JP2009036055A - Control device of exhaust gas treatment device - Google Patents

Control device of exhaust gas treatment device Download PDF

Info

Publication number
JP2009036055A
JP2009036055A JP2007199795A JP2007199795A JP2009036055A JP 2009036055 A JP2009036055 A JP 2009036055A JP 2007199795 A JP2007199795 A JP 2007199795A JP 2007199795 A JP2007199795 A JP 2007199795A JP 2009036055 A JP2009036055 A JP 2009036055A
Authority
JP
Japan
Prior art keywords
reducing agent
urea water
amount
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007199795A
Other languages
Japanese (ja)
Inventor
Hiroshi Funahashi
博 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2007199795A priority Critical patent/JP2009036055A/en
Publication of JP2009036055A publication Critical patent/JP2009036055A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of an exhaust gas treatment device capable of suppressing consumption of a reducer, effectively reducing a specific component in exhaust gas, and purifying the exhaust gas even while having simple and inexpensive structure. <P>SOLUTION: Unlike the prior art of injecting and adding urea water addition amount suitable for a NOx discharge amount discharged from an internal combustion engine 1 upon starting urea water addition, urea water is injected and added by increasing its amount from a state of urea water adding amount =0 by a first prescribed amount at every predetermined time (S1-S3), a detection signal of an ammonia sensor 8 is observed, when NH<SB>3</SB>flows out to an exhaust gas downstream side of a urea SCR catalyst 5, the urea water addition amount is decreased at every predetermined time (S1, S2, S4, S5), and when NH<SB>3</SB>stops flowing out to the exhaust gas downstream side of the urea SCR catalyst 5, the urea water addition amount at that time is maintained (S5, S6). Therefore, compared to the prior art, NOx in exhaust gas can be reduced and exhaust gas can be purified while suppressing the consumption amount of urea water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関から排出され種々の排出物質を含む気体(排気)を処理する排気処理装置の制御装置に関する。   The present invention relates to a control device for an exhaust treatment device that processes a gas (exhaust gas) discharged from an internal combustion engine and containing various exhaust substances.

燃焼装置からの排気を浄化して環境汚染の拡大を抑制することは重要な課題であるが、例えば、ディーゼル燃焼機関に関しては、排気中のPM(パティキュレートマター:粒子状物質=主に黒煙(スス)、SOFと称される燃え残った燃料や潤滑油の成分、サルフェートと称される軽油燃料中の硫黄分から生成される成分、その他の固体物質を含む)の大気への排出を抑えるために、例えば、ディーゼルパティキュレートフィルタ(Diesel Particulate Filter)やCSF(Catalyzed Soot Filter:触媒化フィルタ)を排気通路に介装し、排気をディーゼルパティキュレートフィルタやCSFを通過させることで排気中のPMを捕集する一方、ディーゼルパティキュレートフィルタやCSFを種々の方法により再生することが行われている。   Purifying the exhaust from the combustion device to suppress the spread of environmental pollution is an important issue. For example, in the case of a diesel combustion engine, PM (particulate matter: particulate matter = mainly black smoke) in the exhaust (Soot), to suppress the emission of unburned fuel called SOF, components of lubricating oil, components generated from sulfur in diesel fuel called sulfate, and other solid substances) to the atmosphere In addition, for example, a diesel particulate filter (CSF) or a CSF (catalyzed soot filter) is installed in the exhaust passage, and the exhaust gas is passed through the diesel particulate filter or CSF so that the PM in the exhaust gas is passed. While collecting, diesel particulate filter and CSF It has been made to be reproduced by the people of the way.

また、例えば、特許文献1などにおいては、排気に含まれるNOxとPMの同時低減を実現するために、ディーゼルパティキュレートフィルタやCSFを排気通路に介装すると共に、その下流側に、NOx低減に有効な尿素SCR(Selective Catalytic Reduction)を介装することが提案されている。なお、尿素SCRとは、酸素共存下においても選択的にNOxを還元剤と反応させることができる特性を備えた選択還元型NOx触媒であって、毒性のない尿素水を排気に添加してアンモニアと炭酸ガスに熱分解し、この生成されたアンモニアを還元剤として用いて選択還元型NOx触媒上で排気中のNOxを還元して浄化しようとするものである。   Further, for example, in Patent Document 1, in order to realize simultaneous reduction of NOx and PM contained in exhaust gas, a diesel particulate filter and CSF are interposed in the exhaust passage, and at the downstream side, NOx reduction is performed. It has been proposed to interpose an effective urea SCR (Selective Catalytic Reduction). Urea SCR is a selective reduction-type NOx catalyst that has the property of selectively reacting NOx with a reducing agent even in the presence of oxygen. And NOx in the exhaust gas is reduced and purified on the selective reduction type NOx catalyst using the generated ammonia as a reducing agent.

より詳細には、特許文献1に記載されるような従来の排気処理装置においては、例えば、図6に示すように、ディーゼル燃焼機関等の内燃機関1の排気通路2の最上流側の排気温度の比較的高い位置に再生効率等の観点より酸化触媒付きディーゼルパティキュレートフィルタ3を介装し、その下流側に尿素水添加装置4、尿素SCR触媒5を介装すると共に、尿素SCR触媒5からリークしてくる余剰のアンモニア(NH)を酸化処理するためのアンモニア酸化触媒6を介装していた。 More specifically, in the conventional exhaust treatment apparatus as described in Patent Document 1, for example, as shown in FIG. 6, the exhaust gas temperature on the most upstream side of the exhaust passage 2 of the internal combustion engine 1 such as a diesel combustion engine is used. The diesel particulate filter 3 with an oxidation catalyst is interposed at a relatively high position from the viewpoint of regeneration efficiency and the like, and the urea water addition device 4 and the urea SCR catalyst 5 are disposed downstream thereof, and from the urea SCR catalyst 5 An ammonia oxidation catalyst 6 for oxidizing excess ammonia (NH 3 ) leaking was interposed.

また、特許文献2や特許文献3には、図7に示すように、尿素水添加装置4から尿素SCR触媒5に供給する尿素水の量を、尿素SCR触媒5の排気下流側に設けたアンモニアセンサ(或いはNOxセンサ)8の検出結果に基づいてフィードバック制御するようにした装置が記載されている。   Further, in Patent Document 2 and Patent Document 3, as shown in FIG. 7, the amount of urea water supplied from the urea water adding device 4 to the urea SCR catalyst 5 is set to ammonia provided on the exhaust downstream side of the urea SCR catalyst 5. An apparatus is described in which feedback control is performed based on the detection result of the sensor (or NOx sensor) 8.

ここで、
尿素水を加熱すると、CO(NH+HO→2NH+COとなり、NH(アンモニア)が得られる。
NHとNOxが、尿素SCR触媒5において反応し、
NO + NH→ N+ HO + H
NO+ NH→ N+ HO + OH
→2N+ 3H
なる反応により、NOxが還元される。
here,
When urea water is heated, CO (NH 2 ) 2 + H 2 O → 2NH 3 + CO 2 is obtained, and NH 3 (ammonia) is obtained.
NH 3 and NOx react in the urea SCR catalyst 5,
NO + NH 3 → N 2 + H 2 O + H
NO 2 + NH 3 → N 2 + H 2 O + OH
→ 2N 2 + 3H 2 O
By this reaction, NOx is reduced.

よって、NOxのNと同じ数のNを供給できるように尿素水を添加する必要があり、仮に尿素水の添加量が過多ならNHが尿素SCR触媒5から排出される一方、添加量不足であればNOxが尿素SCR触媒5から排出されることになる。 Therefore, it is necessary to add urea water so that the same number of N as N of NOx can be supplied. If the amount of urea water added is excessive, NH 3 is discharged from the urea SCR catalyst 5 while the amount of addition is insufficient. If there is, NOx is discharged from the urea SCR catalyst 5.

また、尿素水からのNが尿素SCR触媒5の触媒上のある点に付着したとしても、当該ある点にNOxが到来するとは限らず、尿素水からのNが高い確率でNOxと出会えるようにするためには、尿素水を排気全体に分散すると共に、NOxと尿素水(すなわちNH)のNの比を1以上となるように、尿素水添加装置4からの尿素水の添加量(供給量)を多めに設定してNOxと出会える確率を高めるようにすることが行なわれている。 Further, even if N from the urea water adheres to a certain point on the catalyst of the urea SCR catalyst 5, NOx does not always arrive at the certain point, so that N from the urea water can meet NOx with a high probability. In order to achieve this, the urea water is dispersed throughout the exhaust gas, and the urea water addition amount (supply) is supplied from the urea water adding device 4 so that the ratio of N between NOx and urea water (that is, NH 3 ) is 1 or more. In order to increase the probability of encountering NOx, a large amount is set.

このため、従来においては、例えば図8のフローチャートのステップ200(S200)に示すように、内燃機関1から排出されるNOx排出量を内燃機関の運転状態(回転速度、負荷など)等から演算により或いは排気通路2に設けたNOxセンサ7の検出信号に基づいて求める一方で、当該NOx排出量を確実に還元することができるように、すなわちNOxのNに対する尿素水(NH)のNの比が所定以上大きくなるように、尿素水添加装置4から尿素水を多目に(例えば前記NOx排出量に補正係数α(1以上の値)を乗じて求めた尿素水量を)排気に添加供給するようにしていた。 For this reason, conventionally, for example, as shown in step 200 (S200) of the flowchart of FIG. 8, the amount of NOx discharged from the internal combustion engine 1 is calculated from the operating state (rotational speed, load, etc.) of the internal combustion engine. Alternatively, it is obtained based on the detection signal of the NOx sensor 7 provided in the exhaust passage 2, while the NOx emission amount can be reliably reduced, that is, the ratio of N of urea water (NH 3 ) to N of NOx. Is increased and supplied to the exhaust gas from the urea water adding device 4 (for example, the urea water amount obtained by multiplying the NOx emission amount by the correction coefficient α (a value of 1 or more)). It was like that.

更に、従来においては、特許文献2、特許文献3に記載されているような制御方法を利用して、例えば図8のフローチャートに示したように、内燃機関1の運転状態の変化、個体差、外乱等に追従して過不足なく尿素水をNOx還元作用に供すべく、尿素SCR触媒5の排気下流側に設けたNOxセンサ(或いはアンモニアセンサ)8の検出結果に基づいて、尿素水添加装置4から供給する尿素水の添加量を増減補正するフィードバック制御を行なうようにしていた。
特開2007−2697号公報 特開2001−234736号公報 特開平05−33948号公報
Furthermore, conventionally, using a control method as described in Patent Documents 2 and 3, for example, as shown in the flowchart of FIG. 8, changes in the operating state of the internal combustion engine 1, individual differences, Based on the detection result of the NOx sensor (or ammonia sensor) 8 provided on the exhaust downstream side of the urea SCR catalyst 5 in order to follow the disturbance or the like and use the urea water for the NOx reduction action without excess or deficiency, the urea water addition device 4 The feedback control is performed to correct the increase / decrease in the amount of urea water supplied from the control unit.
JP 2007-2697 A Japanese Patent Laid-Open No. 2001-234736 JP 05-33948 A

ここで、尿素水にはコストが掛かると共に、尿素水を貯留する尿素水タンクの小容量化やその補充サイクルを長くしたいという要望もあり、尿素水の消費量を低減することが望まれる。   Here, the cost of the urea water is high, and there is a desire to reduce the capacity of the urea water tank that stores the urea water and to lengthen its replenishment cycle, and it is desired to reduce the consumption of urea water.

また、従来は、排気に還元剤を添加供給するという選択還元型NOx触媒に特有の性質に関する知見が不十分であり、このため、従来から存する酸化触媒や三元触媒等における排気制御と同様の考え方に基づく手法によって、例えば図8のフローチャートに示したように、内燃機関1から排出されるNOx排出量を内燃機関の運転状態等から演算により或いは排気通路2に設けたNOxセンサ7から求め、これに基づいて尿素水添加装置4から添加供給する還元剤としての尿素水量を求めて排気に添加供給するようにすると共に(S200参照)、尿素SCR触媒5の排気下流側に設けたアンモニアセンサ8の検出信号に基づいて、尿素水添加装置4から供給する尿素水の添加量を増減補正するようにしており(S300〜700参照)、選択還元型NOx触媒の既述したような特有の性質を十分に考慮した制御手法ではなかった。   In addition, conventionally, knowledge about the characteristic peculiar to the selective reduction type NOx catalyst in which a reducing agent is added and supplied to exhaust gas is insufficient. For this reason, it is the same as the conventional exhaust control in an oxidation catalyst or a three-way catalyst. By a method based on the concept, for example, as shown in the flowchart of FIG. 8, the NOx emission amount discharged from the internal combustion engine 1 is calculated from the operating state of the internal combustion engine or the like or from the NOx sensor 7 provided in the exhaust passage 2, Based on this, the amount of urea water as a reducing agent to be added and supplied from the urea water addition device 4 is obtained and added to the exhaust gas (see S200), and the ammonia sensor 8 provided downstream of the urea SCR catalyst 5 in the exhaust gas. Based on the detection signal, the amount of urea water supplied from the urea water adding device 4 is corrected to increase or decrease (see S300 to 700). Was not a control method was sufficiently considered unique properties as described above for reduction type NOx catalyst.

本発明は、かかる実情に鑑みなされたもので、簡単かつ安価な構成でありながら、還元剤の消費を抑制しつつ、効果的に排気中の特定成分(例えばNOx)を還元して浄化することができる選択還元型触媒を有する排気処理装置の制御装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and effectively reduces and purifies a specific component (for example, NOx) in exhaust gas while suppressing consumption of a reducing agent while having a simple and inexpensive configuration. An object of the present invention is to provide a control device for an exhaust treatment device having a selective reduction catalyst capable of performing

このため、本発明に係る排気処理装置の制御装置は、
内燃機関から排出される排気に対して還元剤添加手段を介して還元剤を添加して選択還元型触媒により排気中の特定成分を選択的に還元する排気処理装置の制御装置であって、
前記選択還元型触媒の排気下流側に配設され、還元剤に起因する所定の成分を検出する還元剤成分検出手段と、
前記還元剤添加手段を介した還元剤の排気への添加の開始から、前記還元剤成分検出手段により前記所定の成分が検出されるまで、前記還元剤添加手段から添加する還元剤の添加量を漸増する還元剤添加量漸増制御手段と、
当該還元剤添加量漸増制御手段による還元剤の添加量の漸増中に、前記還元剤成分検出手段により前記所定の成分が検出された場合に、還元剤の添加量を漸減する還元剤添加量漸減制御手段と、
当該還元剤添加量漸減制御手段による還元剤の添加量の漸減中に、前記還元剤成分検出手段により前記所定の成分が検出されなくなった場合に、還元剤の添加量を所定に維持する還元剤添加量維持手段と、
を含んで構成したことを特徴とする。
For this reason, the control device of the exhaust treatment device according to the present invention is:
A control device for an exhaust treatment device that selectively reduces a specific component in the exhaust by a selective reduction catalyst by adding a reducing agent to the exhaust discharged from the internal combustion engine via a reducing agent adding means,
A reducing agent component detecting means disposed on the exhaust downstream side of the selective catalytic reduction catalyst for detecting a predetermined component caused by the reducing agent;
From the start of the addition of the reducing agent to the exhaust gas via the reducing agent adding means, the amount of reducing agent added from the reducing agent adding means until the predetermined component is detected by the reducing agent component detecting means. A gradually increasing reducing agent addition amount control means;
The reducing agent addition amount is gradually reduced when the predetermined component is detected by the reducing agent component detection means while the reducing agent addition amount is gradually increased by the reducing agent addition amount gradually increasing control means. Control means;
A reducing agent that maintains a predetermined amount of reducing agent when the predetermined component is no longer detected by the reducing agent component detecting means while the reducing agent addition amount is gradually decreasing by the reducing agent addition amount gradually decreasing control means. Addition amount maintaining means,
It is characterized by including.

ここで、本発明は、前記選択還元型触媒がNOxを選択的に還元する選択還元型NOx触媒であり、前記添加される還元剤が当該選択還元型NOx触媒にアンモニアを供給可能な還元剤であることを特徴とすることができる。   Here, the present invention is a selective reduction type NOx catalyst in which the selective reduction catalyst selectively reduces NOx, and the added reducing agent is a reducing agent capable of supplying ammonia to the selective reduction type NOx catalyst. It can be characterized by being.

また、本発明は、前記還元剤に起因する所定の成分がアンモニアであることを特徴とすることができる。
また、本発明は、前記選択還元型触媒の排気下流側に前記所定の成分を浄化する浄化触媒が配設される場合において、当該浄化触媒の排気上流側に前記還元剤成分検出手段が配設されることを特徴とすることができる。
Further, the present invention can be characterized in that the predetermined component resulting from the reducing agent is ammonia.
In the present invention, when the purification catalyst for purifying the predetermined component is disposed on the exhaust downstream side of the selective reduction catalyst, the reducing agent component detection means is disposed on the exhaust upstream side of the purification catalyst. It can be characterized by that.

本発明によれば、簡単かつ安価な構成でありながら、還元剤の消費を抑制しつつ、効果的に排気中の特定成分(例えばNOx)を還元して浄化することができる選択還元型触媒を有する排気処理装置の制御装置を提供することを目的とする。   According to the present invention, there is provided a selective catalytic reduction catalyst capable of effectively reducing and purifying a specific component (for example, NOx) in exhaust gas while suppressing consumption of a reducing agent while having a simple and inexpensive configuration. It is an object of the present invention to provide a control device for an exhaust treatment device.

以下、本発明に係る一実施の形態を、添付の図面を参照しつつ説明する。なお、以下で説明する実施の形態により、本発明が限定されるものではない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the accompanying drawings. The present invention is not limited to the embodiments described below.

本発明の一実施の形態に係る選択還元型触媒を有する排気処理装置の概略的な全体構成を、図1に基づいて説明する。
図1に示すように、本発明の一実施の形態に係る排気処理装置は、例えばディーゼル燃焼機関等の内燃機関1の排気通路2の最上流側の排気温度の比較的高い位置に再生効率等の観点より酸化触媒付きディーゼルパティキュレートフィルタ3を介装し、その下流側に尿素水添加装置4、選択還元型触媒である尿素SCR触媒5を介装すると共に、尿素SCR触媒5からリークしてくる余剰のアンモニア(NH)を酸化処理するためのアンモニア酸化触媒6が介装されている。なお、当該アンモニア酸化触媒6が、本発明に係る浄化触媒の一例を構成する。
A schematic overall configuration of an exhaust treatment apparatus having a selective reduction catalyst according to an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, an exhaust treatment apparatus according to an embodiment of the present invention has a regeneration efficiency or the like at a relatively high exhaust temperature position on the most upstream side of an exhaust passage 2 of an internal combustion engine 1 such as a diesel combustion engine. In view of the above, a diesel particulate filter 3 with an oxidation catalyst is interposed, a urea water addition device 4 and a urea SCR catalyst 5 which is a selective reduction catalyst are interposed downstream thereof, and leakage from the urea SCR catalyst 5 occurs. An ammonia oxidation catalyst 6 for oxidizing the surplus ammonia (NH 3 ) is interposed. The ammonia oxidation catalyst 6 constitutes an example of a purification catalyst according to the present invention.

前記尿素水添加装置4は、本発明に係る還元剤添加手段に相当するもので、図示しないエンジン制御ユニット(ECU:Engine Control Unit)からの制御信号に基づいて、排気に対して還元剤としての尿素水を所定に調量しつつ噴射供給(添加)する尿素水噴射ノズル4Aと、尿素水を貯留する尿素水タンク4Bと、当該尿素水タンク4Bに貯留されている尿素水を排気に対して噴射供給する前記尿素水噴射ノズル4Aへ所定圧力をもって圧送供給する供給ポンプ4Cと、を含んで構成されている。   The urea water adding device 4 corresponds to a reducing agent adding means according to the present invention, and is used as a reducing agent for exhaust gas based on a control signal from an engine control unit (ECU: engine control unit) (not shown). A urea water injection nozzle 4A that supplies and adds (adds) urea water while metering it in a predetermined amount, a urea water tank 4B that stores urea water, and urea water stored in the urea water tank 4B with respect to exhaust gas A supply pump 4C that supplies and supplies the urea water injection nozzle 4A with a predetermined pressure.

また、本実施の形態においては、尿素SCR触媒5の排気下流側に、選択的に所定の成分(ここではアンモニア)を検知するセンサ素子を備えたアンモニアセンサ8が備えられている。前記アンモニアセンサ8が、本発明に係る還元剤成分検出手段に相当する。   Further, in the present embodiment, an ammonia sensor 8 including a sensor element that selectively detects a predetermined component (here, ammonia) is provided on the exhaust downstream side of the urea SCR catalyst 5. The ammonia sensor 8 corresponds to the reducing agent component detecting means according to the present invention.

かかるセンサ素子は、例えば、NOxの存在下においても選択的にアンモニアを検知することができるセンサ素子、或いはNOxにはほとんど影響を受けないセンサ素子であることが好ましい。このようなセンサ素子を備えたアンモニアセンサ8は、ジルコニア系焼結体、LaGaO系焼結体等の公知の酸素イオン伝導性を有する固体電解質体の一面に基準電極、他面に2層以上からなる検知電極を備え、更に、固体電解質体の内部抵抗値が一定に成るように加熱・保持するためのヒータ素子を一体又は別体に備える素子を使用することにより得ることができる。 Such a sensor element is preferably, for example, a sensor element that can selectively detect ammonia even in the presence of NOx, or a sensor element that is hardly affected by NOx. The ammonia sensor 8 provided with such a sensor element includes a reference electrode on one surface of a solid electrolyte body having a known oxygen ion conductivity such as a zirconia-based sintered body and a LaGaO 3 -based sintered body, and two or more layers on the other surface. Further, it can be obtained by using an element provided with a heater element for heating and holding the solid electrolyte body so that the internal resistance value of the solid electrolyte body becomes constant or as a separate body.

かかるアンモニアセンサ8の検出信号は、前記エンジン制御ユニットに送られ、後述する還元剤の供給制御(添加制御)に用いられる。   The detection signal of the ammonia sensor 8 is sent to the engine control unit and used for supply control (addition control) of a reducing agent to be described later.

ここで、尿素SCR触媒5における脱硝特性(NOx還元特性)を、図2に基づいて説明する。   Here, the denitration characteristic (NOx reduction characteristic) in the urea SCR catalyst 5 will be described with reference to FIG.

尿素水を還元剤として用いる場合、尿素水の水分を蒸発させるために蒸発潜熱が必要である。また、尿素水からNHを生成する反応は吸熱反応であると共に、生成されるHOが蒸発するための蒸発潜熱も必要である。
従って、当該尿素水からNHを生成する反応は、その反応速度が遅いといった傾向がある。
When urea water is used as the reducing agent, latent heat of vaporization is necessary to evaporate the water of the urea water. In addition, the reaction for generating NH 3 from urea water is an endothermic reaction and also requires latent heat of evaporation for evaporating the generated H 2 O.
Therefore, the reaction for producing NH 3 from the urea water tends to have a slow reaction rate.

このため、図2に示したように、NOxが尿素SCR触媒5(触媒床温度230°C以上)に供給されている状態において、尿素水の添加を開始しても、所定期間の遅れをもって尿素水からアンモニアが生成され、この所定期間の遅れをもって生成されたアンモニアがNOx還元反応に供されることになるため、所定のNOx還元度合いが得られるようになるまでには、相当の期間(例えば、10数秒)の遅れが生じることになる。   For this reason, as shown in FIG. 2, even when the addition of urea water is started in a state where NOx is supplied to the urea SCR catalyst 5 (catalyst bed temperature 230 ° C. or higher), the urea is delayed with a predetermined period of time. Ammonia is produced from water, and the ammonia produced with a delay of this predetermined period is used for the NOx reduction reaction. Therefore, until a predetermined degree of NOx reduction is obtained, a considerable period (for example, 10 seconds).

このように、尿素SCR触媒5における脱硝特性には反応遅れが比較的大きいという特性があり、前記エンジン制御ユニットにより、従来のように、内燃機関1の運転状態(回転速度、負荷(吸入空気流量、燃料噴射量など)など)等に基づいて、或いはNOxセンサ7の検出信号に基づいて、内燃機関1からのNOx排出量を求め、当該求めたNOx排出量を還元するのに必要な尿素水量(すなわちNH量)を排気に添加供給したとしても、NOxの還元に寄与することなく尿素SCR触媒5からNHが排出される惧れがある。特に過渡運転状態などにおいて、負荷の増大に応じてNOx排出量が増大し、これに見合うように尿素水を増量しても、NOxの還元に寄与することなくNHが尿素SCR触媒5から排出される惧れがある。 As described above, the denitration characteristic of the urea SCR catalyst 5 has a characteristic that the reaction delay is relatively large, and the engine control unit allows the operation state (rotation speed, load (intake air flow rate) of the internal combustion engine 1 as in the past. , Etc.) or the detection signal of the NOx sensor 7, the amount of NOx discharged from the internal combustion engine 1 is obtained, and the amount of urea water necessary to reduce the obtained NOx emission amount Even if (ie, the amount of NH 3 ) is added to the exhaust gas, NH 3 may be discharged from the urea SCR catalyst 5 without contributing to the reduction of NOx. Particularly in a transient operation state, the amount of NOx emission increases as the load increases. Even if the amount of urea water is increased to match this, NH 3 is discharged from the urea SCR catalyst 5 without contributing to the reduction of NOx. There is a fear.

従って、このようなNOxの還元に寄与せずに排出されるNHを減らすことができれば、尿素水の消費量を低減することができる。 Therefore, if NH 3 discharged without contributing to such reduction of NOx can be reduced, the consumption of urea water can be reduced.

本実施の形態では、かかる点に着目し、図3に示すような還元剤(尿素水)の供給(添加)制御を実行する。なお、以下に説明するように、当該還元剤(尿素水)の供給(添加)制御が、本発明に係る還元剤添加量漸増制御手段、還元剤添加量漸減制御手段、還元剤添加量維持手段として機能することになる。   In the present embodiment, focusing on this point, supply (addition) control of the reducing agent (urea water) as shown in FIG. 3 is executed. As will be described below, the supply (addition) of the reducing agent (urea water) is controlled by the reducing agent addition amount gradual increase control means, the reducing agent addition amount gradual decrease control means, and the reducing agent addition amount maintenance means according to the present invention. Will function as.

図3のフローチャートに示したように、
S(図ではステップ。以下、同様)1では、前記尿素水添加装置4により尿素水を排気に添加供給する条件が成立したか否かを判断する。当該条件が成立したか否かは、例えば、内燃機関1の運転状態(NOxの排出状態)、排気温度、尿素SCR触媒5の触媒床温度などに基づいて判断することができる。
YESであれば、尿素水添加装置4を構成する尿素水噴射ノズル4Aから、第1の所定量(内燃機関1から排出されるNOx排出量に見合った尿素水添加量より少ない添加量(供給量))で尿素水の排気への噴射添加を実行(開始)してS2へ進み、NOであれば本フローを終了し次回ルーチンの実行に備える。
As shown in the flowchart of FIG.
In S (step in the figure, the same applies hereinafter) 1, it is determined whether or not a condition for adding and supplying urea water to the exhaust gas is satisfied by the urea water adding device 4. Whether or not the condition is satisfied can be determined based on, for example, the operating state of the internal combustion engine 1 (NOx emission state), the exhaust temperature, the catalyst bed temperature of the urea SCR catalyst 5, and the like.
If YES, from the urea water injection nozzle 4A constituting the urea water addition device 4, the first predetermined amount (addition amount less than the urea water addition amount commensurate with the NOx discharge amount discharged from the internal combustion engine 1 (supply amount) )), The injection of urea water into the exhaust gas is executed (started), and the process proceeds to S2. If NO, this flow ends and the next routine is prepared for execution.

S2では、アンモニアセンサ8の検出信号(センサ出力B)に基づいて、尿素SCR触媒5の排気下流側にNHが流出したか否か(B>0か否か)を判断する。
NOであれば、S3へ進み、尿素水の添加量を第1の所定量だけ増量し、S1へ戻る。すなわち、本実施の形態では、従来のように内燃機関1から排出されるNOx排出量に見合った尿素水量を噴射添加するのではなく、S2でYES判定されるまでS1からS3を繰り返すことによって、尿素水添加量=0の状態から所定時間毎に第1の所定量ずつ増量しながら尿素水を噴射添加することになる(図2、図4等参照)。
In S2, based on the detection signal (sensor output B) of the ammonia sensor 8, it is determined whether NH 3 has flowed out to the exhaust downstream side of the urea SCR catalyst 5 (whether B> 0).
If NO, the process proceeds to S3, the amount of urea water added is increased by the first predetermined amount, and the process returns to S1. That is, in this embodiment, instead of injecting and adding the urea water amount commensurate with the NOx emission amount discharged from the internal combustion engine 1 as in the prior art, by repeating S1 to S3 until YES is determined in S2, The urea water is injected and added from the state where the urea water addition amount = 0 in increments of the first predetermined amount every predetermined time (see FIGS. 2 and 4).

すなわち、尿素水の噴射添加開始後において、S2でNOの場合は、尿素水からNHを生成する反応が開始されていないか、開始されたとしても生成されたNHが全てNOxの還元に供されていると判断して、尿素水の添加量を所定に増量するように、S2でYES判定されるまでS1からS3を繰り返す。 That is, after the start of the urea water injection addition, if NO in S2, the reaction for generating NH 3 from the urea water has not started, or even if it has started, all of the generated NH 3 is reduced to NOx. S1 to S3 are repeated until YES is determined in S2 so that the amount of urea water added is increased by a predetermined amount.

一方、S2でYES判定されると、尿素水からNHを生成する反応が開始されると共に、余剰のNHが尿素SCR触媒5の排気下流側に流出し始めたと判断して、S4へ進む。 On the other hand, if YES is determined in S2, it is determined that the reaction for generating NH 3 from the urea water is started and surplus NH 3 has started to flow out to the exhaust downstream side of the urea SCR catalyst 5, and the process proceeds to S4. .

S4では、余剰のNHが尿素SCR触媒5の排気下流側に流出し始めたと判断した場合であるので、尿素水噴射ノズル4Aから尿素水の排気への添加量を所定に減量する。 In S4, since it is determined that surplus NH 3 has started to flow out downstream of the urea SCR catalyst 5, the amount of urea water added from the urea water injection nozzle 4A to the exhaust gas is reduced by a predetermined amount.

S5では、アンモニアセンサ8の検出信号Bに基づいて、尿素SCR触媒5の排気下流側にNHが流出しなくなったか否か(B=0となったか否か)を判断する。
YESの場合には、尿素SCR触媒5の排気下流側にNHが流出しなくなり、内燃機関1からのNOx排出量を還元するのに必要な尿素水添加量(すなわちNH量)を排気に噴射添加できていると判断して、現在の添加量を維持して尿素水の噴射添加を継続し、本フローを終了して次回ルーチンに備える。
NOの場合には、S1へ戻り、S2〜S5のステップを繰り返し、S5でYES判定されるまで、S4を通過するたびに尿素水の添加量を所定に減量(すなわち所定時間毎に第2の所定量ずつ減量)しながら尿素水を噴射添加することになる(図4等参照)。
In S5, based on the detection signal B of the ammonia sensor 8, it is determined whether NH 3 no longer flows out to the exhaust downstream side of the urea SCR catalyst 5 (whether B = 0).
In the case of YES, NH 3 does not flow out to the exhaust downstream side of the urea SCR catalyst 5, and the urea water addition amount (that is, NH 3 amount) necessary for reducing the NOx emission amount from the internal combustion engine 1 is exhausted. It is determined that the injection has been added, the current addition amount is maintained, the urea water injection is continued, the present flow is terminated, and the next routine is prepared.
In the case of NO, the process returns to S1 and repeats steps S2 to S5, and the amount of urea water added is reduced by a predetermined amount every time S4 is passed (that is, a second time every predetermined time) until YES is determined in S5. The urea water is injected and added while the amount is decreased by a predetermined amount (see FIG. 4 and the like).

このように、本実施の形態によれば、尿素水添加を開始する際に、従来のように、内燃機関1から排出されるNOx排出量に見合った尿素水添加量を噴射添加するのではなく、尿素水添加量=0の状態から所定時間毎に第1の所定量(内燃機関1から排出されるNOx排出量に見合った尿素水添加量より少ない量)ずつ増量しながら尿素水を噴射添加すると共に、アンモニアセンサ8の検出信号を観察して、尿素SCR触媒5の排気下流側にNHが流出してきたら尿素水添加量を所定時間毎に減量し、尿素SCR触媒5の排気下流側にNHが流出しなくなったときにその時の尿素水添加量を維持するようにしたので、従来に比べて、尿素水の消費量を抑制しながら(図2や図4のハッチング部参照)、排気中のNOxを還元して排気を浄化処理することができることになる。 As described above, according to the present embodiment, when the urea water addition is started, the urea water addition amount corresponding to the NOx emission amount discharged from the internal combustion engine 1 is not injected and added as in the prior art. The urea water addition amount is injected and added in increments of a first predetermined amount (a smaller amount than the urea water addition amount commensurate with the NOx emission amount discharged from the internal combustion engine 1) every predetermined time from the state of urea water addition = 0. At the same time, the detection signal of the ammonia sensor 8 is observed, and when NH 3 flows out to the exhaust gas downstream side of the urea SCR catalyst 5, the urea water addition amount is reduced every predetermined time, and the urea SCR catalyst 5 is exhausted downstream of the exhaust gas. When NH 3 stops flowing out, the urea water addition amount at that time is maintained, so that the exhaust amount of urea water is suppressed as compared with the conventional method (see the hatched portions in FIGS. 2 and 4). NOx inside is reduced and exhausted It will be able to process of.

なお、S2で検出したアンモニアセンサ8の出力Bを用いて、S7において、当該出力Bと、システム不良判定基準値Fと、を比較し(例えば、B−F>0か否か)、出力Bがシステム不良判定基準値Fより大きい場合には、システム(尿素水添加装置4、尿素SCR触媒5など)に何らかの異常が生じているとして、S8でシステム不良判定し、例えばエンジン制御ユニットにその旨を記憶すると共に、尿素水の供給制御(添加制御)を停止したり、運転者等にシステム不良が生じている旨を報知するなどの処理を施すことができる。   Note that, using the output B of the ammonia sensor 8 detected in S2, the output B is compared with the system failure determination reference value F in S7 (for example, whether BF> 0), and the output B Is larger than the system failure determination reference value F, it is determined that there is some abnormality in the system (urea water adding device 4, urea SCR catalyst 5, etc.), and the system failure is determined in S8. Can be stored, and the supply control (addition control) of urea water can be stopped, or a driver can be notified that a system failure has occurred.

ここで、本実施の形態では、図1に示したように、尿素SCR触媒5と、アンモニア酸化触媒6と、の間に、アンモニアセンサ8を介装する構成として説明したが、図5に示すように、アンモニア酸化触媒6の排気下流側にアンモニアセンサ8を配設する構成とすることもできる。   Here, in the present embodiment, as illustrated in FIG. 1, the configuration has been described in which the ammonia sensor 8 is interposed between the urea SCR catalyst 5 and the ammonia oxidation catalyst 6. As described above, the ammonia sensor 8 may be arranged on the exhaust downstream side of the ammonia oxidation catalyst 6.

ただし、図1に示したように、尿素SCR触媒5と、アンモニア酸化触媒6と、の間に、アンモニアセンサ8を配設する場合には、図5に示した構成例に比べ、尿素SCR触媒5から流出してくるアンモニアをダイレクトに応答性良くかつ精度良く検出することができるため、尿素水添加制御を応答性良くかつ高精度に実行することができ、以って尿素水の消費量を効果的に抑制することができる。   However, as shown in FIG. 1, when the ammonia sensor 8 is disposed between the urea SCR catalyst 5 and the ammonia oxidation catalyst 6, the urea SCR catalyst is compared with the configuration example shown in FIG. Since ammonia flowing out from the tank 5 can be detected directly with good responsiveness and high accuracy, the urea water addition control can be executed with high responsiveness and high accuracy. It can be effectively suppressed.

また、図1に示したように、尿素SCR触媒5と、アンモニア酸化触媒6と、の間に、アンモニアセンサ8を配設する場合には、図5に示した構成例に比べ、尿素水添加(供給)制御を応答性良くかつ高精度に実行することができるため、尿素SCR触媒5から流出する余剰のアンモニア量を少なく抑えることができ、以ってアンモニア酸化触媒6を小容量化したり省略することが可能となる。   Further, as shown in FIG. 1, when the ammonia sensor 8 is disposed between the urea SCR catalyst 5 and the ammonia oxidation catalyst 6, urea water is added compared to the configuration example shown in FIG. Since the (supply) control can be executed with high responsiveness and high accuracy, the amount of excess ammonia flowing out from the urea SCR catalyst 5 can be suppressed to a small level, so that the capacity of the ammonia oxidation catalyst 6 can be reduced or omitted. It becomes possible to do.

ここで、本実施の形態では、内燃機関1の運転状態(回転速度、負荷(吸入空気流量、燃料噴射量など)など)等に基づいて、或いはNOxセンサ7の検出信号に基づいて、内燃機関1からのNOx排出量を求め、当該求めたNOx排出量を還元するのに必要な尿素水添加量(すなわちNH量)を排気に添加供給しないため、NOxセンサ7を省略することも可能であるが、NOxセンサ7を設けNOxセンサ7の出力に従って、前記第1の所定量や第2の所定量を可変に設定することも可能である。 Here, in the present embodiment, the internal combustion engine 1 is based on the operating state (rotational speed, load (intake air flow rate, fuel injection amount, etc.)) of the internal combustion engine 1 or the like, or based on the detection signal of the NOx sensor 7. NOx sensor 7 can be omitted because the NOx emission amount from 1 is obtained and the urea water addition amount (that is, NH 3 amount) necessary to reduce the obtained NOx emission amount is not added to the exhaust gas. However, it is also possible to provide the NOx sensor 7 and variably set the first predetermined amount and the second predetermined amount according to the output of the NOx sensor 7.

例えば、NOxセンサ7の出力が大きくNOx排出量が多い場合には、比較的大きな値に前記第1の所定量や第2の所定量を設定し、NOxセンサ7の出力が小さくNOx排出量が少ない場合には、比較的小さな値に前記第1の所定量や第2の所定量を設定することで、オーバーシュート等の発生などを抑制しつつNOx排出量の急激な変化に応答性良く尿素水添加制御を追従させることができることになる。   For example, when the output of the NOx sensor 7 is large and the NOx emission amount is large, the first predetermined amount or the second predetermined amount is set to a relatively large value, and the output of the NOx sensor 7 is small and the NOx emission amount is small. When the amount is small, the first predetermined amount or the second predetermined amount is set to a relatively small value so that the occurrence of overshoot or the like is suppressed, and urea can be responsive to a sudden change in the NOx emission amount. Water addition control can be followed.

なお、NOxセンサ7の出力に従うことなく、所定時間毎に添加される第1の所定量、第2の所定量は、添加の度にその値を予め定めたパターンに従って可変とすることもできる。
また、尿素水の添加は、経時(時間の経過)に対して直線的に増量或いは減量する場合に限定されず、例えば、図4(A)に一例として示したように、経時(時間の経過)に対して曲線的に増量或いは減量するようにすることもできる。
Note that the first predetermined amount and the second predetermined amount to be added every predetermined time can be made variable according to a predetermined pattern at each addition without depending on the output of the NOx sensor 7.
Further, the addition of urea water is not limited to the case of linearly increasing or decreasing the amount of time (elapsed time). For example, as shown in FIG. ) Can be increased or decreased in a curved manner.

更に、本発明は、図3のS3で(S1〜S3を繰り返すことによって)、還元剤(尿素水)を常に増量する場合に限定されるものではなく、図4(B)に一例として示したように、還元剤添加手段を介した還元剤の排気への添加の開始から還元剤成分検出手段により所定の成分が検出されるまでの期間において、還元剤の添加量を漸増させれば良いものである。つまり、図4(B)に一例として示したように、当該期間のある部分で増量せず或いは減量しても、当該期間全体として見て還元剤が漸増させていれば良いものである。   Further, the present invention is not limited to the case where the reducing agent (urea water) is constantly increased in S3 of FIG. 3 (by repeating S1 to S3), and is shown as an example in FIG. 4B. As described above, during the period from the start of the addition of the reducing agent to the exhaust through the reducing agent addition means until the predetermined component is detected by the reducing agent component detection means, the addition amount of the reducing agent may be gradually increased. It is. That is, as illustrated in FIG. 4B as an example, even if the amount is not increased or decreased in a certain part of the period, the reducing agent may be gradually increased as the entire period.

同様に、本発明は、図3のS4で(S1、S2、S4、S5を繰り返すことによって)、還元剤(尿素水)を常に減量する場合に限定されるものではなく、還元剤添加量漸増制御手段による還元剤の漸増中に還元剤成分検出手段により所定の成分が検出されてから、還元剤成分検出手段により前記所定の成分が検出されなくなるまでの期間において、還元剤の添加量を漸増させれば良いものである。つまり、当該期間のある部分で減量せず或いは増量しても、当該期間全体として見て還元剤が漸減させていれば良いものである。   Similarly, the present invention is not limited to the case where the reducing agent (urea water) is constantly reduced in S4 of FIG. 3 (by repeating S1, S2, S4, and S5), and the reducing agent addition amount is gradually increased. During the period from when the predetermined component is detected by the reducing agent component detecting means during the gradual increase of the reducing agent by the control means, until the predetermined component is no longer detected by the reducing agent component detecting means, the reducing agent addition amount is gradually increased. It is a good thing to do. That is, even if the amount is not decreased or increased in a certain part of the period, the reducing agent may be gradually decreased as the entire period.

ところで、本実施の形態では、選択還元型NOx触媒の一例である尿素SCR触媒5の還元剤として尿素水を用いる場合を一例として説明したが、本発明はこれに限定されるものではなく、尿素水以外でも、例えば、蟻酸とアンモニア水を成分に含み、凝固点が低く−30°Cでも凍結しないよう凍結性が改善されたデノキシム(denoxium「商品名」、Kerima社製、フィンランド、参照URL http://www.kemira.com/NR/rdonlyres/D96C8072-48F9-46E5-A6AF-F1A995ECD4A6/0/Denoxium_brochure.pdf#search='denoxium')なども本発明の還元剤として利用可能である。
なお、本実施の形態において、内燃機関1は、例えばディーゼル燃焼を行うディーゼルエンジンとすることができるが、これに限定されるものではなく、ガソリンその他の物質を燃料とする内燃機関とすることができ、更に移動式・定置式の内燃機関とすることができる。
By the way, in this Embodiment, although the case where urea water was used as a reducing agent of the urea SCR catalyst 5 which is an example of a selective reduction type NOx catalyst was demonstrated as an example, this invention is not limited to this, urea Other than water, for example, deoxyme (denoxium “trade name”, manufactured by Kerima, Finland, reference URL http: containing formic acid and ammonia water as components and having a low freezing point and improved freezing so as not to freeze even at −30 ° C. //www.kemira.com/NR/rdonlyres/D96C8072-48F9-46E5-A6AF-F1A995ECD4A6/0/Denoxium_brochure.pdf#search='denoxium ') can also be used as the reducing agent of the present invention.
In the present embodiment, the internal combustion engine 1 can be, for example, a diesel engine that performs diesel combustion, but is not limited thereto, and may be an internal combustion engine that uses gasoline or other substances as fuel. Furthermore, it can be a mobile / stationary internal combustion engine.

以上で説明した実施の形態は、本発明を説明するための例示に過ぎず、本発明の要旨を逸脱しない範囲内において、種々変更を加え得ることは可能である。   The embodiment described above is merely an example for explaining the present invention, and various modifications can be made without departing from the gist of the present invention.

本発明の一実施の形態に係る排気処理装置の全体構成例を概略的に示す図である。1 is a diagram schematically showing an overall configuration example of an exhaust treatment apparatus according to an embodiment of the present invention. 選択還元型NOx触媒(尿素SCR触媒)の脱硝特性を説明するための図である。It is a figure for demonstrating the denitration characteristic of a selective reduction type NOx catalyst (urea SCR catalyst). 同上実施の形態において実行される還元剤添加制御を説明するためのフローチャートである。It is a flowchart for demonstrating the reducing agent addition control performed in embodiment same as the above. 同上実施の形態において実行される還元剤添加の態様を説明するためのタイミングチャートである。It is a timing chart for demonstrating the aspect of the reducing agent addition performed in embodiment same as the above. 同上実施の形態に係る排気処理装置の他の一例を概略的に示す図である。It is a figure which shows roughly another example of the exhaust-gas treatment apparatus which concerns on embodiment same as the above. 従来の排気処理装置の一例を示す概略全体構成図である。It is a schematic whole block diagram which shows an example of the conventional exhaust-air-treatment apparatus. 従来の排気処理装置の他の一例を示す概略全体構成図である。It is a schematic whole block diagram which shows another example of the conventional exhaust processing apparatus. 従来の排気処理装置の制御方法の一例を示すフローチャートである。It is a flowchart which shows an example of the control method of the conventional exhaust processing apparatus.

符号の説明Explanation of symbols

1 内燃機関
2 排気通路
4 尿素水添加装置(還元剤添加手段に相当)
4A 尿素水噴射ノズル
4B 尿素水タンク
4C 供給ポンプ
5 尿素SCR触媒(選択還元型触媒に相当)
6 アンモニア酸化触媒(浄化触媒に相当)
7 NOxセンサ
8 アンモニアセンサ(還元剤成分検出手段に相当)
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Exhaust passage 4 Urea water addition apparatus (equivalent to reducing agent addition means)
4A Urea water injection nozzle 4B Urea water tank 4C Supply pump 5 Urea SCR catalyst (equivalent to selective reduction catalyst)
6 Ammonia oxidation catalyst (equivalent to purification catalyst)
7 NOx sensor 8 Ammonia sensor (equivalent to reducing agent component detection means)

Claims (4)

内燃機関から排出される排気に対して還元剤添加手段を介して還元剤を添加して選択還元型触媒により排気中の特定成分を選択的に還元する排気処理装置の制御装置であって、
前記選択還元型触媒の排気下流側に配設され、還元剤に起因する所定の成分を検出する還元剤成分検出手段を備え、
前記還元剤添加手段を介した還元剤の排気への添加の開始から、前記還元剤成分検出手段により前記所定の成分が検出されるまで、前記還元剤添加手段から添加する還元剤の添加量を漸増する還元剤添加量漸増制御手段と、
当該還元剤添加量漸増制御手段による還元剤の添加量の漸増中に、前記還元剤成分検出手段により前記所定の成分が検出された場合に、還元剤の添加量を漸減する還元剤添加量漸減制御手段と、
当該還元剤添加量漸減制御手段による還元剤の添加量の漸減中に、前記還元剤成分検出手段により前記所定の成分が検出されなくなった場合に、還元剤の添加量を所定に維持する還元剤添加量維持手段と、
を含んで構成したことを特徴とする排気処理装置の制御装置。
A control device for an exhaust treatment device that selectively reduces a specific component in the exhaust by a selective reduction catalyst by adding a reducing agent to the exhaust discharged from the internal combustion engine via a reducing agent adding means,
A reducing agent component detecting means disposed on the exhaust downstream side of the selective catalytic reduction catalyst for detecting a predetermined component caused by the reducing agent;
From the start of the addition of the reducing agent to the exhaust gas via the reducing agent adding means, the amount of reducing agent added from the reducing agent adding means until the predetermined component is detected by the reducing agent component detecting means. A gradually increasing reducing agent addition amount control means;
The reducing agent addition amount is gradually reduced when the predetermined component is detected by the reducing agent component detection means while the reducing agent addition amount is gradually increased by the reducing agent addition amount gradually increasing control means. Control means;
A reducing agent that maintains a predetermined amount of reducing agent when the predetermined component is no longer detected by the reducing agent component detecting means while the reducing agent addition amount is gradually decreasing by the reducing agent addition amount gradually decreasing control means. Addition amount maintaining means,
A control device for an exhaust treatment device, comprising:
前記選択還元型触媒がNOxを選択的に還元する選択還元型NOx触媒であり、前記添加される還元剤が当該選択還元型NOx触媒にアンモニアを供給可能な還元剤であることを特徴とする請求項1に記載の排気処理装置の制御装置。   The selective reduction type catalyst is a selective reduction type NOx catalyst that selectively reduces NOx, and the added reducing agent is a reducing agent that can supply ammonia to the selective reduction type NOx catalyst. Item 2. A control device for an exhaust treatment device according to Item 1. 前記還元剤に起因する所定の成分が、アンモニアであることを特徴とする請求項1又は請求項2に記載の排気処理装置の制御装置。   The exhaust gas treatment device control device according to claim 1 or 2, wherein the predetermined component resulting from the reducing agent is ammonia. 前記選択還元型触媒の排気下流側に前記所定の成分を浄化する浄化触媒が配設される場合において、当該浄化触媒の排気上流側に前記還元剤成分検出手段が配設されることを特徴とする請求項1〜請求項3の何れか1つに記載の排気処理装置の制御装置。
When the purification catalyst for purifying the predetermined component is disposed on the exhaust downstream side of the selective reduction catalyst, the reducing agent component detection means is disposed on the exhaust upstream side of the purification catalyst. The control device of the exhaust treatment device according to any one of claims 1 to 3.
JP2007199795A 2007-07-31 2007-07-31 Control device of exhaust gas treatment device Withdrawn JP2009036055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007199795A JP2009036055A (en) 2007-07-31 2007-07-31 Control device of exhaust gas treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007199795A JP2009036055A (en) 2007-07-31 2007-07-31 Control device of exhaust gas treatment device

Publications (1)

Publication Number Publication Date
JP2009036055A true JP2009036055A (en) 2009-02-19

Family

ID=40438199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007199795A Withdrawn JP2009036055A (en) 2007-07-31 2007-07-31 Control device of exhaust gas treatment device

Country Status (1)

Country Link
JP (1) JP2009036055A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223178A (en) * 2009-03-25 2010-10-07 Toyota Motor Corp Exhaust emission control device of internal combustion engine
WO2011024721A1 (en) * 2009-08-28 2011-03-03 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
DE102016201982A1 (en) 2015-02-16 2016-08-18 Denso Corporation Control unit for an exhaust gas purification system
JP2017120081A (en) * 2015-12-25 2017-07-06 株式会社クボタ Diesel engine exhaust treatment system
US20240068421A1 (en) * 2022-08-31 2024-02-29 Scania Cv Ab Method of Diagnosing a Combustion Engine Assembly, Control Arrangement, Combustion Engine Assembly, and Vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223178A (en) * 2009-03-25 2010-10-07 Toyota Motor Corp Exhaust emission control device of internal combustion engine
WO2011024721A1 (en) * 2009-08-28 2011-03-03 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
DE102016201982A1 (en) 2015-02-16 2016-08-18 Denso Corporation Control unit for an exhaust gas purification system
JP2017120081A (en) * 2015-12-25 2017-07-06 株式会社クボタ Diesel engine exhaust treatment system
US20240068421A1 (en) * 2022-08-31 2024-02-29 Scania Cv Ab Method of Diagnosing a Combustion Engine Assembly, Control Arrangement, Combustion Engine Assembly, and Vehicle

Similar Documents

Publication Publication Date Title
JP4986839B2 (en) Exhaust treatment device
JP4211749B2 (en) Exhaust gas purification device for internal combustion engine
JP5293811B2 (en) Engine exhaust purification system
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
JP5812952B2 (en) Exhaust gas purification system for internal combustion engine
JP2008190529A (en) Exhaust gas treatment system diagnostic device and method
JP5127052B2 (en) Exhaust treatment device control device
US20110083429A1 (en) Catalyst passing component determining apparatus and exhaust purification apparatus for internal combustion engine
JP2008163856A (en) Exhaust emission control device of internal combustion engine
JP2012107536A (en) CONTROL METHOD AND DEVICE OF NOx CLEANING DEVICE
JP2008255937A (en) Exhaust emission control device of internal combustion engine
JP2009036055A (en) Control device of exhaust gas treatment device
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
JP2009293605A (en) Control device for exhaust treatment device
JP2009156159A (en) Device for determining abnormal section of exhaust emission control system
US10364727B2 (en) Exhaust gas purification apparatus for an internal combustion engine
US20170002709A1 (en) Exhaust gas purification apparatus for an internal combustion engine (as amended)
JP2015086848A (en) Exhaust emission control system of internal combustion engine
JP2010090796A (en) Exhaust gas treatment device
JP2009167940A (en) Exhaust emission control device of internal combustion engine
JP2009180150A (en) Abnormality determination device of nox sensor used for exhaust emission control system
JP2008291695A (en) Exhaust emission control device of internal combustion engine
JP4211747B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005