of recessing inside the slab calculated by the unevenness change rate calculation circuit 11 (hereinafter simply referred to as “absolute value of unevenness change rate”) is determined in advance. The slab surface position information of a portion that is equal to or greater than the threshold value is acquired, and the slab surface position information acquired by the position information acquisition unit 17 is supplied to the comparison unit 18.
The comparison unit 18 detects the position of the low-luminance surface portion detected by the low-luminance surface portion detection circuit 15 and the slab surface position information acquired by the position information acquisition unit 17 (the absolute value of the unevenness change rate is equal to or greater than a predetermined threshold value. The comparison result of the comparison unit 18 is supplied to the determination unit 19.

判定部19は比較部18の比較結果を基に表面欠陥の有無、発生位置、種類、大きさ等を判定するものであり、低輝度表面部検出回路15により検出された低輝度表面部の位置と位置情報取得部17により取得されたスラブ表面位置とが一致したときに当該位置を欠陥位置と判定すると共に、欠陥位置と判定された低輝度表面部の大きさを欠陥位置に発生した表面欠陥の大きさと判定するように構成されている。   The determination unit 19 determines the presence / absence, occurrence position, type, size, etc. of the surface defect based on the comparison result of the comparison unit 18, and the position of the low luminance surface portion detected by the low luminance surface portion detection circuit 15. And the slab surface position acquired by the position information acquisition unit 17 is determined as a defect position, and the surface defect generated at the defect position is the size of the low brightness surface portion determined as the defect position. It is comprised so that it may determine with the magnitude | size of.

スラブ6の表面にノロ噛みと称される表面欠陥が発生したときのスラブ表層部の断面を図2に示す。図2に示されるように、ノロ噛みと称される表面欠陥がスラブ6に発生すると、スラブ6の表面凹凸がノロ噛み20の先端部分で急峻に変化することがわかる。
スラブ6の表面にノロ噛みが発生したときの凹凸変化率算出回路11の出力信号波形の一例を図3に示す。図3に示されるように、スラブ6の表面にノロ噛みが発生すると、凹凸変化率算出回路11で算出されるスラブ表面の長手方向における凹凸変化率が大きく変化することがわかる。
FIG. 2 shows a cross section of the surface portion of the slab when a surface defect called no-biting occurs on the surface of the slab 6. As shown in FIG. 2, it can be seen that when a surface defect called no-biting occurs in the slab 6, the surface unevenness of the slab 6 changes sharply at the tip of the no-biting 20.
FIG. 3 shows an example of an output signal waveform of the unevenness change rate calculation circuit 11 when the bite is generated on the surface of the slab 6. As shown in FIG. 3, it can be seen that when the biting occurs on the surface of the slab 6, the unevenness change rate in the longitudinal direction of the slab surface calculated by the unevenness change rate calculation circuit 11 changes greatly.

したがって、上述のように、凹凸変化率算出回路11により算出されたスラブ表面の長手方向における凹凸変化率の絶対値を予め定めた閾値と比較することで、スラブ6にノロ噛みが発生している場合には凹凸変化率の絶対値が閾値以上となるので、スラブ6に発生した表面欠陥がノロ噛みであるか否かを精度よく検出することが可能となる。
また、上述のように、表面凹凸状態計測回路10により計測されたスラブ6の表面凹凸状態からスラブ表面の長手方向における凹凸変化率を算出すると共に、画像信号処理装置14により得られたスラブ6の表面輝度分布の中で欠陥と判断される低輝度表面部の位置と大きさを算出し、凹凸変化率の絶対値が予め定めた閾値以上となった部分の位置と低輝度表面部の位置とが一致したときに当該位置を欠陥位置と判定すると共に、欠陥位置と判定された低輝度表面部の大きさを欠陥位置に発生した表面欠陥の大きさと判定することで、スラブ6に発生したノロ噛みを精度よく検出することが可能となる。
Therefore, as described above, the absolute value of the unevenness change rate in the longitudinal direction of the slab surface calculated by the unevenness change rate calculation circuit 11 is compared with a predetermined threshold value, so that the slab 6 is bitten. In this case, since the absolute value of the unevenness change rate is equal to or greater than the threshold value, it is possible to accurately detect whether or not the surface defect generated in the slab 6 is biting.
Further, as described above, the unevenness change rate in the longitudinal direction of the slab surface is calculated from the surface unevenness state of the slab 6 measured by the surface unevenness state measuring circuit 10, and the slab 6 obtained by the image signal processing device 14 is calculated. Calculate the position and size of the low-luminance surface portion that is determined to be a defect in the surface luminance distribution, the position of the portion where the absolute value of the unevenness change rate is equal to or greater than a predetermined threshold, and the position of the low-luminance surface portion Is determined as the defect position, and the size of the low-luminance surface portion determined as the defect position is determined as the size of the surface defect generated at the defect position. Biting can be detected with high accuracy.

よって、レーザ光受光器9から出力された信号のみを基に表面欠陥の有無や種類、大きさ等を特定した場合や、CCDカメラ13a,13bから出力された画像信号のみを基に表面欠陥の有無や種類、大きさ等を特定した場合のように、スラブの表面にノロ噛み等の表面欠陥が発生していると誤って判定してしまう可能性が少なくなり、表面欠陥の検出精度が向上するので、スラブ6に発生したノロ噛み等の表面欠陥を精度よく検出することができる。   Therefore, when the presence / absence, type, size, etc. of surface defects are specified based only on the signal output from the laser beam receiver 9, or surface defects are determined based only on the image signals output from the CCD cameras 13a, 13b. Like when the presence / absence, type, size, etc. are specified, it is less likely that the surface of the slab will have a surface defect such as a bite, which improves the detection accuracy of the surface defect. Therefore, it is possible to accurately detect a surface defect such as a bite generated in the slab 6.

また、上述のように、照明装置12a,12bからスラブ表面に照射された照明光の照射領域をCCDカメラ13a,13bによりスラブ6の表面に対してほぼ垂直な方向から撮像したことで、スラブ6の表面に発生した表面欠陥の大きさ(例えばノロ噛みの大きさ)を精度よく検出することができる。
上述した本発明の一実施形態では、レーザ投光器からのレーザ光をスラブの表面にほぼ真上から投光するようにしたが、これに限られるものではなく、レーザ投光器からのレーザ光をスラブの表面に斜め上方から投光するようにしてもよい。ただし、より高い精度で表面欠陥を検出するためには、レーザ投光器からのレーザ光をスラブの表面にほぼ真上から投光することが好ましい。
Further, as described above, the illumination light irradiated onto the slab surface from the illumination devices 12a and 12b is imaged from the direction substantially perpendicular to the surface of the slab 6 by the CCD cameras 13a and 13b. It is possible to accurately detect the size of surface defects (for example, the size of the bite) generated on the surface.
In the above-described embodiment of the present invention, the laser light from the laser projector is projected onto the surface of the slab from directly above, but the present invention is not limited to this, and the laser light from the laser projector is transmitted to the slab. You may make it light-project on the surface from diagonally upward. However, in order to detect a surface defect with higher accuracy, it is preferable to project the laser beam from the laser projector onto the surface of the slab from directly above.

また、上述した本発明の一実施形態では、スラブの幅方向に配列された二つのレーザ投光器からスラブの表面にレーザ光を投光するようにしたが、これに限られるものではなく、スラブの幅寸法に応じてレーザ投光器の個数を適宜設定すればよい。
また、上述した本発明の一実施形態では、スラブの表面で反射したレーザ光を1個のレーザ受光器で受光するようにしたが、これに限られるものではなく、レーザ光受光手段としてのレーザ受光器の個数は複数個であってもよい。
Further, in the above-described embodiment of the present invention, the laser light is projected onto the surface of the slab from the two laser projectors arranged in the width direction of the slab. However, the present invention is not limited to this. What is necessary is just to set the number of laser projectors suitably according to a width dimension.
In the above-described embodiment of the present invention, the laser beam reflected by the surface of the slab is received by one laser receiver. However, the present invention is not limited to this. A plurality of light receivers may be provided.

また、スラブ表面の長手方向における凹凸変化率を求める方法としては、上述した本発明の一実施形態のように、スラブの幅方向に長いスリット状のレーザ光をスラブの表面に照射しながらスラブをその長手方向に移動させてスラブ表面の長手方向における凹凸変化率を求めてもよいし、スラブの表面に照射されたスリット状あるいはスポット状のレーザ光をスラブの幅方向や長手方向に走査してスラブ表面の長手方向における凹凸変化率を求めてもよい。   Further, as a method of obtaining the unevenness change rate in the longitudinal direction of the slab surface, as in the embodiment of the present invention described above, the slab is irradiated while irradiating the surface of the slab with a slit-like laser beam long in the width direction of the slab. The slab surface may be moved in the longitudinal direction to determine the unevenness change rate in the longitudinal direction of the slab, or a slit-like or spot-like laser beam irradiated on the slab surface may be scanned in the width or longitudinal direction of the slab. The unevenness change rate in the longitudinal direction of the slab surface may be obtained.

また、上述した本発明の一実施形態では、レーザ受光器から出力された信号を微分処理してスラブ表面の長手方向における凹凸変化率を取得するようにしたが、これに限られるものではなく、例えば、表面凹凸状態計測回路により計測された二つの計測点の間の傾きからスラブ表面の長手方向における凹凸変化率を取得するようにしてもよい。
また、上述した本発明の一実施形態では、スラブの表面に照明光を二台の照明装置から照射したが、照明装置の台数は特に限定されるものではなく、例えば、一台の照明装置からスラブの表面に照明光を照射するようにしてもよいし、三台以上の照明装置からスラブの表面に照明光を照射するようにしてもよい。なお、照明装置の光源としてはハロゲンランプに限られず、通常用いられる光源であれば本発明に用いることができる。
Further, in the above-described embodiment of the present invention, the signal output from the laser receiver is differentiated to acquire the unevenness change rate in the longitudinal direction of the slab surface. For example, the unevenness change rate in the longitudinal direction of the slab surface may be acquired from the inclination between two measurement points measured by the surface unevenness state measurement circuit.
Moreover, in one Embodiment of this invention mentioned above, although the illumination light was irradiated to the surface of the slab from two illuminating devices, the number of illuminating devices is not specifically limited, For example, from one illuminating device. Illumination light may be applied to the surface of the slab, or illumination light may be applied to the surface of the slab from three or more illumination devices. The light source of the lighting device is not limited to the halogen lamp, and any light source that is normally used can be used in the present invention.

さらに、上述した本発明の一実施形態では、スラブの表面に照射された照明光の照射領域を二台のCCDカメラにより撮像したが、撮像手段としてのCCDカメラの台数は特に限定されるものではなく、例えば、照明光の照射領域を一台のCCDカメラにより撮像するようにしてもよいし、照明光の照射領域を三台以上のCCDカメラにより撮像するようにしてもよい。また、撮像手段もCCDカメラに限られず、スラブ表面の輝度分布を取得できるものであれば本発明に用いることができる。
上述した本発明の一実施形態では、スラブの上面側における表面欠陥の検出について記載したが、本発明はスラブの下面側における表面欠陥の検出についても同様に適用することができる。さらに、本発明の構成を、スラブの上面側及び下面側に設けることで、スラブの上下面の欠陥の検出が同時に可能となる。
Further, in the above-described embodiment of the present invention, the illumination area irradiated on the surface of the slab is imaged by two CCD cameras, but the number of CCD cameras as imaging means is not particularly limited. For example, the illumination light irradiation area may be imaged by one CCD camera, or the illumination light irradiation area may be imaged by three or more CCD cameras. Further, the image pickup means is not limited to the CCD camera, and any device that can acquire the luminance distribution on the slab surface can be used in the present invention.
In the above-described embodiment of the present invention, detection of surface defects on the upper surface side of the slab has been described, but the present invention can be similarly applied to detection of surface defects on the lower surface side of the slab. Furthermore, by providing the configuration of the present invention on the upper surface side and the lower surface side of the slab, it becomes possible to simultaneously detect defects on the upper and lower surfaces of the slab.

本発明の一実施形態に係るスラブ表面欠陥検出装置の概略構成を示す図である。It is a figure which shows schematic structure of the slab surface defect detection apparatus which concerns on one Embodiment of this invention. スラブの表面にノロ噛みと称される表面欠陥が発生したときのスラブ表層部の断面を示す図である。It is a figure which shows the cross section of the surface layer part of a slab when the surface defect called the biting has occurred on the surface of the slab. スラブの表面にノロ噛みが発生したときの凹凸変化率算出回路の出力信号波形の一例を示す図である。It is a figure which shows an example of the output signal waveform of the uneven | corrugated change rate calculation circuit when the biting has occurred on the surface of the slab. 溶鋼の連続鋳造設備の一例を模式的に示す図である。It is a figure which shows typically an example of the continuous casting equipment of molten steel.

符号の説明Explanation of symbols

1 取鍋
2 ダンディッシュ
3 モールド(鋳型)
4 ピンチローラ
5 切断装置
6 スラブ
7a,7b レーザ投光器
8 レーザ光
10 表面凹凸状態計測回路(表面凹凸状態計測手段)
11 凹凸変化率算出回路(凹凸変化率算出手段)
12a,12b 照明装置
13a,13b CCDカメラ(撮像手段)
14 画像信号処理装置(画像信号処理手段)
15 低輝度表面部検出回路(低輝度表面部検出手段)
16 判定装置(表面欠陥判定手段)
17 位置情報取得部
18 比較部
19 判定部
1 Ladle 2 Dundish 3 Mold
4 Pinch roller 5 Cutting device 6 Slab 7a, 7b Laser projector 8 Laser light 10 Surface unevenness measuring circuit (surface unevenness measuring means)
11 Unevenness change rate calculation circuit (unevenness change rate calculation means)
12a, 12b Illumination device 13a, 13b CCD camera (imaging means)
14 Image signal processing device (image signal processing means)
15 Low brightness surface detection circuit (low brightness surface detection means)
16 determination device (surface defect determination means)
17 position information acquisition unit 18 comparison unit 19 determination unit

Claims (2)

スラブの表面にレーザ光を照射して前記スラブの表面凹凸状態を計測すると共に、前記スラブの表面を撮像して前記スラブの表面輝度分布を取得し、前記表面凹凸状態と前記表面輝度分布とから前記スラブの表面に発生した表面欠陥を検出する方法であって、
前記スラブの表面凹凸状態からスラブ表面の長手方向における凹凸変化率を算出すると共に、前記表面輝度分布の中で欠陥と判断されるスラブの低輝度表面部の位置と大きさを算出し、前記凹凸変化率の絶対値が予め定めた閾値以上となった部分の位置と前記低輝度表面部の位置とが一致したときに当該位置を欠陥位置と判定すると共に、前記欠陥位置と判定された低輝度表面部の大きさを前記欠陥位置に発生した表面欠陥の大きさと判定することを特徴とするスラブ表面欠陥検出方法。
The surface unevenness state of the slab is measured by irradiating the surface of the slab with a laser beam, and the surface luminance distribution of the slab is obtained by imaging the surface of the slab. From the surface unevenness state and the surface luminance distribution, A method of detecting surface defects generated on the surface of the slab,
The unevenness change rate in the longitudinal direction of the slab surface is calculated from the surface unevenness state of the slab, and the position and size of the low-luminance surface portion of the slab determined as a defect in the surface luminance distribution is calculated, When the position of the portion where the absolute value of the change rate is equal to or greater than a predetermined threshold matches the position of the low-luminance surface portion, the position is determined to be a defect position, and the low-luminance determined to be the defect position A slab surface defect detection method characterized in that the size of a surface portion is determined as the size of a surface defect generated at the defect position.
スラブの表面にレーザ光を照射して前記スラブの表面凹凸状態を計測すると共に、前記スラブの表面を撮像して前記スラブの表面輝度分布を取得し、前記表面凹凸状態と前記表面輝度分布とから前記スラブの表面に発生した表面欠陥を検出するスラブ表面欠陥検出装置であって、
前記スラブの表面で反射したレーザ光を受光するレーザ光受光手段と、
該レーザ光受光手段により受光されたレーザ光を基に前記スラブの表面凹凸状態を計測する表面凹凸状態計測手段と、
該表面凹凸状態計測手段により計測された前記スラブの表面凹凸状態からスラブ表面の長手方向における凹凸変化率を算出する凹凸変化率算出手段と、
前記スラブの表面を撮像して前記スラブの表面輝度情報を得る撮像手段と、
該撮像手段から出力された画像信号を処理して前記スラブの表面輝度分布を取得する画像信号処理手段と、
該画像信号処理手段により得られた表面輝度分布のうち欠陥と判断されるスラブの低輝度表面部を検出する低輝度表面部検出手段と、
前記凹凸変化率算出手段により算出された前記凹凸変化率の絶対値が予め定めた閾値以上となった部分の位置と前記低輝度表面部検出手段により検出された低輝度表面部の位置とが一致したときに当該位置を欠陥位置と判定すると共に、前記欠陥位置と判定された低輝度表面部の大きさを前記欠陥位置に発生した表面欠陥の大きさと判定する表面欠陥判定手段とを備えたことを特徴とするスラブ表面欠陥検出装置。
The surface unevenness state of the slab is measured by irradiating the surface of the slab with a laser beam, and the surface luminance distribution of the slab is obtained by imaging the surface of the slab. From the surface unevenness state and the surface luminance distribution, A slab surface defect detection device for detecting surface defects generated on the surface of the slab,
Laser light receiving means for receiving laser light reflected by the surface of the slab;
Surface unevenness state measuring means for measuring the surface unevenness state of the slab based on the laser light received by the laser light receiving means;
An unevenness change rate calculating means for calculating an unevenness change rate in the longitudinal direction of the slab surface from the surface unevenness state of the slab measured by the surface unevenness state measuring means;
Imaging means for imaging the surface of the slab to obtain surface luminance information of the slab;
Image signal processing means for processing the image signal output from the imaging means to obtain the surface luminance distribution of the slab;
A low-luminance surface portion detecting means for detecting a low-luminance surface portion of a slab determined as a defect in the surface luminance distribution obtained by the image signal processing means;
The position of the portion where the absolute value of the unevenness change rate calculated by the unevenness change rate calculating means is equal to or greater than a predetermined threshold matches the position of the low brightness surface portion detected by the low brightness surface portion detecting means. And a surface defect determination means for determining the position as a defect position and determining the size of the low-luminance surface portion determined as the defect position as the size of the surface defect generated at the defect position. A slab surface defect detection device characterized by the above.
JP2008291551A 2008-11-13 2008-11-13 Slab surface defect detection method and slab surface defect detection apparatus Expired - Fee Related JP5200872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291551A JP5200872B2 (en) 2008-11-13 2008-11-13 Slab surface defect detection method and slab surface defect detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291551A JP5200872B2 (en) 2008-11-13 2008-11-13 Slab surface defect detection method and slab surface defect detection apparatus

Publications (2)

Publication Number Publication Date
JP2010117281A true JP2010117281A (en) 2010-05-27
JP5200872B2 JP5200872B2 (en) 2013-06-05

Family

ID=42305042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291551A Expired - Fee Related JP5200872B2 (en) 2008-11-13 2008-11-13 Slab surface defect detection method and slab surface defect detection apparatus

Country Status (1)

Country Link
JP (1) JP5200872B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016070875A (en) * 2014-10-01 2016-05-09 Jfeスチール株式会社 Steel material surface inspection device and method therefor
JP2020008501A (en) * 2018-07-11 2020-01-16 日本製鉄株式会社 Surface defect detection device and surface defect detection method
JP6984964B1 (en) * 2021-02-24 2021-12-22 株式会社Rist Surface shape inspection device and surface shape inspection method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113942A (en) * 1979-02-27 1980-09-02 Matsushita Electric Works Ltd Surface inspection of sheet-shaped article
JPS6347642A (en) * 1986-08-14 1988-02-29 Kawasaki Steel Corp Method for discriminating kind of flaw in surface flaw detection
JPH02224851A (en) * 1989-02-25 1990-09-06 Nippon Steel Corp Method for deciding crack in cast strip
JPH03140847A (en) * 1989-10-27 1991-06-14 Kubota Corp Method for detecting shape of flaw part
JPH04148817A (en) * 1990-10-11 1992-05-21 Mitsubishi Kasei Corp Surface inspecting apparatus
JPH0543242B2 (en) * 1986-09-26 1993-07-01 Toyo Tire & Rubber Co
JPH0921761A (en) * 1993-07-14 1997-01-21 Toshiba Corp Surface fault inspecting apparatus
JP2955686B2 (en) * 1990-11-30 1999-10-04 マツダ株式会社 Surface defect inspection equipment
JP2001343331A (en) * 2000-05-31 2001-12-14 Nkk Corp System and method for inspecting defect
JP2003329601A (en) * 2002-05-10 2003-11-19 Mitsubishi Rayon Co Ltd Apparatus and method for inspecting defect
JP2004219358A (en) * 2003-01-17 2004-08-05 Nippon Steel Corp Apparatus for detecting surface flaw in billet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113942A (en) * 1979-02-27 1980-09-02 Matsushita Electric Works Ltd Surface inspection of sheet-shaped article
JPS6347642A (en) * 1986-08-14 1988-02-29 Kawasaki Steel Corp Method for discriminating kind of flaw in surface flaw detection
JPH0543242B2 (en) * 1986-09-26 1993-07-01 Toyo Tire & Rubber Co
JPH02224851A (en) * 1989-02-25 1990-09-06 Nippon Steel Corp Method for deciding crack in cast strip
JPH03140847A (en) * 1989-10-27 1991-06-14 Kubota Corp Method for detecting shape of flaw part
JPH04148817A (en) * 1990-10-11 1992-05-21 Mitsubishi Kasei Corp Surface inspecting apparatus
JP2955686B2 (en) * 1990-11-30 1999-10-04 マツダ株式会社 Surface defect inspection equipment
JPH0921761A (en) * 1993-07-14 1997-01-21 Toshiba Corp Surface fault inspecting apparatus
JP2001343331A (en) * 2000-05-31 2001-12-14 Nkk Corp System and method for inspecting defect
JP2003329601A (en) * 2002-05-10 2003-11-19 Mitsubishi Rayon Co Ltd Apparatus and method for inspecting defect
JP2004219358A (en) * 2003-01-17 2004-08-05 Nippon Steel Corp Apparatus for detecting surface flaw in billet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016070875A (en) * 2014-10-01 2016-05-09 Jfeスチール株式会社 Steel material surface inspection device and method therefor
JP2020008501A (en) * 2018-07-11 2020-01-16 日本製鉄株式会社 Surface defect detection device and surface defect detection method
JP7028091B2 (en) 2018-07-11 2022-03-02 日本製鉄株式会社 Surface defect detection device and surface defect detection method
JP6984964B1 (en) * 2021-02-24 2021-12-22 株式会社Rist Surface shape inspection device and surface shape inspection method

Also Published As

Publication number Publication date
JP5200872B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
CN107735674B (en) Surface defect detection device, surface defect detection method, and steel product manufacturing method
JP5659540B2 (en) Steel plate surface defect inspection method and apparatus
JP2007024674A (en) Surface/surface layer inspection device and surface/surface layer inspection method
RU2650449C1 (en) Device and a method of ultrasound defectoscopy
JP5488953B2 (en) Method and apparatus for inspection of uneven surface
JP5200872B2 (en) Slab surface defect detection method and slab surface defect detection apparatus
JP2012236215A (en) Surface inspection method and surface inspection device for scarfed steel material
KR20080057645A (en) Appratus for detecting surface defect on slab
JP5320997B2 (en) Slab surface defect determination method and slab surface defect determination apparatus
JP5396824B2 (en) Slab surface defect detection method and slab surface defect detection apparatus
JP5320998B2 (en) Slab surface defect detection method and slab surface defect detection apparatus
JP5611177B2 (en) Ablation abnormality detection device and anomaly detection method
JP2004117193A (en) Internal defect detector for tunnel lining
JP2004219358A (en) Apparatus for detecting surface flaw in billet
JPH05261564A (en) Manufacture of electric resistance welded tube
JP2005207858A (en) Inspection method and inspection device for steel product surface defect
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JPH0520695B2 (en)
JP4797568B2 (en) Slab vertical crack detection method and apparatus
JP4216784B2 (en) Pantograph sliding plate inspection device
JP6146389B2 (en) Steel surface inspection apparatus and method
JP2013036850A (en) Method and device for inspecting surface flaw of hot steel material
JP6251049B2 (en) Surface shape inspection device
JP2020116602A (en) Detection system and detection method
JP2012045601A (en) Method for detecting burr of slab, and slab treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R150 Certificate of patent or registration of utility model

Ref document number: 5200872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees