JP2010116821A - Emission control device for internal combustion engine - Google Patents

Emission control device for internal combustion engine Download PDF

Info

Publication number
JP2010116821A
JP2010116821A JP2008289841A JP2008289841A JP2010116821A JP 2010116821 A JP2010116821 A JP 2010116821A JP 2008289841 A JP2008289841 A JP 2008289841A JP 2008289841 A JP2008289841 A JP 2008289841A JP 2010116821 A JP2010116821 A JP 2010116821A
Authority
JP
Japan
Prior art keywords
catalyst
urea
exhaust gas
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008289841A
Other languages
Japanese (ja)
Inventor
Isamu Goto
勇 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008289841A priority Critical patent/JP2010116821A/en
Publication of JP2010116821A publication Critical patent/JP2010116821A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an emission control device that can suppress an amount of nitrogen oxide discharged to the outside without being purified. <P>SOLUTION: The emission control device is configured to execute an adsorption processing for controlling urea adding valves 31 and 41 and a switching valve 20 to add urea only to a second stage catalyst 12 when the condition of the second stage catalyst 12 does not meet a predetermined condition, and flowing exhaust gas G in a first branch passage 5 to adsorb nitrogen oxide in a first stage catalyst 10, and a first stage catalyst reduction processing for adding a required amount of urea for reducing the nitrogen oxide adsorbed in the first stage catalyst 10 by the adsorption processing to the first stage catalyst 10, and flowing the exhaust gas G in the first branch passage 5 for a period of time required for the reduction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

一般に、ディーゼルエンジン等の内燃機関の排気系に配置される排気浄化装置として、排気ガスに含まれるNOx(窒素酸化物)を浄化するためのNOx触媒が知られている。このNOx触媒としては様々なタイプのものが知られているが、その中で、還元剤の添加によりNOxを連続的に還元除去する選択還元型NOx触媒が公知である。還元剤としては尿素が知られている。通常は、所定の割合で水に混合した尿素水溶液を触媒上流側の排気ガス中に噴射供給し、この尿素水溶液に含まれる尿素を排気等の熱により加水分解してアンモニアを発生させる。そして、このアンモニアの、NOx触媒上でNOxから酸素を取り除き窒素に戻す還元作用より、排気ガス中のNOxが浄化される。   In general, a NOx catalyst for purifying NOx (nitrogen oxide) contained in exhaust gas is known as an exhaust purification device disposed in an exhaust system of an internal combustion engine such as a diesel engine. Various types of NOx catalysts are known, and among them, a selective reduction type NOx catalyst that continuously reduces and removes NOx by adding a reducing agent is known. Urea is known as a reducing agent. Usually, a urea aqueous solution mixed with water at a predetermined ratio is injected and supplied into exhaust gas upstream of the catalyst, and urea contained in the urea aqueous solution is hydrolyzed by heat of exhaust gas or the like to generate ammonia. Then, NOx in the exhaust gas is purified by a reducing action of this ammonia by removing oxygen from NOx and returning it to nitrogen on the NOx catalyst.

特許文献1は、内燃機関の排気ガス中に含まれるNOxを低温領域から高温領域にかけて確実に浄化処理するための技術を開示している。具体的には、アンモニアを触媒として用いたNOx選択還元触媒の上流側にNOx吸着塔を設け、排気ガスの温度が低温であるときには、NOx吸着塔に排気ガスを流入させてNOx吸着塔にNOxを吸着させる。一方、排気ガスの温度が高温であるときには、排気ガス中に還元剤を添加すると共に、この添加した還元剤によりNOx選択還元触媒上でNOxを還元する。   Patent Document 1 discloses a technique for reliably purifying NOx contained in exhaust gas of an internal combustion engine from a low temperature region to a high temperature region. Specifically, a NOx adsorption tower is provided on the upstream side of the NOx selective reduction catalyst using ammonia as a catalyst. When the temperature of the exhaust gas is low, the exhaust gas flows into the NOx adsorption tower and the NOx adsorption tower is filled with NOx. To adsorb. On the other hand, when the temperature of the exhaust gas is high, a reducing agent is added to the exhaust gas, and NOx is reduced on the NOx selective reduction catalyst by the added reducing agent.

特開平07−136464号公報Japanese Patent Laid-Open No. 07-136464

ところで、アンモニアの還元作用を利用してNOxを浄化する場合、通常、尿素を加水分解してアンモニアを生成する必要があるが、尿素を加水分解してアンモニアを生成するには、ある程度時間を要する。   By the way, when purifying NOx using the reducing action of ammonia, it is usually necessary to hydrolyze urea to produce ammonia, but it takes some time to hydrolyze urea to produce ammonia. .

このため、尿素が加水分解されて十分量のアンモニアが生成される前に、NOx選択還元触媒に多量のNOxが流入した場合、尿素の添加量をそれに合わせて増量したとしても十分量のアンモニアが生成されるまでにある程度の時間を要するため、NOxが浄化されずに外部に排出される可能性がある。   For this reason, if a large amount of NOx flows into the NOx selective reduction catalyst before the urea is hydrolyzed to produce a sufficient amount of ammonia, even if the amount of urea added is increased accordingly, a sufficient amount of ammonia will not be produced. Since a certain amount of time is required until it is generated, NOx may be discharged outside without being purified.

本発明は、上記の事情に鑑みて成されたものであり、その目的とするところは内燃機関から排出される排気ガスに含まれる窒素酸化物を尿素を用いて還元する選択還元型の排気浄化装置において、浄化されずに外部に排出される窒素酸化物の量を抑制可能な排気浄化装置を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to perform selective reduction type exhaust purification in which nitrogen oxides contained in exhaust gas discharged from an internal combustion engine are reduced using urea. An object of the present invention is to provide an exhaust emission control device capable of suppressing the amount of nitrogen oxides discharged outside without being purified.

本発明に係る内燃機関の排気浄化装置は、内燃機関の排気通路の途中で分岐し再び合流する第1及び第2の分岐通路と、前記第1の分岐通路に設けられ、尿素の加水分解により生成されるアンモニアの還元作用により排気ガスに含まれる窒素酸化物を還元する前段触媒と、前記第1及び第2の分岐通路の下流側の前記排気通路に設けられ、かつ、尿素の加水分解により生成されるアンモニアの還元作用により排気ガスに含まれる窒素酸化物を還元する後段触媒と、前記前段触媒及び前記後段触媒にそれぞれ尿素を添加可能な尿素添加手段と、前記第1及び第2の分岐通路への排気ガスの流入量を調整可能な調整弁と、前記尿素添加手段及び前記調整弁を制御して、前記後段触媒の状態が所定条件を満たさない場合に前記後段触媒にのみ尿素を添加すると共に排気ガスを前記第1の分岐路に流通させて前記前段触媒に窒素酸化物を吸着させる吸着処理と、前記吸着処理により前記前段触媒に吸着された窒素酸化物を還元するために必要な量の尿素を当該前段触媒に添加すると共に還元に必要な時間だけ排気ガスを前記第1の分岐路に流通させる前段触媒還元処理とを少なくとも実行する制御手段と、を備えることを特徴とする内燃機関の排気浄化装置。   An exhaust gas purification apparatus for an internal combustion engine according to the present invention is provided in the first and second branch passages that branch in the middle of the exhaust passage of the internal combustion engine and merge again, and by hydrolysis of urea. A pre-stage catalyst for reducing nitrogen oxides contained in the exhaust gas by the reducing action of the generated ammonia; and the exhaust passage downstream of the first and second branch passages; and by hydrolysis of urea A rear catalyst for reducing nitrogen oxides contained in the exhaust gas by a reducing action of the generated ammonia, urea addition means capable of adding urea to the front catalyst and the rear catalyst, and the first and second branches; An adjustment valve capable of adjusting the amount of exhaust gas flowing into the passage, the urea addition means and the adjustment valve are controlled so that urea is supplied only to the rear catalyst when the state of the rear catalyst does not satisfy a predetermined condition. Necessary for reducing the nitrogen oxides adsorbed on the preceding catalyst by the adsorption treatment, and an adsorption treatment for causing the exhaust gas to flow through the first branch passage and adsorbing the nitrogen oxide on the preceding catalyst. Control means for adding a sufficient amount of urea to the first stage catalyst and performing at least a first stage catalyst reduction process for causing the exhaust gas to flow through the first branch path for a time required for the reduction. An exhaust purification device for an internal combustion engine.

上記構成において、前記後段触媒の状態が所定条件を満たさない場合には、前記後段触媒の温度が所定の温度より低い場合、排気ガスの温度が所定の温度よりも低い場合、及び、内燃機関が始動直後である場合のいずれかが含まれる、構成を採用できる。   In the above configuration, when the state of the rear catalyst does not satisfy a predetermined condition, the temperature of the rear catalyst is lower than a predetermined temperature, the temperature of the exhaust gas is lower than the predetermined temperature, and the internal combustion engine A configuration including any of cases immediately after start-up can be employed.

上記構成において、前記制御手段は、前記前段触媒還元処理において、前記前段触媒に吸着された窒素酸化物の還元に必要な時間だけ排気ガスを前記第1の分岐路に流通させる、構成を採用できる。   In the above configuration, the control means may employ a configuration in which the exhaust gas is circulated through the first branch path for a time necessary for the reduction of nitrogen oxides adsorbed on the pre-stage catalyst in the pre-stage catalyst reduction process. .

上記構成において、前記調整弁は、排気ガスの全量を前記第1及び第2の分岐通路の一方に流通させる切り替え弁を含む、構成を採用できる。   The said structure can employ | adopt the structure containing the switching valve which distribute | circulates the whole quantity of exhaust gas to one of the said 1st and 2nd branch passages.

上記構成において、前記尿素添加手段は、前記前段触媒の上流側の排気通路に設けられた第1の尿素添加弁と、前記後段触媒の上流側の排気通路に設けられた第2の尿素添加弁とを含む、構成を採用できる。   In the above configuration, the urea addition means includes a first urea addition valve provided in an exhaust passage upstream of the preceding catalyst and a second urea addition valve provided in an exhaust passage upstream of the rear catalyst. A configuration including the above can be adopted.

上記構成において、前記尿素添加手段は、前記調整弁の上流側に設けられ、かつ、前記前段触媒及び前記後段触媒に共通に用いられる尿素添加弁を含む、構成を採用できる。   The said structure WHEREIN: The said urea addition means can employ | adopt the structure provided in the upstream of the said adjustment valve, and including the urea addition valve used in common with the said front | former stage catalyst and the said back | latter stage catalyst.

本発明によれば、浄化されずに外部に排出される窒素酸化物の量を抑制可能な窒素酸化物を尿素を用いて還元する選択還元型の排気浄化装置が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the selective reduction type exhaust gas purification apparatus which reduces the nitrogen oxide which can suppress the quantity of the nitrogen oxide discharged | emitted outside without purifying using urea is obtained.

以下、本発明の最良の実施形態について、添付図面を参照しつつ説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る内燃機関の排気浄化装置の構成図である。   FIG. 1 is a configuration diagram of an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention.

排気浄化装置1は、例えば、ディーゼルエンジン等の内燃機関が発生する排気ガスに含まれる窒素酸化物(NOx)の浄化に用いられる。   The exhaust purification device 1 is used for purifying nitrogen oxides (NOx) contained in exhaust gas generated by an internal combustion engine such as a diesel engine, for example.

排気浄化装置1は、図1に示すように、内燃機関の上流側の排気通路3Aの途中で分岐し再び合流する第1の分岐通路5及び第2の分岐通路7と、第1の分岐通路5に設けられた前段触媒10と、第1の分岐通路5及び第2の分岐通路7の下流側の排気通路3Bに設けられた後段触媒12と、前段触媒10に尿素を添加可能な前段尿素添加弁31と、後段触媒12に尿素を添加可能な後段尿素添加弁41と、排気通路3Aと第1の分岐通路5と第2の分岐通路7とに接続された切り替え弁20と、制御手段としての電子制御装置(以下、ECUという。)100と、前段触媒10及び後段触媒12のそれぞれ上流側に設けられた排気温度センサー61,62と、前段触媒10及び後段触媒12のそれぞれ下流側に設けられたNOxセンサ51,52とを有する。   As shown in FIG. 1, the exhaust purification device 1 includes a first branch passage 5 and a second branch passage 7 that branch in the middle of the exhaust passage 3A on the upstream side of the internal combustion engine and merge again, and a first branch passage. 5, a post-stage catalyst 12 provided in the exhaust passage 3 </ b> B downstream of the first branch passage 5 and the second branch passage 7, and a pre-stage urea capable of adding urea to the pre-stage catalyst 10. An addition valve 31, a rear urea addition valve 41 capable of adding urea to the rear catalyst 12, a switching valve 20 connected to the exhaust passage 3A, the first branch passage 5, and the second branch passage 7, and control means As an electronic control unit (hereinafter referred to as ECU) 100, exhaust temperature sensors 61 and 62 provided on the upstream side of the front catalyst 10 and the rear catalyst 12, respectively, and on the downstream side of the front catalyst 10 and the rear catalyst 12, respectively. NOx sensor 51 provided, And a 2.

前段触媒10および後段触媒12は、ゼオライトやバナジウムなどの触媒種を用い、いわゆる尿素選択還元法により窒素酸化物を還元する周知の選択還元型触媒(SCR: Selective Catalytic Reduction)である。すなわち、触媒上で、尿素の加水分解により生成されるアンモニアの還元作用により排気ガスに含まれる窒素酸化物を還元して浄化する。これら前段触媒10および後段触媒12は、触媒温度が所定の最低活性温度(例えば200℃)以上に加熱され、かつ、供給された尿素が加水分解されて十分量のアンモニアが生成された状態で窒素酸化物を還元することができる。また、前段触媒10および後段触媒12は、その基材が多数の空孔を有する空隙構造を有するため、これらに流入する物質を吸着効果をもつ。特に、触媒種として、ゼオライト等を用いた場合には、窒素酸化物やアンモニアに対する吸着効果が高い。   The pre-stage catalyst 10 and the post-stage catalyst 12 are known selective reduction catalysts (SCR: Selective Catalytic Reduction) that use a catalyst species such as zeolite or vanadium to reduce nitrogen oxides by a so-called urea selective reduction method. That is, on the catalyst, nitrogen oxides contained in the exhaust gas are reduced and purified by the reducing action of ammonia generated by hydrolysis of urea. These front-stage catalyst 10 and rear-stage catalyst 12 are heated to a predetermined minimum active temperature (for example, 200 ° C.) or higher, and the supplied urea is hydrolyzed to produce a sufficient amount of ammonia. The oxide can be reduced. Further, since the base catalyst 10 and the post catalyst 12 have a void structure in which the base material has a large number of pores, they have an adsorbing effect on the substances flowing into them. In particular, when zeolite or the like is used as the catalyst species, the adsorption effect on nitrogen oxides and ammonia is high.

前段尿素添加弁31は、これに尿素水溶液を供給するための供給装置32が接続され、供給装置32には尿素を水に所定の割合で混合した尿素水溶液を貯留するタンク33が接続される。前段尿素添加弁31は、尿素を尿素水溶液の形で前段触媒10の上流から噴射可能になっている。なお、前段尿素添加弁31及び供給装置32はECU100により制御される。   The upstream urea addition valve 31 is connected to a supply device 32 for supplying a urea aqueous solution, and the supply device 32 is connected to a tank 33 for storing a urea aqueous solution in which urea is mixed with water at a predetermined ratio. The pre-stage urea addition valve 31 can inject urea from the upstream of the pre-stage catalyst 10 in the form of a urea aqueous solution. The pre-stage urea addition valve 31 and the supply device 32 are controlled by the ECU 100.

後段尿素添加弁41は、これに尿素水溶液を供給するための供給装置42が接続され、供給装置42には尿素を水に所定の割合で混合した尿素水溶液を貯留するタンク43が接続される。後段尿素添加弁41は、尿素を尿素水溶液の形で後段触媒12の上流から噴射可能になっている。なお、後段尿素添加弁41及び供給装置42はECU100により制御される。   The post-stage urea addition valve 41 is connected to a supply device 42 for supplying a urea aqueous solution, and the supply device 42 is connected to a tank 43 for storing a urea aqueous solution in which urea is mixed with water at a predetermined ratio. The post-stage urea addition valve 41 can inject urea from the upstream of the post-stage catalyst 12 in the form of an aqueous urea solution. The post-stage urea addition valve 41 and the supply device 42 are controlled by the ECU 100.

切り替え弁20は、例えば、電磁弁等で構成され、ECU100からの制御指令に応じて、排気通路3Aを流通する排気ガスGの全量を第1の分岐通路5及び第2の分岐通路7の一方に流通させるために設けられている。なお、切り替え弁20の代わりに、第1の分岐通路5及び第2の分岐通路7への排気ガスGの流入量を連続的に調整可能な調整弁を用いることも可能である。この場合には、第1の分岐通路5及び第2の分岐通路7を流通する排気ガスGの割合をECU100からの制御指令により任意に変更可能となる。   The switching valve 20 is composed of, for example, an electromagnetic valve, and the entire amount of the exhaust gas G flowing through the exhaust passage 3A is supplied to one of the first branch passage 5 and the second branch passage 7 in accordance with a control command from the ECU 100. It is provided for distribution. Instead of the switching valve 20, it is possible to use an adjustment valve that can continuously adjust the amount of exhaust gas G flowing into the first branch passage 5 and the second branch passage 7. In this case, the ratio of the exhaust gas G flowing through the first branch passage 5 and the second branch passage 7 can be arbitrarily changed by a control command from the ECU 100.

ECU100は、CPU、ROM、RAM、入出力ポート、および記憶装置等のハードウエア及び所要のソフトウエアで構成され、排気温度センサー61,62及びNOxセンサ51,52の検出信号が入力されるとともに、前段尿素添加弁31及び供給装置32、後段尿素添加弁41及び供給装置42、及び切り替え弁20を制御する。なお、ECU100による具体的処理内容は後述する。   The ECU 100 includes hardware such as a CPU, ROM, RAM, input / output port, and storage device, and necessary software. The ECU 100 receives detection signals from the exhaust temperature sensors 61 and 62 and the NOx sensors 51 and 52. The front-stage urea addition valve 31 and the supply device 32, the rear-stage urea addition valve 41, the supply device 42, and the switching valve 20 are controlled. The specific processing content by the ECU 100 will be described later.

NOxセンサ51,52は、排気ガスG中に含まれる窒素酸化物の量に応じた電気信号を発生して、ECU100に出力する。   The NOx sensors 51 and 52 generate an electrical signal corresponding to the amount of nitrogen oxide contained in the exhaust gas G and output it to the ECU 100.

排気温度センサー61,62は、排気ガスGの温度に応じた電気信号を発生して、ECU100に出力する。   The exhaust temperature sensors 61 and 62 generate an electrical signal corresponding to the temperature of the exhaust gas G and output it to the ECU 100.

次に、ECU100による制御の一例について、図2に示すフローチャートを参照して説明する。   Next, an example of control by the ECU 100 will be described with reference to a flowchart shown in FIG.

内燃機関が始動されると、ECU100は、後段触媒12により窒素酸化物(NOx)の浄化を可能にするために、後段触媒12に尿素の添加を開始し、後段触媒12には継続的に尿素が添加されるが、前段触媒10には、尿素は添加されない。また、始動直後には、切り替え弁20は排気ガスGを第1の分岐通路5(前段触媒10)側に流入させる状態となっている。この状態で、図2に示す処理ルーチンは、所定時間毎に実行される。   When the internal combustion engine is started, the ECU 100 starts adding urea to the rear catalyst 12 so that the rear catalyst 12 can purify nitrogen oxides (NOx), and the rear catalyst 12 continuously adds urea. Is added, but urea is not added to the pre-stage catalyst 10. Further, immediately after the start, the switching valve 20 is in a state in which the exhaust gas G flows into the first branch passage 5 (pre-stage catalyst 10) side. In this state, the processing routine shown in FIG. 2 is executed every predetermined time.

先ず、後段触媒12によりNOxを還元可能かを判断する(ステップS1)。すなわち、NOxを還元するために、後段触媒12の状態が所定条件を満たしているかを判断する。後段触媒12が還元可能ではない状態とは、例えば、内燃機関の始動直後等において、後段触媒12が活性化していない場合や、後段触媒12に供給された尿素が未だ十分に加水分解されずに、還元に必要な量のアンモニアが発生していない場合である。したがって、例えば、排気ガスGの温度が所定の温度以上であるか、後段触媒12の温度が所定の温度以上であるか、内燃機関が始動されて所定期間が経過したか、等を判断して、後段触媒12が還元可能な状態かを判断する。なお、後段触媒12が還元可能かを判断する方法は、これらの例示に限定されるわけではない。   First, it is determined whether NOx can be reduced by the rear catalyst 12 (step S1). That is, in order to reduce NOx, it is determined whether the state of the post-catalyst 12 satisfies a predetermined condition. The state in which the rear catalyst 12 is not reducible is, for example, when the rear catalyst 12 is not activated immediately after the start of the internal combustion engine, or when the urea supplied to the rear catalyst 12 is not yet sufficiently hydrolyzed. This is a case where the amount of ammonia necessary for the reduction is not generated. Therefore, for example, it is determined whether the temperature of the exhaust gas G is equal to or higher than a predetermined temperature, whether the temperature of the post-catalyst 12 is higher than a predetermined temperature, whether the internal combustion engine is started and a predetermined period has elapsed. Then, it is determined whether the rear catalyst 12 can be reduced. Note that the method for determining whether the rear catalyst 12 can be reduced is not limited to these examples.

後段触媒12が未だ還元可能な状態でない場合には、前段触媒10がNOxを吸着可能な状態かを判断する(ステップS2)。例えば、前段触媒10が現在までに吸着しているNOx吸着量が、前段触媒10が吸着可能な範囲にある所定量を越えているかを判断し、この所定量を越えていない場合には、前段触媒10がNOxを吸着可能な状態と判断できる。   If the rear catalyst 12 is not yet in a reducible state, it is determined whether the front catalyst 10 can adsorb NOx (step S2). For example, it is determined whether the NOx adsorption amount that the pre-stage catalyst 10 has adsorbed so far exceeds a predetermined amount that is within the range in which the pre-stage catalyst 10 can be adsorbed. It can be determined that the catalyst 10 can adsorb NOx.

前段触媒10が現在までに吸着しているNOx吸着量は、例えば、内燃機関の作動条件から算出される内燃機関から排出される排気ガスGに含まれるNOxの量と前段触媒10の下流に設けられたNOxセンサ51の検出するNOxの量とに基いて算出することができる。   The NOx adsorption amount that the pre-stage catalyst 10 has adsorbed to date is, for example, provided downstream of the pre-stage catalyst 10 and the amount of NOx contained in the exhaust gas G discharged from the internal combustion engine calculated from the operating conditions of the internal combustion engine. It can be calculated based on the amount of NOx detected by the obtained NOx sensor 51.

ステップS2において、前段触媒10が吸着可能と判断した場合には、排気ガスGが第1の分岐通路5(前段触媒10)側に流入するように切り替え弁20を切り替える。切り替え弁20が既に第1の分岐通路5側に設定されている場合には、その状態を維持する。これにより、前段触媒10に排気ガスGが流入し、排気ガスGに含まれるNOxが前段触媒10に吸着される。また、前段触媒10がNOxを吸着している間に、後段触媒12は加熱されると共に尿素が継続して添加され、この尿素が加水分解されてアンモニアの生成が進み、NOxを還元可能な状態に移行する。   In step S2, when it is determined that the front stage catalyst 10 can be adsorbed, the switching valve 20 is switched so that the exhaust gas G flows into the first branch passage 5 (front stage catalyst 10). When the switching valve 20 is already set on the first branch passage 5 side, the state is maintained. As a result, the exhaust gas G flows into the front catalyst 10, and NOx contained in the exhaust gas G is adsorbed by the front catalyst 10. Further, while the front catalyst 10 is adsorbing NOx, the rear catalyst 12 is heated and urea is continuously added, and the urea is hydrolyzed to generate ammonia, so that NOx can be reduced. Migrate to

次いで、前段触媒10が現在までに吸着しているNOx吸着量を上述したような方法で算出し(ステップS4)、処理を終了する。   Next, the NOx adsorption amount that the pre-catalyst 10 has adsorbed so far is calculated by the method as described above (step S4), and the process is terminated.

ステップS2において、前段触媒10が吸着可能な状態でないと判断した場合、すなわち、前段触媒10が所定量のNOxを既に吸着し、飽和している又は飽和に近い状態と判断した場合には、前段触媒10が現在までに吸着しているNOx吸着量を算出する(ステップS7)。   If it is determined in step S2 that the pre-stage catalyst 10 is not in an adsorbable state, that is, if the pre-stage catalyst 10 has already adsorbed a predetermined amount of NOx and is determined to be saturated or nearly saturated, The amount of NOx adsorbed by the catalyst 10 so far is calculated (step S7).

そして、前段触媒10が現在までに吸着しているNOxを全て還元するのに必要な尿素の添加量を算出する(ステップS6)。さらに、前段触媒10が現在までに吸着しているNOxの全てを還元するのに必要な還元時間を算出する。   Then, the amount of urea added to reduce all the NOx adsorbed by the former catalyst 10 so far is calculated (step S6). Further, a reduction time necessary for reducing all of the NOx adsorbed by the pre-stage catalyst 10 so far is calculated.

必要尿素添加量及び必要還元時間を算出した後に、排気ガスGの全量が第2の分岐通路7を流れるように切り替え弁20を切り替える(ステップS8)。これにより、排気ガスGは、前段触媒10を通過せずに、第2の分岐通路7を通じて後段触媒12に直接供給され、排気ガスGに含まれるNOxは後段触媒12で浄化される。後段触媒12は、前段触媒10がNOxを吸着している間に、還元可能な状態に既に移行しているので、後段触媒12においてNOxが還元されずに通過するのを防ぐことができる。   After calculating the required urea addition amount and the required reduction time, the switching valve 20 is switched so that the entire amount of the exhaust gas G flows through the second branch passage 7 (step S8). As a result, the exhaust gas G is directly supplied to the rear catalyst 12 through the second branch passage 7 without passing through the front catalyst 10, and the NOx contained in the exhaust gas G is purified by the rear catalyst 12. Since the post-stage catalyst 12 has already shifted to a reducible state while the pre-stage catalyst 10 is adsorbing NOx, NOx can be prevented from passing through the post-stage catalyst 12 without being reduced.

ステップS1において、後段触媒12が還元可能な状態と判断した場合には、前段触媒10に吸着したNOxが残存しているかを判断する(ステップS9)。例えば、ステップS4又はステップS5において算出されたNOx吸着量が存在するか、ゼロからにより判断する。   If it is determined in step S1 that the rear catalyst 12 is in a reducible state, it is determined whether NOx adsorbed on the front catalyst 10 remains (step S9). For example, it is determined from zero whether the NOx adsorption amount calculated in step S4 or step S5 exists.

前段触媒10にNOxが残存していると判断した場合には、ステップS6において算出した量の尿素を前段尿素添加弁31から噴射させる(ステップS11)。これにより、前段触媒10において、尿素が加水分解されてアンモニアが生成される。さらに、ステップS7で算出した還元時間が経過したかを判断する(ステップS12)。なお、前段尿素添加弁31からの尿素の噴射のタイミングは、種々変更可能であり、ステップS7で算出した還元時間の間、一定量の尿素を前段尿素添加弁31から噴射させてもよく、必要な還元時間が経過する前に必要量の尿素を噴射することも可能である。   When it is determined that NOx remains in the pre-stage catalyst 10, the amount of urea calculated in step S6 is injected from the pre-stage urea addition valve 31 (step S11). Thereby, in the pre-stage catalyst 10, urea is hydrolyzed to generate ammonia. Further, it is determined whether the reduction time calculated in step S7 has elapsed (step S12). Note that the timing of urea injection from the upstream urea addition valve 31 can be variously changed, and a certain amount of urea may be injected from the upstream urea addition valve 31 during the reduction time calculated in step S7. It is also possible to inject a necessary amount of urea before a sufficient reduction time elapses.

前段触媒10に必要量の尿素を供給し、かつ、必要な還元時間が経過すると、前段触媒10に吸着されたNOxはアンモニアによりほぼ全て還元されると共に、前段触媒10において生成されたアンモニアは、ほぼ全てがNOxの還元に使用されて、前段触媒10にアンモニアがほとんど吸着されていない状態となる。   When a necessary amount of urea is supplied to the pre-stage catalyst 10 and the necessary reduction time has elapsed, NOx adsorbed on the pre-stage catalyst 10 is almost completely reduced by ammonia, and the ammonia produced in the pre-stage catalyst 10 is Almost all is used for the reduction of NOx, and ammonia is hardly adsorbed on the pre-stage catalyst 10.

このとき、前段触媒10のNOx吸着量をクリア(ゼロ)にし(ステップS13)、切り替え弁20を第2の分岐通路7側へ切り替える(ステップS14)。これにより、前段触媒10は、アンモニア及びNOxがほとんど吸着されていないので、NOxの吸着効果(吸着能力)を最大にした状態で、次回のNOx吸着に備えることができる。また、前段触媒10への尿素の添加量を還元に必要十分な量とすることにより、前段触媒10へのアンモニアの吸着量を抑えることができ、前段触媒10のNOx吸着時の吸着効果を最大限に高めることが可能となる。   At this time, the NOx adsorption amount of the front catalyst 10 is cleared (zero) (step S13), and the switching valve 20 is switched to the second branch passage 7 side (step S14). Thereby, since the ammonia and NOx are hardly adsorbed, the pre-stage catalyst 10 can be prepared for the next NOx adsorption with the NOx adsorption effect (adsorption capacity) maximized. Further, by making the amount of urea added to the pre-stage catalyst 10 an amount necessary and sufficient for reduction, the amount of ammonia adsorbed on the pre-stage catalyst 10 can be suppressed, and the adsorption effect of the pre-stage catalyst 10 at the time of NOx adsorption is maximized. It becomes possible to raise it to the limit.

図3は、本発明の他の実施形態に係る排気浄化装置の構成を示す図である。なお、図3において、図1に示した排気浄化装置と同一の構成部分には同一の符号を使用している。   FIG. 3 is a diagram showing a configuration of an exhaust emission control device according to another embodiment of the present invention. In FIG. 3, the same reference numerals are used for the same components as those in the exhaust gas purification apparatus shown in FIG.

図3に示す排気浄化装置1Aは、前段触媒10及び後段触媒12へ尿素を添加するのに共通に使用される尿素添加弁131、供給装置132及びタンク133を備えている。これにより、構成を簡素化でき、装置コストを低減できる。   The exhaust purification apparatus 1A shown in FIG. 3 includes a urea addition valve 131, a supply device 132, and a tank 133 that are commonly used to add urea to the front catalyst 10 and the rear catalyst 12. Thereby, a structure can be simplified and apparatus cost can be reduced.

上記実施形態では、本発明の調整弁として切り替え弁20を使用した場合について説明したが、本発明はこれに限定されない。切り替え弁20の代わりに、第1の分岐通路5及び第2に分岐通路7に流入する排気ガスGの割合を連続的に変更できる調整弁を使用した場合には、例えば、上記のステップS3、S8、S10、S14等において、第1の分岐通路5及び第2に分岐通路7のいずれか一方に排気ガスGを流入させるのではなく、両方の通路に流すことも可能である。このとき、第1の分岐通路5及び第2に分岐通路7に流す排気ガスGの割合を適宜調整することができる。   Although the case where the switching valve 20 is used as the regulating valve of the present invention has been described in the above embodiment, the present invention is not limited to this. When an adjustment valve that can continuously change the ratio of the exhaust gas G flowing into the first branch passage 5 and the second branch passage 7 instead of the switching valve 20 is used, for example, step S3, In S8, S10, S14, etc., the exhaust gas G is not allowed to flow into one of the first branch passage 5 and the second branch passage 7, but can be allowed to flow through both passages. At this time, the ratio of the exhaust gas G flowing through the first branch passage 5 and the second branch passage 7 can be appropriately adjusted.

本発明の一実施形態に係る排気浄化装置の構成を示す図である。It is a figure showing composition of an exhaust-air-purification device concerning one embodiment of the present invention. 図1のECUによる処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence by ECU of FIG. 本発明の他の実施形態に係る排気浄化装置の構成を示す図である。It is a figure which shows the structure of the exhaust gas purification apparatus which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1…排気浄化装置
3A,3B…排気通路
5…第1の分岐通路
7…第2の分岐通路
10…前段触媒
12…後段触媒
20…切り替え弁(調整弁)
31…前段尿素添加弁(尿素添加手段)
32…供給装置
33…タンク
41…後段尿素添加弁(尿素添加手段)
42…供給装置
43…タンク
51,52…NOxセンサ
61,62…排気温度センサ
100…ECU(制御手段)
DESCRIPTION OF SYMBOLS 1 ... Exhaust purification apparatus 3A, 3B ... Exhaust passage 5 ... 1st branch passage 7 ... 2nd branch passage 10 ... Pre-stage catalyst 12 ... Post-stage catalyst 20 ... Switching valve (regulation valve)
31 ... Pre-stage urea addition valve (urea addition means)
32 ... Supply device 33 ... Tank 41 ... Post-stage urea addition valve (urea addition means)
42 ... Supply device 43 ... Tanks 51, 52 ... NOx sensors 61, 62 ... Exhaust temperature sensor 100 ... ECU (control means)

Claims (6)

内燃機関の排気通路の途中で分岐し再び合流する第1及び第2の分岐通路と、
前記第1の分岐通路に設けられ、尿素の加水分解により生成されるアンモニアの還元作用により排気ガスに含まれる窒素酸化物を還元する前段触媒と、
前記第1及び第2の分岐通路の下流側の前記排気通路に設けられ、かつ、尿素の加水分解により生成されるアンモニアの還元作用により排気ガスに含まれる窒素酸化物を還元する後段触媒と、
前記前段触媒及び前記後段触媒にそれぞれ尿素を添加可能な尿素添加手段と、
前記第1及び第2の分岐通路への排気ガスの流入量を調整可能な調整弁と、
前記尿素添加手段及び前記調整弁を制御して、前記後段触媒の状態が所定条件を満たさない場合に前記後段触媒にのみ尿素を添加すると共に排気ガスを前記第1の分岐路に流通させて前記前段触媒に窒素酸化物を吸着させる吸着処理と、前記吸着処理により前記前段触媒に吸着された窒素酸化物を還元するために必要な量の尿素を当該前段触媒に添加すると共に排気ガスを前記第1の分岐路に流通させる前段触媒還元処理とを少なくとも実行する制御手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
First and second branch passages which branch in the middle of the exhaust passage of the internal combustion engine and merge again;
A pre-stage catalyst that is provided in the first branch passage and reduces nitrogen oxides contained in the exhaust gas by a reducing action of ammonia generated by hydrolysis of urea;
A downstream catalyst that is provided in the exhaust passage downstream of the first and second branch passages and that reduces nitrogen oxides contained in the exhaust gas by the reducing action of ammonia generated by hydrolysis of urea;
Urea addition means capable of adding urea to each of the front catalyst and the rear catalyst;
An adjustment valve capable of adjusting the amount of exhaust gas flowing into the first and second branch passages;
By controlling the urea addition means and the regulating valve, when the state of the rear catalyst does not satisfy a predetermined condition, urea is added only to the rear catalyst and the exhaust gas is circulated through the first branch passage. An adsorption process for adsorbing nitrogen oxides on the pre-stage catalyst, and an amount of urea necessary for reducing the nitrogen oxides adsorbed on the pre-stage catalyst by the adsorption process is added to the pre-stage catalyst and the exhaust gas is added to the first stage catalyst. Control means for executing at least a pre-catalyst reduction process for flowing through one branch path;
An exhaust emission control device for an internal combustion engine, comprising:
前記後段触媒の状態が所定条件を満たさない場合には、前記後段触媒の温度が所定の温度より低い場合、排気ガスの温度が所定の温度よりも低い場合、及び、内燃機関が始動直後である場合のいずれかが含まれることを特徴とする請求項1に記載の内燃機関の排気浄化装置。   When the state of the rear catalyst does not satisfy a predetermined condition, the temperature of the rear catalyst is lower than a predetermined temperature, the temperature of the exhaust gas is lower than the predetermined temperature, and the internal combustion engine is immediately after starting The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein any one of the cases is included. 前記制御手段は、前記前段触媒還元処理において、前記前段触媒に吸着された窒素酸化物の還元に必要な時間だけ排気ガスを前記第1の分岐路に流通させる、ことを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。   2. The control means causes the exhaust gas to flow through the first branch path for a time required for the reduction of nitrogen oxides adsorbed on the front catalyst in the front catalyst reduction treatment. Or an exhaust gas purification apparatus for an internal combustion engine according to 2 or 2, 前記調整弁は、前記排気通路を流通する排気ガスの全量を前記第1及び第2の分岐通路の一方に流通させる切り替え弁を含む、ことを特徴とする請求項1ないし3のいずれかに記載の内燃機関の排気浄化装置。   The said adjustment valve includes the switching valve which distribute | circulates the whole quantity of the exhaust gas which distribute | circulates the said exhaust passage to one of the said 1st and 2nd branch passage, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. Exhaust gas purification device for internal combustion engine. 前記尿素添加手段は、前記前段触媒の上流側の排気通路に設けられた第1の尿素添加弁と、前記後段触媒の上流側の排気通路に設けられた第2の尿素添加弁とを含む、ことを特徴とする請求項1ないし4のいずれかに記載の内燃機関の排気浄化装置。   The urea addition means includes a first urea addition valve provided in an exhaust passage on the upstream side of the upstream catalyst and a second urea addition valve provided in an exhaust passage on the upstream side of the rear catalyst. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 4, wherein 前記尿素添加手段は、前記調整弁の上流側に設けられ、かつ、前記前段触媒及び前記後段触媒に共通に用いられる尿素添加弁を含む、ことを特徴とする請求項1ないし4のいずれかに記載の内燃機関の排気浄化装置。   5. The urea addition unit according to claim 1, wherein the urea addition unit includes a urea addition valve that is provided upstream of the regulating valve and is commonly used for the front-stage catalyst and the rear-stage catalyst. An exhaust gas purification apparatus for an internal combustion engine as described.
JP2008289841A 2008-11-12 2008-11-12 Emission control device for internal combustion engine Pending JP2010116821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008289841A JP2010116821A (en) 2008-11-12 2008-11-12 Emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289841A JP2010116821A (en) 2008-11-12 2008-11-12 Emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010116821A true JP2010116821A (en) 2010-05-27

Family

ID=42304637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289841A Pending JP2010116821A (en) 2008-11-12 2008-11-12 Emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010116821A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140083120A (en) * 2012-12-24 2014-07-04 두산인프라코어 주식회사 Exhaust gas recirculation and control method thereof
US9140164B2 (en) 2011-11-28 2015-09-22 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purification device for internal combustion engine
KR20200056666A (en) * 2018-11-15 2020-05-25 대우조선해양 주식회사 Exhaust Gas Discharging System for Ship and Operating Method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140164B2 (en) 2011-11-28 2015-09-22 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purification device for internal combustion engine
KR20140083120A (en) * 2012-12-24 2014-07-04 두산인프라코어 주식회사 Exhaust gas recirculation and control method thereof
KR102030181B1 (en) * 2012-12-24 2019-10-08 두산인프라코어 주식회사 Exhaust gas recirculation and control method thereof
KR20200056666A (en) * 2018-11-15 2020-05-25 대우조선해양 주식회사 Exhaust Gas Discharging System for Ship and Operating Method thereof
KR102569467B1 (en) 2018-11-15 2023-08-24 한화오션 주식회사 Exhaust Gas Discharging System for Ship

Similar Documents

Publication Publication Date Title
JP4702318B2 (en) Exhaust gas purification system for internal combustion engine
JP4453686B2 (en) Exhaust gas purification system for internal combustion engine
US8365516B2 (en) Exhaust gas purification apparatus for internal combustion engine
USRE48658E1 (en) Exhaust gas purification apparatus for an internal combustion engine
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
US20170074191A1 (en) METHOD FOR REGENERATING LEAN NOx TRAP OF EXHAUST PURIFICATION SYSTEM PROVIDED WITH LEAN NOx TRAP AND SELECTIVE CATALYTIC REDUCTION CATALYST AND EXHAUST PURIFICATION SYSTEM
JP2009197728A (en) Exhaust emission control device of internal combustion engine
JP2005127256A (en) Exhaust emission control device for internal combustion engine
JP2008223719A (en) Exhaust emission control device for internal combustion engine
JP2009062824A (en) Exhaust emission control system of internal combustion engine
WO2010079619A1 (en) Exhaust gas purification device for internal combustion engines
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
JP2015094337A (en) Exhaust emission control system for internal combustion engine
JP2010116821A (en) Emission control device for internal combustion engine
US9765663B2 (en) Method of regenerating lean NOx trap of exhaust purification system provided with lean NOx trap and selective catalytic reduction catalyst and exhaust purification system
JP2009036055A (en) Control device of exhaust gas treatment device
JP2007077875A (en) Exhaust emission control system for internal combustion engine
KR20150017382A (en) Exhaust gas treatment system comprising a catalytic particulate filter, and corresponding method
JP2018087542A (en) Exhaust emission control device of internal combustion engine
JP2020033984A (en) Exhaust emission control device for internal combustion engine and vehicle
JP2007255209A (en) Exhaust emission control device of internal combustion engine
JP2006057575A (en) Method for controlling exhaust emission control device
JP2007263073A (en) Exhaust emission control system of internal combustion engine
CN114704356B (en) Reducing N in tail gas 2 O method, device, electronic equipment and storage medium
JP2005147106A (en) Exhaust emission control device for internal combustion engine